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Abstract

We analyze a candidate theory for the strange metal near optimal hole-doping in the cuprate super-

conductors. The theory contains a quantum phase transition between metals with large and small Fermi

surfaces of spinless fermions carrying the electromagnetic charge of the electron, but the transition does

not directly involve any broken global symmetries. The two metals have emergent SU(2) and U(1) gauge

fields respectively, and the transition is driven by the condensation of a real Higgs field, carrying a finite

lattice momentum and an adjoint SU(2) gauge charge. This Higgs field measures the local antiferromagnetic

correlations in a ‘rotating reference frame’. We propose a global phase diagram around this Higgs transition,

and describe its relationship to a variety of recent experiments on the cuprate superconductors.
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I. INTRODUCTION

Several recent experiments1–4 have provided strong evidence for a dramatic change in the nature

of the low temperature electronic state of the hole-doped cuprate superconductors near optimal

doping (x = xc). Moreover, zero field photoemission experiments carried out in the normal state

have seen evidence for a ‘large’ Fermi-surface for x > xc, consistent with the overall Luttinger

count5,6, and disconnected Fermi ‘arcs’ near the nodal regions for x < xc
7. At high fields, quantum

oscillations also reveal a ‘large’ Fermi-surface for x > xc
8, but a closed electron-like Fermi-surface

with an area that constitutes a small fraction of the entire Brillouin-zone for x < xc
9. It is therefore

quite natural to associate the transition with decreasing x at x = xc with the loss of a ‘large’ Fermi-

surface and the simultaneous opening of a pseudogap. There has also been significant experimental

progress10–18 in understanding the structure of the density-wave ordering at lower doping, which

is likely responsible for the reconstructed electron-like Fermi-surface seen in quantum oscillation

experiments19,20.

In this paper we will use these advances to motivate and develop a previously proposed model21

for the physics of the strange metal near optimal doping. We argue that the rich phenomenology

observed in the underdoped cuprates is primarily driven by a transition between non-Fermi liquid

metals with large and small Fermi surfaces which does not directly involve any broken global

symmetry. All states with broken symmetry1 observed at low temperatures and low doping are

not part of the critical field theory22,23, but are derived as low energy instabilities of the parent

small Fermi surface phase. This diminished role for broken symmetries is consistent with absence

of any observed order with a significant correlation length at higher temperatures. We will also

construct a global phase diagram to describe the many phases and crossovers around the strange

metal.

A quantum phase transition which does not involve broken symmetries is necessarily associated

with a topological change in the character of the ground state wavefunction. Emergent gauge fields

are a powerful method of describing this topological structure, and they remain applicable also

to the gapless metallic phases of interest to us here. Given the fundamental connection between

emergent gauge fields and the size of the Fermi surface, which was established in Ref. 24 using

Oshikawa’s method25, we are naturally led to a quantum phase transition in which there is a change

in the structure of the deconfined gauge excitations. Indeed, this describes a Higgs transition in a

1 We shall ignore the subtleties associated with the presence of quenched disorder, except when it acts as a source
of momentum decay for DC transport, as discussed later.
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metal, such as that discussed in Ref. 21. This argument is a general motivation for Higgs criticality

near optimal doping in the cuprates, which applies beyond the specific model considered here.

We emphasize that we are using the traditional particle-physics terminology in which a “Higgs

transition” describes the breaking of a local gauge invariance. We are not referring to the longitu-

dinal mode of a broken global symmetry, which has also been labeled “Higgs” in condensed matter

contexts26.

The primary new motivation for the model of Ref. 21 arises from our recent work27 analyzing the

d-form factor density waves observed in scanning tunnelling microscopy16 and X-ray experiments17.

In this work27, we argued that such density waves arise most naturally as an instability of a metallic

higher temperature pseudogap state with small Fermi surfaces described as a28,29 ‘fractionalized

Fermi liquid’ (FL*); other works with related ideas on the pseudogap are Refs. 30–36. Specifically,

we used a theory of the FL* involving a background U(1) spin liquid with bosonic spinons37–40:

it is therefore convenient to dub this metallic state for the pseudogap as2 a U(1)-FL*. These

results are also easily extended to a Z2 spin liquid, and we will consider this case in Appendix A.

The presence of a small Fermi surface without symmetry breaking requires topological order and

emergent gauge fields24, and so also a Higgs transition to the large Fermi surfaces at larger doping:

here we provide a natural embedding of a FL* theory into such a transition, and we expect similar

approaches are possible for other possible topological orders in the underdoped regime.

We now consider the evolution of the U(1)-FL*, and its small electronic Fermi surfaces, to the

conventional ‘large’ Fermi surface Fermi liquid state at large doping. There is an existing conven-

tional theory of the transformation from small to large Fermi surfaces driven by the disappearance

of antiferromagnetic order. This is a transition between two Fermi liquids, and the vicinity of

the transition is described by the Hertz-Millis theory41,42 and its field-theoretic extensions43–46,

as shown in Fig. 1. Here, we describe a detour from this direct route21 in which two new non-

Fermi liquid phases appear between the conventional phases of Hertz-Millis theory. The detour

is described by a SU(2) gauge theory, and the transition from small to large Fermi surfaces is

now a Higgs transition without any local order parameter, in which the emergent gauge structure

describing the topological order in the ground state changes from U(1) to SU(2). The Higgs field

of this transition is a measure of the local antiferromagnetic correlations in a rotating reference

frame to be introduced below in Eq. (1).

2 However the Fermi surface excitations in this FL* phase carry the same quantum numbers as the electron, and do
not couple minimally to the emergent (deconfined) gauge-fields.
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1/g(A)AFM order with 
small Fermi pockets 
of electrons

(B) Fermi liquid with 
large Fermi surface 
of electronsIncreasing SDW order

(C) U(1) ACL with 
small holon pockets

(D) SU(2) ACL with 
large Fermi surface 
of spinless fermions

Conventional
Fermi liquids

Hertz-Millis
criticality

of AFM order

M

Non-Fermi
liquids

Higgs
criticality

with no order
parameter

FIG. 1: Sketch of the metallic phases of our theory. Only phase A has a broken global symmetry, associated

with the presence of long-range antiferromagnetic (AFM) order. The conventional Fermi liquid phases at the

top have a transition from small to large Fermi surfaces accompanied by the loss of AFM order. The dashed

arrow represents a direct route between these phases, which could be a description of the electron-doped

cuprates. The full arrow around the point M is our proposed route with increasing doping in the hole-doped

cuprates. The U(1)-FL* descends from the U(1) ACL, as shown in Fig. 2. Note that the U(1)-FL* has a

‘small’ Fermi surface of electrons due to the presence of topological order, while phase A above has a ‘small’

Fermi surface of electrons because of translational symmetry breaking.

