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Abstract
We present a field-theoretic renormalization group analysis of Abanov and Chubukov’s model of

the spin density wave transition in two dimensional metals. We identify the independent field scale

and coupling constant renormalizations in a local field theory, and argue that the damping constant

of spin density wave fluctuations tracks the renormalization of the local couplings. The divergences

at two-loop order overdetermine the renormalization constants, and are shown to be consistent with

our renormalization scheme. We describe the physical consequences of our renormalization group

equations, including the breakdown of Fermi liquid behavior near the “hot spots” on the Fermi

surface. In particular, we find that the dynamical critical exponent z receives corrections to its

mean-field value z = 2. At higher orders in the loop expansion, we find infrared singularities

similar to those found by S.-S. Lee for the problem of a Fermi surface coupled to a gauge field.

A treatment of these singularities implies that an expansion in 1/N , (where N is the number of

fermion flavors) fails for the present problem. We also discuss the renormalization of the pairing

vertex, and find an enhancement which scales as logarithm-squared of the energy scale. A similar

enhancement is also found for a modulated bond order which is locally an Ising-nematic order.
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I. INTRODUCTION

There is little doubt that the quantum transition involving the onset of spin density

wave (SDW) order in a metal is of vital importance to the properties of a variety of cor-

related electron metals. This is amply illustrated by some recent experimental studies. In

the cuprates, Daou et al.1 argued that the Fermi surface change associated with such a

transition was the key in understanding the physics of the strange metal. In the pnictide

superconductors, experiments2–4 have explored the interesting coupling between the onsets

of SDW order and superconductivity. In CeRhIn5 (and other ‘115’ compounds), Knebel

et al.5 have described the suppression of the SDW order by pressure, and the associated

enhancement of superconductivity.

The theory of Hertz6–8 has formed much of the basis of the study of the spin density wave

transition in the literature. The central step of this theory is the derivation of an effective

action for the spin density wave order parameter, after integrating out all the low energy

excitations near the Fermi surface. A conventional renormalization group (RG) is then

applied to this effective action, and this can be extended to high order using standard field-

theoretic techniques9. However, it has long been clear that the full integration of the Fermi

surface excitations is potentially dangerous, because the Fermi surface structure undergoes

a singular renormalization from the SDW fluctuations.

Important advances were subsequently made in the work of Abanov and Chubukov10,11.

They argued that the Hertz analysis was essentially correct in spatial dimension d = 3, but

that it broke down seriously in d = 2. They proposed an alternative low energy field theory

for d = 2, involving the bosonic SDW order parameter and fermions along arcs of the Fermi

surface; the arcs are located near Fermi surface “hot spots” which are directly connected by

SDW ordering wavevector. They also presented a RG study of this field theory, and found

interesting renormalizations of the Fermi velocities at the arcs.

This paper will present a re-examination of the model of Abanov and Chubukov, using

a field-theoretic RG method. We will begin in Section II by introducing the low energy

field theory for the SDW transition in two dimensional metals, and reviewing the Abanov-

Chubukov argument for the breakdown of the Hertz theory. Section III will define the

independent renormalization constants using the structure of the local field theory, and

determine their values using the divergences in a 1/N expansion (where N is the number

of fermion flavors) to two loop order. Actually, the two-loop divergences overdetermine the

renormalization constants, but we will find a consistent solution: this is a significant check on

the consistency of our renormalization procedure. While our renormalizations of the Fermi

velocities agree with those of Abanov and Chubukov, we find significant differences in the

other renormalizations, and associated physical consequences. At two-loop order, the ratio

of the velocities scales logarithmically to zero (as specified by Eq. (3.40)), and consequently

we are able to compute RG-improved results for a variety of physical observables (which

differ from previous results10,11):
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• The non-Fermi liquid behavior at the hotspot is controlled by the fermion self energy

given by Eq. (3.44).

• Moving away from the hot spot, we find that Fermi liquid behavior is restored, but

the quasiparticle residue and the Fermi velocity vary strongly as a function of the

momentum (p∥) along the Fermi surface: these are given in Eq. (3.45).

• The bosonic SDW spectrum does not obey dynamic scaling with z = 2, but instead

obeys the ‘super power-law’ form in Eq. (3.46), and the amplitude of the spectrum

scales as in Eq. (3.47).

Going beyond two-loops, we also explored the consequences of a strong-coupling fixed point

at which the velocity ratio and other couplings reach finite fixed-point values. Here the boson

and fermion Green’s functions obey the scaling forms in Eqs. (3.19-3.22), and the non-Fermi

liquid behavior at the hotspot is specified in Eq. (3.23). Moving away from the hotspot, we

have the Fermi liquid form in Eq. (3.24), with the Fermi velocity and quasiparticle residue

given by Eq. (3.25).

In Section IV, we describe the structure of the field theory at higher loop order. Similar

to the effects pointed out recently by S.-S. Lee15 for the problem of a Fermi surface coupled

to a gauge field, we find that there are infrared singularities which lead to a breakdown

in the naive counting of powers of 1/N . However, unlike in the problem of a gauge field

coupled to a single patch of the Fermi surface15, we find that the higher order diagrams

cannot be organized into an expansion in terms of the genus of a surface associated with the

graph. Rather, diagrams that scale as increasingly higher powers of N are generated upon

increasing the number of loops.

In Section V, we consider the onset of pairing near the SDW transition, a question

examined previously by Abanov, Chubukov, Finkel’stein, and Schmalian12–14. Like them,

we find that the corrections to the d-wave pairing vertex are enhanced relative to the naive

counting of powers of 1/N . However, we also find an enhancement factor which scales as

the logarithm-squared of the energy scale: this is the result in Eq. (5.6). We will discuss the

interpretation of this log-squared term in Section V.

In Section VI we show that a similar log-squared enhancement is present for the vertex

of a bond order which is locally an Ising-nematic order; this order parameter is illustrated

in Figs. 22 and 23. The unexpected similarity between this order, and the pairing vertex,

is a consequence of emergent SU(2) pseudospin symmetries of the continuum theory of the

SDW transition, with independent pseudospin rotations on different pairs of hot spots. One

of the pseudospin rotations is the particle-hole transformation, and the other pseudospin

symmetries will be described more completely in Section II.
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FIG. 1. Square lattice Brillouin zone showing the Fermi surface appropriate to the cuprates. The

filled circles are the hot spots connected by the SDW wavevector Q⃗ = (π,π). The locations of the
continuum fermion fields ψℓ

1 and ψℓ
2 is indicated.

II. LOW ENERGY FIELD THEORY

We will study the generic phase transition between a Fermi liquid and a SDW state in two

spatial dimensions, and our discussion also easily generalizes to charge density wave order.

The wavevector of the density wave order is Q⃗, and we assume that there exist points on

the Fermi surface connected by Q⃗; these points are known as hot spots. We assume further

that the Fermi velocities at a pair of hot spots connected by Q⃗ are not parallel to each other;

this avoids the case of ‘nested Fermi surfaces’, which we will not treat here.

A particular realization of the above situation is provided by the case of SDW ordering

on the square lattice at wavevector Q⃗ = (π, π). We also take a Fermi surface appropriate for

the cuprates, generated by a tight-binding model with first and second neighbor hopping.

We will restrict all our subsequent discussion to this case for simplicity.

At wavevector Q⃗ = (π, π) the SDW ordering is collinear, and so is described by a three

component real field φa, a = x, y, z. There are n = 4 pairs of hot spots, as shown in

Fig. 1. We introduce fermion fields (ψℓ
1σ,ψ

ℓ
2σ), ℓ = 1...n, σ =↑↓ for each pair of hot spots.

Lattice rotations map the pairs of hot spots into each other, acting cyclically on the index

ℓ. Moreover, the two hot spots within each pair are related by a reflection across a lattice

diagonal. It will be useful to promote each field ψ to have N -flavors with an eye to performing

a 1/N expansion. (Note that in Ref. 14, the total number of hot spots 2nN is denoted as

N .) The flavor index is suppressed in all the expressions. The low energy effective theory is
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FIG. 2. Configuration of the ℓ = 1 pair of hot spots, with the momenta of the fermion fields
measured from the common hot spot at k⃗ = 0, indicated by the filled circle. The Fermi velocities
v⃗1,2 of the ψ1,2 fermions are indicated.

given by the Lagrangian,

L =
N

2c2
(∂τ φ⃗)

2 +
N

2
(∇φ⃗)2 +

Nr

2
φ⃗2 +

Nu

4
(φ⃗2)2

+ ψ†ℓ
1 (∂τ − iv⃗ℓ

1 ·∇)ψℓ
1 + ψ†ℓ

2 (∂τ − iv⃗ℓ
2 ·∇)ψℓ

2

+ λφa
(

ψ†ℓ
1στ

a
σσ′ψℓ

2σ′ + ψ†ℓ
2στ

a
σσ′ψℓ

1σ′

)

(2.1)

The first line in Eq. (2.1) is the usual O(3) model for the SDW order parameter, the second

line is the fermion kinetic energy and the third line is the interaction between the SDW

order parameter and the fermions at the hot spots. Here, we have linearized the fermion

dispersion near the hot spots and v⃗ℓ are the corresponding Fermi velocities. It is convenient

to choose coordinate axes along directions x̂ = 1√
2
(1, 1) and ŷ = 1√

2
(−1, 1), so that

v⃗ℓ=1
1 = (vx, vy) , v⃗ℓ=1

2 = (−vx, vy); (2.2)

these Fermi velocities are indicated in Fig. 2. The other Fermi velocities are related by

rotations, v⃗ℓ = (Rπ/2)ℓ−1v⃗ℓ=1.

We choose the coefficient λ of the fermion-SDW interaction to be of O(1) in N . As a

result, the coefficients in the first line of Eq. (2.1) are all scaled by N as this factor will

automatically appear upon integrating out the high-momentum/frequency modes of the

fermion fields.

