
Quantum critical response at the onset of

spin density wave order in two-dimensional metals

Sean A. Hartnoll, Diego M. Hofman, Max A. Metlitski, and Subir Sachdev

Department of Physics, Harvard University, Cambridge MA 02138

(Dated: May 31, 2011)

Abstract
We study the frequency dependence of the electron self energy and the optical conductivity

in a recently developed field theory of the spin density wave quantum phase transition in two-

dimensional metals. We focus on the interplay between the Fermi surface ‘hot spots’ and the

remainder of the ‘cold’ Fermi surface. Scattering of electrons off the fluctuations of the spin density

wave order parameter, φ, is strongest at the hot spots; we compute the conductivity due to this

scattering in a rainbow approximation. We point out the importance of composite operators, built

out of products of the primary electron or φ fields: these have important effects also away from the

hot spots. The simplest composite operator, φ2, leads to non-Fermi liquid behavior on the entire

Fermi surface. We also find an intermediate frequency window in which the cold electrons loose

their quasiparticle form due to effectively one-dimensional scattering processes. The latter processes

are part of umklapp scattering which leads to singular contributions to the optical conductivity at

the lowest frequencies at zero temperature.
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I. INTRODUCTION

Many experimental developments in the past few years point to the quantum criticality

associated with the onset of spin density wave order in metals as a crucial phenomenon in

the physics of modern correlated electron materials1–3; some recent experimental reports

may be found in Refs. 4–7. It is also interesting that such a quantum critical point leads

naturally to a mechanism for higher temperature superconductivity with d-wave-like spin-

singlet pairing8–13.

Theoretically, the problem of the quantum criticality of metals has been the focus of

much study for several decades14–18. In recent work, it is has become clear that the quantum

critical theories are strongly coupled in two spatial dimensions19–21. A 1/N expansion, where

N is the number of fermion flavors, can be used to organize perturbation theory and derive

renormalization group equations at low orders in 1/N . However, there are new classes of

infrared divergences that appear at higher orders from fermion excitations on the Fermi

surface, and these are not suppressed by the powers of 1/N expected from counting fermion

flavors. Nevertheless, much can be deduced about the nature of the strongly-coupled theory,

assuming that the general framework of the field theory survives.

For the onset of spin density wave order in two-dimensional metals, the critical

theory17,21,22 is expressed in terms of fermions at special ‘hot spots’ on the Fermi surface,

which are coupled to the fluctuations of a bosonic field, φ, representing the spin density wave

order: an explicit action for this theory appears in Section II for the case of commensurate

antiferromagnetic ordering at the wavevector (π, π) on the square lattice. We will restrict

our attention to this commensurate case in the present paper. The hot spots are identified as

points on the Fermi surface which are separated by the spin density wave ordering wavevec-

tor (see Fig. 1 below). The fermionic excitations at the hot spots lose their quasiparticle

character from strong coupling to φ, justifying their prominent role in the critical theory.

The transport properties of metals near a spin density wave transition are also clearly

of interest. The early theoretical work23,24 concluded that these were unlikely to be domi-

nated by the physics of the fermions near the hot spots. Instead, the cold fermions on the

remainder of the Fermi surface would ‘short-circuit’ the electrical current, and so dominate

the electrical conductivity. More recently, the quantum critical conductivity of the hot spot

fermions has been considered17 at frequencies or temperatures large enough so that the mo-

mentum dependence of the fermion self energy could be neglected. We will re-examine the

quantum critical conductivity from φ scattering in the present paper, and find significant

differences from the earlier results. We also note a recent study of the conductivity at non-

zero temperatures on the ordered side of the critical point25: we will not address this regime

here, and will limit our study to the quantum critical point.

It is important to note that the dichotomy between ‘cold’ and ‘hot’ regions of the Fermi

surface is intrinsically a weak-coupling concept, and assumes that the fermion damping can

be organized in terms of scattering from quanta of φ fluctuations. More generally, we should
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consider the full set of composite operators of the field theory, made up of multiple primary

fermion or φ operators, and determine how they relax the current of fermions at all points on

the Fermi surface. An example of the importance of such composite operators appeared in

the work of Pelissetto et al.26, who examined the simpler problem of the onset of spin density

wave order in a d-wave superconductor. Here the low energy fermionic excitations reside

only at special ‘nodal points’ in the Brillouin zone, and these are not generically connected

by the ordering wavevector. Thus, the analog of the ‘hot spots’ is absent in this problem, and

one would initially conclude that the nodal fermionic excitations are not strongly scattered

by the φ fluctuations. However, it was shown that a composite operator linked to the square

of φ, which measured Ising-nematic ordering, did broaden the nodal fermions, so that the

nodal quasiparticles were ultimately only marginally defined near the spin density wave

quantum critical point. For this problem, the critical theory was ultimately under good

analytic control, allowing accurate determination of the influence of composite operators.

This paper will describe various spectral functions of the spin density wave quantum

critical point at zero temperature (T = 0). We will address the fermion self energy both

on and off the hot spots, and the frequency dependent conductivity σ(Ω) i.e. the optical

conductivity. However, we will not address the difficult issues associated with T > 0, and

in particular frequencies with Ω < T . The latter regime is clearly of great experimental

importance, but requires an analysis of relaxational processes which we will not undertake.

Such finite T transport has been addressed away from the critical point,27–31 and we hope

our critical-point results below at T = 0 will serve as a prelude to the corresponding analysis

at T > 0.

We will begin in Section II by recalling the low energy theory of the spin density wave

quantum critical point in two spatial dimensions. In the leading gradient expansion, the

fermion energy disperses linearly as a function of wavevector, and so is particle-hole sym-

metric about the Fermi surface. As a consequence of this particle-hole symmetry and the

ordering wavevector being (π, π) the effective action acquires an emergent (SU(2))4 pseu-

dospin symmetry.21 An important point, reviewed in Section II, is that the electrical current

transforms as a vector under this pseudospin symmetry, while the total momentum is a pseu-

dospin scalar. Consequently, when we perturb the system electrically and create an electrical

current, the resulting state has vanishing momentum, allowing the electrical current to relax

to zero even in the absence of any impurities32. Thus umklapp scattering processes are im-

plicitly included within our continuum theory. Provided we regulate the low energy theory

in a manner which protects the pseudospin symmetry, the d.c. conductivity will be finite at

T > 0. This is an attractive feature of the theory allowing, in principle, computation of a

T -dependent resistivity which depends upon interactions alone in a non-Fermi liquid.

Section III will begin our computation of the conductivity of the fermions from interac-

tions alone. We will consider electron scattering from φ fluctuations. We will do this within

the framework of a conventional rainbow approximation, computing self energies and corre-

sponding vertex corrections, while retaining full momentum and frequency dependence. We
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find that at T = 0 the low frequency optical conductivity takes the form,

σ(Ω) = C0
i

Ω+ i�
+ C1 + C2(−iΩ)r0 (1.1)

where r0 > 0 is a computable exponent whose value depends only upon the Fermi surface

geometry, and is specified in Fig. 7. The C0 term in Eq. (1.1) is the non-dissipative Drude

contribution, while the constant C1 term is the first dissipative correction. These two terms

have the same form as in a Fermi liquid with umklapps, and are dominated by the contri-

bution of cold fermions away from the hot spot. Unlike in certain critical theories which do

not posses a Fermi surface, the constant C1 is non-universal. We will explicitly demonstrate

that C1 remains finite in the ‘weak coupling’ limit of the theory in Section II.

The C2 term in Eq. (1.1) is the quantum-critical hot spot contribution to the optical con-

ductivity, which includes the contributions of some umklapp processes. Vertex corrections

lead to a positive exponent r0 > 0, thus suppressing this term relative to the cold contri-

bution. The result (1.1) is too small to explain the optical conductivity in the hole-doped

cuprates33,34, which has a negative exponent. Our theoretical results here are at variance

with earlier treatments17.

We note a recent numerical study of the optical conductivity near a spin density wave

transition35, which included only the first term in the set of rainbow vertex corrections

which we have summed. In this approximation, our analysis shows that the singular term

in Eq. (1.1) reduces to σ(Ω) ∼ log(1/Ω), but the numerical study does not appear to have

the dynamic range to observe this.

Section IV will turn our focus to scattering off composite operators, built out of products

of the primary fields of the low energy theory of Section II. We will describe the general

structure of the fermion self energy corrections due to such operators, and the corresponding

contributions to the conductivity. We will also introduce a number of specific composite

operators, whose fluctuations will be explored in the subsequent sections. The simplest is

the square of the order parameter, φ2, analogs of which were considered in Ref. 26. A second

class of composite operators is associated with pairs of fermions: important among them

is the Cooper pair operator and a 2kF charge density wave (CDW) operator (which has

an Ising-nematic component), fluctuations of which are enhanced near the quantum critical

point13,21. We emphasize that all these operators are generated directly from our continuum

theory in Eq. (2.1), and do not require reference to the underlying lattice model.

Section V will present our results on self energy of the fermions from composite operator

scattering, focusing on the previously ‘cold’ regions of the Fermi surface away from the hot

spots. We will find that scattering off the φ2 operator leads to fermion self energy which

behaves as Ω3/2, assuming leading order scaling dimensions from the low energy field theory.

Thus this simplest composite operator is already sufficient to give non-Fermi liquid behavior

over the entire Fermi surface.

Also notable will be the contribution from scattering in the 2kF channel. Here, for
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fermions in the vicinity of the hot spots, we find an intermediate energy window in which

the Fermi surfaces may be regarded as flat, giving rise to effectively one-dimensional Lut-

tinger liquid-like divergences, which destroy the cold fermionic quasiparticles. Whether such

divergences sum up to give a power-law behavior of the electron Green’s function, as in a

true Luttinger liquid, or lead to an instability is subject to further investigation. At lowest

energy, the one-dimensional divergences will be cut off by the Fermi surface curvature, which

therefore controls the width of the intermediate frequency regime and the possible crossover

to coherent Fermi liquid behavior. We further describe how processes saturating the Fermi

surface curvature scale change the low energy scaling dimension of 2kF operators.

Section VI will extend the computations of Section V to the electrical conductivity. For

low-momentum scattering processes, the contributions to the optical conductivity are less

singular than those to the self energy, because they do not lead to an appreciable degradation

of the electrical current. However, this does not apply to the scattering off 2kF fluctuations,

which lead to umklapp processes. We estimate that such processes give rise to a power law

optical conductivity as Ω → 0 (at T = 0),

δσ(Ω) ∼ (−iΩ)−bκ/(2+bκ), (1.2)

with a negative exponent controlled by the interplay of one-dimensional divergences (noted

in Section V) and Fermi surface curvature. At leading order, we find bκ = 1, but higher

order renormalization group flows21 are expected to renormalize this to smaller values, as

we will discuss in Section VB. Such 2kF umklapp contributions are a promising avenue for

understanding the optical conductivity data,33,34 given the negative exponent in Eq. (1.2).

II. LOW ENERGY THEORY

Our starting point will be the following (imaginary time) low energy effective field theory

of fermionic excitations living at pairs of hot spots and interacting via bosonic fluctuations

of a (π, π) spin density wave21

L =
N

2c2
(∂τφ)

2 +
N

2

�
�∂φ

�2
+

Nu

4
(φ2)2

+
�

a,�

1

2
Ψ†�

a

�
∂τ − i�v

�
a ·

�∂

�
Ψ�

a +
�

�

λ

2
φ ·

�
Ψ†�

1 τΨ
�
2 +Ψ†�

2 τΨ
�
1

�
. (2.1)

In this Lagrangian, φ is a three component boson and each Ψ�
a is a four component spinor.

The mass of the boson has be tuned to zero. The label � runs over the four pairs of hot

spots while a runs over the two patches of each pair. The geometry of the Fermi surface and

hot spots is shown in Fig. 1. The four components of the spinor may be labeled by the pair

of two component indices {σ,α}, where σ is a spin index and α is a particle-hole index. We
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have suppressed these indices in the above Lagrangian. The Pauli matrices τ act on the spin

indices. Also suppressed is a fermion flavor index running from 1 to N . All interactions are

diagonal in flavor. The spatial derivatives �∂ act in two-dimensional space with coordinates

{x, y} and �v �
a are the Fermi velocities of each hot spot. In terms of the fermions illustrated

in Figs. 1 and 2, the fermions Ψ�
a are given by

Ψ�
a =

�
ψ�
a

iτ 2ψ�†
a

�
(2.2)

so that they satisfy the hermiticity condition

iτ
2

�
0 −1

1 0

�
Ψ�

a = Ψ�∗
a . (2.3)

FIG. 1: The four pairs of hot spots and locations of the fermion fields Ψ�
a, related to the fields in

the figure by Eq. (2.2).

The advantage of writing the action in terms of four component fermions is that it makes

manifest an emergent (SU(2))4 ‘pseudospin’ symmetry21. For each � we have an SU(2)

symmetry with the generators Tm
� acting as

SU(2)� : T
m
� Ψ�

a = iσ
mΨ�

a , (2.4)
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FIG. 2: (From Ref. 13) Configuration of the � = 1 pair of hot spots, with the momenta of the
fermion fields measured from the common hot spot at �k = 0, indicated by the dark filled circle.
The Fermi velocities �v1,2 of the ψ1,2 fermions are indicated. The momentum components of the
ψ1
2(�p) fermion parallel (p�) and orthogonal (p⊥) to the Fermi surface are indicated.

and leaving all other fields invariant. Here σm are Pauli matrices acting on the particle-hole

indices of the spinor. The symmetry therefore has the following charge densities and currents

J
m
�τ =

i

2

�

a

Ψ†�
a σ

mΨ�
a ,

�J
m
� =

1

2

�

a

�v
�
aΨ

†�
a σ

mΨ�
a . (2.5)

The diagonal subgroup of each SU(2) describes the conservation of fermion number at each

pair of hot spots. Higher order kinetic terms in the action describing e.g. the curvature of

the Fermi surface will break the SU(2) symmetries down to this subgroup. These and other

symmetry breaking terms are irrelevant in the low energy scaling limit.

The Fermi velocities at one pair of hot spots can be parameterised by

�v
�=1
1 = (vx, vy) , �v

�=1
2 = (−vx, vy) . (2.6)

The remaining velocities are given by 90 degree rotations

�v
�
a = R

�−1
π/2�v

�=1
a . (2.7)

Later it will also be convenient to introduce the ratio and the modulus

α ≡ tanϕ ≡
vy

vx
, v = |�v| . (2.8)

Here 0 < 2ϕ < π is the angle between the Fermi surfaces at the hot spot.
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The fermion and boson propagators are constrained by both the pseudospin symmetry

and by the form of the scaling limit. The symmetry requires the fermion propagators to

take the form

�Ψ�
aσα(x)Ψ

��†
bσ�β(x

�)� = −δ
���
δabδσσ�δαβG

�
a(x− x

�) . (2.9)

In the low energy scaling limit, the fermion and boson two point functions are characterised

by the dynamical critical exponent z and anomalous dimensions ηψ and ηφ. Thus

G
−1(ω, �p ) = p

z/2−ηψ �G−1

�
ω

pz
, p̂

�
, (2.10)

D
−1(ω, �p ) = p

2−ηφ �D−1

�
ω

pz
, p̂

�
. (2.11)

Here p = |�p|. Much of the interesting physics we will describe below is due to fermions that

are within the scaling regime, but far from the hot spots. If p⊥ is the distance to the Fermi

surface and p� the distance along the Fermi surface to the hot spot, then this condition

requires p⊥,ω1/z � p�. In this ‘lukewarm’ region one expects the quasiparticle form1

G(ω, �p ) =
Z(p�)

iω − vF (p�)p⊥
, (p⊥,ω

1/z
� p�) , (2.12)

with

vF (p�) ∝ p
z−1
� , Z(p�) ∝ p

z/2+ηψ
� . (2.13)

Working in the rainbow approximation and taking the limit N → ∞ one finds that z = 2

and ηψ = ηφ = 0. The explicit forms of the correlators were obtained in Refs. 17,21. The

boson has

D
−1(ω, �p ) = N

�
γ|ω|+ �p

2
�
, (2.14)

with

γ =
4λ2

2πvxvy
, (2.15)

while the fermions have

G
−1
a (ω, �p) = iω − �va · �p+

1

N

3v sin 2ϕ

8
i sgn(ω)

��
γ|ω|+ (v̂ā · �p)2 − |v̂ā · �p|

�
. (2.16)

Here, 1̄ = 2 and 2̄ = 1 and we have suppressed the hot spot index �. In the expression

(2.16) we have not explicitly written the real part of the self energy which renormalises the

velocities vx and vy. Note that the tree level analytic term iω in the propagator is suppressed

at low energy compared to the dynamically generated self energy. We have kept the tree

level term here as a UV regulator as will be discussed in more detail below. For future

1 A possible violation of the quasiparticle form in Eqs. (2.12), (2.13) will be discussed in section VB.
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reference, it will be convenient to introduce the momentum scale,

Λ =
3vγ sin 2ϕ

16N
=

3λ2

4πNv
(2.17)

and the associated energy scale Λω = Λ2/γ. Λ and Λω are the momentum and energy scales

at which the dynamically generated self energy becomes comparable to the tree level analytic

term iω. The numerical factors in Eq. (2.17) are inserted for future convenience.

We may also represent Eq. (2.16) as

G
−1(ω, �p ) = iω−vp⊥+

1

N

3v sin 2ϕ

8
i sgn(ω)

��
γ|ω|+

�
v̂1 × v̂2 p�

�2
−

��v̂1 × v̂2 p�
��
�

. (2.18)

Here again p⊥ = v̂ · �p is the momentum in the direction orthogonal to the Fermi surface

while p� is the distance to the hot spot and is the momentum in the direction orthogonal

to v̂. Furthermore, assuming for concreteness that the propagator in question is for the Ψ1

fermions, in the self energy we have approximated

v̂2 · �p → |v̂1 × v̂2| p� = sin 2ϕ p� . (2.19)

In general v̂2 is not orthogonal to �v1 and so this replacement is not exact. However, the

dependence on the �v1 component of the momentum in the self energy is subleading in powers

of N in the full propagator compared to the tree-level vp⊥ dependence in (2.18). Thus we

can and have projected out the component of v̂2 parallel to v̂1 for the purposes of this paper,

see e.g. the computations in Ref. 21.

The correlators (2.14) and (2.18) will be used at various points in the remainder of this

paper. From them one can read off the constants of proportionality (2.13) in the lukewarm

region. Note that in the present approximation, the lukewarm fermions have a Fermi liquid

like ω2 damping rate,

G(ω, �p ) =
Z(p�)

iω − vF (p�)p⊥ − ia(p�)ω2sgn(ω)
, (p⊥,

√
γω � p�) , (2.20)

with a(p�) ∼ p
−2
� . We will demonstrate in Sec. V that scattering off composite operators

qualitatively modifies the damping rate of cold (and hence also lukewarm) fermions. Such

corrections, however, appear only at higher order in 1/N .