Note that the Higgs transition in Fig. 1 is between metallic states which we denote as ‘algebraic

charge liquids’ (ACL). The small and large Fermi surfaces in the ACLs are those of spinless fermions

which carry the electromagnetic charge of the electron. For the U(1) ACL, a bound state forms

between the spinless fermions and a spin S = 1/2 boson37–40, leading to small Fermi surfaces

of fermionic quasiparticles carrying the same quantum numbers as the electron in the U(1)-FL*:

so photoemission will detect a small Fermi surface of electrons in the U(1)-FL*. We anticipate

that similar e↵ects are also present in the SU(2) ACL metal: there is a large density of states

of thermally excited S = 1/2 bosons at low energy, so that the photoemission spectral function

reflects the large Fermi surface of the spinless fermions.
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We also note that although the Higgs field plays a central role in our phase diagram, its direct

experimental detection will be di�cult. It is overdamped via its coupling to the Fermi surfaces,

and gauge invariance prohibits any experimental probe from coupling linearly to it. Nevertheless,

we will see below that it has significant experimental consequences via its strong e↵ect on the

fermionic spectrum.

We will present details of this theory starting from a microscopic model in Section III, but first,

in Section II, we shall describe some key aspects using our proposed phase diagram in Fig. 2.

II. OVERVIEW

Let us begin with a simplified picture of the optimal doping strange metal with a large Fermi

surface. We consider a model of electrons ci↵ on the sites i of a square lattice, with ↵ =", # a SU(2)

spin index. We transform the electrons to a rotating reference frame3 using a SU(2) rotation Ri

and (spinless-)fermions  i,p with p = ±,

0

@ ci"

ci#

1

A = Ri

0

@  i,+

 i,�

1

A , (1)

where R†
iRi = RiR

†
i = 1. Note that this representation immediately introduces a SU(2) gauge

invariance (distinct from the global SU(2) spin rotation)

0

@  i,+

 i,�

1

A ! Ui

0

@  i,+

 i,�

1

A , Ri ! RiU
†
i , (2)

under which the original electronic operators remain invariant, ci↵ ! ci↵; here Ui is a SU(2) gauge-

transformation acting on the p = ± index. So the  p fermions are SU(2) gauge fundamentals,

they carry the physical electromagnetic global U(1) charge, but they do not carry the SU(2) spin

of the electron. The density of the  p is the same as that of the electrons. Such a rotating

reference frame perspective was used in the early work by Shraiman and Siggia on lightly-doped

antiferromagnets49,50, and the importance of its gauge structure was clarified in Ref. 21.

The strange metal is obtained by forming a large Fermi surface state of the  p fermions, while Ri

fluctuate isotropically over all SU(2) rotations with a moderate correlation length. This description

suggests a simple trial wavefunction for this strange metal. Begin with a large Fermi surface (LFS)

3 This allows us to describe phases without long-range antiferromagnetic order.
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T **

U(1) FL* FL

T *

SU(2) ACL

AF

T

U(1) ACL

xd-BDW

Higgs QCP

SC

FIG. 2: Our proposed phase diagram for the hole-doped cuprates, building on a theory for Higgs criticality

for the optimal doping QCP. The green and red lines correspond to those in Fig. 1. The algebraic charge

liquids (ACLs) have Fermi surfaces of spinless  fermions which carry the electromagnetic charge: in the

SU(2) ACL the Fermi surface is ‘large’ and is coupled to an emergent SU(2) gauge field, while in the U(1)

ACL the Fermi surface is ‘small’ and coupled to an emergent U(1) gauge field. The fractionalized Fermi

liquid (FL*) descends from the U(1) ACL by the binding of  fermions to neutral spinons. The d-BDW is

the d-form factor bond density wave, the SC is the d-wave superconductor, and the FL is the large Fermi

surface Fermi liquid. We are not concerned here with the physics of the extremely underdoped region. Also,

we expect that the crossovers within the superconducting phase will exhibit a ‘back-bending’3,47,48 which is

not shown above, and which we do not discuss further here. The dashed lines at T ⇤ and T ⇤⇤ are crossovers,

while the Higgs QCP at T = 0 is a sharp phase transition.

state of free  p fermions:

Y

k inside LFS, p=±
 †
p(k) |0i . (3)

Expand this out in position space, insert the inverse of Eq. (1) to write the wavefunction in terms
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of R and the physical electrons c↵, and finally average over R, to obtain

ˆ Y

i

dRi W [{Rj}]
Y

k inside LFS, p=±

"
X

i

eik·riRi↵p c†i↵

#
|0i , (4)

where W is a variational weight-function of the Ri, invariant under global spin rotations. For

W = 1, we have a zero correlation length for Ri, and we obtain a wavefunction for the c↵ involving

only empty and doubly-occupied sites. With non-trivial W , the correlation length of R increases,

we also build in spin singlet pairs of c↵ electrons on nearby sites. Comparing to the Gutzwiller-

projected trial states commonly used for the underdoped cuprates51, this wavefunction includes

the possibility of doubly-occupied sites and assigns di↵erent complex weights to the o↵-site singlet

pairs.

For a more precise and complete description of the strange metal, which accounts for the gauge

structure in Eq. (1), we must turn to a quantum e↵ective action for the  p which necessarily

includes an emergent SU(2) gauge field. In the terminology of Ref. 38, such a theory of spinless,

gapless fermions coupled to an emergent gauge field is an ‘algebraic charge liquid’ (ACL), and

hence we have labeled the strange metal as SU(2) ACL in Fig. 2. This name implies that the

SU(2) gauge symmetry is unbroken (i.e. not ‘Higgsed’), and in such a situation the  p fermions

have a large Fermi surface with a shape similar to that of the electron Fermi surface in Fermi liquid

state at large doping.

Now let us consider the transition to the U(1) ACL in Fig. 2. This is described by the con-

densation of a real Higgs field Ha, where a = 1, 2, 3 indicates that the Higgs field transforms as a

SU(2) adjoint. As we will see below in Eq. (15), this Higgs field is a measure of the local antifer-

romagnetic order in the rotating reference frame defined by R (see also Ref. 52 for an illuminating

analogy). The condensation of the Higgs field breaks the gauge symmetry from SU(2) to U(1) and

reconstructs the  p Fermi surface from large to small. It is this Higgs transition which describes

the optimal doping QCP in Fig. 2, and analyzing its structure is the main purpose of the present

paper. In the case where Ha is complex, the Higgs phase can break the gauge symmetry down

to Z2, and we consider this case in Appendix A. The Shraiman-Siggia analyses49,50 of doped anti-

ferromagnets were e↵ectively within such a Higgs-condensed regime, and this obscured the gauge

structure of their formulation21.

Let us also note from Fig. 2 that the U(1) ACL is the parent of the U(1)-FL*. This was

discussed in Refs. 37,38, and will be reviewed below: the U(1)-FL* arises by the formation of

bound states between the spinons, R, and  fermions around the small Fermi surface. We expect

that a similar phenomenon also happens at low T in the SU(2) ACL at lower temperatures, so that
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the photoemission largely reflects the structure of the large Fermi surface of the SU(2) ACL.