Before proceeding with the analysis of the theory (2.1), let us note its symmetries. Besides

the microscopic translation, point-group, spin-rotation and time-reversal symmetries, the

low energy theory possesses a set of four emergent SU(2) pseudospin symmetries associated
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FIG. 3. Modification of the Fermi surfaces in Fig. 2 by SDW order with ⟨φ⟩ ≠ 0. The full lines are
the Fermi surfaces, and the white, light shaded, and dark shaded regions denote momenta where 0,

1, and 2 of the bands are occupied. The upper and lower lines are boundaries of hole and electron
pockets respectively.

with particle-hole transformations. Let us introduce a four-component spinor,

Ψℓ
i =

(

ψℓ
i

iτ 2ψ†ℓ
i

)

(2.3)

We will denote the particle-hole indices in the four-component spinor by α, β. The spinor

(2.3) satisfies the hermiticity condition,

iτ 2
(

0 −1

1 0

)

Ψℓ
i = Ψ∗ℓ

i (2.4)

Then, the fermion part of the Lagrangian (2.1) can be rewritten as,

Lψ =
1

2
Ψ†ℓ

1 (∂τ − iv⃗ℓ
1 ·∇)Ψℓ

1 +
1

2
Ψ†ℓ

2 (∂τ − iv⃗ℓ
2 ·∇)Ψℓ

2 +
1

2
λφ⃗ ·

(

Ψ†ℓ
1 τ⃗Ψ

ℓ
2 +Ψ†ℓ

2 τ⃗Ψ
ℓ
1

)

(2.5)

Now the Lagrangian (2.5) and the condition (2.4) are manifestly invariant under,

SU(2)ℓ : Ψℓ
i → UℓΨ

ℓ
i (2.6)

with Uℓ - SU(2) matrices. We note that the diagonal subgroup of (2.6) is associated with

independent conservation of the fermion number at each hot spot pair. The symmetry (2.6)

is a consequence of linearization of the fermion spectrum near the hot spots and is broken

by higher order terms in the dispersion. The diagonal subgroup noted above is preserved

by higher order terms in the dispersion, but is broken by four-fermi interactions, which map

fermion pairs from opposite hot spots into each other. Both symmetry breaking effects are

irrelevant in the scaling limit discussed below.

The pseudospin symmetry (2.6) constrains the form of the fermion Green’s function to
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be,

−⟨Ψℓ
iασΨ

m†
jβσ′⟩ = δℓmδijδαβδσσ′Gℓ

i(x− x′) (2.7)

which implies,

Gℓ
i(x− x′) = −Gℓ

i(x
′ − x) (2.8)

The corresponding expression in momentum space, Gℓ
i(k) = −Gℓ

i(−k), implies that the

location of hot spots in the Brillouin zone is not renormalized by the spin wave fluctuations

in the low energy theory.

Another important manifestation of the particle-hole symmetry is the equality of any

Feynman graphs, which are related by a reversal of a fermion loop direction.

A. The Hertz action

The Hertz action is derived by working in the metallic phase, and integrating out the

fermions in Eq. (2.1), leaving an effective theory for φ alone. In particular, the one-loop

self-energy of the field φ is evaluated in Appendix A1, and is given by

Π0(ω, q⃗) = Π0(ω = 0, q⃗ = 0) +Nγ|ω|+ ..., γ =
nλ2

2πvxvy
(2.9)

The presence of the non-analytic term |ω| is due to the fact that the density of particle-hole

pairs with momentum Q⃗ and energy ω scales as ω. As usual, the constant piece Π0(q = 0)

is eliminated by tuning the coefficient r. The ellipses in Eq. (2.9) denote terms analytic in

ω and q⃗, starting with ω2 and q⃗2. These terms formally disappear when we take the cut-off

of the effective theory (2.1) to infinity. Thus, the quadratic part of the effective action for

the field φ reads

S2 =
N

2

∫

dωd2k

(2π)3
φa(−k,−ω)

(

γ|ω|+
1

c2
ω2 + k⃗2 + r

)

φa(k,ω) (2.10)

At sufficiently low energies, the analytic term ω2 in the boson self-energy coming from the

bare action, Eq. (2.1), can be neglected compared to the dynamically generated |ω| term.

Thus, at low energies the propagation of collective spin excitations becomes diffusive, due

to the damping by the fermions at the hot spots.

Hertz6 proceeds by neglecting all the quartic and higher order self-interactions of the field

φ, which are generated when the fermions are eliminated. This is justified if such interactions

are local, as one can then absorb them into operators, which are polynomial in the order

parameter and its derivatives (the simplest of which is just the operator (φ⃗2)2). The theory
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then reduces to,

SH =
N

2

∫

dωd2k

(2π)3
φa(−k,−ω)

(

γ|ω|+ k⃗2 + r
)

φa(k,ω) +
Nu

4

∫

dτd2x(φ⃗2)2 (2.11)

The quadratic part of the action (2.11) is invariant under scaling with the dynamical critical

exponent z = 2,

k⃗ → sk⃗, ω → s2ω, φ(x⃗, τ⃗) → sφ(sx⃗, s2τ) (2.12)

Thus the theory is effectively d+ z = 4 dimensional and the quartic coupling u is marginal

by power-counting in d = 2.

At one loop order, the flow of u follows easily from the conventional momentum shell

RG17

du

dℓ
= −

11

2π2Nγ
u2, (2.13)

where s = e−ℓ is the renormalization scale. Thus u is marginally irrelevant, and flows to the

Gaussian fixed point with u = 0 in the infrared. This stability of the Gaussian fixed point

has formed the basis of much of the subsequent work8,9,17 on the Hertz theory.

B. Breakdown of the Hertz theory

The analysis in Section IIA is valid only under the assumption that the fermion-induced

quartic and higher order couplings of the field φ can be neglected. In fact, as observed in

Refs. 11 and 14, this assumption is not justified in spatial dimension d = 2. Indeed, as

shown in Ref. 14, the fermion-induced four-point vertex is given by,

Γa1a2a3a4
4 (q1, q2, q3, q4) = λ4fa1a2a3a4(q1, q2, q3, q4) + permutations of 2, 3, 4 (2.14)

fa1a2a3a4(q1, q2, q3, q4) =
∑

ℓ

N(δa1a2δa3a4 − δa1a3δa2a4 + δa1a4δa2a3)(|ω1|− |ω2|+ |ω3|− |ω4|)
2πvxvy(i(ω2 + ω3)− v⃗ℓ

1 · (q⃗2 + q⃗3))(i(ω1 + ω2)− v⃗ℓ
2 · (q⃗1 + q⃗2))

(2.15)

We see that the vertex (2.14) is highly non-local. Moreover, under the z = 2 scaling

(2.12), we can neglect the frequency dependence in the denominators of Eq. (2.15), obtaining

Γ4 ∼ |ω|/q⃗2 ∼ O(1), which produces a marginal interaction. Similarly, one can show that

all the higher order fermion-induced vertices behave as Γ2n ∼ |ω|/|q⃗|2n−2 ∼ |q⃗|4−2n, which

is again marginal under (2.12) when combined with the scaling of the field-strength. Thus,

the Hertz-Millis theory has an infinite number of non-local marginal perturbations and the

standard action (2.11) is incomplete.
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C. RG interpretation

An RG interpretation of the results of Section IIB follows by performing a scaling analysis

directly on the spin-fermion model (2.1). As before, we will scale the boson fields according

to Eq. (2.12). Correspondingly, it is natural to scale the fermion momenta towards the hot

spots,

ψℓ
12(x⃗, τ) → s3/2ψℓ

12(sx⃗, s
2τ) (2.16)

Here the field-strength rescaling has been chosen to preserve the spatial gradient terms in

the fermion action. We now see that the boson-fermion coupling λ in (2.1) is marginal under

the field scalings in Eqs. (2.12) and (2.16); a similar analysis in d = 3 would show that λ is

irrelevant.

The marginality of λ, and the infinite number of marginal couplings in Section IIB

indicate that all subsequent RG should be performed direction on the spin-fermion model

(2.1). Further, with the scalings as in (2.12) and (2.16), we should not expand in powers of λ,

but rather analyze the theory at a fixed boson-fermion “Yukawa” coupling. A similar strategy

was followed in Refs. 18 and 19 for the Ising-nematic transition in a d-wave superconductor.

An important consequence of the scalings (2.12) and (2.16) on (2.1) is that both the boson

kinetic term (∂τφ)2 and the fermion kinetic term ψ†∂τψ are irrelevant. We may safely drop

the boson kinetic energy. However, the fermion kinetic energy must be retained - otherwise,

the theory does not possess any dynamics. We will return to this point shortly. Let us

now rescale the fermion fields ψ = ψ̃/
√
λ to eliminate the marginal coupling λ. We define,

η = 1/λ and ⃗̃v = v⃗/λ . Note that ṽ has the unusual dimensions of [ω]1/2/[k]. We drop the

tildes in what follows. Then,

L =
N

2
(∇φ⃗)2 +

Nr

2
φ⃗2 +

Nu

4
(φ⃗2)2

+ ψ†ℓ
1 (η∂τ − iv⃗ℓ

1 ·∇)ψℓ
1 + ψ†ℓ

2 (η∂τ − iv⃗ℓ
2 ·∇)ψℓ

2

+ φa
(

ψ†ℓ
1στ

a
σσ′ψℓ

2σ′ + ψ†ℓ
2στ

a
σσ′ψℓ

1σ′

)

(2.17)

As already remarked, the coupling constant η is irrelevant. Thus, we take the limit η → 0+

in all our calculations. In practice, η gives the prescription for integrating over the poles of

the fermion propagator. We will work with the action (2.17) for the rest of this paper. At

criticality it is characterized by two dimensionless constants,

α =
vy
vx

, ũ =
u

γ
(2.18)

and a dimensionful constant γ, Eq. (2.9),

γ =
n

2πvxvy
. (2.19)
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FIG. 4. The boson self-energy at N = ∞. The full lines represent the ψ1,2 fermions, and the

dashed lines represent the boson φa.

