Quantum criticality in correlated metals

Many experiments have explored the vicinity of a magnetic ordering transition in a large number of heavy fermion materials. A description in terms on Gaussian paramagnon fluctuations often fails, suggesting that the underlying order parameter of the transition is not simply the spin density wave order. The breakdown of Kondo screening has often been proposed as the underlying physics, but it has not been clear how this can be used to define a sharp quantum critical point.

Paper 2 and paper 4 show how this conundrum can be resolved by introducing the concept of a fractionalized Fermi liquid (FL*). The FL* is Fermi liquid like in that it possesses sharp electron-like quasiparticle excitations on a Fermi surface. However it also possesses topological order and a separate set of deconfined neutral spinon excitations along with a gauge boson. The presence of topological order is intimately linked with a violation of Luttinger's theorem by the volume enclosed by the Fermi surface. The works below describe the nature of the quantum fluctuations in the vicinity of the transition between the FL* state and a conventional heavy Fermi liquid.

Paper 3 looks at related fluctuation corrections in the conventional spin density wave theory and in dynamical mean field theory.

Paper 1 looks at a very different proposal for an unconventional order parameter in a Fermi liquid, that involving fractionalization of `stripe' order.



PAPERS

  1. Strongly coupled quantum criticality with a Fermi surface in two dimensions: fractionalization of spin and charge collective modes, S. Sachdev and T. Morinari, Physical Review B 66, 235117 (2002); cond-mat/0207167.
  2. Fractionalized Fermi liquids, T. Senthil, S. Sachdev, and M. Vojta, Physical Review Letters 90, 216403 (2003); cond-mat/0209144.
  3. Non-Fermi liquid behavior from two-dimensional antiferromagnetic fluctuations: a renormalization-group and large-N analysis, S. Pankov, S. Florens, A. Georges, G. Kotliar, and S. Sachdev, Physical Review B 69, 054426 (2004); cond-mat/0304415.
  4. Weak magnetism and non-Fermi liquids near heavy-fermion critical points, T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004); cond-mat/0305193.
  5. Absence of U(1) spin liquids in two dimensions, I. F. Herbut, B. H. Seradjeh, S. Sachdev, and G. Murthy, Physical Review B 68, 195110 (2003); cond-mat/0306537. This paper has been superseded by paper 168 (cond-mat/0312617) and M. Hermele et al., cond-mat/0404751.
  6. Universal conductance of nanowires near the superconductor-metal quantum transition, S. Sachdev, P. Werner, and M. Troyer, Physical Review Letters 92, 237003 (2004); cond-mat/0402431.
  7. Quantum phase transitions out of the heavy Fermi liquid, T. Senthil, S. Sachdev, and M. Vojta, Proceedings of the International Conference on Strongly Correlated Electrons, July 26-30, 2004, Karlsruhe, Germany, cond-mat/0409033.
  8. Thermoelectric transport near pair breaking quantum phase transition out of d-wave superconductivity , D. Podolsky, A. Vishwanath, J. Moore, and S. Sachdev, cond-mat/0510597.
  9. Exotic phases and quantum phase transitions: model systems and experiments, S. Sachdev, Rapporteur talk, Quantum Theory of Condensed Matter: Proceedings of the 24th Solvay Conference on Physics, Bertrand Halperin editor, World Scientific (2010), arXiv:0901.4103
  10. Fluctuating spin density waves in metals, S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Physical Review B 80, 155129 (2009); arXiv:0907.3732.
  11. de Haas-van Alphen oscillations for non-relativistic fermions coupled to an emergent U(1) gauge field, L. Fritz and S. Sachdev, Physical Review B 82, 045123 (2010); arXiv:0910.4917.
  12. Quantum phase transitions of metals in two spatial dimensions: I. Ising-nematic order, M. A. Metlitski and S. Sachdev, Physical Review B 82, 075127 (2010); arXiv:1001.1153.
    See Physics Viewpoint article.
  13. Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order, M. A. Metlitski and S. Sachdev, Physical Review B 82, 075128 (2010); arXiv:1005.1288.
    See Physics Viewpoint article.
  14. Instabilities near the onset of spin density wave order in metals, M. A. Metlitski and S. Sachdev, contribution to the special issue on "Fermiology of Cuprates", edited by Mike Norman and Cyril Proust, New Journal of Physics 12, 105007 (2010); arXiv:1007.1968.
  15. The underdoped cuprates as fractionalized Fermi liquids: transition to superconductivity, E. G. Moon and S. Sachdev, Physical Review B 83, 224508 (2011); arXiv:1010.4567
  16. Quantum critical response at the onset of spin density wave order in two-dimensional metals, S. A. Hartnoll, D. M. Hofman, M. A. Metlitski and S. Sachdev, Physical Review B 84, 125115 (2011); arXiv:1106.0001.
  17. Fermi surface reconstruction in hole-doped t-J models without long-range antiferromagnetic order, M. Punk and S. Sachdev, Physical Review B 85, 195123 (2012); arXiv:1202.4023.
  18. Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials, S. Sachdev, M. A. Metlitski, and M. Punk, Proceedings of SCES 2011, Journal of Phys.: Condensed Matter 24, 294205 (2012); arXiv:1202.4760.