The phase diagram in Fig. 2 is meant to be schematic; determining the exact nature of the

various crossover and phase-transition lines is beyond the scope of this work. The Higgs transition

is present only at T = 0, and there is only a crossover at T > 0 (shown as the dashed green line in

Fig. 2). Also, we have assumed that the energy scales associated with the ACL/FL* and d�BDW

vanish with the same power law as a function of (x � xc) at the QCP4. Theoretically speaking,

other possibilities53 are also allowed.

A. Field theory

We now specify the imaginary time Lagrangian of the optimal doping QCP in Fig. 2, and its

vicinity. For now, the Lagrangian will not include the R bosons: we assume that R fluctuations

are short-ranged, but the associated spin-gap in the SU(2) ACL phase of Fig. 2 is small because of

proximity to the multi-critical point M in Fig. 1; we will include the R contributions in Section III.

Then we have,

LQCP = L + LH + LY . (5)

The first term describes a large Fermi surface of  fermions minimally coupled to a SU(2) gauge

field Aa
µ = (Aa

⌧ ,A
a):

L =
X

i

 †
i,p[(@⌧ � µ)�pp0 + iAa

⌧�
a
pp0 ] i,p0 +

X

i,j

tij 
†
i,p


ei�

aAa·(ri�rj)

�

pp0
 j,p0 , (6)

where tij are the fermion hopping parameters, ri are the spatial co-ordinates of the sites, µ is the

chemical potential, and �a are Pauli matrices acting on the SU(2) gauge indices.

The Higgs Lagrangian is denoted LH , and it has a form familiar from its particle-physics

incarnations,

LH =
1

2
(@⌧H

a � 2i✏abcA
b
⌧H

c)2 +
ṽ2

2
(rHa � 2i✏abcA

bHc)2 +
s

2
(Ha)2 +

u

24
[(Ha)2]2. (7)

The Higgs potential is determined by the parameters s and u, and transition across the QCP is

controlled by the variation in s. As usual, for negative s, the Higgs field condenses, and this breaks

the gauge symmetry from SU(2) to U(1); and for positive s, the Higgs field is gapped, and then

the SU(2) gauge symmetry remains unbroken.

4 Corresponding to ‘case C’ in Ref. 53.
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Finally, we have the Yukawa coupling in LY . As in particle-physics, this is a trilinear coupling

between the Higgs field and the fermions, but now it has a di↵erent spatial structure:

LY = ��Ha
i eiK·ri  †

i,p�
a
pp0 i,p0 , (8)

where K = (⇡,⇡) is the antiferromagnetic wavevector. This spatial structure indicates that Ha

transforms non-trivially under lattice translations:

Ha ! HaeiK·a under translation by a; (9)

note that this is permitted because eiK·a = ±1 is real for all spacings a. The transformation in

Eq. (9) arises from the role of the Higgs field as a measure of the antiferromagnetic correlations

in a rotating reference frame. In the presence of the Higgs condensate, this Yukawa coupling

reconstructs the  Fermi surface from large to small, and the eiK·ri factor is crucial in the structure

of this reconstruction. While in the particle physics context the Higgs condensate gives the fermions

a mass gap, here the fermions acquire a gap only on certain portions of the large Fermi surface,

and a small Fermi surface of gapless fermions remains.

We note that the e↵ective gauge theory will also acquire a Yang-Mills term for the SU(2) gauge

field Aa when high energy degrees of freedom are integrated out. As is well known in theories of

emergent gauge fields, such a term helps stabilize deconfined phases of the type considered here.

We do not write this term out explicitly here, but will include its contributions in Section IV A,

and specifically in the LA term in Eq. (21).

B. DC transport

The body of our paper will describe a field theoretic analysis of the non-Fermi liquid proper-

ties of LQCP. This combines recent progress in the theories of Fermi surfaces coupled to order

parameters43–46 and gauge fields54–56. Here we mention one notable result on the electrical re-

sistivity in the quantum-critical region of the Higgs transition. As in recent work57,58 on other

quantum critical points of metals, we consider the situation in which there is a strong momentum

bottleneck i.e. there is rapid exchange of momentum between the fermionic and bosonic degrees

of freedom, and the resistivity is determined by the rate of loss of momentum. In particular, it is

possible for the resistivity to be dominated by the scattering of neutral bosonic degrees of freedom,

rather than that of charged fermionic excitations near the Fermi surface. In our model, we argue

that an important source for momentum decay is the coupling of the Higgs field to disorder

Ldis = V (r) [Ha(r)]2 , (10)
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where V (r) is quenched Gaussian random variable with

hhV (r)ii = 0 ; hhV (r)V (r0)ii = V 2
0 �

2(r � r0), (11)

where the double angular brackets indicate an average over quenched disorder. Comparing with

Eq. (7), we see that V (r) can be viewed as a random local variation in the value of s, the tun-

ing parameter which determines the position of the QCP. We will show that the analysis of the

contribution of Ldis to the resistivity closely parallels the computation in Ref. 58 for the spin-

density-wave quantum critical point. And as in Ref. 58, we find a resistivity for weak disorder

which is proportional to V 2
0 ,

⇢(T ) ⇠ V 2
0 T 2(�+1�z)/z, (12)

where � = d + z � ⌫�1 is the scaling dimension of the (Ha)2 operator, ⌫ is the correlation length

exponent and z is the dynamical exponent. As we will see in Section IVB, this predicts a linear-in-T

resistivity for the leading order values of the exponents.

The outline for the rest of our paper is as follows. In Section III, we arrive at the above gauge-

theoretic description starting from the theory of a metal with fluctuating antiferromagnetism and

discuss the mean-field phase diagram as a function of the relevant tuning parameters. In Section

IV, we describe the properties of the QCP using a low-energy description of the Fermi-surface

coupled to a gauge-field and the critical fluctuations of the Higgs’ field. Finally in Section V, we

discuss the relation of our proposed phase-diagram to the actual phase-diagram in the hole-doped

cuprates. Appendix A contains the extension to spiral order and Z2 gauge theory, while technical

details are in Appendix B.

III. SU(2) GAUGE THEORY OF ANTIFERROMAGNETIC METALS

We summarize the derivation in Ref. 21 of the SU(2) gauge theory, starting from a model of

electrons on the square lattice coupled to the fluctuations of collinear antiferromagnetism at the

wavevector K = (⇡,⇡). The case of collinear antiferromagnetism at other wavevectors was also

considered in Ref. 21, and we treat spiral antiferromagnets at incommensurate wavevectors in

Appendix A.