Thus, in the critical regime, the theory (2.17) does not possess an expansion in any coupling

constant.

III. FIELD-THEORETIC RG

We begin by discussing the general renormalization structure of (2.17). In the absence

of a coupling constant, we will use the RPA based scaling (2.12) and (2.16) as the starting

point of our analysis. Naively, one expects that this scaling is also obeyed by the N = ∞
limit of the theory and that corrections to it can be calculated in a systematic expansion

in 1/N . Indeed, the usual arguments would indicate that at N = ∞, the boson self-energy

is given by the RPA bubble in Fig. 4, Eq. (2.9), (see the Appendix A1 for details of the

calculation). Hence, the bosonic propagator

⟨φa(x)φb(x′)⟩ = δabD(x− x′) (3.1)

at N = ∞ takes the form,

D(x) =
1

N

∫

dωd2q

(2π)3
1

γ|ω|+ q⃗2 + r
e−iωτ+iq⃗x⃗ (3.2)

which respects the scaling (2.12). On the other hand, the fermion propagator

−⟨ψℓ
iσ(x)ψ

†m
jσ′(x′)⟩ = δℓmδijδσσ′Gℓ

i(x− x′)

at N = ∞ is given by its free value,

Gℓ
i(x) =

∫

dωd2k

(2π)3
1

iηω − v⃗ℓ
i · k⃗

e−iωτ+ik⃗·x⃗ (3.3)
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Applying scaling (2.16) to this propagator indicates η scales to zero; we will eventually take

this limit, but need a non-zero η for now to properly define the fermion loop integrals.

As we will see later in Section IV, the N = ∞ limit in the present theory turns out to

be much more subtle and is not given by the simple forms in Eqs. (3.2),(3.3). Moreover,

the anomalous dimensions in this limit are not expected to be parametrically small. Never-

theless, we can reasonably expect that the RG structure presented here remains valid, even

though we are not able to accurately compute higher loop corrections to the renormaliza-

tion constants. In addition, the difficulties with the 1/N expansion appear only at high

loop order, which enables us to check the consistency of our approach to the order discussed

below.

With the above remarks in mind, we are ready to discuss the renormalization of the theory

in Eq. (2.17). The theory contains five operators that are marginal by power counting

at z = 2, and not related by symmetry. Two of these are eliminated by field-strength

renormalizations,

φ = Z1/2
φ φr, ψ = Z1/2

ψ ψr (3.4)

As is conventional, we can fix Zφ by demanding that the coefficient of (∇φ)2 remains invari-

ant. For fermion field, it is convenient to allow both velocities to flow, and so we renormalize

these as

vx = Zx
v v

r
x, vy = Zy

v v
r
y. (3.5)

The fermion spatial gradient terms are then not available to fix Zψ, and we cannot use

the fermion temporal gradient term because its coefficient η scales to zero. Instead we

demand the invariance of the boson-fermion coupling term to fix the fermion field strength

renormalization; it is thus consistent to use a unit coefficient for this term, as we have done

in Eq. (2.17). The quartic boson coupling renormalizes

ũ =
ZuZx

vZ
y
v

Z2
φ

ũr. (3.6)

It is also useful to track the renormalization of the dimensionless velocity ratio α in Eq. (2.18)

α =
Zy

v

Zx
v

αr. (3.7)

All the renormalization factors Z depend only on N , αr, ũr and the ratio µ/Λ, where µ is

a renormalization scale and Λ is a UV cutoff.

An important point is that the damping parameter γ appearing in the boson propagator

does not have an independent renormalization constant. It is not a coupling in a local field

theory, and only appears in certain correlation functions as a measure of the strength of the

particle-hole continuum, as determined by Eq. (2.19). This implies that when we consider

the renormalization of the boson propagator, the renormalization of the parameter γ should
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track the the renormalizations of the velocties vx,y obtained from the renormalization of the

fermion propagator; in other words, the renormalization of γ is

γ =
1

Zx
vZ

y
v
γr. (3.8)

This tight coupling between the boson and fermion sectors is a key feature of the theory

(2.17), and a primary reason for strong coupling physics in d = 2.

The theory (2.17) contains two relevant perturbations. One of these is the usual φ⃗2

operator, whose coefficient renormalizes as,

r =
Zr

Zφ
rr (3.9)

Here, r always denotes the deviation from the critical point. The other relevant perturbation,

whose discussion we have omitted thus far, is the chemical potential,

δL = −µψℓ†
iσψ

ℓ
iσ (3.10)

However, this perturbation is redundant, as it can be absorbed into a shift of hot spot

location. Moreover, as already observed in section II, the location of the hot spots is not

renormalized in the low-energy theory, which implies that there is no mixing between the

two relevant operators. This is unlike the situation for the Ising-nematic transition in a

metal studied in Ref. 16, where such mixing leads to a nontrivial shift of the Fermi surface

as a function of deviation r from the critical point.

Introducing the renormalized one-particle irreducible correlation functions of nf fermion

and nb boson fields

Γ
nf ,nb
r = Z

nf/2
ψ Znb/2

φ Γnf ,nb (3.11)

we can write down the renormalization group equations,

(

µ
∂

∂µ
+ βα

∂

∂αr
+ βu

∂

∂ũr
+ ηγγr

∂

∂γr
− η2rr

∂

∂rr
−

nbηφ

2
−

nfηψ

2

)

Γ
nb,nf
r ({p},αr, ũr, γr, rr, µ) = 0

(3.12)

Here, the β-functions and anomalous dimensions are functions of αr and ũr given by,

βα = µ
∂αr

∂µ

∣

∣

∣

α,ũ,Λ
, βu = µ

∂ũr

∂µ

∣

∣

∣

α,ũ,Λ
, ηγ =

1

γr
µ
∂γr
∂µ

∣

∣

∣

α,ũ,γ,Λ
, (3.13)

ηφ = µ
∂

∂µ
logZφ

∣

∣

∣

α,ũ,Λ
, ηψ = µ

∂

∂µ
logZψ

∣

∣

∣

α,ũ,Λ
, η2 = µ

∂

∂µ
log

Zr

Zφ

∣

∣

∣

α,ũ,Λ
(3.14)
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Using dimensional analysis,

Γ
nb,nf
r ({ω}, {p⃗},αr, ũr, γr, rr, µ) = γ

nb/2+nf/4−1
r µ4−nb−3nf/2fnb,nf

({

γrω

µ2

}

,

{

p⃗

µ

}

,αr, ũr,
rr
µ2

)

(3.15)

Now, solving the RG equation (3.12),

fnb,nf ({ω̂}, {p̂},αr, ũr, r̂) = s4−3nf/2−nbZφ(s)
−nb/2Zψ(s)

−nf/2Zγ(s)
nb/2+nf/4−1

× fnb,nf (s−2Zγ(s){ω̂}, s−1{p̂},αr(s), ũr(s), Zr(s)r̂) (3.16)

with

s
dαr

ds
= βα(αr(s), ũr(s)), αr(1) = αr, s

dũr

ds
= βu(αr(s), ũr(s)), ũr(1) = ũr

Zφ(s) = exp

(
∫ s

1

ds′

s′
ηφ(αr(s

′), ũr(s
′))

)

, Zψ(s) = exp

(
∫ s

1

ds′

s′
ηψ(αr(s

′), ũr(s
′))

)

Zγ(s) = exp

(
∫ s

1

ds′

s′
ηγ(αr(s

′), ũr(s
′))

)

, Zr(s) = exp

(

−
∫ s

1

ds′

s′
η2(αr(s

′), ũr(s
′))

)

(3.17)

Now, let us construct the scaling forms of the correlation functions assuming that the

couplings αr, ũr have a stable fixed point. Actually, as we will see below, this assumption

is not supported by explicit calculations of low loop contributions to the β-functions and

anomalous dimensions. However, as already remarked, higher loop diagrams, which are

naively suppressed by powers of 1/N , actually scale as progressively higher powers of N

and might modify the RG flow significantly. Thus, the fixed-point form of the correlation

functions satisfies,

f(s2−ηγ{ω̂}, s{p̂}, s2+η2 r̂) = s4−ηγ−(3+ηψ−ηγ/2)nf /2−(2+ηφ−ηγ )nb/2f({ω̂}, {p̂}, r̂) (3.18)

Hence, typical frequencies and momenta are related by ω ∼ |p⃗|z, with the dynamical critical

exponent z being given by,

z = 2− ηγ (3.19)

Moreover, the correlation length ξ away from the critical point scales as ξ ∼ r−ν with

ν =
1

2 + η2
(3.20)

Specializing to boson and fermion two-point functions,

D−1(ω, p⃗) ∼ ξ−(2−ηφ)K(ωξz, p⃗ξ)
ξ→∞→ |p⃗|2−ηφK̃(ω/|p⃗|z, p̂) (3.21)

G−1(ω, p⃗) ∼ ξ−(z/2−ηψ)L(ωξz, p⃗ξ)
ξ→∞→ |p⃗|z/2−ηψ L̃(ω/|p⃗|z, p̂) (3.22)
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21 1

FIG. 5. The leading contribution to the fermion self-energy.

Here, the expressions on the right give the correlation functions at the critical point to which

we confine our attention from here on. From Eq. (3.22) we may infer the fate of the Fermi

surface at the critical point. We expect that as ξ → ∞ the Fermi-surface remains sharply

defined. Close to the hot spots, the Fermi surfaces of fermions ψ1 and ψ2 will evolve into

straight lines with a fixed angle between them. At the hot spot, the fermion self-energy

takes the form,

G−1(ω, p⃗ = 0) ∼ ω1/2−ηψ/z (3.23)

which is generally non Fermi-liquid like. On the other hand, away from the hot spot, if we

define p⊥ as the distance to the Fermi surface and p∥ as the distance to the hot spot, for

p⊥ ≪ p∥ and ω ≪ pz∥, we expect well-defined Landau quasi-particles,

G(ω, p⃗) ∼
Z

iω − vFp⊥
(3.24)

with the Fermi velocity v and quasiparticle residue Z vanishing as we approach the hot spot

as,

vF (p∥) ∼ pz−1
∥ , Z(p∥) ∼ p

z/2+ηψ
∥ (3.25)

The remainder of this section will provide a computation of the 4 renormalization con-

stants Zφ, Zψ, Zx
v , Z

y
v to leading order in 1/N . At this order, the constants will depend only

upon the dimensionless constant α, and do not involve u. We discuss the renormalization

of u in Appendix B 2. Thus our considerations here will involve the RG flow only of the

single coupling α, the ratio of the velocities, and a discussion of its physical implications.