We should note that the large N expansion used to obtain the propagators (2.14) and

(2.18) breaks down both at sufficiently low energy scales and at higher loop order: The

RG flow equations at leading nontrivial order in N flow to an α = 0 IR fixed point, at

which Fermi surfaces at each hot spot pair are parallel21. At sufficiently low energies the

anomalous dimensions become order one and the large N expansion breaks down. The RG

flow can be controlled only in the regime 1/
√
N � α � 1. In this regime all anomalous
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dimensions acquire small nonzero corrections. In particular z �= 2. At higher loop order

the large N expansion breaks down for the reasons first identified in Ref. 19 for a 2+1

dimensional Fermi surface coupled to a gauge field. Loops involving fermions on the Fermi

surface give extra powers of N that disrupt the näıve large N scaling of diagrams. We will

essentially ignore this last complication; perhaps the expansion can be controlled using a

generalization of the methods developed in Refs. 36–38. Alternatively, a strong coupling

approach to metallic criticality may be possible using the holographic correspondence, along

the lines of e.g. Refs. 39–41.

III. HOT SPOT CONDUCTIVITY: RAINBOW APPROXIMATION

As discussed in Section I, we first consider the conductivity due to scattering off the

primary field, φ. This scattering is strongest at the hot spots. As shown in Ref. 21, the hot

spot theory remains strongly coupled even when one takes the number of fermion flavors

N → ∞. In this section, we treat the hot spot theory in the ‘rainbow’ approximation.

Furthermore, we take the limit N → ∞ in order to simplify the calculations. A similar

approach was considered previously in Ref. 17. A key difference with Ref. 17 is that we take

into account the rainbow corrections to the current vertex, which are necessary to satisfy

the Ward identity associated with charge conservation.

The four SU(2) currents of the theory (2.5) necessarily have orthogonal correlators

−

�
d
3
x�J

�m
µ (z)J �� n

ν (0)�e−i�q�x
e
iωτ

≡ δ
mn

δ
���Π�

µν(ω, �q) . (3.1)

Here µ, ν are space-time indices. We focus on the electrical conductivity which is related

to the m = 3 component of the SU(2) current correlator (3.1) summed over all of the hot

spots. (From here on, all the pseudospin indices m,n are set to 3, unless otherwise noted.)

Specifically, the electrical conductivity at real frequency Ω and vanishing momentum is

σij(Ω) =

�
� Π

�
ij(ω, 0)

ω

�����
iω=Ω+i�

. (3.2)

In relating the conductivity and current correlator in this way, we are neglecting the tadpole

or ‘diamagnetic’ term, which gives rise to a δ-function at zero frequency in the real part of

the conductivity and a 1/Ω behavior in the imaginary part. Such a contribution is always

present at zero temperature. Below, we will be interested in corrections to this behavior.

It will also be convenient for our purposes to define the current vertex Γ�
µa

�
d
3
zd

3
x�J

�
µ(z)ψ

��

σa(x)ψ
†��
σ�b(0)�e

−iqz
e
−ipx = δσσ�δabδ

���Γ�
µa(q, p)G

�
a(p)G

�
a(p+ q) (3.3)
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Note that the correlator vanishes for � �= �� by pseudospin symmetry. The diagonal subgroup

of the SU(2) symmetry at each hot spot pair implies the following Ward identities,

− qτΠ
�
τν(q) + qiΠ

�
iν(q) = 0 (3.4)

−qτΓ
�
τa(q, p) + qiΓ

�
ia(q, p) = G

�
a(p)

−1
−G

�
a(p+ q)−1 (3.5)

In particular, the density-density correlation function at zero wavevector vanishes,

Π�
ττ (ω, 0) = 0 (3.6)

We concentrate below on the hot spot pair with � = 1. Observe that,

J
1
τ = i(ψ1†

1 ψ
1
1 + ψ

1†
2 ψ

1
2)

J
1
x = vx(ψ

1†
1 ψ

1
1 − ψ

1†
2 ψ

1
2)

J
1
y = vy(ψ

1†
1 ψ

1
1 + ψ

1†
2 ψ

1
2) (3.7)

We see that J1
y is proportional to J1

τ . Therefore, Π
1
yy(ω, 0) = 0. Moreover, Π1

xy(ω, 0) = 0 by

reflection symmetry, x → −x. Thus, the only non-trivial element of the conductivity tensor

at zero wavevector is Π1
xx.

To compute Π1
xx, we first evaluate the corresponding current vertex Γ1

xa. For briefness,

we drop the hot spot index below; � = 1 is assumed unless otherwise noted. It is convenient

to define the symmetric and antisymmetric vertices Γ±
a as

�
d
3
zd

3
x�(ψ†

1ψ1 ± ψ
†
2ψ2)(z)ψσa(x)ψ

†
σ�b(0)�e

−iqz
e
−ipx = δσσ�δabΓ

±
a (q, p)Ga(p)Ga(p+ q) (3.8)

Then, Γτa = iΓ+
a , Γxa = vxΓ−

a and Γya = vyΓ+
a and the Ward identity (3.5) reads,

(−iqτ + vyqy)Γ
+
a (q, p) + vxqxΓ

−
a (q, p) = G

−1
a (p)−G

−1
a (p+ q) (3.9)

Also, we may express Πxx as,

Πxx(q) = 2Nv
2
x

�

a

(−1)a+1

�
d3p

(2π)3
Γ−
a (q, p)Ga(p)Ga(p+ q) (3.10)

We will treat the fermion propagator and the current vertex in the rainbow approxi-

mation. The rainbow approximation for the boson and fermion propagators amounts to

performing a self-consistent Hartree-Fock + RPA calculation, see Fig. 3, and gives the fol-

lowing integral equations,

(G�
a(p))

−1 = iω − �v
�
a · �p− Σ�

a(p) (3.11)
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a a a

a

a
(a) (b)

FIG. 3: (a) Fermion and (b) boson self-energies in the rainbow approximation. Solid lines are
fermion Green’s functions, while dashed lines are φ Green’s functions. All internal lines are full
self-consistent propagators. In this section we are dropping the hot-spot index �, and so ψ1 ≡ ψ1

1

and ψ1̄ ≡ ψ1
2.

D
−1(q) = N�q

2 + Π (q) (3.12)

Σ�
a(p) = 3λ2

�
d3l

(2π)3
G

�
ā(p+ l)D(l) (3.13)

Π (q) = 2Nλ
2
�

�,a

�
d3l

(2π)3
G

�
a(l + q)G�

ā(l) (3.14)

The solution to these integral equations in the limit N → ∞ is given in Eqs. 2.14, 2.16.17

We would like to treat the current vertex at the same level of approximation as the

boson and fermion propagators. This can be achieved by inserting the bare current vertex

into every bare fermion propagator which appears when Eqs. (3.11)-(3.14) are iterated.

The resulting dressed current vertex satisfies an integral equation which is diagramatically

shown in Fig. 4. We note that the two ‘Aslamazov-Larkin’-type diagrams in Figs. 4 c) and

d) cancel with each other due to the pseudospin symmetry. Indeed, the triangle portion of

the two diagrams involves the correlator �J �
µφφ�. The current J

�
µ transforms as a pseudospin

vector, while the field φ transforms as a pseudospin scalar, therefore, �J �
µφφ� = 0. Thus,

the ‘Aslamazov-Larkin’ diagrams in the particle-hole Fig. 4 c) and particle-particle Fig. 4 d)

channels cancel with each other and we are left only with the rainbow corrections in Fig. 4

b).

We note that the presence of umklapp processes in our theory is secretely hidden in the

fact that the Aslamazov-Larkin diagrams cancel with each other and so can be ignored.

Indeed, our theory allows for both types of scattering shown in Fig. 5. (For simplicity,

we temporarily consider processes involving the hot spot pair � = 1 only.) The process in

Fig. 5a) is a ‘regular’ scattering process, which conserves not only the electron momentum,

but also the electron current. If only such processes were allowed, the optical conductivity

12
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+

p+q, a

l+p, a

p, a

l-q

l

k+q,b

k,b

k+l, b
q

+

p+q, a

p, a

l-q

l
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-k,b

(a) (b)
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FIG. 4: Diagrams for the current vertex Γ±
a in the rainbow approximation. The cross denotes the

bare vertex and the solid circle, the full vertex. The ‘Aslamazov-Larkin’ type diagrams in (c) and
(d) cancel against each other due to pseudospin symmetry. As in Fig. 3, ψ1 ≡ ψ1

1 and ψ1̄ ≡ ψ1
2.

at finite frequency would vanish.2 On the other hand, the processes in Fig. 5b) (see also

Fig. 6) are ‘umklapp’ scattering processes, which flip the x component of the electron current

- hence, a finite optical conductivity is expected. At the level of the rainbow approximation,

the main difference between the two cases is the following. If only the regular processes in

Fig. 5a) are allowed, then the index b of the Aslamazov-Larkin diagram in the particle-hole

channel, Fig. 4 c), is constrained to be b = a, while in the particle-particle channel, Fig. 4

d), b = ā. Hence, there is no longer a cancellation between the two Aslamazov-Larkin

diagrams. Instead, in the umklapp-free case, the Aslamazov-Larkin diagrams, Fig. 4 c),d),

and the rainbow diagram, Fig. 4 b) would conspire to give a vanishing optical conductivity.

On the other hand, in the case when umklapps are allowed, this conspiracy between the

Aslamazov-Larkin and rainbow graphs is broken. The pseudospin symmetry technically

simplifies the calculation, allowing one to ignore the Aslamazov-Larkin diagrams alltogether,

2 In principle, the electron current is not strictly conserved by ‘regular’ scattering processes once a finite

Fermi surface curvature is accounted for in the definition of the electrical current. However, the resulting

corrections to the optical conductivity are expected to be of higher order than those due to umklapp

processes and won’t be considered in this section.
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and the remaining rainbow graphs give a finite optical conductivity as we will explicitly verify

below.

21

12

21

21

12

12

(a) (b)
FIG. 5: Scattering processes involving fermions from the hot spot pair � = 1. The diagram in
(a) corresponds to ‘regular’ scattering, which conserves the current. The two diagrams in (b)
correspond to ‘umklapp’ scattering, which conserves the lattice momentum but not the current.
Note that ψ2 ≡ ψ1̄.

Note, finally, that although for illustrative purposes we have limited the above discussion

to hot spot pair � = 1 only, in fact, umklapp processes involving different pairs of hot spots

also contribute to the optical conductivity. At the level of the rainbow approximation, all

hot spot pairs contribute to the boson polarization in Fig. 3 b), and hence scattering between

hot spots with different � is accounted for in the fermion self energy Fig. 3 a). The umklapp

nature of this scattering is again hidden in the fact that it contributes to the fermion self

energy, but not directly to the current vertex corrections. Indeed, the rainbow diagrams in

Fig. 4 b) involve only one pair of hot spots, while the Aslamazov-Larkin diagrams Figs. 4

c), d) cancel for fermions from any hot spot �� running in the internal loop.

With the above remarks in mind, to obtain the current vertex we have to sum the series

of rainbow diagrams in Fig. 4 b). This sum obeys the following integral equation,

Γ+
a (q, p) = 1 + 3λ2

�
d3l

(2π)3
Gā(l)Gā(l + q)D(l − p)Γ+

ā (ω, l)

Γ−
a (q, p) = (−1)a+1 + 3λ2

�
d3l

(2π)3
Gā(l)Gā(l + q)D(l − p)Γ−

ā (q, l) (3.15)

A detailed analysis of Eqs. (3.15) is performed in Appendix A. We summarise the results of

this analysis below.

Let us set q = (ω, 0) and without loss of generality assume ω > 0. It is convenient to

change variables to la = v̂a ·
�l. As shown in Appendix A, in the limit N = ∞, to determine

Γ±
a (ω, p) for all p it is sufficient to know its behavior for pa = 0, i.e. we need to find the

current vertex with external momentum on the Fermi surface. Moreover, introducing the

14



FIG. 6: Umklapp scattering processes in Fig. 5b. Such processes degrade the electric current and
lead to a finite optical conductivity

variable ν = pτ + ω we can restrict our attention to 0 < ν < ω. Thus, definining,

Γ+
a (ω, ν, pa = 0, pā = p) ≡ Γ+(ω, ν, p) (3.16)

Γ−
a (ω, ν, pa = 0, pā = p) ≡ (−1)a+1Γ−(ω, ν, p) (3.17)

we obtain, see Appendix A for details,

Γ±(ω, ν, p) = 1± 2πγ sin 2ϕ

�
dl

2π

� ω

0

dν �

2π

1�
γν � + l2 +

�
γ(ω − ν �) + l2 − 2|l|+ γω

2Λ

1

(l − p cos 2ϕ)2 + sin2 2ϕ(γ|ν � − ν|+ p2)
Γ±(ω, ν �

, l) (3.18)

where the UV momentum scale Λ is given by Eq. (2.17).

Let us check the consistency of Eq. (3.18) with the Ward identity. From Eq. (3.9) at

�q = 0,

Γ+
a (ω, p) = 1+

3v sin 2ϕ

8Nω

�
sgn(pτ + ω)(

�
γ|pτ + ω|+ p2ā − |pā|)− sgn(pτ )(

�
γ|pτ |+ p2ā − |pā|)

�

(3.19)

which satisfies Eq. (3.18). Note that at low momentum p � Λ and frequency ω � Λω, the

second term in Eq. (3.19) dominates over the bare vertex Γ+,0 = 1, so that Γ+(ω, ν, p) can
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be written in the scaling form,

Γ+(ω, ν, p) ∝

�
ω

Λω

�−1/2

γ
+

�
ν

ω
,

p
√
γω

�
(3.20)

with

γ
+(x, y) =

�
x+ y2 +

�
1− x+ y2 − 2|y| (3.21)

Observe that by summing the rainbow diagrams we have generated a large anomalous di-

mension for the vertex Γ+.

We next proceed to discuss the vertex Γ−. Unlike with Γ+, one cannot extract Γ− at

�q = 0 from the Ward identity Eq. (3.9) without also knowing the low �q behaviour of Γ+.

Hence, we must actually solve Eq. (3.18) for Γ−. As shown in Appendix A, at low frequency

and momentum Γ− assumes the following scaling form,

Γ−(ω, ν, p) ∼

�
ω

Λω

�r0/2

γ
−
�
ν

ω
,

p
√
γω

�
(3.22)

with the exponent r0 given by

r0 =






2ϕ

π − 2ϕ
, 0 < ϕ < π/4

π − 2ϕ

2ϕ
, π/4 < ϕ < π/2

(3.23)

Fig. 7 shows the behavior of the exponent r0 as a function of ϕ. Note that 0 < r0 ≤ 1.

Hence, the vertex Γ− acquires an anomalous dimension. Unlike Γ+, which is enhanced at

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 7: The exponent r0, Eq. (3.23), associated with the current vertex Γ−, as a function of the
angle 2ϕ between the Fermi surfaces.
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low energy, Γ− is suppressed. We briefly note that when ϕ = π/4, r0 = 1, the scaling form

(3.22) is modified by an additional factor logΛω/ω.

We have not been able to analytically determine the full form of the scaling function

γ−(x, y) entering Eq. (3.22). However, we have extracted its asymptotic behavior for y → ∞

(i.e. p �
√
γω) We will shortly demonstrate that this asymptotic behavior controls the

frequency dependence of the optical conductivity. As shown in Appendix A,

γ
−(x, y) = g0y

r0 + g1(x)y
r0−2 + g2y

r2 + · · · , y → ∞ (3.24)

Here,

r2 = −2− r0 (3.25)

The leading term in Eq. (3.24) ensures that Γ− has a finite static limit, Γ−(p) =

limω,ν→0 Γ−(ω, ν, p) with

Γ−(p) ∼
�
p

Λ

�r0
(3.26)

We have also kept two subleading terms in Eq. (3.24), which turn out to control the optical

conductivity beyond the simple Drude response. Of particular interest is the last term in

Eq. (3.24) with the exponent r2, which as we will see, gives rise to the ‘quantum critical’

contribution to the optical conductivity. As will be discussed below, the relationship (3.25)

between the exponents r0 and r2, which appears to come out accidentally in our calculations,

is actually crucial for a consistent renormalization group (RG) interpretation of our results.

We now proceed from the vertex correction to conductivity itself. Starting with Eq. (3.10)

and retracing the steps that led from (3.15) to (3.18), we obtain

Πxx(ω) =
8N2

3 sin2
ϕ

�
dl

2π

� ω

0

dν

2π

1�
γν + l2 +

�
γ(ω − ν) + l2 − 2|l|+ γω

2Λ

Γ−(ω, ν, l) (3.27)

Substituting the scaling form (3.22) into (3.27) and cutting off the integral over l at l ∼ Λ

we obtain,

Πxx(ω) ∼ N
2
ω

�
ω

Λω

�r0/2 � √
Λω/ω

0

dy

� 1

0

dx
1�

x+ y2 +
�

1− x+ y2 − 2y
γ
−(x, y) (3.28)

Now, as shown in Appendix A, for µ � 1,

� µ

0

dy

� 1

0

dx
1�

x+ y2 +
�

1− x+ y2 − 2y
γ
−(x, y) = a0µ

r0+2+a1µ
r0+a2µ

r2+2+ · · · (3.29)

Hence,

Πxx ∼ N
2Λω

�
a0 + a1

ω

Λω
+ a2

�
ω

Λω

�(r0−r2)/2
�

(3.30)
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and the optical conductivity at real frequency Ω is given by

σ(Ω) ∼ N
2Λω

�
a0

i

Ω+ i�
+ a1

1

Λω
+ a2

�
−iΩ

Λω

�(r0−r2−2)/2
�

= N
2Λω

�
a0

i

Ω+ i�
+ a1

1

Λω
+ a2

�
−iΩ

Λω

�r0�
(3.31)

where we’ve used Eq. (3.25) in the last step.

Let us discuss the three terms in Eq. (3.31). The term with the coefficient a0 when added

with the diamagnetic tadpole term renormalizes the total Drude weight. This term is clearly

cut-off dependent and non-universal.

Next, consider the term with the coefficient a1, which gives a constant contribution to

the optical conductivity. It naively appears that the cut-off dependence cancels in this term.

However, in reality, this term is non-universal. Indeed, we know that in a Fermi liquid

with umklapps the real part of the optical conductivity tends to a constant as Ω → 0.

Hence, we expect that umklapp scattering of Fermi liquid like quasiparticles away from the

hot spots will renormalize the a1 term rendering it non-universal. At a technical level this

non-universality appears in our calculation in the following way. The cut-off dependence in

Eq. (3.28) comes from two sources: i) the normalization of the current vertex, Eq. (3.22),

ii) the cut-off on the integral over the momentum l along the Fermi surface. The argument

given above indicates that we should not generally expect a universal cancellation between

these two cut-offs in the a1 term.

The final term with the coefficient a2 in Eq. (3.31) is the critical hot spot contribution in

the rainbow approximation. Unlike the first two terms in Eq. (3.31), which are present in a

Fermi liquid, this term appears only at the critical point. Since r0 > 0, this term is always

suppressed compaired to the cold Fermi liquid contribution. In contrast, Chubukov et al.
17

found r0 = −1/2 in the corresponding regime. There are two effects taken into account in

our calculations that lead to the difference: i) the dependence of the fermion self energy on

the momentum along the Fermi surface; ii) rainbow corrections to the current vertex.