We begin with a model of electrons coupled to the quantum fluctuations of antiferromagnetism

10



represented by the unit vector ni`, with ` = x, y, z and
P

` n
2
i` = 1. The Lagrangian is given by

L = Lf + Ln + Lfn,

Lf =
X

i

c†i↵[(@⌧ � µ)�ij � tij ]cj↵,

Ln =
1

2g


(@⌧n`)

2 + v2(rn`)
2

�
,

Lfn = ��
X

i

eiK·ri ni` · c†i↵�
`
↵�ci� . (13)

In the above g measures the strength of quantum fluctuations associated with the orientation of

n`, � is an O(1) spin-fermion coupling and v is a characteristic spin-wave velocity.

Now we insert the parametrization in Eq. (1) into Eq. (13) and proceed to derive an e↵ective

theory for  p and R. The formulation of the latter theory is aided by the introduction of a SU(2)

gauge connection Aa
µ = (Aa

⌧ ,A
a). As is familiar in many discussions of emergent gauge fields in

correlated electron systems, this gauge field arises after decoupling hopping terms via an auxiliary

field; here we skip these intermediate steps, and simply write down appropriate hopping terms for

the  p and R which are made gauge-invariant by suitable insertions of the gauge connection.

With the parameterization in Eq. (1) we notice that the coupling Lfn in Eq. (13) maps precisely

onto the Yukawa coupling in Eq. (8) with

Ha
i �

a
pp0 = ni`R

⇤
i↵p�

`
↵�Ri�p0 , (14)

and so we define the Higgs field Ha
i by

Ha
i ⌘ 1

2
ni` Tr[�`Ri�

aR†
i ]. (15)

This identifies Ha as the antiferromagnetic order in the rotating reference frame defined by Eq. (1).

An important property of this definition is that the field Ha is invariant under a global SU(2) spin

rotation V , which rotates the direction of the physical electron spin and of the antiferromagnetic

order,

0

@ ci"

ci#

1

A ! V

0

@ ci"

ci#

1

A , Ri ! V Ri. (16)

Note that the SU(2) spin rotation is a left multiplication of R above, while the SU(2) gauge

transformation in Eq. (2) is a right multiplication of R. With these properties, Eq. (15) implies

that Ha transforms as a vector under the SU(2) gauge transformation in Eq. (2).
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SU(2)gauge SU(2)spin U(1)e.m.charge

c 1 2 1

n 1 3 0

 2 1 1

H 3 1 0

R 2 2 0

TABLE I: Summary of the transformations of the fields under the various gauge-transformations. SU(2)

representations of spin S are labelled by their dimension of 2S + 1. The U(1) column contains the charge

under the U(1) gauge field.

We have now assembled all the steps taken after substituting Eq. (1) into Eq. (13). The

Lagrangian of the resulting gauge theory is then obtained as

LSU(2) = LQCP + LR, (17)

where LQCP was described below Eq. (5) in Section IIA, and LR is the Lagrangian for R. The

structure of the latter is determined by the transformations of R in Eqs. (2) and Eq. (16). So we

have

LR =
1

2g
Tr


(@⌧R � iAa

⌧R�
a)(@⌧R

† + iAa
⌧�

aR†) + v2(rR � iAaR�a)(rR† + iAa�aR†)

�
. (18)

This completes our derivation of the SU(2) gauge theory.

It is useful here to collect the transformations of the fields under the SU(2) gauge transformation,

the global SU(2) spin rotation, and electromagnetic U(1) charge, as summarized in table I.

Finally, we can make contact with other approaches by expressing R as

Ri =

0

@ zi" �z⇤i#

zi# z⇤i"

1

A , (19)

with |zi"|2 + |zi#|2 = 1, but this parameterization will not be useful to us. Consider the situation in

the Higgs phase, where the field Ha is condensed. Then we are free to choose a gauge in which the

Higgs condensate is Ha = (0, 0, 1). In such a condensate, after inverting the relation in Eq. (15)

we find

ni` =
1

2
Ha

i Tr[�`Ri�
aR†

i ]

= z⇤i↵�
`
↵�zi� for Ha = (0, 0, 1). (20)

The last relationship is the familiar connection between the O(3) and CP1 variables, but note that

it holds here only within the phase where the Higgs field is condensed i.e. in the U(1) ACL.
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A. Mean field phase diagram

We now describe the phases of LSU(2) obtained in a simple mean field theory21 in which we

allow condensates of the bosonic field R and Ha. These phases are obtained by varying the tuning

parameters s and g, and were shown in Fig. 1; in Fig. 3, we label the phases by their condensates.

The phases are:

s

1/g
(A) AFM order with 
small Fermi pockets

(B) Fermi liquid with 
large Fermi surface

(C) U(1) ACL with 
small holon pockets

(D) SU(2) ACL with 
large Fermi surface

M

hRi = 0, hHai = 0

hRi 6= 0, hHai = 0hRi 6= 0, hHai 6= 0

hRi = 0, hHai 6= 0

FIG. 3: The phase diagram for the theory in Eq. (17) as a function of s and 1/g (also shown in Fig. 1). The

color-coding of the phases corresponds to that in Fig. 2. The multicritical point, M, corresponds to g = g
c

and s = 0. This paper is concerned with the critical properties associated with the transition (C)$(D).

• The Higgs phase, labelled as (A) in Figs. 1,3, where both SU(2)spin and SU(2)gauge are

broken, leading to hRi 6= 0, hHai 6= 0. The gauge-excitations, (A⌧ ,A), are gapped here.

This phase describes the AFM-metal where the large Fermi-surface gets reconstructed into

hole (and electron) pockets due to condensation of Ha ⇠ n, the Néel order parameter.

• The SU(2) confining phase, labelled as (B) in Figs. 1,3. Note that the SU(2)spin here re-

mains unbroken. We have hRi 6= 0, hHai = 0, which is necessary to preserve spin-rotation

invariance since n = 0 from Eq. (15). This is the usual Fermi liquid phase, with a large

Fermi-surface.

• The Higgs phase, labelled as (C) in Figs. 1,3, where the SU(2)gauge is broken, but the

SU(2)spin remains unbroken, leading to hRi = 0, hHai 6= 0. By recalling the physical

interpretation of the fields, this amounts to a locally well developed amplitude of the AFM,

without any long-range orientational order. We can choose Ha ⇠ (0, 0, 1) by carrying out
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a gauge-transformation, which immediately implies that a U(1) subgroup of the SU(2)gauge

remains unbroken, so that the Az photon remains gapless. Thus this phase describes a U(1)

algebraic charge liquid, or, the holon-metal38. However, due to the locally well developed

AFM order, the Fermi-surface is reconstructed into  p holon pockets that are minimally

coupled to a U(1) gauge-field.

As a function of temperature, there could be a continuous crossover from a U(1) ACL to

a U(1) FL⇤ (or a “holon-hole” metal), where some of the holons ( ±) start forming bound

states with the gapped spinons (z↵)38.