For completeness, we will also compute the renormalization constant Zr, which determines

the scaling of the correlation length away from the critical point. This constant will depend

upon both α and u already at leading order in 1/N .

As we will see below, the 4 renormalization constants will be overdetermined from the

structure of the 1/N corrections to the fermion self energy, the boson-fermion vertex, and

the boson self energy. Computations of these quantities are provided in the appendix, and

we use the results here to compute the Z’s.

The first correction to the self-energy of the fermion ψℓ=1
1 is given by Fig. 5, and computed

in Appendix A2.
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Σ1(ω, p⃗) = −
3

2πN |v⃗|γ

(

isgn(ω)(
√

γ|ω|+ (v̂2 · p⃗)2 − |v̂2 · p⃗|) +
2

π
v̂2 · p⃗ log

Λ

|v̂2 · p⃗|

)

(3.26)

Note that unless otherwise stated, we will discuss the ℓ = 1 hot spot and drop the index ℓ.

We see that at the hot spot, p⃗ = 0, the self-energy has a non-Fermi liquid form,10,20

Σ(p⃗ = 0) = −i
3

(2πn)1/2N

(

1

α
+ α

)−1/2

|ω|1/2sgn(ω) (3.27)

This result is consistent with our scaling form (3.23); to this order the anomalous dimension

ηψ = 0. On the other hand, away from the hot spot, in the regime γ|ω| ≪ (v̂2 · p⃗)2, the
fermion propagator takes the Fermi-liquid form (3.24). To leading order, the Fermi surface

is given by v̂1 · p⃗ = 0. The Fermi velocity and quasiparticle residue vanish with the distance

p∥ along the Fermi-surface to the hot spot as,

vF =
4nN

3γ
p∥, Z =

4N

3
(2πn)1/2γ−1/2

(

1

α
+ α

)−1/2

p∥ (3.28)

consistent with the scaling form (3.25) with mean-field exponents z = 2, ηψ = 0.

The last term in Eq. (3.26) contributes to the renormalization of vx, vy, and so constrains

the renormalization constants by

ZψZ
x
v = 1−

6

πnN

α

1 + α2
log(Λ/µ) (3.29)

ZψZ
y
v = 1 +

6

πnN

α

1 + α2
log(Λ/µ) (3.30)

Next we consider the correction to the boson-fermion vertex,

−⟨ψ2σ(p
′)ψ†

1σ′(p)φa(−q)⟩1PI = τaσσ′Γφψ2ψ†
1

(p, q)(2π)3δ3(p′ − p− q) (3.31)

This is given by Fig. 6 and computed in Appendix A3. We need only the UV divergent

part, which is

Γφψ2ψ†
1

(p, q) = 1 +
2

πnN
tan−1 1

α
logΛ (3.32)

Eq. (3.32) constrains the renormalizations by

Z1/2
φ Zψ = 1−

2

πnN
tan−1 1

α
log(Λ/µ) (3.33)

Finally, we consider the corrections to the boson two-point function, shown in Fig. 7, and

computed in Appendix A4. These yield
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FIG. 6. The leading correction to the boson-fermion vertex.

(a) (b)

(c) (d)

FIG. 7. The leading correction to the boson polarization. A sum over both directions of the fermion
loop is implied.

D−1(ω, q⃗) = Nγ|ω|
[

1 +
4

πnN
tan−1 1

α
logΛ

]

+ Nq⃗2
[

1 +
2

πnN

(

1

α
− α +

(

1

α2
+ α2

)

tan−1 1

α

)

logΛ

]

+ Nr

[

1 +

(

4

πnN
tan−1 1

α
−

5

2π2N
ũ

)

logΛ

]

(3.34)

Note that both the frequency and momentum dependent parts of the boson propagator

receive renormalization corrections. As we discussed earlier, the corrections to the coefficient

of |ω| should not be considered as renormalizations of an independent coupling γ, but should
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rather track the renormalizations of the fermion velocities. Consequently, from Eqs. (3.8)

and (3.34), we conclude that

Zφ(Z
x
vZ

y
v )

−1 = 1−
4

πnN
tan−1 1

α
log(Λ/µ) (3.35)

From the momentum dependent part of (3.34) we immediately obtain the bosonic field

strength renormalization,

Zφ = 1−
2

πnN

(

1

α
− α +

(

1

α2
+ α2

)

tan−1 1

α

)

log(Λ/µ) (3.36)

while the r dependent part of (3.34) yields the renormalization constant Zr,

Zr = 1−
(

4

πnN
tan−1 1

α
−

5

2π2N
ũ

)

log(Λ/µ) (3.37)

We note that while our results for the fermion self-energy (3.26) and the vertex (3.32)

are in agreement with Ref. 14, the expression for the boson two-point function Eq. (3.34)

differs from that of Ref. 14. More precisely, the frequency dependent part of our D−1

agrees with Ref. 14, while the momentum dependent part does not. As already noted, the

renormalization of the frequency dependent part of D−1 is constrained by that of the fermion

self-energy and the vertex. On the other hand, the renormalization of the momentum

dependent part is completely independent. The authors of Ref. 14 found that both the

frequency and the momentum parts are renormalized by the same factor, which would

imply that the dynamical critical exponent z = 2 to this order. However, our calculations

indicate that the two renormalizations are equal only at α = 1 and, as we will see below,

the dynamical critical exponent z receives corrections already at the present order in 1/N .

We now have 5 equations for 4 renormalization constants: Eqs. (3.29), (3.30), (3.33),

(3.35), and (3.36). It is easily verified that they are consistent with each other. This is a

strong check on our renormalization procedure, and verifies the consistency of tying γ to the

velocities by Eq. (2.19). We can solve these equations to obtain

Zy
v

Zx
v

= 1 +
12

πnN

α

1 + α2
log(Λ/µ)

Zx
vZ

y
v = 1−

2

πnN

(

1

α
− α

)(

1 +

(

1

α
− α

)

tan−1 1

α

)

log(Λ/µ)

Zψ = 1 +
1

πnN

(

1

α
− α

)(

1 +

(

1

α
− α

)

tan−1 1

α

)

log(Λ/µ) (3.38)
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A. RG flows

The renormalization constants in Eq. (3.38) determine the flow of the dimensionless

coupling α with the β-function

β(αr) =
12

πnN

α2
r

α2
r + 1

(3.39)

The β function for the velocity anisotropy α has an infrared stable fixed point α = 0 and an

infrared unstable fixed point α = ∞. Physically, both fixed points correspond to a nested

Fermi surface. For α = 0, the Fermi-velocities at the two hot spots are anti-parallel, while

for α = ∞ they are parallel. The flows to the two fixed points are logarithmic. In particular,

near the infrared stable fixed point α = 0,

αr(s) =
αr

1 +
12αr

πnN
log(1/s)

(3.40)

Here we’ve assumed that the starting point of the flow αr ≪ 1. Note that the logarithmic

flow to α→ 0 in the infrared, with vanishing velocity ratio, is similar to that found recently

in Ref. 19 in a different physical context.

Let us now discuss the physics of the α = 0 fixed point. The renormalization constants

in (3.36),(3.37), (3.38) also determine the renormalization of the velocities, the anomalous

dimensions of the bosons, fermions and of the φ2 operator. For the velocities, the ratio is

already specified by α, and it is convenient to take γ as the other independent combination

of the velocities. We have therefore

ηγ =
2

πnN

(

1

αr
− αr

)(

1 +

(

1

αr
− αr

)

tan−1 1

αr

)

ηφ =
2

πnN

(

1

αr
− αr +

(

1

α2
r

+ α2
r

)

tan−1 1

αr

)

ηψ = −
1

πnN

(

1

αr
− αr

)(

1 +

(

1

αr
− αr

)

tan−1 1

αr

)

η2 = −
2

πnN

(

1

αr
− αr

)(

1 +

(

1

αr
− αr

)

tan−1 1

αr

)

−
5

2π2N
ũr (3.41)

Note that as can be seen from Eqs. (3.16),(3.19) the flow of the dimensionful constant γr
described by the exponent ηγ is equivalent to an anomalous dynamical critical exponent

z. Since ηγ is non-zero, the dynamical behaviour of the theory deviates from the simple

Hertz-Millis scaling with z = 2.
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FIG. 8. Modification of the Fermi surfaces in Fig. 2 at the SDW quantum critical point. As in

Figs. 2 and 3, the full lines are the Fermi surfaces, and the white, light shaded, and dark shaded
regions denote momenta where 0, 1, and 2 of the bands are occupied. The equation of one of the
Fermi surfaces is given in (3.43).

As α flows slowly to 0, the critical exponents in Eq. (3.41) slowly vary:

ηφ →
1

nN

1

α2
r

, ηψ → −
1

2nN

1

α2
r

, ηγ →
1

nN

1

α2
r

, η2 → −
1

nN

1

α2
r

, αr → 0 (3.42)

Observe that the corrections to the critical exponents diverge as αr → 0. Thus, for suffi-

ciently small momenta the 1/N expansion breaks down. From Eq. (3.42) we see that this

will happen when α ∼ 1/
√
N ; from Eq. (3.40), we can estimate that this occurs at a mo-

mentum scale k ∼ exp(−N3/2). This is parametrically smaller than the scale k ∼ exp(−N)

at which the direct expansion in 1/N (without RG improvement) becomes invalid.