It is interesting to discuss the a2 term from the point of view of RG. Let [Jx] be the

scaling dimension of the current operator Jx. Then the current vertex Γ(q, p) should have

the dimension [Jx]− 2[ψ]. The dimension of the fermion operator [ψ] = 3/2 in the rainbow

approximation (all dimensions are with respect to momentum). Hence, from Eq. (3.22), in

the rainbow approximation,

[Jx] = 3 + r0 (3.32)

where we’ve used z = 2. Similarly, the quantum critical contribution to the optical conduc-

tivity σ(Ω) should have the dimension 2[Jx] − d − 2z = 2r0, which is precisely the scaling

of the a2 term in Eq. (3.31). Hence, our scaling forms for the conductivity and the current

vertex have a consistent RG interpretation. Technically, this is based on the relation (3.25),
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which seems to appear quite accidentally in our calculations.

Coming back to the constant a1 ‘Fermi liquid’ contribution to the conductivity, although

this term is non-universal in the broad sense, it can still be calculated within our spin-

fermion model if one treats the action (2.1) as a ‘semi-microscopic’ theory rather than an

effective theory valid only in the infra-red scaling limit. This is only meaningful when the

‘UV’ scale of the theory Λ, Eq. (2.17), is much smaller then the Brillouin zone size. For this

to be true, we must either send the coupling constant λ → 0 or N → ∞. In such a weak

coupling limit, only the fermions within a distance Λ to the hot spot are strongly affected

by the interactions with the spin density wave fluctuations and contribute to the constant

term in the conductivity.

To extract the constant contribution in the rainbow approximation and in the limit

N → ∞, we have to solve the integral equation (3.18) for the current vertex Γ− in the

regime p ∼ Λ and then use Eq. (3.27) to determine the conductivity. The details of the

calculation are presented in the Appendix B. Here we only quote the result

Reσij(Ω) → N
2
C1(ϕ)δij (3.33)

with the function C1(ϕ) shown in Fig. 8. Note that even though we have taken the ‘weak-

coupling’ limit, the coupling constant λ does not enter the expression for C1. Moreover,

Eq. (3.33) is enhanced in N compared with the naively expected scaling σ ∼ N . Note that

the conductivity diverges in the nested limits ϕ → 0, ϕ → π/2.

1.0

2.0

3.0

FIG. 8: The constant contribution to the conductivity as a function of the angle 2ϕ between the
Fermi surfaces.

We conclude this section by reminding the reader that the ‘Drude’ pole (and associated

delta function) in Eq. (3.31) should not be confused with the low frequency conductivity at

T > 0. By setting T = 0 exactly in this paper we are effectively working in the limit T � Ω,

while the phenomenologically interesting d.c. conductivity is often Ω � T . In the latter
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limit, a delta function in the electrical conductivity follows from translational invariance if

the electric current and momentum operators have nonvanishing overlap. In our quantum

critical regime the electrical current lies in an SU(2) pseudospin triplet, while the momentum

is a pseudospin singlet. Therefore there can be no overlap and a finite quantum critical d.c.

conductivity is expected at T > 0. A delta function will re-emerge due to the effect of

irrelevant pseudospin symmetry breaking operators such as Fermi surface curvature terms.

This delta function must then be resolved by additional physics such as impurity scattering

or umklapp scattering beyond that already included in our theory42,43.

IV. SELF ENERGY, VERTEX CORRECTIONS AND ‘COLD’ CONDUCTIVITY

The anisotropic structure of criticality in our model – the existence of hot spots – means

that as well as the quantum critical contribution to the conductivity, there is also the

contribution of the ‘cold’ fermions. We have already encountered such a contribution in

Sec. III. At the level of the approximation in Sec. III, the cold fermions are well-defined

quasiparticles with a Fermi liquid like ω2 damping rate, which give rise to a Drude peak in

the optical conductivity, as well as a constant dissipative part at finite frequency.

In the remainder of this paper we will investigate the effects of scattering of the cold

fermions by quantum critical modes living at the hot spots. Since the cold contribution

in Sec. III was found to dominate over the critical hot spot contribution at low frequency,

it is crucial to understand the extent to which hot modes can disrupt the cold Fermi liq-

uid behavior. This issue is similarly important at finite temperature, where a cold Fermi

liquid would contribute a T−2 temperature dependent DC conductivity, which is likely to

short-circuit any phenomenologically interesting quantum critical temperature scaling of the

conductivity23,24.

In section V we will study the damping rate of cold fermions due to scattering by critical

modes. We would like to see if it is possible to obtain a scattering rate that is stronger than

the ω2 result of Fermi liquid theory. The next question is the extent to which the scattering

rate feeds through to the electrical conductivity. One must be wary of cancellations at low

frequencies between the effects of self energy and vertex corrections to the conductivity44.

This section studies the connection between self energy and conductivity in a general setting

that is independent of the explicit form, e.g. (2.1), of the hot spot theory.

A. Self energy and vertex correction cancellation

Before considering specific scattering processes, it is helpful to set up a general formalism

describing the interaction of cold fermions with a (generically composite) operator O in the

quantum critical theory. Since the momentum of critical fluctuations is small compared to

the Fermi momentum of the cold fermions, it is sufficient at low energy to zoom into a patch
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of the cold Fermi surface. In the simplest case of a zero momentum, neutral scalar operator

O the interaction is effectively described by the coupling

S1 = λ1

�
d
3
xψ

†(x)ψ(x)O(x) . (4.1)

We will see more concretely below how a local effective coupling emerges. In the patch, the

cold fermions ψ have the usual inverse propagator

G
−1
cold(ω, �p) = iω − v

�
p⊥ −

p2�

2m�
. (4.2)

Similarly to before, p⊥ is the momentum perpendicular to the Fermi surface at the patch

while p� is the parallel momentum. In the patch the fermion has local Fermi velocity v�

and local Fermi surface curvature radius m�v∗. We are suppressing spin indices, their only

effect is to add various factors of 2 below. The propagator for O is computed in the hot

spot theory. In frequency space we will write

C(ω, �p) =

�
dτd

2
xe

iωτ−i�p·�x
�O(τ, �x)O(0, 0)� . (4.3)

For the moment we will not need to make any assumptions about the form of this propagator.

As an example of how the local interaction (4.1) arises, consider the operator O = φ2

of the critical theory (2.1). This is the relevant operator that drives the system away from

criticality and will be an important example later in our paper. The coupling of this operator

to two cold fermions is shown in figure 9. In figure 9 a cold fermion is scattered by a pair

FIG. 9: Generating a local interaction between cold fermions and O = φ2. As in Fig. 4, a full line
is a fundamental fermion ψ, and a dashed line is a ‘fundamental boson’ φ. A wavy line represents
a propagator for the operator O. The intermediate fermion on the left hand graph is necessarily
very off shell.

of hot bosons. Because the bosons are assumed to be hot, each bosonic scattering shifts

the momentum of the fermion by the spin density wavevector. In the cold regions we are

studying, away from the hot spots, this process takes the fermion far from the Fermi surface.

Until being scattered back to the Fermi surface by the second boson, the fermion is hopelessly

off shell. In the evaluation of figure 9 we can therefore approximate the propagators of these
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off shell fermions by a constant. Thereby collapsing the two bosonic operators to a point,

we obtain the local effective interaction (4.1) with the composite operator O = φ2.

The three Feynman diagrams shown in figure 10 give the leading contribution to the

conductivity due to the coupling λ1 of (4.1). The current operator corresponding to the cold

fermions (4.2) has components

J
cold
⊥ = v

�
ψ

†
ψ , J

cold
� =

i

m�
ψ

†
∂�ψ . (4.4)

Note that what is meant by the perpendicular and parallel directions, as well as the Fermi

velocity, the curvature radius and indeed the coupling λ1, is a function of the location of the

patch on the Fermi surface.

We remark that in the present section we are neglecting the four-fermi interactions be-

tween the cold fermions. One result of such Fermi liquid interactions is to make the finite

frequency current vertex �Γ(ω → 0, �p = 0), relevant for the calculation of the optical con-

ductivity, different from the Fermi velocity �v∗. As already shown in Sec. III this effect is

parametrically strong for lukewarm fermions in the neighbourhood of the hot spot. However,

the replacement �v∗ → �Γ in the current vertex does not qualitatively modify our discussion

below and we will not further consider the interplay between Fermi liquid and hot scattering.

r

q

(a)

p+q-r

p+qp+q
p+q

r

(b)

q-r
qq

p+q p+r
(c)

q-r
rq

FIG. 10: The three leading order corrections in λ1 to the conductivity due to cold fermions. The
wavy lines denote propagators of the neutral bosonic quantum critical operator O.

In the cold fermion current (4.4) the curvature term is down by a power of momentum

compared to the Fermi velocity term. We can therefore drop the effects of curvature in a

first computation. The first two graphs in figure 10, the self energy corrections, give the

following contribution to the current correlator

δ
(a+b)Πcold

ij (ω) = 2λ2
1

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q)G(r)G(p+q)

�
G(p+q)C(p+q−r)+G(q)C(q−r)

�
.

(4.5)

In this expression and in the following, the external 3-momentum is p = (ω, 0, 0). All the

fermion propagators in this expression and the remainder of this section are those of the
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cold fermions (4.2). The rightmost graph in figure 10, the vertex correction, gives

δ
(c)Πcold

ij (ω) = 2λ2
1

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q)G(r)G(p+ q)G(p+ r)C(q − r) . (4.6)

Using the following identity twice, where pτ = ω and the spatial components �p = 0,

G(q)G(p+ q) =
1

iω

�
G(q)−G(p+ q)

�
, (4.7)

it is easy to show that the self energy and vertex corrections are equal and opposite

δ
(a+b)Πcold

ij (ω) = −δ
(c)Πcold

ij (ω) = −
2λ2

1

ω2

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q)G(r)

×

�
C(p+ q − r) + C(−p+ q − r)− 2C(q − r)

�
. (4.8)

Therefore the total correction vanishes

δΠcold
ij (ω) = δ

(a+b)Πcold
ij (ω) + δ

(c)Πcold
ij (ω) = 0 . (4.9)

This cancellation is essentially the same as that observed in Ref. 44. The identity (4.7)

integrates to a Ward identity relating vertex correction and self energy

δΓ(p, r) =
i

ω

�
Σ(p+ r)− Σ(r)

�
. (4.10)

Thus it is not surprising that the cancellation occurs in a range of different theories. The

physics behind the cancellation is that, having neglected the effect of Fermi surface curvature

in (4.4), the electrical current and charge density are proportional in each patch. Because

the patches decouple at low energies, the current correlator is given by the density corre-

lator summed over all patches. Conservation of particle number requires that the density

correlator vanish at zero momentum. The vanishing of the current correlator Πcold
ij (ω) then

follows.

The fact that the leading order self energy correction does not contribute to the conduc-

tivity implies that non-Fermi liquid self energies will typically not translate into non-Fermi

liquid response. At the end of this section we will obtain the leading nonzero answer for the

conductivity, due to curvature terms in the current, and in the following sections we will

explicitly evaluate the self energy and hence the conductivity due to scattering off specific

low scaling dimension quantum critical modes. Before these discussions, however, we will

describe in the following subsection one important circumstance in which vertex and self

energy corrections reinforce each other rather than cancel. The non-cancellation occurs for

similar reasons to those discussed in section III above, and will lead to interesting ‘enhanced

critical umklapp’ modes that we discuss in detail below.
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We conclude this section by noting that if we write the total current schematically as

J = J
cold + J

hot
, (4.11)

then in addition to the purely cold contribution to the conductivity �JcoldJcold� consid-

ered above and the purely hot contribution �JhotJhot�, there generally exists a cross-term

�JcoldJhot�. The leading contribution in λ1 to this cross-term is schematically shown in

Fig. 11 and requires as an input from the critical theory the three point function �JhotOO�.

For the simplest case when O = φ2, this three point function in the critical theory van-

ishes by pseudospin symmetry and so the cross-term disappears. However, for the Cooper

pair and charge density wave operators considered in the following section the three point

function is generally finite and, in a full calculation, the cross-term cannot be neglected.

Nevertheless, as a first pass, we will ignore the cross-term in the present paper.

FIG. 11: The leading contribution to the cross-correlator of hot and cold fermion currents
�JhotJcold�. The triangle denotes the three point vertex �JhotOO� in the critical theory.

B. Non-cancellation for scattering off neutral ‘2kF ’ CDW modes

In this section we extend the considerations in section IVA to the interaction of cold

fermions with other types of composite operators. Namely, we consider charge 2, zero

momentum, Cooper pair operators and neutral, finite momentum, charge density wave op-

erators. The fluctuations of both operators were found to be enhanced at the SDW critical

point in Ref. 21.

Let us begin with the Cooper pair operator O, which couples fermions with opposite

Fermi momentum,

S2 = λ2

�
d
3
x

�
ψ

†(x) �ψ†(x)O(x) + �ψ(x)ψ(x)O†(x)
�
. (4.12)

Here we use ψ and �ψ to denote cold fermion fields living in two antipodal patches of the

Fermi surface. Note that the location of the antipodal patches on the Fermi surface can be

arbitrary. We will shortly discuss how to generate the coupling (4.12) in the theory (2.1).
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Next, consider the coupling of cold fermions to a generic CDW operator O,

S3 = λ3

�
d
3
x

�
ψ

†(x) �ψ(x)O(x) + �ψ†(x)ψ(x)O†(x)
�
. (4.13)

Here ψ and �ψ denote cold fermion fields in two patches separated by the wavevector �K of

O. Generally, �K only connects a finite number of points on the Fermi surface and so ψ and
�ψ must reside in the vicinity of these points. However, if the Fermi surface was nested with

the wavevector �K, i.e. �(�k + �K) = −�(�k), ψ and �ψ could reside anywhere on the Fermi

surface.

The example of the CDW that will be of interest to us below is the operator O = ψ
1†
2 ψ3

2

of the critical theory (2.1). We call this a ‘2kF ’ operator since it connects opposite hot spots

� = 1 and � = 3, so that its wavevector �K = −2 �K1
2 = −2 �K1

1 , with �K�
a - the momentum of the

hot spot associated with fermion ψ�
a.

3 This operator was shown in Refs. 13,21 to condense at

zero temperature, contributing to a modulated Ising-nematic order. Our full Fermi surface is

generally not nested with respect to the wavevector �K, hence the operator O will only couple

efficiently to the fermions in the vicinity of the hot spots. However, within the critical theory

(2.1) the Fermi surface is nested with respect to �K by virtue of the pseudospin symmetry.

Indeed, Eq. (2.9) implies that G�
a(ω,�k) = −G�

a(−ω,−�k) = −G−�
a (−ω,�k), or measuring

momenta in the full Brillouin zone

G(ω, �K�
a + �k) = −G(−ω,− �K

�
a + �k) . (4.14)

Hence, if �k is on the Fermi surface, so is �k + �K and the Fermi surface is nested. Note that

the nesting should not be confused with the Fermi surface being straight. Even though the

bare theory (2.1) has a straight Fermi surface, the dressed Fermi surface possesses a finite

curvature as discussed in Refs. 17,21. On the other hand, the nesting of the bare theory is

protected by the pseudospin symmetry even when the effects of the interactions in the action

(2.1) are taken into account. The nesting is destroyed only when we break the pseudospin

symmetry by adding an explicit curvature term to the theory, which we schematically write

as,

δL = κ0|∇ψ|
2
. (4.15)

The coupling constant κ0 will generally have an RG flow,

dκ0

d�
= −bκ0 . (4.16)

At tree level, b = 1, and so we expect the curvature to be an irrelevant perturbation to the

critical theory. Nevertheless, for lukewarm fermions away from hot spots this irrelevancy is

3 There is also an analogous operator connecting hot spots � = 2 and � = 4.
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dangerous as it eventually destroys the nesting. Let us estimate the energy scale at which

the effects of the perturbation (4.15) on lukewarm fermions a distance k� from the hot spot

kick in. From Eq. (2.10), in the absence of the curvature perturbation, the natural scale

of the fermion propagator is G−1 ∼ k
z/2−ηψ
� . Hence, from the flow (4.16), the curvature

correction to G−1 scales as δG−1 ∼ κ0k
z/2−ηψ+b
� . Assuming that lukewarm fermions remain

well-defined quasiparticles, Eq. (2.12), on the Fermi surface G−1 ∼ (iω/kz
�)k

z/2−ηψ
� . Hence,

the curvature correction δG−1 becomes significant once ω � k
z+b
� . Therefore, there exists an

energy window k
z+b
� � ω � kz

� in which the lukewarm fermions can efficiently couple to the

CDW operator O.

With the above remarks in mind, let us see how the effective coupling (4.13) of the CDW

operator O = ψ
1†
2 ψ3

2 to the lukewarm fermions can be generated in the theory (2.1). Via an

intermediate fundamental boson φ the fermions in O can be coupled to fermions ψ = ψ3
1 and

�ψ = ψ1
1. This coupling is illustrated in Fig. 12 below. Because we wish to consider scattering

by hot operators in the critical theory, we demand that the pair of fermions constituting

O be hot. The boson that connects the external cold (or lukewarm) fermions to the hot

fermions is necessarily extremely off shell. Similarly to the off shell fermions in the previous

subsection, we may replace its propagator by a constant. This then generates the local

interaction (4.13), as is illustrated in figure 12. To be completely explicit, we could write

=

FIG. 12: Generating a local interaction of lukewarm fermions ψ = ψ3
1 and �ψ = ψ1

1 with the operator
O = ψ1†

2 ψ3
2. The intermediate ‘fundamental’ boson on the left hand side is necessarily very off shell.

Wavy lines are propagators for the operator O, as in Fig. 9.

this coupling as the four fermion interaction

Sumklapp ∼

�
d
3
xψ

3†cold
1 ψ

1cold
1 ψ

1†hot
2 ψ

3hot
2 + c.c. . (4.17)

We show this scattering process in Fig. 13. We see that in terms of the underlying micro-

scopic fermions, this coupling does not conserve momentum and therefore describes umklapp

scattering. We comment that numerical studies of the Hubbard model have also noted the

importance of umklapp processes in the breakdown of Fermi liquid theory47.

The same argument holds for the scattering off the Cooper pair operator O = ψ1
2ψ

3
2,

leading to the interaction (4.12). All that is necessary is to reverse e.g. the arrows of ψ3
1

and ψ3
2 propagators in figure 12.
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FIG. 13: The 2kF operator generates the umklapp process shown here. The scattering is from
the lukewarm regions near the hot spots, and conserves total momentum upto a reciprocal lattice
vector. Note that this process arises after integrating out high energy degrees of freedom from the
effective theory in Eq. (2.1).