• The final phase (D) in Figs. 1,3 has the full symmetry, with none of the fields condensed:

hRi = hHai = 0. Instead of the above U(1) ACL, where only Az was gapless, in this phase

there are a triplet of gapless SU(2) photons coupled to a large Fermi-surface. This phase

can be described as a SU(2) algebraic charge liquid. Formally, this phase a spin gap, but we

assume that T is greater than the gap in the metallic regions of Fig. 2 because of proximity

to the point M in Fig. 1. At low enough T , this phase is unstable to superconductivity59.

We should emphasize that the above mean-field analysis has been rudimentary; e.g. we cannot

rule out the possibility that higher order couplings could induce first-order transitions, that could

even eliminate an intermediate phase.

The next section shall present the theory for the interplay between the fluctuations of the gauge

and Higgs’ fields, within a low-energy field-theoretic formulation.

IV. LOW-ENERGY FIELD THEORY

We are interested in studying the properties of the QCP between the SU(2) ACL and the U(1)

ACL. At the QCP, s = 0, the entire Fermi-surface is coupled to the transverse fluctuations of

a SU(2) gauge field. There have been studies in the particle physics literature of Fermi surfaces

coupled to non-Abelian gauge fields60,61; however these have been restricted to spatial dimension

d = 3, where a RPA analysis gives almost the complete answer. In spatial dimension d = 2 of

interest to us here, we shall follow the approach taken for Abelian gauge theories54–56 which uses a

patch decomposition of the Fermi surface. The same approach transfers easily to the non-Abelian

case; indeed because of the Landau damping of the gauge bosons, there is little di↵erence between

the Abelian and non-Abelian cases21,60,61, as will also be clear from our analysis in Section IV A.

Apart from their coupling to a SU(2) gauge field, the fermionic  p particles are also coupled
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to a quantum critical Higgs field. This coupling is strongest at 8 ‘hot spots’ around the Fermi

surface, and in Section IV B we shall be able to use the methods developed from the case of a

spin-density-wave transition of Fermi liquids43–46

Some of the details of the computations appear in Appendix B.

m=1

m=2m=3

m=4

y

x

y

x

 +

 �

FIG. 4: The shaded grey regions represent the occupied states. The transverse gauge-field fluctuations

couple strongly to the flavor current arising from the  ± patches and destroy the  quasiparticles all around

the Fermi-surface. Across the Higgs transition, the fluctuations of the Ha field couple most strongly to the

four-pairs (m = 1, .., 4) of “hot-spots”, shown as the filled circles.

A. Fermi-surface coupled to gauge-field

Here we describe the low energy theory of the SU(2) ACL, away from the Higgs condensation

at the QCP. We need only consider a SU(2) gauge field coupled to the large Fermi surface of the

 p fermions. As in the U(1) case54–56, we can make a patch decomposition of the Fermi surface,

and treat antipodal pairs of patches separately. For a single pair of antipodal patches, we have

the fermions  ±p (see Fig. 4), with ± the patch index, and p the usual SU(2) gauge index. This is

coupled to the transverse components of the SU(2) gauge field, Aa.
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L = Lf + LA + Lint,

Lf =  †
+p(@⌧ � i@x � @2y) +p +  †

�p(@⌧ + i@x � @2y) �p,

LA =
1

2e2
(@yA

a
x)

2,

Lint = Aa
x( 

†
+p �

a
pp0  +p0 �  †

�p �
a
pp0  �p0) (21)

Let us review the one-loop renormalization of the gauge and fermionic matter fields. We start

by looking at the self-energy of the gauge-field due to the particle-hole bubble (Fig. 5a). We have,

⇧A
0 (q) = 2

X

s

ˆ
d`⌧d

2`

(2⇡)3
G0

s(`) G0
s(`+ q), (22)

where ` = (`⌧ , `) and the bare fermionic propagator is given by,

G0
s(`) =

1

�i`⌧ + s`x + `2y
. (23)

The final result is of the form5,

⇧A
0 (q) = cb

|q⌧ |
|qy| , where cb =

1

2⇡
. (24)

The computations are summarized in Appendix B 1.

FIG. 5: One loop contributions to the (a) gauge-field, and, (b) Fermion self-energies. Curly lines represent

the A propagators, D(`), while solid lines represent the  propagators, G(`).

Computing the fermionic self-energy due to the bosonic-propagator dressed with the RPA level

polarization bubble (Fig. 5b) leads to,

⌃s,pp0(k) = ��ap↵�a↵p0
ˆ

d`⌧d
2`

(2⇡)3
D(`) G0

s(k � `), (25)

= �3 �pp0
ˆ

d`⌧d
2`

(2⇡)3
D(`) G0

s(k � `), (26)

5 We note that since the fermions are strictly in two-dimensions, the non-universal factor of ⇤, the UV cuto↵, drops
out. The factor that appears in general is of the form ⇤d�2, where d is the number of space-dimensions.
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where D(`) is the gauge-field propagator,

D�1(`) =

✓
cb

|`⌧ |
|`y| +

1

e2
`2y

◆
. (27)

We then obtain,

⌃s(k) = �3i

2

ˆ
d`⌧d`y
(2⇡)2

sgn(k⌧ � `⌧ )

cb|`⌧ |/|`y| + `2y/e2
, (28)

⌃s(k) = �icf sgn(k⌧ )|k⌧ |2/3, where cf = 2
p

3

✓
e2

4⇡

◆2/3

. (29)

This self-energy contribution is larger than the bare @⌧ term at low energies. Therefore, upon

including the RPA contribution into the fermionic propagator, we have,

Gs(`) =
1

�icf sgn(`⌧ ) |`⌧ |2/3 + s`x + `2y
, (30)

which is the well known result for the quasiparticles being damped all along the Fermi-surface.

B. Higgs criticality at the QCP

Now we consider the QCP at which the Higgs boson condensed from the non-Fermi liquid SU(2)

ACL state described in the previous subsection. Across this Higgs transition from the SU(2) ACL

to the U(1) ACL, the Fermi-surface gets reconstructed—this is controlled by the real Higgs field,

Ha, which carries lattice momentum, K = (⇡,⇡). By the same arguments used for the onset of

spin-density-wave order in a Fermi liquid43–46, the low energy physics of the QCP is dominated by

the vicinity of the hot-spots: these are points on the Fermi surface which are connected by K (see

Fig. 4). The computation for the present non-Fermi liquid Fermi surface proceeds just as for the

Fermi liquid case, by linearizing the bare dispersion for the fermions around the hot spots:

L = Lhs + LH + LfH ,

Lhs =  †m
1p (@⌧ � ivm

1 · r) m
1p +  †m

2p (@⌧ � ivm
2 · r) m

2p,

LfH =
1p
Nf

Ha · ( †m
1p �

a
pp0 

m
2p0 +  †m

2p �
a
pp0 

m
1p0), (31)

where LH already appeared in Eq. (7); m is the hot-spot pair index (Fig. 4).