Despite the breakdown of the RG at the longest scales, there is an intermediate asymptotic

regime, 1/
√
N ≪ αr ≪ 1, where Eq. (3.42) remains valid, and we can integrate the RG

equations and find interesting consequences for both the fermionic and bosonic spectra.

For the fermions, the location of the ψ1 Fermi surface is given at tree-level by v̂1 · p⃗ = 0,

or py = −vxpx/vy = −px/α. Evaluating α at s = µ/px, we find the Fermi surface at

py = −
12

πnN
px log(µ/|px|) (3.43)

The resulting Fermi surface distorts from the shape shown in Fig. 1 to that in Fig. 8. We

may also use RG to improve the one-loop result for the fermion self-energy (3.26). From

Eq. (3.16), the fermion self-energy at the hot spot is,

Σ(ω, p⃗ = 0) ∼ −i exp

(

−
3

π2n3N3
log3

µ2

γr|ω|

)

|ω|1/2sgn(ω), (3.44)

Along the Fermi surface away from the hot spot, the quasiparticle residue and Fermi velocity
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behave as,

vF ∼ exp

(

48

π2n3N3
log3

µ

p∥

)

p∥, Z ∼
(

log
µ

p∥

)−1/2

p∥ (3.45)

The characteristic frequency of the bosonic spectrum is ω ∼ q⃗2/γr; evaluating γr at

s = µ/|q⃗|, we find that it scales with a ‘super power-law’ of the momentum

ω ∼ q⃗2 exp

(

48

π2n3N3
log3

µ

|q⃗|

)

. (3.46)

From Eq. (3.16) we also obtain the static and dynamic scaling of the bosonic propagator,

D−1(ω, q⃗ = 0) ∼ |ω|1−
1

nN exp

(

6

π2n4N4
log3

µ2

γr|ω|

)(

log
µ2

γr|ω|

)−1/3

D−1(ω = 0, q⃗) ∼ |q⃗|2 exp
(

48

π2n3N3
log3

µ

|q⃗|

)

(3.47)

Note that the unusual super-power law dependencies in Eqs. (3.44), (3.45),(3.46),(3.47)

are consequences of the scaling of αr → 0 in the infrared and associated divergences of the

anomalous dimensions.

IV. COUNTING POWERS OF N

As written in Eq. (2.17), our field theory offers a potentially simple way of organizing

perturbation theory in powers of 1/N : each boson propagator comes with a power of 1/N ,

each fermion loop yields a power of N , and each u interaction yields a factor N : we refer to

this as the “naive” 1/N expansion, and it has been the basis of our computations so far.

However, because we have to take η → 0 in the scaling limit, there is a danger that some

of the higher order diagrams will have a singular dependence on η. The fermion propagators

in such diagrams need to include self-energy corrections for the diagrams to be finite in the

η → 0 limit. The price we will pay for this regularization is that the diagram will acquire

additional powers of N , and the naive counting of powers of 1/N will break down.

Recently, in the context of a theory of a Fermi surface interacting with a gauge field,

S.-S. Lee15 has given a procedure for identifying diagrams with a breakdown of naive 1/N

counting, and shown that the expansion in powers of 1/N is actually an expansion in the

genus of a surface defined by the graph. Using his methods we will show that many similar

issues appear in our theory for the SDW transition of a Fermi surface, although subtle

differences in RG properties imply that in the present case no genus expansion exists, and

diagrams of increasingly higher order in N are generated as the number of loops is increased.

In the absence of an external pairing vertex (see section V), the simplest diagrams ex-

hibiting the above effect are the three-loop corrections to the boson-fermion vertex, see

Fig. 9. In fact, the two diagrams are equal as they are related by particle-hole symmetry.
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FIG. 9. Three loop corrections to the boson-fermion vertex that are enhanced in N , scaling as
O(N0).

The external fermions are taken to have hot spot index ℓ = 1, while the fermions running in

the loop can come from any hot spot ℓ′, although we will see that the singular contributions

will originate from ℓ′ = 1 and ℓ′ = 3. The diagram is given by,

δΓφψ2ψ†
1

(p, q)τa = −τa1τa2τa3
∫

dkτdk⃗dk′
τdk⃗

′

(2π)6
faa1a2a3(q, p− k′, k′ − k, k − p− q)×

G1(k)G2(k
′)D(k′ − p)D(k − k′)D(p+ q − k)

Substituting the four-point boson vertex f , Eq. (2.15),

δΓφψ2ψ†
1

(p, q) = −
7N

2πvxvy

∑

ℓ′

∫

dkτdk⃗dk′
τdk⃗

′

(2π)6
(|qτ |− |pτ − k′

τ |+ |k′
τ − kτ |− |kτ − pτ − qτ |)

×
1

(iη(pτ − kτ )− v⃗ℓ′
1 · (p⃗− k⃗))(iη(qτ + pτ − k′

τ )− v⃗ℓ′
2 · (q⃗ + p⃗− k⃗′))

×
1

(iηkτ − v⃗1 · k⃗)(iηk′
τ − v⃗2 · k⃗′)

D(k′ − p)D(k − k′)D(p+ q − k) (4.1)

Observe that if ℓ′ = 2 or ℓ′ = 4 the four denominators in Eq. (4.1) involve four linearly

independent combinations of internal momenta k⃗, k⃗′. As a result, the integral has a well
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defined limit when η → 0. On the other hand, when ℓ′ = 1 or ℓ′ = 3 (which we will

also denote as ℓ′ = −1), v⃗ℓ′ and v⃗ are parallel. Keeping only these two hot spots, let us

integrate over the momentum components v⃗1 · k⃗, v⃗2 · k⃗′. We focus on the contribution from

the fermionic poles, which, as we will see, is infrared singular.

δΓφψ2ψ†
1

(p, q) ≈
7N

2πvxvy|v⃗|2
∑

ℓ′=±1

∫ dkτdk∥dk′
τdk

′
∥

(2π)4
(|qτ |− |pτ − k′

τ |+ |k′
τ − kτ |− |kτ − pτ − qτ |)

×
(θ(kτ )− θ(ℓ′(kτ − pτ )))(θ(k′

τ )− θ(ℓ′(k′
τ − pτ − qτ )))

(iη((1− ℓ′)kτ − pτ ) + ℓ′v⃗1 · p⃗)(iη((1− ℓ′)k′
τ − pτ − qτ ) + ℓ′v⃗2 · (p⃗+ q⃗))

D(k′ − p)D(k − k′)D(p+ q − k).

Here k∥, k′
∥ denote the components of k⃗, k⃗′ along the Fermi surface of ψ1 and ψ2 respectively,

and the arguments of boson propagators are evaluated at v⃗1 · k⃗ = v⃗2 · k⃗′ = 0. (Strictly

speaking, only one pair of poles has v⃗1 · k⃗ = v⃗2 · k⃗′ = 0, while the other pair has v⃗1 · k⃗ = v⃗1 · p⃗
and v⃗2 · k⃗′ = v⃗2 · (p⃗+ q⃗). However, in situations of interest to us discussed below the above

difference may be neglected in the bosonic propagators).

Note that if we take the initial and final fermion momenta to lie on the Fermi surface,

i.e. v⃗1 · p⃗ = 0, v⃗2 · (p⃗ + q⃗) = 0, then δΓ diverges as η−2. Since the dimension of η is ω−1/2,

this is synonymous to an infra-red divergence,

δΓφψ2ψ†
1

∼ η−2N−2ω−1. (4.2)

This behavior can be easily checked by, for instance, setting all the external momenta to

zero (i.e. taking the external fermions to be at the hot spots). We also note that in the case

when the external fermion momenta do not lie on the Fermi surface, the limit η → 0 can be

taken in the contribution of hot spot pair ℓ′ = 1, but not ℓ′ = −1, as the latter contains a

non-local UV divergence. Keeping η finite, we obtain,

δΓφψ2ψ†
1

∼ η−1N−2p−1
⊥ . (4.3)

where p⊥ schematically denotes the distance of external fermion momenta to the Fermi

surface.

The infra-red divergences in Eqs. (4.2), (4.3) are a product of the bare fermion propagator

having z = 1 dynamics, whereas we expect that the full fermion propagator has the same

dynamics as the spin-density wave excitations. We saw that this, indeed, holds at the one-

loop level, where both the boson (3.2) and fermion (3.26) propagators are invariant under

scaling with z = 2 (up to logarithmic corrections in the latter case). As in Ref. 15, the

divergence can be cured by including the one-loop fermion self-energy within the fermion

propagators, before taking the η → 0 limit. This is the approach that will be adopted

below. From Eq. (3.27), we know that the self-energy is ∼
√
ω/N . Therefore, mapping
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ηω →
√
ω/N , we find from Eq. (4.2) that

δΓφψ2ψ†
1

∼ O(1) (4.4)

Thus, the vertex correction is not suppressed relative to the bare value, and the naive 1/N

expansion has broken down. In the appendix B 1, we compute the vertex correction in Fig. 9

with dressed fermion propagators and find to logarithmic accuracy,

δΓφψ2ψ†
1

∼ X(α) log
Λ

|q⃗|
(4.5)

where X is a finite negative function of α. Note that the strong infra-red divergence of

Eq. (4.2) is now replaced by a mild logarithmic divergence that one may hope to treat with

renormalization group. However, the price one has to pay for curing the strong infra-red

divergence is the enhancement of the diagram with N , as anticipated in Eq. (4.4). This

enhancement occurs for any external fermion momenta (not only for momenta on the Fermi

surface). Finally, the presence of a logarithm implies that not only is the diagram itself

unsuppressed relative to its bare value, but also that the anomalous dimensions are not

expected to be suppressed with N .