We now proceed to the discussion of optical conductivity. Consider scattering off CDW

fluctuations first. The diagrams describing the leading order corrections to the conductivity

due to the interaction (4.13) are shown in figure 14. The wavy line now represents the

two-point function of the CDW operator C = �OO†�. The crucial fact to take into account

p+q

q

(a)

p+q-r

p+q
r p+q

r

(b)

q-r
qq

p+q p+r
(c)

q-r
rq

FIG. 14: The three leading order corrections in λ3 to the conductivity due to cold fermions. Tildes
over momenta indicate that the fermion propagator in question corresponds to the opposite patch.
The hot operator O is now complex and so its propagators carry an arrow.

in evaluating these diagrams is that the Fermi velocity is pointing in opposite directions

in the two patches separated by the ordering wavevector �K. This is a consequence of the

relation (4.14). Therefore the current operator (neglecting as before the curvature term at

low energies) should be written as

J
cold
⊥ = v

�
�
ψ

†
ψ − �ψ† �ψ

�
. (4.18)
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Similarly to equations (4.5) and (4.6) previously, the graphs of figure 14 give

δ
(a+b)Πcold

ij (ω) = 2λ2
3

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q) �G(r)G(p+q)

�
G(p+q)C(p+q−r)+G(q)C(q−r)

�
.

(4.19)

and

δ
(c)Πcold

ij (ω) = −2λ2
3

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q) �G(r)G(p+ q) �G(p+ r)C(q − r) . (4.20)

Recall that the external 3-momentum is p = (ω, 0, 0). The crucial minus sign difference with

(4.6) is due to the minus sign in the current (4.18). Tilde indicates a Green’s function for

fermions on the opposite patch. The factors of 2 work out a little differently compared to

section IVA: the Feynman diagrams have a reduced symmetry and we must be careful not

to double count the patches. The extra minus sign means that upon using the identity (4.7),

the self energy and vertex contributions add rather than cancel. The total result is

δΠcold
ij (ω) = δ

(a+b)
G

cold
ij (ω) + δ

(c)
G

cold
ij (ω) (4.21)

= −
4λ2

3

ω2

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q) �G(r)

�
C(p+ q − r) + C(−p+ q − r)− 2C(q − r)

�
.

The absence of a cancellation means that the scattering off the CDW operator will di-

rectly influence the conductivity. We must, however, remember that due to the dangerously

irrelevant curvature terms, such scattering is only efficient for lukewarm fermions in the

neigbourhood of the hot spot. This issue will be discussed in more detail in sections VB

and VIB, which will present a calculation of the fermion self energy and conductivity due

to 2kF scattering.

Finally we turn to the case of the interaction with the Cooper pair operator. As already

noted, in contrast to the CDW case, such scattering is efficient everywhere on the Fermi

surface. The diagrams giving the leading order correction to the conductivity are shown in

figure 15. The fermions ψ and �ψ now live in antipodal patches and therefore again have

p+q

q

(a)

p+q+r

p+q
r p+q

r

(b)

q+r
qq

p+q -p+r
(c)

q+r
rq

FIG. 15: The three leading order corrections in λ2 to the conductivity due to cold fermions. A few
fermionic arrows are reversed compared to figure 14.

opposite Fermi velocities. Thus, using the two patch current (4.18) we can evaluate these
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graphs to obtain

δ
(a+b)Πcold

ij (ω) = −2λ2
2

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q) �G(r)G(p+q)

�
G(p+q)C(p+q+r)+G(q)C(q+r)

�
.

(4.22)

and

δ
(c)Πcold

ij (ω) = 2λ2
2

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q) �G(r)G(p+ q) �G(−p+ r)C(q + r) . (4.23)

These expressions have various minus signs in different places compared to the previous

corresponding formulae for the CDW case. These are seen to lead to a cancellation upon

using the identity (4.7) and thus

δΠcold
ij (ω) = δ

(a+b)Πcold
ij (ω) + δ

(c)Πcold
ij (ω) = 0 , (4.24)

similar to the first case we considered. Analogous cancellations in the fluctuation conduc-

tivity of clean superconductors are noted in Refs. 48,49. Each term takes the form

δ
(a+b)Πcold

ij (ω) = −δ
(c)Πcold

ij (ω) =
2λ2

2

ω2

�
d3q

(2π)3
d3r

(2π)3
v
�
i v

�
jG(q) �G(r)

×

�
C(p+ q + r) + C(−p+ q + r)− 2C(q + r)

�
. (4.25)

The leading self energy correction due to Cooper pair scattering does not therefore directly

push forward to the conductivity. Fermi surface curvature terms are needed to obtain a

nonzero contribution to the conductivity, which will consequently be suppressed by powers

of momentum.

C. Fermi surface curvature and leading corrections to the conductivity

We found in Section IVA that the leading order conductivity due to scattering off a

neutral, zero momentum scalar operator O vanished due to a cancellation. To obtain the

leading nonzero contribution we must keep the curvature terms in the cold fermion current

operator (4.4). The relevant Feynman diagrams remain those of figure 10, except that

now there will be extra powers of momentum at the current insertions. One can check

that the contribution to the conductivity due to the cross term �Jcold
⊥ Jcold

� � again vanishes

upon adding the three diagrams. In verifying the cancellation one must use the symmetries

C(ω, �p ) = C(ω,−�p ) and C(ω, �p ) = C(−ω, �p ). These follow for neutral operators from

parity symmetry. The contribution �Jcold
� Jcold

� � does not vanish however. Summing the
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three diagrams gives the following result

δΠcold
ij (ω) = −

λ2
1

m�2ω2

�
d3q

(2π)3
d3r

(2π)3
(q� − r�)i(q� − r�)jG(q)G(r) (4.26)

×

�
C(p+ q − r) + C(−p+ q − r)− 2C(q − r)

�
.

Note how in this expression we are taking q� to be a vector whose direction in general changes

with the patch on the Fermi surface. Here, and in (4.21) above, we should strictly also bear

in mind that the couplings λ and Fermi velocities and curvatures also depend on the Fermi

surface patch.

An analogous expression to (4.26) exists for scattering off charged operators. The ex-

pression follows immediately from (4.25). Because of the symmetry in the argument of the

C correlators in (4.25) it is not necessary to use any symmetry property of C in this case.

In section VI we will evaluate the integrals in (4.26) to obtain the corresponding scaling

dependence of the conductivity. Before this, we turn to a computation of the self energy due

to the scattering processes we are considering. The main results of this section have been

the general formulae (4.21) and (4.26) for the conductivity resulting from scattering off 2kF
and zero momentum operators respectively.

V. SELF ENERGY FROM COMPOSITE OPERATORS

The cold fermion self energy acquired by scattering off one of the bosonic operators in

the previous section, with any of the three couplings λi, is

Σ(q) ≡ λ
2
i

�
d3r

(2π)3
G(r)C(q − r) . (5.1)

The self energy gives a measure of the effect of scattering off hot modes prior to any cancel-

lations that occur in computing the conductivity. In this section we compute the self energy

due to various operators at the hot spots and then use these results in the following section

to compute the corresponding conductivity. The self energy is of course also of interest in

itself, especially insofar as one obtains deviations from Fermi liquid theory.

A. Self energy for charge and momentum preserving scattering

Consider first the case in which the operator O is a zero momentum neutral operator of

the critical theory. Under scale transformations

O(τ, �x) → s
∆
O(szτ, s�x) . (5.2)
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Here z is the dynamical critical exponent, which we keep arbitrary for the moment, and

∆ is the scaling dimension of the operator O. The most important example, on which we

concentrate below, is the operator φ2 of the critical theory (2.1). This operator perturbs the

theory away from the critical point and determines the correlation length exponent ν via

1

ν
= z + 2−∆ . (5.3)

At a mean field ‘Hertz-Moriya-Millis’14–16,18 level, z = 2, ν = 1/2 and ∆ = 2. An important

feature of our treatment here is that we can also think of z and∆ as free variables and thereby

consider the dependence of physical quantities on z and ∆. Within the specific model of

(2.1), the values of z and ∆ are in principle determined from a difficult computation in the

strongly interacting critical theory. The mean field values provide an estimate at best. In

general, the scaling dimension ∆ determines the scaling form of the correlator (4.3) to be

C(ω, �p) =
1

ω(z+2−2∆)/z
�C
�

�p

ω1/z

�
. (5.4)

Here we have kept only the singular contribution to C. The singular term is greater than

the analytic terms at low energy if z + 2 ≥ 2∆. The tilde over �C is not related to opposite

patches but indicates that �C is dimensionless.

The self energy (5.1) can be written explicitly, using (4.2) and shifting integration vari-

ables, as

Σ(ω, �p) = λ
2
1

�
dqτd

2q

(2π)3
C(qτ , �q )

i(ω − qτ )− v�(p⊥ − q⊥)− (p� − q�)2/2m�
. (5.5)

The main contribution to the self energy (5.1) comes from the regime qτ ∼ |�q|z in which

the critical fluctuations are on shell. Conservation of energy and momentum implies that

the fermion can absorb the momentum of the critical fluctuations and stay on the Fermi

surface only if qτ ∼ v�q⊥+q2�/2m
�. If z > 1 consistency with the critical regime then requires

q⊥ ∼ max(q2�, q
z
�) � q� and therefore the momentum of the critical fluctuations is nearly

tangent to the Fermi surface. This condition is familiar from the study of quantum critical

points or phases involving the interaction of the Fermi surface with a bosonic field carrying

zero wavevector45,46. The difference in the present case is that the operator O is a composite

of the ‘elementary’ critical excitations. We note that a condition z < 3 is necessary to ignore

terms such as q⊥q2� and q3� in the fermion dispersion. Thus the results that follow are valid

for 1 < z < 3.

The upshot of the previous paragraph is that in the regime when the boson is ‘on shell’

we can ignore the dependence of C on q⊥. It is then easy to perform the integral over q⊥ in
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(5.5) to give

Σ(ω, �p) =
iπλ2

1

v�

�
dqτdq�

(2π)3
sgn(qτ − ω)C(qτ , q�) (5.6)

= −
iλ2

1sgn(ω)

(2π)2v�

� |ω|

0

dqτ

� ∞

−∞
dq�C(qτ , q�) . (5.7)

To obtain the second line we used the fact that C is an even function of qτ . The momen-

tum dependence of the self energy has disappeared. Now using the scaling form (5.4) and

changing variables to qτ = |ω|x and q� = |ω|1/zy gives

Σ(ω, �p) = −
iλ2

1sgn(ω)

2π2v�
|ω|

(2∆−1)/z

� 1

0

dx

x(z+2−2∆)/z

� Λ/|ω|1/z

0

dy �C
�

y

x1/z

�
. (5.8)

As in section III above, we introduced a cutoff on the momentum of the critical fluctuations

along the Fermi surface. It is clear from the scaled integral (5.8) that the non-cutoff-sensitive

contribution to the self energy scales like

Σ(ω) = −i
λ2
1c

v�
sgn(ω)|ω|κ , (5.9)

with exponent

κ =
2∆− 1

z
. (5.10)

In (5.9), c is a real number. As a quick check of this expression we can note that substituting

z = 3 and ∆ = 3/2, as appropriate for the Hertz theory of a nematic transition with O(x)

being the nematic order parameter, we recover the expected κ = 2/3. In general, if the

exponent κ > 1, the fermionic excitations in the cold regions of the Fermi surface remain well-

defined quasiparticles. However, the lifetime of these quasiparticles is generically different

from the Fermi liquid Γ ∼ ω2 form.

Returning to the example in our theory of O = φ2, we can write in terms of the critical

exponent (5.3)

κ = 2 +
3

z
−

2

νz
. (5.11)

In Hertz-Moriya-Millis theory this implies κ = 3
2 . Therefore at this level the cold fermions

acquire a non-Fermi liquid dissipation, albeit surviving as well-defined excitations. The fact

that the low energy behavior of the propagator is not disrupted indicates that the effective

λ1 coupling is irrelevant in this case. We will give a more sophisticated characterisation of

the relevancy or irrelevancy of our λi couplings in section VIC.

We can confirm the scaling (5.9) with κ = 3
2 via an explicit calculation. Indeed, at one

loop level, the correlation function of the φ2 operator is given by Fig. 16. Using the RPA
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FIG. 16: The one loop contribution to the correlation function of the O = φ2 operator.

propagator (2.14), we obtain (see Appendix C),

Cφ2(ω, �q) =
3

2π2N2γ

�
log

Λ2

γ|ω|+ �q2
+X(ω, �q)

�
, (5.12)

where

X(ω, �q) =
γ|ω|

�q2
log

�
γ|ω|

γ|ω|+ �q2

�
−

1

2
Li2

�
�q2

2γ|ω|+ �q2

�
+

1

2
Li2

�
−�q2

2γ|ω|+ �q2

�
. (5.13)

Upon substituting Eq. (5.12) into Eq. (5.7), we recover the expected scaling (5.9) with κ = 3
2 .

We have also performed a complete analysis of the correlation function Cφ2 of the φ2

operator within the Hertz-Moriya-Millis theory. In Hertz theory, Cφ2 does not strictly satisfy

the scaling form (5.4) due to the presence of a marginally irrelevant perturbation and the

fact that the scaling dimension of the correlator Cφ2 is 2∆−z−2 = 0 in this case. A detailed

calculation (see Appendix C) gives,

Cφ2(ω, �q) ∝

�
log

Λ

|�q|

�1/11 �
1 +

1

22 logΛ/|�q|

�
− log

�
1 +

γ|ω|

�q2

�
+X(ω, �q) + const

��
+ const ,

(5.14)

and from (5.7) we obtain,

Σ(ω) ∼ isgn(ω)|ω|3/2
�
log

Λ

ω

�−10/11

. (5.15)

We remind the reader that the spin density wave transition in two dimensions is not

described by Hertz-Moriya-Millis theory. As shown in Ref. 21, the critical theory describing

this transition is, in fact, strongly coupled and the exponents z and ν receive corrections

from mean field values. Thus, the discussion of the correlator in Hertz theory is given above

for illustrative purposes only, and in a full theory we expect to obtain the scaling form (5.9)

for the self energy with the value of κ (5.11) renormalized compared to the Hertz result of

κ = 3
2 .

We must also worry about the cutoff-dependent contribution to the integral (5.8). This

33



regime, q� ∼ Λ � q
1/z
τ , is most easily accessed by taking a step back to equation (5.7). At

leading order we can ignore the frequency dependence of C(qτ , q�). The contribution thus

comes from exchanging static critical fluctuations with a large momentum and gives

Σ(ω) = −
iλ2

1 ω

2π2v�

� Λ

0

dq�C(0, q�) . (5.16)

This contribution simply renormalises the quasiparticle residue and Fermi velocity. We

may also ask about the higher order frequency dependence of the self energy coming from

the ‘UV’ part of the integral (5.7). In principle, the function C(qτ , q�) need not have an

analytic expansion in powers of qτ for qτ � |�q|z. Hence, one may obtain non trivial power

law contributions to the quasiparticle width from this regime. For the Hertz-Moriya-Millis

theory, the first subleading correction, as found in Appendix C, behaves as q2τ log |qτ |, leading

to Σ(ω) ∼ ω3 logω, which is smaller than the contribution (5.9) from the qτ ∼ |�q|z regime.

The main result of this subsection is the scaling form (5.9) for the self energy of cold

electrons scattering off neutral and zero momentum quantum critical modes. In general the

exponent κ is given by (5.10).

B. Self energy due to 2kF scattering

In Section IVB we found that neutral hot operators carrying a net 2kF momentum

could scatter cold fermions without the self energy correction to the conductivity being

cancelled by a vertex correction. In this subsection, we consider the self energy due to

such a scattering process. Despite the absence of a cancellation, there are various obstacles

potentially preventing interesting consequences of this scattering.

Firstly, as already discussed in Section IVB, this process cannot efficiently scatter most

of the cold fermions due to the Fermi surface being non-nested. Only lukewarm fermions in

the energy range kz+b
� � ω � kz

� are strongly affected by the scattering, with the exponent b

determined by the RG flow (4.16) of the curvature perturbation (4.15). At tree level, b = 1.

Secondly, as we mentioned above, the simplest critical operator to which these consider-

ations apply is O = ψ
1†
2 ψ3

2. At tree level, this operator has dimension ∆ = 3. Thus, with

z = 2, the ‘singular’ self energy scales with a power Σ ∼ ω5/2 in (5.9) which is even weaker

than that due to the usual Fermi liquid interaction. Therefore, unless there are important

renormalizations of the operator dimension and dynamical critical exponent, the hot 2kF
operator does not seem to significantly influence either the self energy or conductivity.

Nevertheless, it instructive to consider scattering in the 2kF channel in the theory (2.1).

As per the discussion above we will find that this process is dominated by scattering off

lukewarm rather than hot fermions. Thus, the formalism in Sec. IV will not be directly

appicable in this case. Even so, the interplay of the singular SDW interaction and the Fermi

surface curvature will give rise to a number of new physical effects. We proceed to discuss
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two such effects, the importance of effectively one-dimensional scattering and modification

of the leading low energy scaling of certain observables due to curvature.

1. One-dimensional scattering

1 1

2

-2 -1

(b)

2

1

-2

-1

1 1

2

-2

-1

(a)

FIG. 17: Fermion self energy in the 2kF channel. The scattering processes are those shown in
Fig. 13; The 1 fermion refers to ψ1

1, the 2 to ψ1
2, the −1 to ψ3

1 and the −2 to ψ3
2. These fermions

are also referred to as ψ1, ψ1̄, ψ−1, and ψ−1̄ respectively. The momentum labels in (b) correspond
to the expression in Eq. (D1).

The two lowest order self energy diagrams in the 2kF channel are shown in Fig. 17. The

graph in Fig. 17a) is already taken into account in the rainbow approximation of Section III

and gives rise to an ω2 Fermi liquid like self energy for lukewarm fermions. We now turn our

attention to the graph in Fig. 17b). We will consider the contribution to this graph from

the region where all external and internal fermions are lukewarm. Thus, as a starting point

we use the rainbow fermion propagators in the lukewarm region,

Ga(ω, �p) =
Z(v̂ā · �p)

iω − v∗(v̂ā · �p)v̂a · �p
(5.17)

where Z(l) = l/Λ, v∗(l) = |�v|l/Λ and Λ is given by Eq. (2.17). As shown in appendix D,
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the resulting fermion self energy is

Σ(ω,�k) ∼ −
i

N

ω

k�
log

�
k2
�

γ|ω|

�
(5.18)

This self energy is of non-Fermi liquid form and, in fact, implies that the fermionic quasi-

particles are not well-defined even in the lukewarm region ω � kz
�. It is interesting that

Eq. (5.18) has the ‘marginal Fermi liquid’ form,50 although it must be kept in mind that

we have not determined whether this logarithm survives the resummation of higher order

terms.

The origin of the infra-red divergence in Eq. (5.18) lies in the fact that at the level of

the propagator (5.17) the Fermi surface is flat. Indeed, the self energy (5.18) comes from

the region where the 2 and −2 fermions are off shell and can be integrated out to give an

effective interaction between the 1 and −1 fermions, which has a singular dependence on the

momenta along the Fermi surface of the latter. The resulting process, Fig. 18, is effectively

one-dimensional - hence the logarithmic divergence familiar from one-dimensional physics.