Let us first look at the one-loop self energy of the Ha field (Fig. 6a). This is given by,

⇧H(q) = 2
X

m

ˆ
d`⌧d

2`

(2⇡)3


Gm

1 (`+ q)Gm
2 (`) + Gm

2 (`+ q)Gm
1 (`)

�
, (32)
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FIG. 6: One loop contributions to the (a) Higgs-field, and, (b) Fermion self-energies. The dashed lines

represent the Higgs’ field propagator, �.

where we now use the non-Fermi liquid fermion Green’s function renormalized by the gauge field

fluctuations, as discussed in Section IVA:

Gm
↵ (`) =

1

�icf sgn(`⌧ )|`⌧ |2/3 � v↵ · ` . (33)

Note the z = 3/2 scaling of the fermion self energy, which allows us to drop the bare frequency

dependence from above (⇠ @⌧ ).

Upon including contributions from all pairs of hot-spots, we obtain (see Appendix B 2),

⇧H(q) = ⇧H(q = 0) + �|q⌧ |, where � =
n

2⇡vxvy
, (34)

where n = 4 is the number of pairs of hot spots. Note that the cf dependence has completely

dropped out and the above result is precisely the expression that we would have obtained if we had

started with the bare fermion Green’s functions (or, any anomalous power ⇠ |`⌧ |�). This result is

not surprising—it just reproduces the “Landau-damped” form of the propagator for Ha. As we

know, the only requirement for the appearance of Landau-damping is the existence of particle-hole

excitations around the Fermi-surface in the limit of ! ! 0. In the general case, this always leads to

⇠ |q⌧ |/|qy| for a bosonic order-parameter coupled to a fermion-bilinear. When the order parameter

itself carries a finite momentum K, as is the case here, then the denominator in the damping term

gets cut o↵ and leads to ⇠ |q⌧ |.
Equipped with the above expression, let us now compute the self-energy of the fermions in the

vicinity of the hot-spots (Fig. 6b),

⌃1,pp0(p) = �ap↵�
a
↵p0

ˆ
d`⌧d

2`

(2⇡)3
G2(p � `)�(`), (35)

= 3�pp0
ˆ

d`⌧d
2`

(2⇡)3
G2(p � `)�(`), (36)

where the propagator tuned to the critical point (s = 0) is given by : ��1(`) = (�|`⌧ | + `2).
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We are interested in the singular power law frequency dependence of the self-energy at the hot-

spots. For future use, it is useful to express the Green’s function in Eq. (33) in the more general

form

Gm
↵ (`) =

1

�i⇣f sgn(`⌧ )|`⌧ |� � v↵ · ` , (37)

where the exponent � = 2/3 from the coupling to the SU(2) gauge field.

Upon evaluating the momentum integrals, the self-energy (for p = 0) becomes (see Appendix

B 3),

⌃1(p⌧ ) = 3i

ˆ
d`⌧
4⇡2

tan�1

✓
q
�v22|`⌧ | � ⇣2f |p⌧ � `⌧ |2�

⇣f |p⌧ � `⌧ |�
◆

sgn(`⌧ � p⌧ )q
v22�|`⌧ | � ⇣2f |p⌧ � `⌧ |2�

, (38)

which correctly reproduces ⌃1(p⌧ = 0) = 0. Furthermore, note that if ⇣f = 0, i.e. if the anomalous

self-energy contribution were to be absent, then the above reduces to the well known form44

⌃1(p⌧ ) = 3i

ˆ
d`⌧
8⇡

sgn(`⌧ � p⌧ )p
v22�|`⌧ |

= � 3i

2⇡
p
�v22

sgn(p⌧ )
p

|p⌧ |, (39)

reproducing the z = 2 result. Let us now proceed to evaluate the expression in the presence of a

finite ⇣f . Rescaling `⌧ = xp⌧ leads to,

⌃1(p⌧ ) =
3i

2⇡
p
�v22

sgn(p⌧ )|p⌧ |1��

⇥
ˆ

dx

2⇡
tan�1

✓p
|p⌧ |1�2� |x| � c|1 � x|2�p

c|1 � x|�
◆

sgn(x � 1)p
|p⌧ |1�2� |x| � c|1 � x|2� , (40)

where the dimensionless parameter, c = ⇣2f/�v22. An asymptotic analysis of Eq. (40) shows that

⌃1(|p⌧ | ! 0) ⇠ �i sgn(p⌧ )
p

|p⌧ | , for � � 1/2. (41)

So the low energy singularity of the self-energy is independent of the non-Fermi liquid exponent �

in the fermion Green’s function, and has the same value as in the spin density wave case without

the gauge field. This is the key observation of the present subsection. To estimate the co-e�cient,

we can use a self-consistent approach in which we use a self energy in Eq. (37) with � = 1/2.

This self-energy arises from the coupling to the Higgs field, and is always dominant over the one

obtained from the gauge field with � = 2/3. Assembling all the constraints, the final expression

takes the following z = 2 form

⌃1(p⌧ ) =
3i

2⇡
p
�v22

I(c) sgn(p⌧ )
p

|p⌧ |, (42)
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where the function I(c) is defined in Appendix B 4 and I(c ! 0) = �1.

So we reach our main conclusion that, in both the fermionic and bosonic sectors, the low energy

physics of the Higgs QCP is essentially identical to that of the spin-density-wave onset transition

in a Fermi liquid. And the basic reason for this is simple. The hotspot theory has dynamic critical

exponent z = 2, while the singularities arising from the SU(2) gauge field coupling around the

Fermi surface have z = 3/2. At a given length scale, the contributions with the larger z dominate

because they have a lower energy. Hence the Higgs criticality of a non-Fermi liquid maps onto the

spin density wave criticality of a Fermi liquid.

With this conclusion in hand, we can now directly apply the results of Ref. 58 on the DC

resistivity to the Higgs QCP. The approach of Ref. 58 requires that there is quasiparticle breakdown

around the entire Fermi surface, and the fermionic excitations rapidly equilibriate with all the

bosonic modes. While this was only marginally true for the spin-density-wave quantum critical

point considered in Ref. 58, it is easily satisfied for the Higgs QCP being considered here: the SU(2)

gauge field makes the entire Fermi surface “hot”, while the Higgs field fluctuations induce additional

fermion damping at the hot spots on the Fermi surface. As in the previous case, it is possible for

disorder to couple to the square of the Higgs field because such an operator is gauge-invariant, as

we noted in Eq. (10). And the corresponding contribution to the resistivity is in Eq. (12). For the

exponents d = 2, z = 2, and ⌫ = 1/2 presented above, this yields a linear-in-temperature results

⇢(T ) ⇠ V 2
0 T .