Having seen an explicit example of violation of naive large-N counting, we would like to

investigate the general scaling of diagrams with N in our theory, when a one-loop dressed

fermion propagator is used. Our procedure closely follows that of Ref. 15. A general diagram

can be schematically written as,

D = NLf

∫ L
∏

i=1

d2pidωi

If
∏

j=1

1

Σ1loop(lj) + v⃗ · l⃗j

Ib
∏

k=1

D(qk) (4.6)

Here, If and Ib are numbers of fermion and boson propagators respectively, Lf is the number

of fermion loops and L is the number of total loops. The momenta lj and qk are linear

combinations of pi entering the fermion and boson propagators. The “naive” scaling of the

diagram with N is given by D ∼ NQ0 ,

Q0 = Lf − Ib (4.7)

It is clear that the enhancement of diagrams with N comes from the dangerous factor of 1/N

in the fermion self-energy. However, in order to access this factor the fermion momentum

must be on the Fermi surface. Given a diagram, let us call the phase-space for all internal

fermion momenta to lie on the Fermi surface, the “singular manifold.” Having identified this

manifold, one can divide the momentum integration variables into components parallel p∥
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and perpendicular p⊥ to the manifold,

L
∏

i=1

d2pi =
n
∏

a=1

dp∥a

2L−n
∏

b=1

dp⊥b (4.8)

where n is the dimension of the manifold. Linear combinations of p⊥’s enter the fermion

energy v⃗ · l⃗j and hence scale as 1/N , making the fermion propagators scale as N . On the

other hand, the components p∥ only enter the bosonic propagators and the one-loop fermion

self-energy Σ1loop and scale as N0. Hence, the diagram acquires an enhancement, D ∼ NQ,

Q = Q0 +∆Q,

∆Q = [If − 2L+ n] (4.9)

where [x] = x if x ≥ 0 and [x] = 0 if x < 0.

Thus, to find the degree of a diagram in N , one has to find the singular manifold and

compute its dimension n. This can be done diagramatically by introducing a double-line

representation, originally used in the study of electron-phonon interactions.24 Below, we will

consider diagrams involving opposite hot spot pairs ℓ = 1 and ℓ = −1 only. Subsitution of

fermions from hot spots ℓ = 2 and ℓ = −2 into these diagrams is expected to reduce the

dimension of the singular manifold. Moreover, we for simplicity consider diagrams without

the quartic bosonic vertex u. Finally, we take all the exernal fermion momenta to be on the

Fermi surface.

Now, we are ready to introduce the double-line representation. We would like to find

under what conditions do all the fermions in a diagram go to the Fermi surface. Observe,

that any momentum can be uniquely decomposed into components along the Fermi surface

of fermion 1 and fermion 2. Thus, we fatten bosonic propagators into double lines, one

carrying momentum along the Fermi surface of fermion 1, and the other along the Fermi

surface of fermion 2. If a fermion is to absorb this bosonic momentum and stay on the Fermi

surface, its incoming and outgoing momenta are fixed in terms of the components of the

double line. Hence, the boson-fermion vertices can be redrawn as shown in Fig. 10. Note

that if a certain momentum is along the Fermi surface of fermion 1 from hot spot ℓ = 1,

it is also along the Fermi surface of fermion 1 from hot spot ℓ = −1. Thus, the fermion

lines in our diagrams can come from either of these hot spots. Also, the direction of lines

in the double-line representation is not fixed, and need not coincide with that in the single

line representation. If the two are opposite, then it is understood that the physical fermion

momentum p⃗ is the negative of the momentum carried by the fermion in the double-line

representation, see Fig. 11. Because we are neglecting the Fermi surface curvature in the

low-energy theory, a particle with momentum p⃗ is on the Fermi surface if and and only

if a particle with momentum −p⃗ is on the Fermi surface, and the above representation is

consistent. (We remind the reader that here all the fermion momenta are defined relative to

hot spot locations).
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FIG. 10. Double line representation for the boson-fermion vertex.

FIG. 11. Double line representation for the boson-fermion vertex. The direction of momentum
and particle flow need not coincide.

Thus, the double line representation completely specifies the singular manifold. In partic-

ular, the dimension of the manifold n is just given by the number of loops in this representa-

tion. As an example, consider the double line represenation of the diagrams in Fig. 9 shown

in Fig. 12. We see that Fig. 12 contains two closed loops, which implies that the singular

manifold is two-dimensional. From Eq. (4.9), the enhancement of the diagram is ∆Q = 2,

which combined with the naive degree of the diagram, Eq. (4.7), Q0 = −2, gives Q = 0,

consistent with the explicit calculation in Eq. (4.5). In Fig. 13 we also give an example of a

vertex correction which is not enhanced in N . Here, the double line representation contains

no loops so the dimension of the singular manifold is zero, ∆Q = 0 and the degree of the

diagram is given by the naive N counting, Q = −2.

It is easy to see that the violations of naive large-N counting are not confined to vertex

corrections alone. In Fig. 14 we show a fermion self-energy diagram that acquires an en-

hancement. Indeed, the naive degree of the graph is Q0 = −3. However, since the double

line representation contains three loops, the graph receives an enhancement ∆Q = 2, so that

the total degree of the graph is Q = −1. Hence, the graph is of the same order O(1/N) as

the one-loop fermion self-energy. Similarly, in Fig. 15 we show an enhanced diagram for the

boson self-energy. In this case, Q0 = −1, ∆Q = 2, Q = 1. Hence, the diagram is of O(N),

again the same as the tree level contribution.

A remarkable feature of the large-N counting in Eqs. (4.7), (4.9), pointed out in Ref. 15,

is that the degree of a diagram is related to its topology. Let us first apply the topological

classification to vacuum energy diagrams, i.e. graphs with no external lines. We can convert

these diagrams into two-dimensional surfaces in the following way. First, let us introduce

fermion loops back into the double line represenation (they will appear dotted in our dia-

grams, see Fig. 16). Then attach a face to each solid loop of the double-line representation
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FIG. 12. Double line representation applied to the diagrams in Fig. 9. The enhancement of the

diagram in N is related to the number of loops n in the double line-representation via Eq. 4.9.

FIG. 13. A three loop vertex correction with no enhancement in N .

and a face to each dotted loop (i.e. fermion loop). As a result, each boson propagator is

shared by two faces with solid boundaries, while each fermion propagator is shared by a face

with a solid boundary and a face with a dotted boundary. Therefore, if we glue the faces

along propagators we obtain a closed surface. Now consider the Euler characteristic of this

26



1 2 1

1

1

2

22

1

21 2 1 1

FIG. 14. A diagram for the fermion self-energy that is of O(1/N) as a result of enhancement.
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FIG. 15. A diagram for the boson self-energy that is of O(N) as a result of enhancement.

surface,

χ = F − E + V (4.10)

where F is the number of faces, E is the number of edges and V is the number of vertices

of the surface. We have, F = Lf + n, E = Ib + If and V is just the number of vertices in
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FIG. 16. Converting vacuum energy diagrams into surfaces: a face is attached to each solid and
grey loop in the double-line representation (on the right). In the present case, the resulting surface
is a sphere.

the original Feynman graph. Now, using V = 2Ib, 2V = 2If we obtain,

χ = Lf + n−
V

2
(4.11)

However, using L = Ib + If − V +1, we see that the degree of a diagram in N given by Eqs.

(4.7), (4.9), is,

Q = Lf −
V

2
+ n− 2 (4.12)

where we’ve assumed that the argument of [ ] in Eq. (4.9) is positive. Thus, we arrive at the

relation,

Q = χ− 2 (4.13)

This result means that at each order in 1/N one has to sum an infinite set of diagrams with

a given Euler characteristic. In particular, at N = ∞ the theory is dominated by diagrams

with χ = 2, i.e. those whose double-line representation can be drawn on a sphere. Such

graphs are often referred to as planar diagrams.

It is straightforward to extend the classification above to diagrams with external legs. For

instance, fermion self-energy diagrams can be obtained by cutting one fermion propagator
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in a vacuum graph. This results in Ib → Ib, Lf → Lf − 1, so Q0 → Q0− 1, and If → If − 1,

L → L− 1, n → n− 1, as cutting a fermion propagator destroys a solid loop in the double

line representation. Hence, ∆Q → ∆Q and Q → Q− 1, i.e.

Q = χ− 3 (4.14)

with χ the Euler characteristic of the initial vacuum diagram. In particular, planar vacuum

graphs give rise to fermion self-energy diagrams of O(1/N).

Similarly, to obtain a boson self-energy diagram, we cut a boson propagator in a vacuum

bubble. This gives Ib → Ib − 1, Lf → Lf , so Q0 → Q0 + 1, and If → If , L → L − 1,

n → n − 2, as we now destroy two solid loops in the double line representation. Hence,

∆Q → ∆Q and Q → Q+ 1, i.e.

Q = χ− 1 (4.15)

Hence, planar graphs give rise to boson self-energy diagrams of O(N).

Likewise, to obtain vertex correction diagrams, we remove a vertex in a vacuum bubble.

As a result, Ib → Ib− 1, Lf → Lf − 1, so Q0 → Q0, and If → If − 2, L → L− 2, n → n− 2,

as we again destroy two solid loops in the double line representation. Hence, ∆Q → ∆Q

and Q → Q, i.e.

Q = χ− 2 (4.16)

and all planar graphs give rise to vertex diagrams of O(1).

At this point, we would like to make a remark about conditions on external momenta in

diagrams needed for the enhancements to occur. Up to now we have been assuming that all

the external fermion momenta in a diagram are on the Fermi surface. If all the diagrams in

our theory were UV finite then this condition would, indeed, be required. However, as we

have seen, some of the diagrams actually contain logarithmic divergences, i.e. they receive

contributions from momenta, which are much larger than the external momenta. For the

purpose of computing the UV divergent contribution to these diagrams and estimating its

scaling with N , we can set the external momenta to zero (which certainly puts the external

fermions on the Fermi surface). This explains why the vertex correction in Figs. 9,12 receives

an enhancement for any external fermion momentum, as can be explicitly seen in Eq. (4.5).