The prefactor of 1/k� in Eq. (5.18) comes from the k� dependence of the effective interaction

between the one-dimensional excitations.

FIG. 18: Fermion self energy in the 2kF channel. The 2 and −2 fermions in Fig. 17b) are assumed
to be off shell and are integrated out. The resulting process is effectively one-dimensional. The
interaction between the 1 and −1 fermions has a singular (∼ 1/k2�) dependence upon their distance
(k�) from the hot spot.

Clearly, the divergence in Eq. (5.18) will be cut off by the Fermi surface curvature. One

source of curvature is the explicit perturbation κ0 in the Lagrangian, Eq. (4.15). This

perturbation is expected to give rise to a physical Fermi surface curvature κ(k�) ∼ κ0k
b−1
�

(here we are using the fact that the ‘natural’ scale of curvature κ ∼ k
−1
� ). Still assuming

the quasiparticle form in Eq. (2.12), following the argument in section IVB, the divergence

(5.18) will be cut off below ωκ(k�) ∼ κ0k
z+b
� . However, even if κ0 = 0 the Fermi surface of

the theory (2.1) will dynamically develop a curvature. Indeed, we expect the Fermi surface
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shape to be controlled by the RG flow of the variable α, related to the angle between the

Fermi surfaces of fermions 1 and 2. If this flow has a stable fixed point at α = α∗,

dα

d�
= −b

�(α− α
∗) (5.19)

then the physical Fermi surface curvature κ(k�) ∼ (α − α∗)k
b�−1
� and we expect the one-

dimensional divergence in Eq. (5.18) to be cut off at ωκ(k�) ∼ (α − α∗)k
z+b�

� . Hence, the

curvature physics will be dominated by the smaller of the two correction-to-scaling exponents

b and b�. Note that if bκ = min(b, b�) < 1 the physical Fermi surface curvature diverges at

the hot spot.

In Refs. 17,21 the one-loop RG flow of α was determined to be,

dα

d�
= −

3

πN

α2

1 + α2
(5.20)

which has a fixed point at α∗ = 0. The flow towards the fixed-point is logarithmic, resulting

in the Fermi surface shape,

ky =
3

πN
kx log(Λ/|kx|) (5.21)

whose curvature κ(ky) ∼ |ky|
−1 log−2(Λ/|ky|). Hence, in this case we may write b� → 0+.

However, it was found in Ref. 21 that all anomalous dimensions diverge in the limit α → 0

so we are not in a position to perform a careful analysis of the physics at the α∗ = 0 fixed

point. Since the 1/N expansion in Refs. 17,21 is uncontrolled, it is quite possible that higher

order calculations give a flow of the more conventional form (5.19) with b� �= 0 and α∗ �= 0.

We conclude that for lukewarm fermions there exists a window k
bκ+z
� � ω � kz

� in which

the Fermi surfaces can be regarded as straight and effectively one-dimensional divergences of

the form (5.18) appear.4 In a truly one-dimensional system such logarithmic divergences sum

up to a power-law giving rise to Luttinger-liquid physics. A more detailed analysis is needed

to conclude whether an analogous phenomenon takes place in our system or if the divergences

of the type (5.18) lead to an instability. In either case, the Green’s function will not have the

quasiparticle form (2.12) in the lukewarm region ω � kz
�. Well-defined quasiparticles may

reemerge at the lowest energies where the Fermi surface curvature plays a role, however, the

behavior of the quasiparticle residue and Fermi velocity will differ from Eq. (2.13). Also, our

estimate of the lower boundary of the intermediate energy window ωκ ∼ k
bκ+z
� was based

on the assumption that fermionic quasiparticles are well defined in this window. As argued

above this assumption is likely incorrect and a detailed understanding of the physics in this

window is needed in order to estimate the energy scale at which curvature effects become

important.

4 If the one-loop flow of α, Eq. (5.20), is assumed, this window is only logarithmically wide.
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In Section VIB below, we will discuss the contribution of these one-dimensional scatter-

ings to the optical conductivity. Before doing this, we note that in addition to the ‘one-

dimensional’ contribution to the self energy in Fig. 17 b), there is also a ‘two-dimensional’

contribution from the region where both the intermediate 1, −1 and 2,−2 are on shell.

This contribution is not sensitive to whether the Fermi surface is curved, but is sensitive

to whether it is nested. We will discuss this contribution in the remainder of the present

section.

2. Low energy effects of Fermi surface curvature

As noted in section IVB, the explicit Fermi surface curvature perturbation, (4.15), gen-

erates a new energy scale ω ∼ κ0k
z+b
� . At this scale the Fermi surface realizes that it is not

nested with respect to the 2kF wavevector and the BCS-like divergences in the particle-hole

channel are cut off. Note that if the exponents b, b� in Eqs. (4.16), (5.19) satisfy b < b�, then

this is also the energy scale at which the Fermi surface can no longer be treated as flat. Fur-

thermore, it was enhancements at this scale that lead to the 2kF instability in Refs. 13,21.

In the remainder of this section we will look at the physics of 2kF scattering in the regime

where this curvature scale is being saturated. We will find that, while formally irrelevant as

per the discussions of section IVB, the inclusion of curvature perturbation (4.15) leads to

low energy scalings that are stronger than those arising from näıve dimensional analysis in

the hot spot theory.

The basic object illustrating how curvature generates new energy scalings in the 2kF
channel is the propagator for the CDW operator ψ1†

2 ψ3
2. The tree level and leading corrected

propagator for this density channel mode are shown in figure 19. Two vertex corrections

FIG. 19: Tree level (left) and leading correction (right) to the propagator for the operator ψ1†
2 ψ3

2.
The subscripts show the hot spot involved. 1 and −1 correspond to the a = 1 hot spots of the
� = 1 and � = 3 pair of hot spots, respectively. Similarly, 2 and −2 correspond to the a = 2 hot
spots of the � = 1 and � = 3 pair.

are necessary because there is mixing between ψ
1†
2 ψ3

2 and ψ
1†
1 ψ3

1. These graphs are entirely

analogous to those of figure 17 above. Here we are considering the density channel propagator

as a quantity in its own right.

As in the previous subsection we can use the lukewarm inverse propagators following

from (2.18) and (2.12). As we are now interested in saturating the scale at which curvature
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terms violate Fermi surface nesting, we will include such a curvature explicitly in the fermion

propagators

G
−1
±2(q) = ∓vq⊥ +

3γv

16N

iqτ

|q�|
− κq

2
� . (5.22)

In this equation we are defining parallel and perpendicular with respect to the � = 1, a = 2

Fermi surface. We are being somewhat simpleminded here in just adding the irrelevant

curvature coupling without systematically checking how this term backreacts on our previous

results. The results of this subsection should be taken as a preliminary investigation into new

scaling effects arising from the interplay of hot spot criticality with Fermi surface curvature.

Much of the interesting physics is already visible in the leading tree level term, left in

Fig. 19. This diagram is evaluated in Appendix E. The difference relative to previous com-

putations in this paper is that the curvature in (5.22) leads to a new low energy contribution

due to fermions saturating the curvature scale. We focus on this contribution, which in fact

gives the most singular terms at low energy and momenta

C
(0)(m) = −

c1

2

(γ|mτ |)2/3

(c2κ/v)2/3

�

i

3 + 2r2xi + 4rx2
i

r2 + 8rxi + 12x2
i

log
−xiκ

2(γ|mτ |)2/3

(c2κ/v)2/3
. (5.23)

Here r is the ratio of momentum and energy

r =
m⊥,2

(γ|mτ |)2/3
c
2/3
2

(κ/v)1/3
, (5.24)

and the xi are the three roots of the polynomial

4x3 + 4rx2 + r
2
x+ 1 = 0 . (5.25)

The notation m⊥,2 refers to the component of m perpendicular to the � = 1, a = 2 Fermi

surface. The constants

c1 =
4N

3π2γv2
, c2 =

16N

3
. (5.26)

The physical point here is that the scaling m
2/3
τ of the result (5.23) is both stronger

than the dimensional analysis scaling for this dimension ∆ = 3 operator, which from (5.4)

would be C(m) ∼ mτ , and also weaker than the full BCS Fermi surface singularity C(m) ∼

Λ2
� logmτ . This intermediate result is due to the interplay of Fermi surface curvature in

the particle channel with the criticality of the lukewarm fermions. In particular the overall

scaling power m
2/3
τ arises from the dimensionality of the operator together with the fact

that, from (5.22), the curvature kicks in at the scale

vγ

N
mτ ∼ vm⊥ m� ∼ κm

3
� . (5.27)

This tree level term does not capture, however, the physics of the enhancement of the
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particle-hole channel that leads to a pairing instability13,21. These effects are contained in

the vertex corrections of the right hand diagram in figure 19. This diagram is also studied

in Appendix E. The most singular low energy terms, at leading order in singular logarithms,

are found to be

C
(1)(m,Λ�) =

c31

32

(γ|mτ |)2/3

(c2κ/v)2/3
log2 Λ̃2

� log
2
κ̃
8/3Λ̃2

� (5.28)

×

�

i

�
log(−xi)xi − log(−yi)

3 + 2r̄2yi + 4r̄y2i
r̄2 + 8r̄yi + 12y2i

�
.

Here we introduced the analogous ratio to (5.24) for the � = 1, a = 1 Fermi surface

r̄ =
m⊥,1

(γ|mτ |)2/3
c
2/3
2

(κ/v)1/3
, (5.29)

and the yi are now the three roots of the polynomial

4y3 + 4r̄y2 + r̄
2
y + 1 = 0 . (5.30)

Finally, we set

Λ̃2
� =

(c2κ/v)2/3

(γ|mτ |)2/3
Λ2

� , κ̃
2 = γ|mτ |

�
c2κ

v

�2
. (5.31)

We must keep track of the dependence on the momentum cutoff Λ�. The above result de-

scribes the leading order singular behaviour in mτ with the ratios r, r̄ held fixed. As with the

2kF vertex21, the bosonic vertex corrections lead to singular logarithmic enhancements upon

saturating the curvature scale (5.27). Here there are surviving overall powers of momentum

that will then be evaluated at this scale, leading to the overall power of m2/3
τ . Note that

(5.28) depends upon both momenta m⊥,1 and m⊥,2.

To summarize: the 2kF propagator (5.28) contains two physical effects. The first is the

m
2/3
τ (rather than mτ ) scaling, due the combination of hot spot scaling and saturation of

the curvature scale, and the second is the presence of logarithmic enhancements due to both

cut off BCS divergences and also vertex corrections.

We can now turn to the self energy (5.5) due to scattering off the enhanced 2kF mode.

As discussed above, curvature will restrict efficient scattering off this mode to be near the

hot spot, so we take the intermediate fermion to be lukewarm rather than cold. Thus

Σ(q) = −
λ2
2

κ2/3

�
d3m

(2π)3

|mτ |
2/3 �C

�
m⊥,1

κ1/3m2/3
τ

,
m�,1

κ1/3m2/3
τ

�

γv
c2

i(qτ−mτ )
|q�−m�,1|

+ v(q⊥ −m⊥,1)− κ(q� −m�,1)2
. (5.32)

We must be careful here to keep track of the different components of m relative to the ±1

and ±2 Fermi surfaces. The scaling of �C suggested in (5.32) is violated by logarithmic terms
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in (5.23) and (5.28). The above expression for the self energy is rather similar to the one we

encountered previously in (5.4) and (5.5) with an effective z = 3/2 induced by Fermi surface

curvature effects. The crucial difference however is that the fermion propagator in (5.32)

is on the −1 Fermi surface, while it is contributing to the self energy of a fermion on the

+1 Fermi surface. In particular the two fermions have opposite Fermi velocities. If we were

to put both of the fermions precisely on their Fermi surfaces (i.e. q⊥ = ±q2�, respectively)

the missing momentum gets sent through the critical mode and moves its momentum away

from 2kF , thereby spoiling the enhancement we are looking for. Instead we can expect that

the most efficient scattering will again occur upon saturating the curvature, i.e. when the

external fermion has
qτ

q�
∼ q⊥ ∼ κq

2
� . (5.33)

Inspecting (5.32) we can now ask what scaling regime of the m energy and momenta

will dominate the integral. The immediate choices are either to respect the scaling of the

critical mode �C for both components of the momentum, or to make the denominator have

an overall scaling. The latter possibility in fact takes us back to the one-dimensionality of

the previous subsection, so here we consider the former case. Thus we take

mτ = qτx , m⊥,1 = q
2/3
τ κ

1/3
y m�,1 = q

2/3
τ κ

1/3
z . (5.34)

This implies that in the regime (5.33) m�,1 � q�. We thereby obtain (taking qτ > 0 for

simplicity)

Σ(q) = −
λ2
2

κ1/3
q
2+1/2
τ

�
dxdydz

(2π)3

|x|2/3 �C
�

y
x2/3 ,

z
x2/3

�

γv
c2
i(1− x) q1/3τ

κ1/3|q�|
+ v

�
q⊥

κ1/3q2/3τ
− y

�
−

κ2/3q2�

q2/3τ

. (5.35)

The denominator here is order one within the scaling regime and for external momenta

satisfying (5.33).

To make sense of (5.35) we should recall that in our lukewarm regime the coupling λ2 ∼

1/q2�. This is because we collapsed a boson propagator (2.14) in generating the interaction

(4.17). This collapsing involved taking q� to be larger than the momenta running in the

various loops that we computed to obtain (5.28). Thus the cutoff in (5.28) is Λ� ∼ q�.

Combined with the scaling regime we are considering, given by (5.33) and (5.34), we can

see that this cutoff dependence on q� will remove two of the four powers of log qτ that are

violating the scaling of �C. Thus in fact the logarithmic enhancements in the propagator due

to vertex corrections (as opposed to BCS logs) do not contribute to this observable. Putting
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these facts together we can write schematically

Σ(ω, �q) ∼ −isgn(ω)
1

κ1/3

|ω|2+1/3

q4�
log2 |ω|F

�
q�

(ω/κ)1/3
,

q⊥

(κω2)1/3

�
(5.36)

∼ −isgn(ω)
|ω|2

q3�
log2 |ω| �F

�
q�

(ω/κ)1/3
,

q⊥

(κω2)1/3

�
. (5.37)

In the second line we have rescaled away the explicitly singular dependence on the curvature

κ using q� ∼ (ω/κ)1/3. This modifies the overall function: F → �F . We are restricting

ourselves to the regime (5.33) where the overall functions F and �F are of order 1.

The self energy (5.37) is logarithmically stronger than the result of the rainbow approx-

imation Eq. (2.20). It is also stronger than the näıve hot spot scaling Σ ∼ ω5/2/q4� for

scattering off the hot operator ψ
1†
2 ψ3

2. Because of the instability in the 2kF channel13,21,

resumming these logarithms presumably leads to a singularity below a critical frequency.

VI. CONDUCTIVITY FROM COMPOSITE OPERATORS

A. Conductivity due to neutral zero momentum operators

We are now in a position to compute the contribution to the conductivity of the various

processes we have discussed. Consider first the conductivity due to scattering off neutral

and zero momentum operators. We have derived the formula (4.26) as giving the leading

low energy contribution to the current-current correlator in this case. As a warmup and

for later use we can first compute the (ultimately cancelled) contribution due to self energy

corrections (4.8). Using (5.1), this can be written in terms of the self energy as

δ
(a+b)Πcold

ij (ω) =
2

ω2

�
d3q

(2π)3
v
�
i v

�
jG(q)

�
Σ(p+ q) + Σ(−p+ q)− 2Σ(q)

�
. (6.1)

Using the propagator for the cold fermions (4.2) and the singular contribution to the self

energy (5.9), we first perform the integral over q⊥, and then pick out the non-analytic term

in the integral over qτ to obtain

δ
(a+b)Πcold

ij (ω) = −
4 c |ω|κ−1

κ+ 1

�
dq�

(2π)2
λ2
1 v

�
i v

�
j

v� 2
. (6.2)

Here q� should be thought of as the integral along the different patches on the Fermi surface.

Continuing to real time, it is then clear from the definition of the electrical conductivity in

(3.2) that this contribution to the conductivity would have scaled as

δ
(a+b)

σ(Ω) ∼ λ
2
1Λ�Ω

κ−2
. (6.3)
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For general κ this contribution contains both real and imaginary parts. Here Λ� is a UV

cutoff on the q� integral in (6.2). We can estimate its value as the Fermi momentum Λ� ∼

m�v�.

As we saw above, the actual leading contribution to the conductivity is (4.26) while the

contribution we have just discussed gets cancelled. It is easy to see what the effect of the

extra two insertions of momenta along the Fermi surface in (4.26) will be without doing any

additional integrals. The momenta appear as q2� in (5.7). Upon moving to dimensionless

variables as in equation (5.8) and below, the effect of these two extra powers of momentum

will be to shift the exponent κ → κ + 2/z in what was previously the self energy. Then,

following the same manipulations as we have above, we can conclude that the leading nonzero

conductivity due to cold fermions scattering off neutral zero momentum operators is

δσ(Ω) ∼
λ2
1

v�m�
Ωκ+2/z−2

. (6.4)

Here we used the estimate Λ� ∼ m�v�. Returning once again to the simplest example

O = φ2, at the level of Hertz-Moriya-Millis theory, our previous observation that κ = 3
2

implies that δσ(Ω) ∼ Ω1/2. This is a weak low frequency dependence, comparable to the

hot contribution to the conductivity (3.31). Presumably operators which are higher order

polynomials in fields and derivatives have increasingly higher values of κ and are thereby

increasingly irrelevant. Scattering off the O = φ2 operator becomes more significant if z and

∆ are renormalised such that z becomes larger and ∆ smaller than the Hertz-Moriya-Millis

values. At present a controlled computation of z and ∆ in the theory is not available. Given

z and ∆ our formulae for the conductivities are presumably reliable so long as our effective

interactions do not destroy the cold fermion quasiparticles. This is potentially compatible

with non-Fermi liquid behavior of optical conductivity.

A check of the formulae (6.3) and (6.4) comes from comparing with Ref. 44. The theory

studied in that paper had κ = 2/3 and z = 3. It was found that the individual self energy

and vertex corrections to the conductivity scaled as Ω−4/3, while the total conductivity scaled

as Ω−2/3. These results are in agreement with our expressions.

Also following Ref. 44 it is tempting to note that the leading scaling behavior (6.4) can

be obtained somewhat näıvely from a modified Drude formula. Introduce the scattering rate

1

τ
∼ ImΣ(Ω) ∼ Ωκ

. (6.5)

The transport scattering rate involves the usual extra factor of 1 − cos θ, with θ the angle

between the initial and final fermion wavevectors. At low momenta and with the boson on

shell as above 1− cos θ ∼ p2/k2
F ∼ Ω2/z. Thus the transport scattering rate is

1

τtr.
∼ Ωκ+2/z

. (6.6)
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Now write down a generalized Drude formula

Re σ(Ω) ∼
τ
−1
tr.

Ω2 + τ
−2
tr.

. (6.7)

As long as κ+ 2/z > 1, at low frequency we may drop τ
−2
tr. in the denominator of Eq. (6.7).