V. DISCUSSION

The primary goal of this paper has been to propose a candidate theory for the quantum phase

transition near optimal doping in the cuprates. We analyzed the QCP between metals with ‘large’

and ‘small’ Fermi-surfaces, which did not involve any broken global symmetries, but instead in-

volved a Higgs’ transition between metals with emergent SU(2) and U(1) gauge fields. The Higgs

field acts as a measure of the local antiferromagnetic order in the rotating reference frame defined

by Eq. (1). As we discussed in Sections I and II, the symmetry broken phases observed in the

underdoped cuprates arise as low temperature instabilities of the ‘small’ Fermi-surface metal.

The underlying QCP we studied was between two metals (the U(1) ACL and the SU(2) ACL)

in which the Fermi surface excitations are coupled to emergent gauge fields, and so there are no

Landau quasiparticles. However, electron-like quasiparticles do re-emerge around a small Fermi

in the U(1)-FL*, and we will discuss similar features around the large Fermi surface in the SU(2)
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ACL below. The reconstruction to the ‘small’ Fermi-surface in the ACL phases is driven by the

condensation of the Higgs field, and the Higgs critical point has additional singular structure in the

vicinity of the “hot-spots”. The Higgs criticality has associated with it an interplay of both z = 3/2

physics on the whole Fermi-surface, and z = 2 physics in the vicinity of the hot-spots. We showed

that near the Higgs QCP the z = 2 physics dominates, and hence many critical properties map

onto the previously studied problem of the onset of spin density wave order in a Fermi liquid43–46,58.

Let us now conclude with a discussion of the relationship of our proposed phase diagram in

Fig. 2 to the experimentally obtained phase diagram in the non-La-based cuprates. The d�SC

and d�BDW both arise as instabilities of the U(1) FL*, as has been discussed in Refs. 27,62 (the

SU(2) ACL is also unstable to superconductivity59). The high temperature pseudogap phase for

T ⇤⇤ < T < T ⇤ is a U(1) ACL or more appropriately a holon-hole metal38. There is a crossover to

the U(1) FL* phase at T = T ⇤⇤, where all the holons have formed bound-states with the spinons.

An important feature of the U(1) FL* phase is that its transport and photoemission signatures are

mostly identical to those of a Fermi liquid. The primary di↵erence from a Landau Fermi liquid is

that the volume enclosed by the Fermi surface is proportional to the density of holes, x, and not

to the Luttinger density 1 + x. The U(1) FL* phase also has an emergent U(1) gauge field, as

required by the topological arguments in Ref. 24, but the Fermi surface quasiparticles are gauge

neutral. The recent remarkable observation of Fermi liquid transport properties in the pseudogap

phase of Hg120163,64 below T ⇤⇤, with some possibly non-Fermi liquid behavior between T ⇤⇤ and

T ⇤, can therefore be viewed as strong support for the existence of a FL* derived out of a parent

ACL. In particular, the alternative ‘fluctuating order’ picture of the pseudogap does not naturally

lead to such temperature dependent crossovers from non-Fermi liquid to Fermi liquid regimes.

For the La-based cuprates, there is a larger doping regime with magnetic order, overlapping

with the regime of charge order. This can be accommodated in our phase diagram27 by moving

the full red arrow in Fig. 1 just to the other side of the point M, and allowing for incommensurate

order as in Appendix A.

An important challenge for future experiments is to detect direct experimental signatures of

the complete small Fermi surface of the proposed FL* phase. We presume that it is the small

quasiparticle residue on the ‘back side’ of the small Fermi surface29,39 which is responsible for the

arc-like features in the photoemission spectrum65. Therefore, we need a probe which does not

involve adding or removing an electron from the sample, and so is not sensitive to the quasiparticle

residue. Possibilities are Friedel oscillations, the Kohn anomaly, or ultrasonic attenuation.

Within our proposed phase diagram in Fig. 2, the strange metal phase is to be viewed as a
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SU(2) ACL at the Higgs critical point, and proximate to the multicritical point M to ensure the

spin gap is smaller than T . The DC transport properties of this phase are controlled by the

coupling of the gauge-invariant square of the Higgs field to long wavelength disorder, following

an analysis of Ref. 58 for the spin density wave critical point. Such a coupling leads to a linear-

in-temperature resistivity. Also, as emphasized in Ref. 58, the residual resistivity is proportional

to short wavelength disorder which can scatter fermions across the Fermi surface. So there is

no direct relationship between the residual resistivity and the slope of the linear resistivity. It

would be interesting in future work to explore the role of intrinsic umklapp scattering events in

the transport properties of such strange metals in the strong coupling regime.

The electron spectral function in the SU(2) ACL is a convolution of the spectra of the  fermions

and the R bosons. As in the computation in Ref. 37, we assume the R spectrum is thermally

overdamped (because of the proximity to M), and the electron spectral function primarily reflects

the  spectrum; we also expect precursors of the bound state formation between the  and the R

to enhance the  features in the electron spectrum37, just as in the U(1)-FL*. Then the electron

spectral functions should have an anisotropic structure around the Fermi surface, with the weaker

gauge field-induced damping in the nodal region, and the stronger Higgs field-induced damping in

the anti-nodal region. Also note that while the Higgs field coupling does show up in the resistivity

as discussed above, the gauge fields coupling has a weaker e↵ect on transport. This is because

gauge-invariance prevents a non-derivative coupling between the gauge field and perturbations

that violate momentum conversation. An important open question is whether this rich theoretical

structure can be made consistent with the complex experimental features of the conductivity and

magnetotransport in the strange metal66–68.

Our linear-T resistivity is proportional to disorder, as in the previous model in Ref. 58. However,

because the disorder couples to the Higgs field, the relevant disorder is long-wavelength. This is

in contrast to short wavelength disorder, which can lead to e�cient large momentum scattering of

fermions around the Fermi surface. Modifying the coe�cient of the resistivity therefore requires

modifying long-wavelength disorder, and this may be di�cult to do because of the intrinsic disorder

from the dopant ions. Inducing short-wavelength disorder, by including e.g. Zn impurities, may

not be e↵ective in modifying the co-e�cient of the linear-T resistivity. These features can act as

tests of our proposed mechanism for the resistivity of the strange metal69.

Finally, we note from Figs. 2 and 1,3 that the SU(2) ACL survives for an extended region beyond

the Higgs QCP. This implies strange metal behavior over a finite range of doping as T ! 0, and

not only at a single QCP. Transport measurements66 in magnetic fields which have suppressed
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superconductivity appear to be consistent with such a non-Fermi liquid phase.
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Appendix A: Spiral order and Z2 gauge theory

Here we generalize the theory in Eq. (13) to the case of spiral spin order at an incommensurate

wavevector K. In this case the antiferromagnetic order is not characterized by a single unit vector

n`, but by two orthogonal unit vectors n1` and n2` which obey

n2
1` = n2

2` = 1 , n1` n2` = 0. (A1)

The spin-fermion coupling to the electrons in Eq. (13) is replaced by

Lfn = ��
X

i

[ni1` cos (K · ri) + ni2` sin (K · ri)] · c†i↵�
`
↵�ci� , (A2)

After the change of variables in Eq. (1), this leads to the Yukawa coupling

LY = �� 1

2

�
Ha⇤

i eiK·ri + Ha
i e�iK·ri

�
 †
i,p�

a
pp0 i,p0 , (A3)

where, in contrast to Eq. (8), the Higgs field Ha is now complex and is defined by

Ha ⌘ 1

2
(n1` + in2`) Tr[�`Ri�

aR†
i ], (A4)

generalizing Eq. (15). It is now also clear from Eq. (A3) that under translation by a distance a,

the Higgs field transforms as in Eq. (9), where eiK·a can now be complex.