So far, we have left out one type of diagram which is important from the point of view

of RG properties of the theory, namely diagrams for the boson four-point function. Such

diagrams can be obtained by cutting two boson propagators in a vacuum bubble. This

results in Ib → Ib − 2, Lf → Lf , so Q0 → Q0 + 2. Now let us discuss the change in the

enhancement ∆Q. We see that If → If , L → L − 2. The change in the dimension of the

singular manifold δn depends on how many loops in the double line representation the two

propagators that we cut share. If both the components 1 and 2 of the two propagators

are part of the same two solid loops, see Fig. 17c, then the change in the dimension of the

singular manifold δn = −2. If these two propagators share only one solid loop, see Fig. 17b,
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FIG. 17. Producing a boson four-point function from a vacuum bubble by cutting two boson

propagators. If the initial diagram is planar and only two solid lines are cut in the double-line
representation then the resulting diagram is disconnected, as in (a). Diagrams of highest degree
are obtained by starting with a planar diagram and cutting three solid line loops, as in (b), or

starting with a diagram with χ = 1 and cutting two solid line loops, as in (c).

then δn = −3. Finally, if the two propagators don’t share any solid loops, then δn = −4.

Thus, we obtain, ∆Q → ∆Q + 4 + δn and Q → Q + 6 + δn, i.e.

Q = χ + 4 + δn (4.17)

It appears that the highest possible degree of the four-point vertex corresponds to starting
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FIG. 18. A diagram for the boson four-point function that diverges logarithmically and scales as
N3.

with a planar graph and cutting two bosonic propagators, which are part of the same double-

line loop, to obtain, Q = 4. However, it is easy to see that this always produces a diagram,

which is disconnected, see Fig. 17a. To obtain a connected diagram for the four-point

function starting from a planar graph, we must cut at least three solid loops, such that

the highest possible degree of a four-point function is Q = 3. The fact that the four-point

vertex scales as N3 could be anticipated from the simple one-loop result in Eq. (2.15).

Indeed, for special kinematic conditions, v⃗1 · (q⃗2 + q⃗3) = 0, v⃗2 · (q⃗1 + q⃗2) = 0, Eq. (2.15)

diverges as N(η2ω)−1, which after including the one-loop fermion self-energy is expected to

become of order N3. Such kinematic conditions are automatically assumed in our double

line representation that led to the large-N counting in Eq. (4.17). However, as was already

noted, diagrams that have ultraviolet divergences are expected to receive the enhancement in

Eq. (4.9) independent of external momenta. The simplest diagram for the boson four-point

vertex that is expected to scale as N3 and exhibits such a divergence is shown in Fig. 18.

In the appendix, we explicitly evaluate this diagram obtaining to logarithmic accuracy,

δΓ4 = N3Y (α)γ log
Λ

|q⃗|
(4.18)

with Y a finite function of α.

The fact that there are diagrams for the four-point boson function that scale as N3 for

arbitrary external momenta has drastic consequences for the theory. Indeed, a diagram with

just quartic internal vertices (which can themselves have a non-trivial internal structure),
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will scale as NQ, with Q = V4+
Eb

2 , where V4 is the number of quartic vertices and Eb is the

number of external bosons. Thus, the degree of the diagram in N grows with the number of

quartic vertices. This means that perturbation theory based on the one-loop dressed fermion

propagator is not a good starting point for taking the large-N limit, and no genus expansion

similar to that of Ref. 15 exists in the present case. Note that this effect was not captured

in our initial large-N counting, as we have ignored the possible presence of UV divergent

subdiagrams.

V. PAIRING VERTEX

In this section we will study the renormalization properties of the BCS order parameter

to one loop order. We consider pairing in the spin singlet, parity even, momentum zero

channel. There are four order parameters that one can form out of our four pairs of hot

spots,

Vµν = ϵσσ′(ψℓ=−1
1σ ψℓ=1

1σ′ + µψℓ=−1
2σ ψℓ=1

2σ′ ) + νϵσσ′(ψℓ=−2
1σ ψℓ=2

1σ′ + µψℓ=−2
2σ ψℓ=2

2σ′ ) (5.1)

Here the minus sign in the hot spot labels ℓ = −1 ≡ 3 and ℓ = −2 ≡ 4 denotes the opposite

hot spot pair. The geometry of the pairing operators for ℓ = 1 is illustrated in Fig. 19. The

FIG. 19. Pairing of the electrons at the ℓ = ±1 hotspots of Fig. 1. Electrons at opposite ends of

the arrows form spin-singlet pairs. The µ = +1 (µ = −1) pairing amplitude in Eq. (5.1) has the
same (opposite) sign on the two arrows. Only the µ = −1 spin singlet pairing is enhanced near
the SDW critical point.

coefficients µ = ±1, ν = ±1 determine the transformation properties of V under the lattice
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µ

1 -1
ν 1 s g

-1 dxy dx2−y2

TABLE I. Symmetry properties of the pairing vertex.

rotation symmetry Rπ/2 and the reflection symmetry I(−1,1) about the (−1, 1) axis:

Rπ/2 : Vµν → νVµν (5.2)

I(−1,1) : Vµν → µVµν (5.3)

These properties are summarized in Table I. Since the theory (2.17) conserves the number

of fermions at each hot spot pair ℓ, the parts of the order parameter involving ℓ = ±1 and

ℓ = ±2 renormalize independently. Hence, the scaling dimension of the pairing vertex in

the low-energy theory is independent of ν and is sensitive only to µ, i.e the operators with

s and dxy, and g and dx2−y2 symmetries are degenerate.

The renormalization properties of the operator V can be determined from its insertion

into the correlation function,

ϵσσ′ΓV ψ†ψ†(k1, k−1) =

∫

dDx1d
Dx−1⟨V (0)ψ†ℓ=−1

1σ′ (x−1)ψ
†ℓ=1
1σ (x1)⟩1PIe

i(k1x1+k−1x−1) (5.4)

At tree level, ΓV ψ†ψ† = 1. Let us now consider the one-loop renormalization of V , shown in

Fig. 20 a). This diagram is given by

δΓV ψ†ψ†(k1, k−1) = −3µ

∫

d3l

(2π)3
D(l)G1

2(k1 − l)G−1
2 (k−1 + l). (5.5)

Details of the evaluation of (5.5) appear in Appendix B 3. Direct computation with bare

fermion propagators gives rise to strong infra-red divergences, which are cured by using the

one-loop dressed propagators. With this approach, we obtain to logarithmic accuracy

δΓV ψ†ψ† = −
µα

π(α2 + 1)
log2

(

Λ2

γω

)

(5.6)

Note that the one loop renormalization of the pairing vertex (5.6) is of order unity, and is

not suppressed in 1/N . Thus the naive counting in powers of 1/N is violated, as was already

noted in Ref. 12. Moreover, the one-loop contribution gives a suppression of the vertex for

µ = 1 (s and dxy channels) and an enhancement for µ = −1 (dx2−y2 , g channels) as expected.

Finally, we find that the one-loop result has a non-local log2 divergence. The origin of this

non-local divergence is BCS pairing of the Fermi surface away from the hot spots. Indeed,
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(a)

(b)

FIG. 20. The leading corrections to (a) BCS pairing vertex, (b) density-wave vertex.

as noted in Appendix B 3, the divergence comes from the regime where γ|lτ | ≪ l2∥, with l∥

the component of l⃗ along the Fermi surface of ψ2. This is precisely the regime in which one

has good Landau-quasiparticles, suggesting that it may be possible to obtain Eq. (5.6) in a

Fermi liquid computation.

We now show this is indeed the case, and obtain (5.6) in a physically transparent form.

Let us approximate the propagators in Eq. (5.5) by the Fermi-liquid form Eq. (3.24),

δΓV ψ†ψ† =
3µ

N

∫

dl∥
2π

∫

γ|lτ |!l2
∥

dlτ
2π

∫

dl⊥
2π

1

γ|lτ |+ l2∥

Z(l∥)

i(lτ − ω)− vF (l∥)l⊥

Z(l∥)

i(lτ + ω) + vF (l∥)l⊥
(5.7)

with the Fermi-liquid parameters given by Eq. (3.28). Note that due to the restriction

γ|lτ | ≪ l2∥ the bosonic propagator is static. Changing variables to ϵ = vF (l∥)l⊥,

δΓV ψ†ψ† =
3µ

N

∫

dl∥
2π

Z2(l∥)

vF (l∥)l2∥

∫

γ|lτ |!l2∥

dlτ
2π

∫

dϵ

2π

1

i(lτ − ω)− ϵ

1

i(lτ + ω) + ϵ
(5.8)

The integral over lτ , ϵ has the form familiar from Fermi-liquid theory and gives the usual

BCS logarithm,

∫

dlτ
2π

∫

dϵ

2π

1

i(lτ − ω)− ϵ

1

i(lτ + ω) + ϵ
= −

1

2π
log

ΛFL

ω
(5.9)
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where ΛFL is the frequency/energy cut-off, which in the present case is ΛFL = l2∥/γ. Of

course, for the above form to hold, we need ω ≪ ΛFL. Thus,

δΓV ψ†ψ† = −
3µ

2π2N

∫ ∞

√
γω

dl∥
Z2(l∥)

vF (l∥)l2∥
log

l2∥
γω

= −
µα

π(α2 + 1)
log2

Λ2

γω
(5.10)

which agrees with the result in Eq. (B26) obtained from a more complete computation. Note

that the prefactor of 1/N arising from the boson propagator has disappeared from the final

result. A similar log-squared term has been noted for the pairing vertex in a theory of a

Fermi surface coupled to a gauge field in three dimensions21,22 and in a theory of a Fermi

surface interacting via a Chern-Simons gauge field and a 1/r potential in two dimensions.23

The appearance of the log-squared term above indicates a breakdown of the present RG

in analyzing the renormalization of the pairing vertex. It is clearly a consequence of two

different physical effects. One is the familiar BCS logarithm of Fermi liquid theory, which

appears here from the Fermi surface away from the hot spots. The second logarithm is a

critical singularity associated with SDW fluctuations at the hot spot. Our RG approach,

defined in terms of a cutoff Λ which measures distance from the hot spot, is unable to

regulate the first logarithm: the Fermi surface is present at momenta all the way upto Λ.