Using (6.6) the leading answer is then

Re δσ(Ω) ∼ Ωκ+2/z−2
, (6.8)

in agreement with our previous (6.4).

It is further tempting, in the formulation of the previous paragraph, to take the Ω → 0

limit of the Drude formula (6.7) and further exchange the frequency dependence of the

transport scattering rate (6.6) for temperature dependence. Doing this one would obtain a

resistivity ρ ∼ T κ+2/z. For the case O = φ2 at a mean field level this translates into the weak

resistivity ρ ∼ T 5/2. This reasoning is however unlikely to be correct: it does not account for

the key physics of how the delta function in the conductivity at Ω = 0 is resolved through

the umklapp scattering which is implicitly included in our theory (2.1), because pseudospin

symmetry has played no role.

Before moving on, it is instructive to rewrite our result (6.4) as

δσ(Ω) ∼ Ω(2∆+1)/z−2
. (6.9)

This expression shows how a moderately large renormalised value of z enhances the effect

of scattering off composite hot bosonic modes. In particular at large values of z the cancel-

lation between self energy and vertex corrections becomes increasingly insignificant. This

observation does not immediately appear to be related to the z = ∞ non Fermi liquids

recently discussed holographically and otherwise51,52. We can note that ∆ ∼ z/2 at large z

will give a linear in temperature resistivity according to the simple discussion of the previous

paragraph. While the usual unitarity bound on operator dimensions at a fixed point requires

a full conformal symmetry, at least in some holographic settings the dimensions of scalar

operators (in two spatial dimensions) are bounded by ∆ ≥ z/2. This follows from adapting

the finite action argument of Ref. 53 to the case54 of a general z. These holographic setups

do not include the spatial anisotropy for the critical theory we are studying in this paper.

B. Conductivity due to 2kF modes

1. One-dimensional contribution

In section IVB we observed that there was no cancellation between vertex and self energy

corrections for scattering off hot 2kF CDW fluctuations. However, as discussed in section VB
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in our theory the self energy in the 2kF channel, Fig. 17b), is actually not dominated by the

hot contribution, so the formalism in section IVB is not directly applicable. Nevertheless,

as a first estimate we will ignore vertex corrections in the computation of the conductivity

here. Then, similarly to the previous subsection,

δΠij(ω) =
1

ω2
Nvivj

�
d3k

(2π)3
Z

2(k�)G(k)(Σ(k + ω) + Σ(k − ω)− 2Σ(k)) . (6.10)

Using the self energy, Eq. (5.18), we compute the integral above as in Eq. (6.1) to estimate,5

δΠ(ω) ∼
1

γ

�
dk�k� log

k2
�

γ|ω|
. (6.11)

The integral over the momentum k� along the Fermi surface in Eq. (6.11) will be cut-off

by the Fermi surface curvature. As estimated in section VB, curvature effects set in once

ω � k
z+bκ
� . Hence, setting z = 2 and ignoring logarithmic corrections,

δσ(Ω) ∼ (−iΩ)−bκ/(2+bκ) . (6.12)

Note that Eq. (6.12) holds as Ω → 0 (at T = 0); the energy scale set by the curvature,

ωκ(k�) ∼ k
bκ+z
� → 0 as k� → 0, and so the one-dimensional contribution appears at the

lowest energy scales.

Clearly Eq. (6.12) is sensitive to the exponent bκ, which controls the physical Fermi

surface curvature. As discussed in section VB our understanding of this exponent is rather

limited. If one assumes the one-loop flow of α, Eq. (5.20), then bκ → 0+ and the correction

in Eq. (6.12) is expected to be only logarithmic.

One should ask if vertex corrections strongly modify the result in Eq. (6.12). This question

is particularly pressing due to the one-dimensional nature of the self energy divergence

(5.18), which translates into the conductivity (6.12). In a purely one-dimensional system

away from half-filling, at leading order in energy the electrical current would be proportional

to the conserved electron momentum and so the finite frequency conductivity would vanish.

Indeed, the simplified process in Fig. 18 naively looks like a forward-scattering process, which

cannot contribute to the conductivity. However, unlike in a purely one-dimensional system,

the intermediate 1 and −1 fermions in Fig. 18 possess a coordinate along the Fermi surface.

The physical ‘on shell’ current vertex Z(k�)Γ(ω, k�) depends on this coordinate and hence we

don’t expect the cancellation between the self energy and vertex corrections to occur. Note

that in the calculation leading to (6.12) we’ve used the bare current vertex Γi(ω, k�) = vi.

5 Strictly speaking Eq. (5.18) represents only the self energy on the Fermi surface. However, inclusion of

the dependence on momentum perpendicular to the Fermi surface does not qualitatively modify the result

(6.11).
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In principle, a systematic analysis of the current vertex which takes into account both the

one-dimensional divergences in Section VB and the rainbow graphs in Section III is needed.

Such an analysis is, however, outside the scope of this paper.

2. ‘Enhanced critical umklapp’

With similar caveats to the discussion immediately above, we can estimate the contribu-

tion to the conductivity from the 2kF channel when fermion loops are saturating the Fermi

surface curvature scale. Using our result (5.37) of Σ(ω) ∼ ω2/q3� log
2
|ω| and repeating the

arguments of the previous subsection, or directly using the scaling (5.33), leads to

δσ(Ω) ∼ v
2 log2 Ω

� Ω1/3
Z(q�)2

q3�
dq� ∼ v

2 log3 Ω . (6.13)

This is a stronger than Fermi liquid conductivity. To accurately describe this contribution

we would have to consider the effect of resumming logarithms, and also the effects of Fermi

surface curvature on the vertex correction computation in Section III.

C. Conductivity due to fluctuating critical modes

As well as the diagrams we have been considering, studies of quantum critical re-

sponse (e.g. Ref. 44) or fluctuating superconductivity response (e.g. Ref. 49) also consider

Aslamazov-Larkin type diagrams in which two separate fermion loops are connected via a

pair of bosons. This graph is higher order in the couplings λi. We have seen above that

in the mean field Hertz-Moriya-Millis level these couplings appear to in fact be irrelevant.

Therefore we expect such higher order graphs to be suppressed in our low frequency T = 0

computations. However, because the parameters z and ∆ will get renormalised, it is of inter-

est to see what scaling is obtained from these graphs in general and whether there are cases

in which this contribution can dominate. For instance in Ref. 44 such fluctuating criticality

contributions were found to scale equally to the vertex and self energy corrections we have

considered so far. At the end of this subsection we will give a scaling argument showing

that the condition for the λi couplings to be relevant is that ∆ <
3
2 , independently of z. Let

us first see this emerge from an explicit computation.

We can consider first the case of neutral and zero momentum critical operators. The two

Feynman diagrams we are interested in are shown in figure 20. These two contributions can

be written, using the leading order momentum-independent term in the currents (4.4),

δ
(d+e)Πcold

ij (ω) ∝ λ
4
1

�
d3q

(2π)3
d3r

(2π)3
d3s

(2π)3
v
�
i v

�
jG(p+ q)G(q)G(p+ s)G(s)G(q + r)

×C(r)C(p− r)
�
G(p− r + s) +G(r + s)

�
. (6.14)
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FIG. 20: The two diagrams describing the contribution to the conductivity of the cold fermions
due to critical fluctuations. The wavy lines denote propagators of the neutral bosonic quantum
critical operator O.

We will not keep track of numerical prefactors in this subsection. As above, we must recall

that the spatial components of the external momentum p vanish, so that p = (ω, 0, 0).

This allows us to use the identity (4.7) twice on the first four Green’s functions in the above

equation. Relabeling momentum integrals then shows that the two diagrams precisely cancel,

so that

δ
(d+e)Πcold

ij (ω) = 0 . (6.15)

An analogous cancellation was observed in Ref. 44. In order to obtain a nonzero contribution

we will need to include the momentum-dependent term in the current, the second term in

(4.4), as we did in section IVC for the vertex and self energy corrections which also cancelled.

As in section IVC one finds that the cross term �Jcold
⊥ Jcold

� � also gives a vanishing contribution

(upon using evenness of C(r)) while the term �Jcold
� Jcold

� � gives the nonvanishing answer

δ
(d+e)Πcold

ij (ω) ∝ −
1

ω2

λ4
1

m�2

�
d3q

(2π)3
d3r

(2π)3
d3s

(2π)3
(r�)i(r�)jC(r)C(p− r)

×G(s)G(q)G(q + r)
�
G(s+ r)−G(s+ r − p)

�
. (6.16)

Before evaluating this expression we turn to the case of finite momentum critical modes,

which once again is seen to exhibit no cancellation.

The two diagrams describing critical fluctuations of modes carrying momentum 2kF are

shown in figure 21. To properly account for the two opposite patches of the Fermi surface

involved, we must again use the expression (4.18) for the current. As before, the relative

minus sign in the contribution to the current from the two patches is crucial. The diagrams

in the figure evaluate to

δ
(d+e)Πcold

ij (ω) ∝ λ
4
2

�
d3q

(2π)3
d3r

(2π)3
d3s

(2π)3
v
�
i v

�
jG(p+ q)G(q) �G(q + r)

×C(−r)C(p− r)
�
�G(p+ s) �G(s)G(p− r + s)−G(p+ s)G(s) �G(r + s)

�
. (6.17)
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FIG. 21: The two diagrams describing the contribution to the conductivity of the cold fermions
due to neutral critical fluctuations carrying momentum 2kF . Tildes over momenta indicate that
the fermion propagator in question corresponds to the opposite patch. The hot operator O is now
complex and so its propagators carry an arrow.

Performing the same operations as outlined above for zero momentum critical operators, we

find that the terms now add rather than cancel. The result can be expressed as

δ
(d+e)Πcold

ij (ω) ∝
λ4
2

ω2

�
d3q

(2π)3
d3r

(2π)3
d3s

(2π)3
v
�
i v

�
jC(−r)C(p− r)G(q)G(s)

×

�
�G(s+ r)− �G(s+ r − p)

��
�G(q + r)− �G(q + r − p)

�
. (6.18)

Finally, we can consider fluctuations of zero momentum but charged critical modes. The

two relevant diagrams are shown in figure 22. While we will not write out the expressions

q

p+q(d)

r

p+sp+r

r-q

s

r-s

q

p+q(e)

r

p+sp+r

r-q

s

r-s

FIG. 22: The two diagrams describing the contribution to the conductivity of the cold fermions
due to charged Cooperon-like critical fluctuations.

explicitly in this case, one can easily check that there is again a cancellation between the

two diagrams. Therefore curvature terms in the current operator must be included and an

expression similar to (6.16) is obtained for the current correlator.

We can now evaluate the momentum integrals to obtain the frequency scaling of these

contributions to the conductivity. We will only evaluate the neutral and zero momentum

case. Using the cold fermion Green’s function (4.2), the scaling form (5.4) for the critical

modes, and taking the critical modes to have momentum tangent to the Fermi surface as

per the discussion in the paragraph below equation (5.5) above, it is easy to perform the
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{q⊥, qτ , s⊥, sτ , r⊥} integrals in (6.16) to obtain

δ
(d+e)Πcold

ij (ω) ∝
i

ω2

λ4
1

v�4m� 2

�
dr�ds�dq�

(2π)3
(r�)i(r�)j

r�(s� − q�)/m�v� + iω/v�
×

� ω

0

drτ

r
(2−2∆)/z
τ (ω − rτ )(2−2∆)/z

�C
�

r�

rτ
1/z

�
�C
�

r�

(ω − rτ )1/z

�
. (6.19)

This expression is not yet ready to be put in a scaling form because of the curvature terms

that have survived in the denominator of the last term in the first line. However, we can

now symmetrise in q� and s� and then perform the s� integral which is convergent. Then

setting rτ = ωx and r� = ω1/zy we obtain

δ
(d+e)Πcold

ij (ω) ∝ −
ω(4∆−2)/z

ω

λ4
1

v�3m�

�
dydq�

(2π)2
yiyj

y
×

� 1

0

dx

[x(1− x)](2−2∆)/z
�C
�

y

x1/z

�
�C
�

y

(1− x)1/z

�
. (6.20)

Taking the frequency scaling from the above formulae and using the expression for the

conductivity (3.2) we obtain the singular (i.e. scaling) conductivity due to fluctuating critical

modes

δ
(d+e)

σ(Ω) ∼ Ω(4∆−2)/z−2
. (6.21)

Comparing with our previous result (6.9) for the self energy and vertex contribution, we

see that the fluctuating criticality contribution dominates if ∆ ≤
3
2 , independently of z. In

particular when ∆ = 3
2 , the two contributions are equal, in agreement with the results of

Ref. 44. While, as above, for O = φ2 this contribution is not strong with the mean field

values of exponents, that is z = 2,∆ = 2, it is interesting to note in passing that if the

dimension of this operator was renormalized down to the holographically motivated ‘bound’

we mentioned above, ∆ = z/2 = 1, then we would obtain a conductivity σ = Ω−1.

The condition ∆ ≤
3
2 for the effective λi couplings to be relevant, and hence strong at low

energies, can be derived from the following scaling argument. Exchange of a critical boson

generates an effective four fermion interaction. The total cold fermion action is

Sψ ∼

�
d
3
x

�
ψ

2
�
−iω + v

�
k⊥ + k

2
�/2m

�
�
+ λ

2
ψ

4
ω
−(z+2−2∆)/z �C

�
k�/ω

1/z
��

. (6.22)

We are being schematic here, as we only wish to keep track of power counting. The natural

scaling to consider, given this action, is

t → s
z
t , x� → sx� , x⊥ → s

2
x⊥ . (6.23)

From the quadratic term we see that the fermion field ψ has dimension (z+1)/2 under this

scaling action. The effective coupling after scaling is thus easily seen to be λ2s3−2∆. At low
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energies, s → ∞, the interaction therefore becomes relevant if ∆ ≤
3
2 .

VII. CONCLUSIONS

We have analyzed the fermion spectrum and the optical conductivity at the quantum

critical point describing the onset of spin density wave order in a two-dimensional metal.

We focused on the universal character of the results as described by a recently developed

low energy theory21.

An appealing property of this low energy theory is that it has a finite d.c. conductivity

at non-zero temperatures. This is a consequence of an emergent pseudospin symmetry

which decouples the electrical current from the conserved momentum; umklapp processes

are implicitly included in our continuum theory. Consequently there is no delta function in

the conductivity at ω = 0, and the d.c. conductivity is dominated by interactions among

low energy excitations, leading to hopes of a universal non-Fermi liquid behavior. In other

continuum theories of fermions at non-zero density, there is inevitably a strong delta function

at ω = 0 even at non-zero temperatures, and its resolution depends sensitively upon how

terms beyond those in the leading critical theory will relax the momentum.

Going beyond our low energy critical theory, there are, of course, corrections which violate

the emergent pseudospin symmetry. Some of these terms would, by themselves, induce a

weak delta function at ω = 0, but there are other (also formally irrelevant) umklapp terms

which would broaden the delta function at non-zero temperatures. We did not examine the

delicate interplay between various irrelevant terms for the zero frequency conductivity.

Here, we limited ourselves to the simpler problem of the zero temperature optical conduc-

tivity. In the leading rainbow approximation of fermions scattering off fluctuations of φ, the

spin density wave order parameter, we found that the optical conductivity was suppressed

relative to contribution expected from naive scaling arguments or previous computations17;

these results appeared in Section III.

Next, we examined the influence of composite operators26 on the optical conductivity:

we found particularly strong effects from an operator representing 2kF density fluctuations

with an Ising-nematic character13,21. Scattering generated from this operator, which arises at

higher orders in our low energy theory, leads to the umklapp process shown in Fig. 13. While

analyzing this process, we have encountered an intermediate energy window for fermions in

the hot spot vicinity, where Luttinger-liquid like one-dimensional divergences appear. We

estimate that electrons in this window may give rise to a large optical conductivity, as

summarized in Section VIB. Furthermore, we found that in the 2kF channel, BCS-like

divergences cut off at the Fermi surface curvature scale lead to a more singular low energy

scaling of the density wave correlator than would follow from simple power counting in the

hot spot scaling theory.

We also studied the nature of the electron spectral functions around the Fermi surface.
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There is strong non-Fermi liquid damping of the quasiparticles at the hot spots, as was

already discussed in earlier work21. Here we showed that non-Fermi liquid behavior is present

at all locations on the Fermi surface, arising from scattering off composite operators. Such

results appear in Section V.

Further progress on the difficult issues left open by our analysis will likely require new

approaches. More complete solutions of simpler problems involving Fermi surface reconstruc-

tion would be useful. A holographic realization of a field theory like that in Eq. (2.1) would

be valuable. Our analysis indicates that it would be best to work in a holographic setting in

which the pseudospin symmetry is explicitly realized. This would ensure there are no zero

frequency delta function contributions to the conductivity at non-zero temperatures. Such

delta functions are a ubiquitous feature of existing holographic studies of fermion systems

at non-zero density, which are often ignored without justification.
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Appendix A: Current vertex in the rainbow approximation

In this appendix we present the details of the analysis of the integral equations (3.15) for

the current vertex.