  19. The quantum phases of matter, S. Sachdev, Rapporteur presentation at the 25th Solvay Conference on Physics, "The Theory of the Quantum World", Brussels, Oct 19-22, 2011, arXiv:1203.4565
  20. Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals, E. Berg, M. A. Metlitski and S. Sachdev, Science 338, 1606 (2012); arXiv:1206.0742
  21. Entangling superconductivity and antiferromagnetism, S. Sachdev, Science 336, 1510 (2012).
  22. Breakdown of Fermi liquid behavior at the (π,π)=2kF spin-density wave quantum-critical point: the case of electron-doped cuprates, D. Bergeron, D. Chowdhury, M. Punk, S. Sachdev and A.-M.S. Tremblay, Physical Review B 86, 155123 (2012); arXiv:1207.1106
  23. Quantum criticality of reconstructing Fermi surfaces, Junhyun Lee, P. Strack and S. Sachdev, Physical Review B 87, 045104 (2013); arXiv:1209.4644 (Subject nfl)
  24. Singularity of the London penetration depth at quantum critical points in superconductors, D. Chowdhury, B. Swingle, E. Berg, and S. Sachdev, Phys. Rev. Lett. 111, 157004 (2013); arXiv:1305.2918
  25. Transport near the Ising-nematic quantum critical point of metals in two dimensions, S. A. Hartnoll, R. Mahajan, M. Punk, and S. Sachdev, Physical Review B 89, 155130 (2014); arXiv:1401.7012.
  26. Cooper pairing in non-Fermi liquids, M. A. Metlitski, D. F. Mross, S. Sachdev, and T. Senthil, Physical Review B 91, 115111 (2015); arXiv:1403.3694
  27. Spectral function of a localized fermion coupled to the Wilson-Fisher conformal field theory, A. Allais and S. Sachdev, Physical Review B 90, 035131 (2014); arXiv:1406.3022.
  28. DC resistivity at the onset of spin density wave order in two-dimensional metals, A. A. Patel and S. Sachdev, Physical Review B 90, 165146 (2014); arXiv:1408.6549
  29. Density wave instabilities of fractionalized Fermi liquids, D. Chowdhury and S. Sachdev, Physical Review B 90, 245136 (2014); arXiv:1409.5430.
  30. Higgs criticality in a two-dimensional metal, D. Chowdhury and S. Sachdev, Physical Review B 91, 115123 (2015); arXiv:1412.1086.
  31. The enigma of the pseudogap phase of the cuprate superconductors, D. Chowdhury and S. Sachdev, in Quantum Criticality in Condensed Matter: Phenomena, Materials and Ideas in Theory and Experiment: 50th Karpacz Winter School of Theoretical Physics, J. Jedrzejewski Editor, World Scientific (2015), arXiv:1501.00002
  32. A quantum dimer model for the pseudogap metal, M. Punk, A. Allais, and S. Sachdev, Proceedings of the National Academy of Sciences 112, 9552 (2015); arXiv:1501.00978.
  33. Phase transition beneath the superconducting dome in BaFe2(As1-xPx)2, D. Chowdhury, J. Orenstein, S. Sachdev, and T. Senthil, Physical Review B 92, 081113 (2015); arXiv:1502.04122.
  34. Bekenstein-Hawking Entropy and Strange Metals, S. Sachdev, Physical Review X 5, 041025 (2015); arXiv:1506.05111.
  35. Hyperscaling at the spin density wave quantum critical point in two dimensional metals, A. A. Patel, P. Strack, and S. Sachdev, Physical Review B 92, 165105 (2015); arXiv:1507.05962
  36. Fractionalized Fermi liquid on the surface of a topological Kondo insulator, A. Thomson and S. Sachdev, Physical Review B 93, 125103 (2016); arXiv:1509.03314
  37. Emergent gauge fields and the high temperature superconductors, S. Sachdev, Philosophical Transactions of the Royal Society A 374, 20150248 (2016); arXiv:1512.00465.
  38. Superconductivity from a confinement transition out of a FL* metal with Z2 topological and Ising-nematic orders, S. Chatterjee, Y. Qi, S. Sachdev, and J. Steinberg, Physical Review B 94, 024502 (2016); arXiv:1603.03041.
  39. Numerical study of fermion and boson models with infinite-range random interactions, Wenbo Fu and S. Sachdev, Physical Review B 94, 035135 (2016); arXiv:1603.05246.
  40. Hyperscaling violation at the Ising-nematic quantum critical point in two dimensional metals, A. Eberlein, I. Mandal, and S. Sachdev, Physical Review B 94, 045133 (2016); arXiv:1605.00657.
  41. The novel metallic states of the cuprates: Fermi liquids with topological order and strange metals, S. Sachdev and D. Chowdhury, Progress of Theoretical and Experimental Physics 12C102 (2016); arXiv:1605.03579.
  42. Electronic quasiparticles in the quantum dimer model: density matrix renormalization group results, Junhyun Lee, S. Sachdev, and S. R. White, Physical Review B 94, 115112 (2016); arXiv:1606.04105.
  43. Spin density wave order, topological order, and Fermi surface reconstruction, S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, Physical Review B 94, 115147 (2016); arXiv:1606.07813.
  44. Shear viscosity at the Ising-nematic quantum critical point in two dimensional metals, A. A. Patel, A. Eberlein, and S. Sachdev, Physical Review B 95, 075127 (2017); arXiv:1607.03894.
  45. A fractionalized Fermi liquid with bosonic chargons as a candidate for the pseudogap metal, S. Chatterjee and S. Sachdev, Physical Review B 94, 205117 (2016); arXiv:1607.05727.
  46. Fermi surface reconstruction and drop of Hall number due to spiral antiferromagnetism in high-Tc cuprates, A. Eberlein, W. Metzner, S. Sachdev, and H. Yamase, Physical Review Letters 117, 187001 (2016); arXiv:1607.06087.
NEXT ; PREVIOUS ; CATEGORIES