The structure of SU(2) gauge theory with a complex Higgs field remains essentially the same as

for the real Higgs discussed in the body of the paper, with one important distinction. The quartic

term in Eq. (7) is replaced by two terms

u1[H
a⇤Ha]2 + u2[H

a]2[Hb⇤]2, (A5)
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and the presence of spiral order requires that u2 > 0. Then in the Higgs phase, the minimum

energy condensate can always be oriented so that

Ha = (1, i, 0). (A6)

Such a Higgs condensate breaks the SU(2) gauge symmetry all the way down to Z2. And using

Eq. (19), the analog of the relationship in Eq. (20) for the orientation of the spiral order is

n1` + in2` =
1

2
Ha Tr[�`R�aR†]

= �"↵�z��`↵�z� for Ha = (1, i, 0). (A7)

This co-incides with the conventional representation70 of the spiral orientation in terms of spinons

z↵, and it can verified that the values in Eq. (A7) obey Eq. (A1).

For the case with u2 < 0 in Eq. (A5), the Higgs condensate is instead a SU(2) rotation of

Ha = ei✓(1, 0, 0), (A8)

where ✓ is an arbitrary phase. This corresponds to incommensurate collinear spin order21.

Appendix B: Feynman diagram computations

1. Self-energy: Gauge-field

Since we are interested in the singular structure of ⇧A
0 (q) in Eq. (22), we shall evaluate the

integral over `x first, followed by `⌧ , `y. Therefore,

⇧A
0 (q) = 2

ˆ
d`⌧d`y
(2⇡)2

i[✓(`⌧ ) � ✓(`⌧ + q⌧ )]

�i⌘q⌧ + qx + q2y + 2`yqy
+ q ! �q, (B1)

=
q⌧
⇡

ˆ
d`y
(2⇡)

�i

�i⌘q⌧ + qx + q2y + 2`yqy
+ q ! �q, (B2)

=
|q⌧ |

2⇡|qy| . (B3)

This leads to the expression for ⇧A
0 (q) in Eq. (24).

2. Self-energy: Higgs’ field

Focusing on just the m = 1 contribution, Eq. (32) becomes,

⇧H
m=1(q) = 2

ˆ
d`⌧d

2`

(2⇡)3


1

�icf sgn(`⌧ + q⌧ )|`⌧ + q⌧ |2/3 � v1 · (` + q)

1

�icf sgn(`⌧ )|`⌧ |2/3 � v2 · `
+ q ! �q

�
. (B4)
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Let us define `1 = v1 · (` + q) and `2 = v2 · `, so that

⇧H
m=1(q) =

1

vxvy

ˆ
d`⌧d`1d`2

(2⇡)3


1

�icf sgn(`⌧ + q⌧ )|`⌧ + q⌧ |2/3 � `1

1

�icf sgn(`⌧ )|`⌧ |2/3 � `2

+q ! �q

�
. (B5)

It is not hard to see that the only non-zero contribution comes from the imaginary parts of both

the terms. Then,

⇧H
m=1(q) =

1

vxvy

ˆ
d`⌧d`1d`2

(2⇡)3


icf sgn(`⌧ + q⌧ )|`⌧ + q⌧ |2/3

c2f |`⌧ + q⌧ |4/3 + `21

icf sgn(`⌧ )|`⌧ |2/3
c2f |`⌧ |4/3 + `22

+ q ! �q

�
. (B6)

Upon carrying out the `1, `2� integrals, this becomes,

⇧H
m=1(q) = � 1

4vxvy

ˆ
d`⌧
2⇡

[sgn(`⌧ + q⌧ ) sgn(`⌧ ) + q ! �q]. (B7)

This directly leads to the expression for ⇧H(q) in Eq. (34).

3. Fermion self-energy at the hot-spot

The Fermionic self-energy due to the Higgs’ field fluctuations (Eq. (36)) becomes,

⌃1(p) = 3

ˆ
d`⌧d

2`

(2⇡)3
1

�i⇣f sgn(p⌧ � `⌧ )|p⌧ � `⌧ |� � v2 · (p � `)

1

�|`⌧ | + `2
. (B8)

Let us now change coordinates such that `? = v̂2 ·` and `k is the component along the Fermi-surface

of  2. Then,

⌃1(p) = �3

ˆ
d`⌧d`?d`k

(2⇡)3
1

�i⇣f sgn(p⌧ � `⌧ )|p⌧ � `⌧ |� � v2 · p + v2`?

1

�|`⌧ | + `2? + `2k
. (B9)

It is straightforward to carry out the integral over `k, which gives,

⌃1(p) = �3

2

ˆ
d`⌧d`?
(2⇡)2

1

�i⇣f sgn(p⌧ � `⌧ )|p⌧ � `⌧ |� � v2 · p + v2`?

1q
�|`⌧ | + `2?

. (B10)

Let us now study the form of the self-energy at the hot-spot, p = 0, and extract the p⌧ dependence.

We can symmetrize the above form then to give,

⌃1(p⌧ ) = 3i

ˆ
d`⌧
2⇡

ˆ 1

0

d`?
2⇡

⇣f sgn(`⌧ � p⌧ )|p⌧ � `⌧ |�
⇣2f |p⌧ � `⌧ |2� + v22`

2
?

1q
�|`⌧ | + `2?

. (B11)

Carrying out the integral over `? (see Appendix B 4) leads to the expression in Eq. (38).
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I(c)

c

FIG. 7: I(c) evaluated numerically as a function of c. Note that I(c ! 0) = �1, which reproduces Eq.39.

4. Integrals

We use the integral (for a > 0, b > 0):

ˆ 1

0
dx

1

x2 + a2
1p

x2 + b2
=

1

a
p

b2 � a2
tan�1

✓p
b2 � a2

a

◆
. (B12)

The above is valid irrespective of whether a > b or a < b.

The integral in Eq. (40) can be evaluated as a function of the dimensionless parameter, c =

⇣2f/�v
2
2, when � = 1/2. The integral becomes,

I(c) =

ˆ 1

�1

dx

2⇡
tan�1

✓p|x| � c|1 � x|p
c|1 � x|

◆
sgn(x � 1)p|x| � c|1 � x| . (B13)

We show the functional form of I(c) as a function of c in Fig. 7.
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