Let us set q = (ω, 0) and without loss of generality assume ω > 0. It is convenient to

change variables to la = v̂a ·
�l. Then Eq. (3.15) for the current vertex Γ− becomes,

Γ−
a (ω, p) = (−1)a+1 +

3πv2γ

4N

�
dlτdladlā

(2π)3

�
ilτ +

3iv sin 2ϕ

8N
sgn(lτ )(

�
γ|lτ |+ l2a − |la|)− vlā

�−1

×

�
i(lτ + ω) +

3iv sin 2ϕ

8N
sgn(lτ + ω)(

�
γ|lτ + ω|+ l2a − |la|)− vlā

�−1

×
�
γ|lτ − pτ |+ csc2 2ϕ((la − pa)

2 + (lā − pā)
2 + 2(la − pa)(lā − pā) cos 2ϕ)

�−1
Γ−
ā (ω, l)

(A1)

Let us perform the integral over lā in Eq. (A1). In the N → ∞ limit, the main contribution

comes from the poles of the fermion propagators. Since these have lā ∼ O(1/N), we will set
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lā to zero in the rest of Eq. (A1),

Γ−
a (ω, p) = (−1)a+1 + 2πγ sin 2ϕ

�
dla

2π

� 0

−ω

dlτ

2π

1�
γ|lτ + ω|+ l2a +

�
γ|lτ |+ l2a − 2|la|+

γω
2Λ

×
1

(la − pa − pā cos 2ϕ)2 + sin2 2ϕ(γ|lτ − pτ |+ p2ā)
Γ−
ā (ω, lτ , la, lā = 0)

(A2)

where the UV momentum scale Λ is given by Eq. (2.17). Hence, to determine Γ−
a (ω, p) for all

p it is sufficient to know its behavior for pa = 0, i.e. we need to find the current vertex with

external momentum on the Fermi surface. Moreover, introducing the variable ν = pτ + ω

we can restrict our attention to 0 < ν < ω. Thus,

Γ−
a (ω, ν, pa = 0, pā = p) = (−1)a+1Γ−(ω, ν, p) (A3)

where Γ− satisfies,

Γ−(ω, ν, p) = 1− 2πγ sin 2ϕ

�
dl

2π

� ω

0

dν �

2π

1�
γν � + l2 +

�
γ(ω − ν �) + l2 − 2|l|+ γω

2Λ

1

(l − p cos 2ϕ)2 + sin2 2ϕ(γ|ν � − ν|+ p2)
Γ−(ω, ν �

, l) (A4)

We note that repeating the same steps for Γ+
a gives,

Γ+
a (ω, ν, pa = 0, pā = p) = Γ+(ω, ν, p) (A5)

with

Γ+(ω, ν, p) = 1 + 2πγ sin 2ϕ

�
dl

2π

� ω

0

dν �

2π

1�
γν � + l2 +

�
γ(ω − ν �) + l2 − 2|l|+ γω

2Λ

1

(l − p cos 2ϕ)2 + sin2 2ϕ(γ|ν � − ν|+ p2)
Γ+(ω, ν �

, l) (A6)

We now proceed to study the vertex Γ−. At low momentum and frequency, we may drop

the term γω
2Λ in the kernel of Eq. (A4) (this term originates from the analytic part of the

fermion propagators). Then,

Γ−(ω, ν, p) = 1− 2πγ sin 2ϕ

�
dl

2π

� ω

0

dν �

2π

1�
γν � + l2 +

�
γ(ω − ν �) + l2 − 2|l|

1

(l − p cos 2ϕ)2 + sin2 2ϕ(γ|ν � − ν|+ p2)
Γ−(ω, ν �

, l) (A7)

The integral in Eq. (A7) now requires regularization and should be cut-off at l ∼ Λ.
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Let us begin by determining Γ−(p) = limω,ν→0 Γ−(ω, ν, p). Expanding the kernel of

Eq. (A7) for ω → 0 and performing the integral over ν � we obtain,

Γ−(p) = 1−
sin 2ϕ

π

�
dl

|l|

(l − p cos 2ϕ)2 + sin2 2ϕp2
Γ−(l) (A8)

We expect that

Γ−(p) ∼ |p|
r0 , |p| � Λ (A9)

Note that the power r0 cannot be negative. Indeed, if r0 < 0 then for p → 0 we may neglect

the constant 1 in Eq. (A8). Assuming that Γ−(l) > 0 for all l, this leads to a contradiction.

Hence, r0 > 0, which means,
sin 2ϕ

π

�
dl
Γ−(l)

|l|
= 1 (A10)

i.e.,

Γ−(p) = −
sin 2ϕ

π

�
dl

�
|l|

(l − p cos 2ϕ)2 + sin2 2ϕp2
−

1

|l|

�
Γ−(l) (A11)

We can now substitute the scaling form (A9) into Eq. (A11). The integral converges in the

UV for r0 < 2. Evaluating,

I(r) =
sin 2ϕ

π

�
dy

�
|y|

(y − cos 2ϕ)2 + sin2 2ϕ
−

1

|y|

�
y
r = −

cos((π/2− 2ϕ)(r + 1))

sin πr/2
(A12)

we obtain the condition,

I(r0) = −1 (A13)

which after some algebra may be rewritten as,

cos(ϕ(r0 + 1)) cos((π/2− ϕ)(r0 + 1)) = 0 (A14)

giving

r0 = −1 +
π

2ϕ
(2n− 1), or r0 = −1 +

π

π − 2ϕ
(2n− 1), n ∈ Z (A15)

We expect that the IR behavior of Γ− will be dominated by the smallest positive exponent

r0; the other values of r0 give corrections to scaling. Hence,

r0 =

�
2ϕ

π−2ϕ , 0 < ϕ < π/4
π−2ϕ
2ϕ , π/4 < ϕ < π/2

(A16)

We note that Eq. (A7) is invariant under ϕ → π/2 − ϕ, so below we only consider 0 <

ϕ < π/4. Fig. 7 shows the behavior of the exponent r0 as a function of ϕ. Note that

0 < r0 ≤ 1. We also briefly point out that at the special value ϕ = π/4, r0 = 1 and we

expect a logarithmic correction Γ−(p) ∼ |p| log(Λ/|p|) to Eq. (A9).
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Next, we come back to discuss the frequency dependence of Γ−. We expect Γ− to obey

the following scaling form for ω � Λω, p � Λ,

Γ−(ω, ν, p) = C(ω/Λω)γ
−
�
ν

ω
,

p
√
γω

�
(A17)

For p �
√
γω, we expect to recover the behavior (A9), hence,

γ
−(x, y) ∼ y

r0 , y → ∞ (A18)

and consequently C(ω/Λω) ∼
�

ω
Λω

�r0/2
, i.e,

Γ−(ω, ν, p) ∼

�
ω

Λω

�r0/2

γ
−
�
ν

ω
,

p
√
γω

�
(A19)

Hence, the vertex Γ− aquires an anomalous dimension. Unlike, Γ+, which is enhanced at

low energy, Γ− is suppressed.

To determine γ− let us improve the UV convergence properties of the kernel in Eq. (A7).

Γ−(ω, ν, p) = 1− 2πγ sin 2ϕ

�
dl

2π

� ω

0

dν �

2π

2

γω
�
γω + l2

Γ−(ω, ν �
, l)

− 2πγ sin 2ϕ

�
dl

2π

� ω

0

dν �

2π

�
1

(
�

γν � + l2 +
�
γ(ω − ν �) + l2 − 2|l|)

×
1

(l − p cos 2ϕ)2 + sin2 2ϕ(γ|ν � − ν|+ p2)
−

2

γω
�

γω + l2

�
Γ−(ω, ν �

, l) (A20)

We can now replace Γ− in the second integral above by its scaling form (A17). The integral

over l will converge as r0 < 2. Note that the term 2

γω
√

γω+l2
that we have added and sub-

tracted from the kernel is somewhat arbitrary; we could have used any ν and p independent

term with the same UV behavior. Thus, we obtain,

γ
−(x, y) = 1−

� ∞

0

dy
�
� 1

0

dx
�
K(x, y; x�

, y
�)γ−(x�

, y
�) (A21)
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with the kernel,

K(x, y; x�
, y

�) =
sin 2ϕ

2π

�
1�

x� + y�2 +
�
(1− x�) + y�2 − 2y�

×

�
1

(y� − y cos 2ϕ)2 + sin2 2ϕ(|x� − x|+ y2)
+

1

(y� + y cos 2ϕ)2 + sin2 2ϕ(|x� − x|+ y2)

�

−
4�

1 + y�2

�
(A22)

and

C = 1−
4π sin 2ϕ

ω

�
dl

2π

� ω

0

dν �

2π

1�
γω + l2

Γ−(ω, ν �
, l) (A23)

Although we don’t have an explicit analytic solution of Eq. (A21), by studying the behav-

ior of γ−(x, y) for y � 1 we will obtain the ‘sum rule’ (3.29) that will allow us to compute

the optical conductivity. We expect that in the above limit γ−(x, y) can be expanded as a

power series in y. We, therefore, write

γ
−(x, y) = g0(x)y

r0 + g1(x)y
r1 + g2(x)y

r2 + . . . , y � 1 (A24)

We have already determined the exponent r0 (Eq. (A16)) of the leading term in the above

expansion; we now turn to the analysis of the subleading terms. Let us introduce a scale µ

such that 1 � µ � y. We will divide the integration range in Eq. (A21) into two intervals

y� < µ and y� > µ. For y� < µ � y we expand the kernel (A22) in powers of y−2,

K = K
0
< +K

2
< + · · · (A25)

K
0
<(x, y; x

�
, y

�) = −
2 sin 2ϕ

π

1�
1 + y�2

(A26)

K
2
<(x, y; x

�
, y

�) =
sin 2ϕ

π

1�
x� + y�2 +

�
(1− x�) + y�2 − 2y�

y
−2 (A27)

In the opposite range, y� > µ � 1, we expand the kernel (A22) in powers of y−2 and (y�)−2,

K = K
0
> +K

2
> + · · · (A28)
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K
0
>(x, y; x

�
, y

�) =
sin 2ϕ

π

�
y�

(y� − y cos 2ϕ)2 + y2 sin2 2ϕ
+

y�

(y� + y cos 2ϕ)2 + y2 sin2 2ϕ
−

2

y�

�

K
2
>(x, y; x

�
, y

�) =

(x�2 + (1− x�)2) sin 2ϕ

4π

�
1

(y� − y cos 2ϕ)2 + y2 sin2 2ϕ
+

1

(y� + y cos 2ϕ)2 + y2 sin2 2ϕ

�
1

y�

−
|x− x�| sin3 2ϕ

π

�
y�

((y� − y cos 2ϕ)2 + y2 sin2 2ϕ)2
+

y�

((y� + y cos 2ϕ)2 + y2 sin2 2ϕ)2

�

+
sin 2ϕ

π

1

y�3
(A29)

Note that in the range y� > µ � 1 we can use the expansion (A24). Hence, to the present

order,

g0(x)y
r0 + g1(x)y

r1 + g2(x)y
r2 = 1−

� µ

0

dy
�
� 1

0

dx
�
K

0
<(x, y; x

�
, y

�)γ−(x�
, y

�)

−

� µ

0

dy
�
� 1

0

dx
�
K

2
<(x, y; x

�
, y

�)γ−(x�
, y

�)

−

� ∞

µ

dy
�
� 1

0

dx
�
K

0
>(x, y; x

�
, y

�)(g0(x
�)y�r0 + g1(x

�)y�r1 + g2(x
�)y�r2)

−

� ∞

µ

dy
�
� 1

0

dx
�
K

2
>(x, y; x

�
, y

�)g0(x
�)y�r0

(A30)

Now, for −4 < r < 2, and y � µ,

� ∞

µ

dy
�
K

0
>(x, y; x

�
, y

�)y�r = I(r)yr +
2 sin 2ϕ

π

µr

r
−

2 sin 2ϕ

π

µr+2

r + 2
y
−2 +O(µr+4

y
−4) (A31)

with I(r) given by Eq. (A12). Likewise, for −2 < r < 2 and y � µ,

� ∞

µ

dy
�
K

2
>(x, y; x

�
, y

�)y�r =
1

4
(x�2 + (1− x

�)2)

�
I(r − 2)yr−2

−
2 sin 2ϕ

π

µr

r
y
−2

�

− |x− x
�
|J(r)yr−2

−
sin 2ϕ

π

µr−2

r − 2
+O(µr+2

y
−4) (A32)

with

J(r) =
1

2 sin πr/2
(r sin 2ϕ cos((π/2− 2ϕ)r) + cos 2ϕ sin((π/2− 2ϕ)r) (A33)

We see that the integration over the range 0 < y� < µ on the right-hand-side of Eq. (A21)

gives a series of terms y−2m with integer m ≥ 0. The integration over the range y� > µ

also gives such a contribution, but in addition produces a series of terms yr−2m with integer
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m ≥ 0 and r - one of the exponents in the expansion (A24). Hence, we conclude that all

exponents appearing in the expansion (A24) are either ‘primary’ exponents satisfying

I(r) = −1 (A34)

or ‘descendant’ exponents of the form r − 2m with r - a primary exponent and an integer

m ≥ 1. Note that terms of the form y−2m, with integerm ≥ 0 do not appear in the expansion

(A24), as these produce terms of the form y−2m log y upon convolution with K0
>.

As already discussed, the solutions to Eq. (A34) take the form (A15). We have already

determined the largest primary exponent r0, Eq. (A16), hence, we only admit solutions to

Eq. (A15) which are smaller than r0 as subleading primary exponents. So the next largest

primary exponent is

r2 = −1−
π

π − 2ϕ
= −2− r0 (A35)

At this point the relation (A35) between r2 and r0 appears accidental. We will see later

that this relation is necessary for a consistent definition of the anomalous dimension of the

current operator. We also point out that the first descendant exponent

r1 = r0 − 2 (A36)

satisfies r2 < r1 < r0, which explains the labeling that we have chosen.

Coming back to Eq. (A30), by matching the coefficients of the terms yr0 , yr0−2, yr2 ,

appearing on the right and left hand sides we conclude that the coefficients g of the terms

with the primary exponents are independent of x,

g0(x) = g0, g2(x) = g2 (A37)

while

g1(x) =

�
−
(1 + 2J(r0))I(r0 − 2)

6(1 + I(r0 − 2))
+

1

2
(x2 + (1− x)2)J(r0)

�
g0 (A38)

Moreover, by matching the coefficients of y0 and y−2 we obtain the sum-rules,

� µ

0

dy

� 1

0

dx
γ−(x, y)�

x+ y2 +
�

1− x+ y2 − 2y
= a0µ

r0+2 + a1µ
r0 + a2µ

r2+2 + · · · (A39)

� µ

0

dy

� 1

0

dx
γ−(x, y)�
1 + y2

= −
π

2 sin 2ϕ
+ b0µ

r0 + b1µ
r0−2 + b2µ

r2 + · · · (A40)
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with

a0 =
2

r0 + 2
g0 (A41)

a1 =
2J(r0) + 1

3r0(1 + I(r0 − 2))
g0 (A42)

a2 =
2

r2 + 2
g2 (A43)

b0 =
1

r0
g0 (A44)

b1 =
1

r0 − 2

�
2J(r0)− I(r0 − 2)

6(1 + I(r0 − 2))
−

1

2

�
g0 (A45)

b2 =
1

r2
g2 (A46)

The sum rule (A39) is crucial for the computation of the conductivity in Eq. (3.28). We

note that we expect g0 ≥ 0 so that both a0 ≥ 0 and a1 ≥ 0.

Appendix B: Constant contribution to the conductivity in the rainbow approxima-

tion

In this appendix, we compute the constant contribution to the conductivity, Eq. (3.33).

We work in the rainbow approximation and take the limit N → ∞. To determine C1, we

must solve the integral equation, Eq. (3.18), for the current vertex Γ− in the regime p ∼ Λ.

It will be sufficient to compute Γ− to linear order in frequency. We expect,

Γ−(ω, ν, p) = f0(p/Λ) +
γω

Λ2
f1(ν/ω, p/Λ) (B1)

At zeroth order in frequency we obtain from (3.18) an equation for the static vertex f0,

f0(y) = 1−

� ∞

0

dy
�
R(y, y�)f0(y

�) (B2)

with the kernel,

R(y, y�) =
sin 2ϕ

π

y�

1 + y�

�
1

(y� − y cos 2ϕ)2 + y2 sin2 2ϕ
+

1

(y� + y cos 2ϕ)2 + y2 sin2 2ϕ

�

(B3)

Next, expanding Eq. (3.18) to first order in frequency, after some algebra one finds,

f1(x, y) = A(y) + (x2 + (1− x)2 −
2

3
)B(y) (B4)
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Here, B(y) is expressed in terms of the static vertex f0,

B(y) =
sin3 2ϕ

2π

� ∞

0

dy
� y�

1 + y�

� 1

((y� − y cos 2ϕ)2 + y2 sin2 2ϕ)2

+
1

((y� + y cos 2ϕ)2 + y2 sin2 2ϕ)2

�
f0(y

�) (B5)

while A(y) satisfies,

A(y) = C(y)−

� ∞

0

dy
�
R(y, y�)A(y�) (B6)

and C(y) is expressed in terms of f0,

C(y) =
2

3
B(y)−

1

6

� ∞

0

dy
� 1

y�2(1 + y�)
R(y, y�)f0(y

�) (B7)

From Eqs. (A19), (A24), we expect the functions f0, f1 to have the following asymptotic

behavior in the limit y → 0,

f0(y) → g0y
r0

f1(x, y) → g1(x)y
r0−2 (B8)

with g1(x) given by Eq. (A38).

We have numerically solved Eqs. (B2), (B6) for the functions f0(y), A(y). Sample plots

are shown in Fig. 23. The numerical solution is in good agreement with the asymptotic

forms (B8) in the limit p � Λ.

Next, we proceed to the optical conductivity itself. Expanding the integrand in Eq. (3.27)

to linear order in ω and using Eqs. (B1), (B2),

Π�=1
xx (ω) =

1

2
N

2
ωC1(ϕ) (B9)

with

C1(ϕ) =
16N2

3π2 sin2
ϕ

�� ∞

0

dy
y

1 + y
A(y) +

1

6

� ∞

0

dy
1

y(1 + y)2
f0(y)

�
(B10)

Note that we have dropped a constant contribution in Eq. (B9) which renormalizes the

Drude weight. Finally, performing a sum over hot spot index � and going to real frequency,

we obtain from (B9)

Reσij(Ω) = N
2
C1(ϕ)δij (B11)

We have performed the integral (B10) using the numerical solutions for f0 and A. The result

is shown in Fig. 8.
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FIG. 23: Numerical solution for the current vertex in the rainbow approximation. Top: f0 - current
vertex in the static limit. Bottom: function A, Eq. (B4), which enters the first frequency dependent
correction to the current vertex.

Appendix C: The correlation function �φ2(x)φ2(0)� in Hertz-Moriya-Millis theory

For completeness we calculate the two point function of the operator O(x) = �φ2(x) in

Hertz-Moriya-Millis theory. We start with the non-local action,

S =
1

2

�
d2�qdω

(2π)3
(|ω|+

�q2

γ
+ r)|�φ(�q,ω)|2 +

uγ

4

�
d
2
�xdτ(�φ2)2 (C1)

With our choice of normalizations, the coupling u is dimensionless, while γ has dimensions

�q2/ω. Note that the normalization of φ differs here by a factor of
√
γ compared to Eq. (2.14).

We tune the coefficient r to the critical value. At the critical point, the theory requires the

following renormalizations,

γ = Zγγr, u =
Zu

Zγ
ur, [�φ2]r = Z2[�φ

2] (C2)

The field strength of �φ requires no renormalization. The renormalization constants Zγ, Zu

and Z2 are functions of Λ/µ and ur only, with Λ - the UV cut-off and µ - the renormalization
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scale. We define the β-functions and anomalous dimensions,

β(ur) = µ
δur

δµ
|u,γ, bγ(ur) = −µ

δ logZγ

δµ
|u,γ, η2 = µ

δ logZ2

δµ
|u,γ (C3)

To leading order in ur
55,

Zu = 1+
11

2π2
ur logΛ/µ, Zγ = 1+

5(12− π2)

16π4
u
2
r logΛ/µ, Z2 = 1+

5

2π2
ur logΛ/µ (C4)

β(ur) = cuu
2
r, bγ = cγu

2
r, η2 = c2ur (C5)

cu =
11

2π2
, cγ =

5(12− π2)

16π4
, c2 = −

5

2π2
(C6)

The two-point function C of the �φ2 operators requires an additional additive renormal-

ization,

C(�q,ω, u, γ,Λ) = Z
−2
2 Cr(�q,ω, ur, γr,Λ) + B(Λ/µ, u, γ) (C7)

The renormalized two-point function Cr then satisfies the RG equation,

�
µ
δ

δµ
+ β(ur)

δ

δur
+ bγ(ur)γr

δ

δγr
− 2η2(ur)

�
Cr(ω, �q, ur, γr, µ) = γrX(ur) (C8)

where

γrX(ur) = −Z
2
2µ

δ

δµ
B|u,γ (C9)

Solving the RG equation, we obtain,

Cr(�q,ω, ur, γr, µ) = Z
−2
2 (λ)Cr(�q,ω, ur(λ), Zγ(λ)γr,λµ)− γr

� λ

1

dλ�

λ� Z
−2
2 (λ�)Zγ(λ

�)X(ur(λ
�))

(C10)

λ
dur

dλ
= β(ur(λ)) (C11)

λ
d logZ2(λ)

dλ
= η2(ur(λ)) (C12)

λ
d logZγ(λ)

dλ
= bγ(ur(λ)) (C13)

By dimensional analysis,

Cr(�q,ω, ur, γr, µ) = γrL(
|�q|

µ
,
γr|ω|

µ2
, ur) (C14)
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So,

L(q̃, ω̃, ur) = Z
−2
2 (q̃)Zγ(q̃)L(1, Zγ(q̃)

ω̃

q̃2
, ur(q̃))−

� q̃

1

dλ�

λ� Z
−2
2 (λ�)Zγ(ur(λ

�))X(ur(λ
�)) (C15)

Now solving the flow equations using the leading order anomalous dimensions, we obtain,

ur(λ) =
ur

1− cuur log λ
(C16)

Z2 = (1− cuur log λ)
−c2/cu (C17)

Zγ = 1 +
cγ

cu

u2
r log λ

1− ur log λ
(C18)

Thus, for q̃ → 0 and to leading order in ur,

L(q̃, ω̃, ur) ≈ (cuur| log q̃|)
2c2/cu

�
L(1,

ω̃

q̃2
, 0) +

X(0)

cuur

�
+

X(0)

(2c2/cu + 1)cuur
(cuur| log q̃|

2c2/cu+1
−1)

(C19)

We see that the second term Eq. (C19), which originates from the additive renormalization,

dominates over the first term. In fact corrections to this second term coming from considering

higher order contributions in ur to η2 and X are of the same order as the first term in

Eq. (C19). Nevertheless, the first term contains the dependence on ω̃ and this is the reason

we have kept it.

To complete the calculation, we need to compute C in the non-interacting theory (Fig. 16),

C0(�q,ω) = 6

�
d2�ldlτ

(2π)3
D(l)D(l + q) (C20)

Using the Feynman trick,

C0(�q,ω) = 6γ2

� 1

0

du

�
d2�ldlτ

(2π)3
1

((�l − u�q)2 + γ(u|lτ |+ (1− u)|lτ − ω|) + u(1− u)�q2)2

=
3γ2

(2π)2

� 1

0

du

� ∞

−∞
dlτ

1

γ(u|lτ − ω|+ (1− u)|lτ |) + u(1− u)�q2

=
3γ

2π2

� 1

0

du

�
log

Λ2

γu|ω|+ u(1− u)�q2
+

1

2(1− 2u)
log

γ(1− u)|ω|+ u(1− u)�q2

γu|ω|+ u(1− u)�q2

�

(C21)
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where we have cut-off the lτ integral at lτ = γΛ2. Performing the u integral,

C0(�q,ω) =
3γ

2π2

�
log

Λ2

γ|ω|+ �q2
+

γ|ω|

�q2
log

�
γ|ω|

γ|ω|+ �q2

�

−
1

2
Li2

�
�q2

2γ|ω|+ �q2

�
+

1

2
Li2

�
−�q2

2γ|ω|+ �q2

��
(C22)

with Li2 - the polylogarithm function. After renormalization,

C0r(�q,ω) =
3γ

2π2

�
log

µ2

γ|ω|+ �q2
+

γ|ω|

�q2
log

�
γ|ω|

γ|ω|+ �q2

�

−
1

2
Li2

�
�q2

2γ|ω|+ �q2

�
+

1

2
Li2

�
−�q2

2γ|ω|+ �q2

��
(C23)

Giving the final result,

L(q̃, ω̃, ur) =
33

π2
(cuur)

−10/11
| log q̃|1/11

�
1 +

1

22| log q̃|

�
|ω̃|

q̃2
log

|ω̃|

q̃2
−

�
1 +

|ω̃|

q̃2

�
log

�
1 +

|ω̃|

q̃2

�

−
1

2
Li2

�
q̃2

2|ω̃|+ q̃2

�
+

1

2
Li2

�
−q̃2

2|ω̃|+ q̃2

�
+

2

cuur

��
−

33

π2cuur
(C24)

Appendix D: Self energy in the 2kF channel (one-dimensional contribution)

In this section we compute the self energy in Fig. 17b). We take all the external and

internal fermions to be lukewarm and use the fermion propagator 5.17. The self energy is

given by,

Σ(p) = −42Nλ
8

�
d3q

(2π)3
d3l1

(2π)3
d3l2

(2π)3
d3l3

(2π)3
D(p− l1)D(l1 − l2)D(l2 − l3)D(l3 − p)

×G
−1(p− q)G2(l1)G

−2(l1 − q)G1(l2)G
−1(l2 − q)G2(l3)G

−2(l3 − q)

(D1)

We take the boson propagators to be static and ignore their dependence on fermion momenta

perpendicular to the Fermi surface,

D(p− l1) ≈ N
−1 sin2 2ϕ

�
(v̂2 · �p)

2 + (v̂1 ·�l1)
2
− 2 cos 2ϕ(v̂2 · �p)(v̂1 ·�l1)

�−1

D(l1 − l2) ≈ N
−1 sin2 2ϕ

�
(v̂1 ·�l1)

2 + (v̂2 ·�l2)
2
− 2 cos 2ϕ(v̂1 ·�l1)(v̂2 ·�l2)

�−1

D(l2 − l3) ≈ N
−1 sin2 2ϕ

�
(v̂2 ·�l2)

2 + (v̂1 ·�l3)
2
− 2 cos 2ϕ(v̂2 ·�l2)(v̂1 ·�l3)

�−1

D(p− l3) ≈ N
−1 sin2 2ϕ

�
(v̂2 · �p)

2 + (v̂1 ·�l3)
2
− 2 cos 2ϕ(v̂2 · �p)(v̂1 ·�l3)

�−1
(D2)
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Then integrals over liτ and components of �li perpendicular to the Fermi surface in Eq. (D1)

can be performed,

�
d3l

(2π)3
G

a(l)G−a(l − q) ≈ −
|�v|2

16π2vxvy

�
d(v̂ā ·�l)

Z2(v̂ā ·�l)

v∗(v̂ā ·�l)
log

�
Λ2

FL(v̂ā ·�l)

q2τ + v∗(v̂ā ·�l)2(v̂a · �q)2

�

(D3)

Here, ΛFL(l) ∼ l2/γ is the upper energy cut-off of the region where the rainbow propagator

(2.16) has the quasiparticle form (5.17). Hence,

Σ(ω, �p) = 42λ8
N(8π2 sin 2ϕvΛ)−3

�
d3q d(v̂1 ·�l1)d(v̂2 ·�l2)d(v̂1 ·�l3)

(2π)3

D(p− l1)D(l1 − l2)D(l2 − l3)D(l3 − p)|v̂1 ·�l1||v̂2 ·�l2||v̂1 ·�l3|

Z(v̂2 · �p)

i(ω − qτ ) + v∗(v̂2 · �p)v̂1 · (�p− �q)
log

�
Λ2

FL(v̂2 ·�l2)

q2τ + v∗(v̂2 ·�l2)2(v̂1 · �q)2

�

log

�
Λ2

FL(v̂1 ·�l1)

q2τ + v∗(v̂1 ·�l1)2(v̂2 · �q)2

�
log

�
Λ2

FL(v̂1 ·�l3)

q2τ + v∗(v̂1 ·�l3)2(v̂2 · �q)2

�
(D4)

The crucial observation is that the integrals over v̂1 · �q and v̂2 · �q in Eq. (D4) factorize.

This is due to our treatment of the Fermi surfaces as flat. The leading contribution to the

integral over v̂2 · �q comes from 2 and −2 fermions away from the Fermi surface and we may

approximate,

�
d(v̂2 · �q) log

�
Λ2

FL(v̂1 ·�l1)

q2τ + v∗(v̂1 ·�l1)2(v̂2 · �q)2

�
log

�
Λ2

FL(v̂1 ·�l3)

q2τ + v∗(v̂1 ·�l3)2(v̂2 · �q)2

�

∼ min

�
ΛFL(v̂1 ·�l1)

v∗(v̂1 ·�l1)
,
ΛFL(v̂1 ·�l3)

v∗(v̂1 ·�l3)

�
∼

1

N
min(|v̂1 ·�l1|, |v̂1 ·�l3|), (D5)

because the domain of integration is limited to the regime where the arguments of the

logarithms are large. On the other hand, integration over v̂1 · �q and qτ to logarithmic

accuracy gives,

�
dqτd(v̂1 · �q)

1

i(ω − qτ )− v∗(v̂2 · �p)v̂1 · �q
log

�
Λ2

FL(v̂2 ·�l2)

q2τ + v∗(v̂2 ·�l2)2(v̂1 · �q)2

�

= −
2πiω

v∗(v̂2 ·�l2) + v∗(v̂2 · �p)
log

�
ΛFL(v̂2 · �p)

|ω|

�
(D6)

Here for simplicity we have set the external momentum �p to lie on the Fermi surface. We

have also set the argument of ΛFL inside the logarithm on the second line of Eq. (D6) to v̂2 ·�p.

We will see shortly that all integrals over momenta along the Fermi surface are saturated

at l� ∼ p�, so to logarithmic accuracy the precise value of the argument is not important.
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Combining Eqs. (D4),(D5), (D6),

Σ(ω, �p) ∼ −iN
3
γvω

�
d(v̂1 ·�l1)d(v̂2 ·�l2)d(v̂1 ·�l3)D(p− l1)D(l1 − l2)D(l2 − l3)D(l3 − p)

× |v̂1 ·
�l1||v̂2 ·

�l2||v̂1 ·
�l3|min(|v̂1 ·�l1|, |v̂1 ·�l3|)

|v̂2 · �p|

|v̂2 ·
�l2|+ |v̂2 · �p|

log

�
ΛFL(v̂2 · �p)

|ω|

�

(D7)

In the integrand, we can now count 7 powers of �l in the numerator, and 4 powers in the

denominator from 2 of the D functions; so the integral in Eq. (D7) is not singular for
�l → 0, which confirms our claim that the self energy in the 2kF channel is not dominated by

scattering off hot modes. The integral is saturated at v̂1 ·�l1, v̂2 ·�l2, v̂1 ·�l3 ∼ v̂2 · �p ∼ p�, and all

the 4 D functions yield a contribution of 1/p2� each; this leads to our estimate in Eq. (5.18).

Appendix E: The 2kF correlation function (curvature saturated contribution)

We can first compute the ‘tree level’ lowest order contribution in figure 19. This is simply

C
(0)(m) =

�
d3t

(2π)3
G2(m+ t)G−2(t) . (E1)

As indicated in the main text, we work with the lukewarm propagators following from (2.18)

and (2.12), together with an additional curvature term

G
−1
±2(q) = ∓vq⊥ +

3γv

16N

iqτ

|q�|
− κq

2
� . (E2)

Recall that the lukewarm regime is

t� �
√
γtτ , Nt⊥ . (E3)

We can restrict ourselves to this regime because we are looking to pick out a BCS-like

logarithmic divergence that is cut off in the particle channel by curvature effects. Here we

are defining parallel and perpendicular with respect to the � = 1, a = 2 hot spot Fermi

surface.

Using (E2) it is possible to explicitly perform the integrals in (E1). One computes first

the t⊥ integral, followed by the tτ integral. The tτ integral is logarithmically UV sensitive,

and the divergence is cut of by t2�/γ. We noted in the main text that the self energy scaling

determined by hot spot scaling is weak, Σ ∼ ω5/2. Here we are interested in determining

the effect of BCS-like contributions that will violate this scaling. We will be interested in
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the upper limit of the remaining t� integral and thus we are free to focus on

t� �
√
γmτ , |�m| . (E4)

In this regime we have

1

(2π)3

�
dtτdt⊥G2(m+ t)G−2(t) =

c1

2
X(t�,mτ ,m⊥,2) , (E5)

where we introduced, also for future use,

X(t�,mτ ,m⊥,2) ≡ t� log
γ2m2

τ + c22t
2
�

�
m⊥,2 + 2κ/vt2�

�2

4t4�
. (E6)

The notation m⊥,2 refers to the component of m perpendicular to the ±2 Fermi surfaces.

The constants

c1 =
4N

3π2γv2
, c2 =

16N

3
. (E7)

The remaining integral of (E6) over t� can also be performed exactly. The most IR

singular terms are found to be (we mean terms that are not saturating the UV cutoff scale

and also that are not the IR terms with C ∼ mτ arising in the absence of Fermi surface

curvature)

C
(0)(m) = −

c1

2

(γ|mτ |)2/3

(c2κ/v)2/3

�

i

3 + 2r2xi + 4rx2
i

r2 + 8rxi + 12x2
i

log
−xiκ

2(γ|mτ |)2/3

(c2κ/v)2/3
. (E8)

Here r is the ratio

r =
m⊥,2

(γ|mτ |)2/3
c
2/3
2

(κ/v)1/3
, (E9)

and the xi are the three roots of the polynomial

4x3 + 4rx2 + r
2
x+ 1 = 0 . (E10)

In the main text, in section VB, we discuss the physical interpretation of this formula.

Considering the right hand graph in figure 19, we must incorporate the vertex corrections

δΓ(m, s) =

�
d3t

(2π)3
G2(m+ t)G−2(t)D(t− s) , (E11)

so that the diagram can be written

C(m) =

�
d3s

(2π)3
δΓ(m, s)2G1(m+ s)G−1(s) . (E12)
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We used the fact that the boson propagator D is symmetric.

Nine integrals are required in principle to evaluate (E12). We are interested in isolating

as strong a contribution as possible in order to lead to the strongest self energy and hence

dissipative conductivity. We shall take cues from the computation of the density wave vertex

correction in Ref. 21. The complication in the case at hand is that we have an additional

external energy-momentum s as well as the spatial components �m.

The first lesson and simplification from Ref. 21 is that enhancement physics is dominated

by lukewarm fermions. A second lesson that appeared already in the tree level computation

we have just performed is that it is important to account for the effects of Fermi surface

curvature. While the curvature is an irrelevant operator of the scaling theory, it will cut off

the BCS-like logarithmic divergence and therefore sets an energy scale that will be saturated

in the processes we are interested in.

Thus both the t and s integrals can be performed using the propagators (E2) in the

lukewarm regime and additionally satisfying (E4). The momentum s of the integrals in

(E12) however lives on the +1 rather than the +2 Fermi surface and we will therefore use

s� and s⊥ to denote the components of s with respect to that +1 Fermi surface. In the

lukewarm regime, the boson propagator (2.14) appearing in the vertex correction (E11) can

be written

D(t− s) = D(t�, s�) =
1

t2� + s2� − 2t�s�cos 2ϕ
. (E13)

We can then perform the s⊥ and sτ integrals in (E12) in the same way as we did the t⊥ and

tτ integrals above. We obtain

C(m) = c
3
1

� Λ�

0

ds�X(s�,mτ ,m⊥,1)

�� Λ�

0

dt�D(t�, s�)X(t�,mτ ,m⊥,2)

�2

. (E14)

The lower limits of the integrals are determined by (E4) but will not be important for

isolating the most singular contribution. In particular, the lower limit of integration can be

taken to zero for our purposes.

The dependence on the angle 2ϕ between the Fermi surfaces does not in fact appear in the

final leading logarithmic result for these integrals. In order to keep the size of intermediate

equations down, we will quote intermediate results with cos 2ϕ = 0. The t� integral can be

evaluated explicitly in terms of logarithms and dilogarithms

� Λ�

0

dt�D(t�, s�)X(t�,mτ ,m⊥,2) =
1

2
log2 s̃2� +

1

4
log2 Λ̃2

� −
1

3
log γmτ (c2κ/v)

2 log
s̃2�

Λ̃2
�

−
1

4

�

i

�
log

1

s̃2� + xi
log

(−xi)2

s̃2� + xi
+ 2Li2

xi

s̃2� + xi

�
. (E15)
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Here we set

s̃
2
� =

(c2κ/v)2/3

(γmτ )2/3
s
2
� , Λ̃2

� =
(c2κ/v)2/3

(γmτ )2/3
Λ2

� , (E16)

and the xi are again the roots of the cubic polynomial (E10) above. We have only quoted

the result to leading order in logarithms, i.e. order logarithm squared. There are additional

constant terms and terms with single logarithms.

The remaining s� integral in (E14) appears more challenging to compute exactly. It is

however possible to extract the leading logarithmic behavior. Recall we are interested in the

most singular behaviour as mτ → 0. We are keeping the ratio (E9) fixed in taking this limit.

In our result (E15) mτ appears both explicitly and through the rescaled s� and Λ�. We will

rescale the s� variable of integration and integrate instead over s̃�. After squaring our result

(E15) there will be a term ∼
1
81 log

4
mτ , from the mτ in the Λ̃� terms. This will contribute

at leading order in logarithms of mτ and therefore we need to integrate this term over the

whole range of integration. The remaining terms can only compete with this term near the

upper limit of the integral, where s̃� → Λ̃�. Here extra powers of mτ can appear. Both of

these two contributions can be evaluated, in the latter case by expanding the integrand at

large s̃�. The final result for the most singular contribution is

C(m) = c
3
1

(γmτ )2/3

(c2κ/v)2/3
log2 Λ̃2

� (E17)

×

�
1

32
log2

�
(γmτ )

4/3(c2κ/v)
8/3Λ̃2

�

��

i

�
log(−xi)xi − log(−yi)

3 + 2r̄2yi + 4r̄y2i
r̄2 + 8r̄yi + 12y2i

�

+
r + r̄

2160
log Λ̃2

�

�
40 log2 γmτ (c2κ/v)

2 + 75 log γmτ (c2κ/v)
2 log Λ̃2

� + 36 log2 Λ̃2
�

��
.

Here we introduced the analogous ratio to (E9) for the +1 Fermi surface

r̄ =
m⊥,1

(γ|mτ |)2/3
c
2/3
2

(κ/v)1/3
, (E18)

and the yi are now the three roots of the polynomial

4y3 + 4r̄y2 + r̄
2
y + 1 = 0 . (E19)

Equation (E17) is the result to leading order in logarithms, i.e. keeping log5 terms, and with

an overall scaling m
2/3
τ . In one of these limits a power of logarithms is lost, but the result is

still accurately captured by (E17) in this case. In the above expression we can note that

�

i

3 + 2r̄2yi + 4r̄y2i
r̄2 + 8r̄yi + 12y2i

= r̄ ,

�

i

xi = −r . (E20)
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In the main text, equation (5.28), we dropped the last line of (E17) as it is linear in r, r̄,

which replace the overall frequency dependence m
2/3
τ with momenta m⊥,2 and m⊥,1.
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