An alternative RG is necessary to analyze the consequences of the log-squared term. One

possible approach is that of Son21, who worked with an RG defined in terms of momentum

shells a fixed distance from the Fermi surface of fermions coupled to a gauge field. We leave

such investigations for future work.

VI. DENSITY VERTICES

In this section we focus attention on one of the interesting consequences of the pseudospin

symmetries of the critical theory of the SDW transition, specified by Eq. (2.6). Note that

the pseudospin rotations can be performed independently on different pairs of hotspots.

Under the operation in Eq. (2.6), the pairing operator (5.1) in the particle-particle channel

becomes exactly degenerate with certain operators in the particle-hole channel which connect

opposite patches of the Fermi surface. Indeed, consider spin-singlet operators that can be

built out of fermions coming from hot spots ℓ and −ℓ. Using the spinor representation (2.3),

we may write these as,

V ℓ
αβ = Mijϵσσ′Ψ−ℓ

iασΨ
ℓ
jβσ′ (6.1)

The indices α, β of Vαβ carry spin 1/2 under the independent SU−ℓ(2) and SU ℓ(2) particle-

hole symmetries. Hence, we have a set of four degenerate operators. Choosing α = 1,

β = 1,

V ℓ
11 = Mijϵσσ′ψ−ℓ

iσ ψ
ℓ
jσ′ (6.2)
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The mixing matrix Mij is fixed by lattice symmetries to give operators,

V ℓ,Q⃗=(0,0)
µ = ϵσσ′

(

ψ−ℓ
1σψ

ℓ
1σ′ + µψ−ℓ

2σψ
ℓ
2σ′

)

(6.3)

V ℓ,Q⃗=(π,π)
µ = ϵσσ′

(

ψ−ℓ
1σψ

ℓ
2σ′ + µψ−ℓ

2σψ
ℓ
1σ′

)

(6.4)

which correspond to superconducting order parameters with momenta (0, 0) and (π, π) re-

spectively. The index µ = ±1 determines the parity of the operator under a reflection

about a lattice diagonal. The operator (6.3) was considered above. We will not discuss the

other operator (6.4) below; due to kinematics, its renormalization at one-loop order contains

neither the large-N enhancement, nor the unusual powers of logarithm squared.

Now, let us discuss the particle-hole partners of (6.3). Setting α = 2, β = 2 in (6.1)

simply gives rise to the Hermitian conjugate of (6.3). On the other hand α = 2, β = 1 gives

the operators,

Oℓ
µ = ψ−ℓ†

1σ ψℓ
1σ + µψ−ℓ†

2σ ψℓ
2σ (6.5)

The other choice α = 1, β = 2 generates the Hermitian conjugates of (6.5). Following Fig. 19,

the Oℓ
µ operators are illustrated in Fig. 21. To determine the wavevectors of these operators,

FIG. 21. Spin singlet density operators (∼ ψ†ψ) of the electrons at the ℓ = ±1 hotspots of Fig. 1
(see also Fig. 19), shown with an arrow pointing from the Brillouin zone location of ψ† to that of

ψ. The dashed arrows are the density operators in the first Brillouin zone. The full arrows are in
an extended zone scheme which shows that these operators have net momentum Q⃗1 = 2Ky(−1, 1),
where (Kx,Ky) is the location of the ℓ = 1, i = 1 hot spot. The density operator with opposite

signs (µ = −1) on the two arrows is enhanced near the SDW critical point. Similarly the ℓ = ±2
hot spots contribute density operators at Q⃗2 = 2Ky(1, 1).
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let the ℓ = 1, i = 1 hot spot be at K⃗1 = (Kx, Ky). (Note that here we are using the principal

axes of the square lattice for the momentum co-ordinates, not the diagonal axes indicated

in Fig. 1.) Then, from Fig. 1 we note that the ℓ = 1, i = 2 hot spot is at (−Ky,−Kx),

and so the value of the SDW wavevector Q⃗ = (π, π) implies that Kx +Ky = π. Also from

Fig. 1, the ℓ = −1, i = 1 hot spot is at (−Kx,−Ky), and so we conclude that the ordering

wavevector of the first term in O1
µ is (2Kx, 2Ky). Similarly, the ordering wavevector of the

second term in O1
µ is seen to be (−2Ky,−2Kx). Using Kx +Ky = π, we observe that these

two ordering wavevectors are actually equal, and take the common value Q⃗1 = 2Ky(−1, 1),

which is therefore the momentum of the O1
µ order parameters, as shown in Fig. 19. Similarly,

the momentum of the O2
µ order parameters is seen to be Q⃗2 = 2Ky(−1,−1). Thus the Oℓ

µ

represent density modulations along the diagonals of the square lattice.

For a clearer physical interpretation of the Oℓ
µ orders, it is useful to express them in terms

of the lattice fermions ck⃗σ, where the momentum k⃗ ranges over the full square lattice Brillouin

zone. Then by looking at the transformations of Eq. (6.5) under all square lattice space group

operations, and under time-reversal, we find that the Oℓ
+ are orders are characterized by

〈

c†
k⃗−Q⃗ℓ/2,σ

ck⃗+Q⃗ℓ/2,σ

〉

= Oℓ
+ f0(k⃗), (6.6)

where f0(k⃗) is any periodic function on the Brillouin zone that is invariant under the point

group operations which leave the wavevector Q⃗ℓ invariant i.e. under the little group of

Q⃗ℓ. Also time-reversal and inversion symmetries imply f0(k⃗) is real and even. The little

group consists only of reflections along the diagonals, and so a simple choice is f0(k⃗) =

1 + c1 (cos kx + cos ky) + . . ., where c1 is a constant. By taking a Fourier transform of

Eq. (6.6), it is clear that Oℓ
1 corresponds to an ordinary charge density wave (CDW) on the

sites of the square lattice:

〈

c†r⃗σcr⃗σ
〉

=
∑

ℓ=1,2

(

Oℓ
+e

iQ⃗ℓ·r⃗ + c.c.
)

(6.7)

As we saw in Section V, SDW fluctuations suppress pairing with µ = +1, and so its particle-

hole partner, the CDW order parameter Oℓ
+ will also be suppressed. We will therefore not

consider it further.

By the same reasoning, the order parameter Oℓ
− should be enhanced by the SDW fluctu-

ations, and so it is of far greater interest. Following the steps leading to Eq. (6.6), we now

find
〈

c†
k⃗−Q⃗ℓ/2,σ

ck⃗+Q⃗ℓ/2,σ

〉

= Oℓ
− f̃0(k⃗) (cos kx − cos ky) , (6.8)

where f̃0(k⃗) has the same structure as f0(k⃗). Time-reversal symmetry played an important

role in constraining the rhs: it is easily verified that Eq. (6.8) is invariant under time-reversal

for general complex Oℓ
−. The order in Eq. (6.8) is odd under reflections along the diagonals,
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FIG. 22. (Color online) Plot of the bond density modulations in Eq. (6.10). The lines are the

links of the underlying square lattice. Each link contains a colored square representing the value

of
〈

c†r⃗σcs⃗σ
〉

, where r⃗ and s⃗ are the sites at the ends of the link. We chose the ordering wavevector

Q⃗1 = (2π/16)(1,−1). Notice the local Ising-nematic ordering, and the longer wavelength sinusoidal
envelope along the diagonal.

and so it is a px±y-density wave, in the nomenclature of Ref. 25. Despite the d-wave-like

factor on the rhs of Eq. (6.8), this order is not the popular d-density wave26; the latter is

odd under time-reversal, and in the present notation takes the form

〈

c†
k⃗−Q⃗/2,σ

ck⃗+Q⃗/2,σ

〉

∼ i (sin kx − sin ky) , (6.9)

with Q⃗ = (π, π). The order in Eq. (6.9) is not enhanced near the SDW critical point, while

that in Eq. (6.8) is. By taking the Fourier transform of Eq. (6.8), it is easy to see that

Oℓ
− does not lead to any modulations in the site charge density

〈

c†r⃗σcr⃗σ
〉

, and so it is not a

CDW. The non-zero modulations occur in the off-site correlations
〈

c†r⃗σcs⃗σ
〉

with r⃗ ̸= s⃗. For

r⃗ and s⃗ nearest-neighbors, we have

〈

c†r⃗σcs⃗σ
〉

=
∑

ℓ=1,2

(

Oℓ
−e

iQ⃗ℓ·(r⃗+s⃗)/2 + c.c.
)

[δr⃗−s⃗,x̂ + δs⃗−r⃗,x̂ − δr⃗−s⃗,ŷ − δs⃗−r⃗,ŷ] , (6.10)

where x̂ and ŷ are unit vectors corresponding to the sides of the square lattice unit cell. The

modulations in the nearest neighbor bond variables
〈

c†r⃗σcr⃗+x̂,σ

〉

and
〈

c†r⃗σcr⃗+ŷ,σ

〉

are plotted
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FIG. 23. (Color online) As in Fig. 22, but for orderings along both Q⃗1 = (2π/16)(1,−1) and

Q⃗2 = (2π/16)(1, 1).

in Figs. 22 and 23. These observables measure spin-singlet correlations across a link: if there

are 2 electrons on the 2 sites of a link, this observable takes different values depending upon

whether the electrons are in a spin singlet or a spin triplet state. Thus Oℓ
− has the character

of a valence bond solid (VBS) order parameter. The first factor on the rhs of Eq. (6.10) shows

that the VBS order has modulations at the wavevectors Q⃗ℓ along the square lattice diagonals.

However, from our discussion above, note that |Q⃗ℓ| = 2
√
2Ky, where the magnitude of Ky

is quite small for the Fermi surface in Fig. 1: the ℓ = 1, i = 1 hot spot is at (Kx, Ky).

Thus the first factor in Eq. (6.10) contributes a relatively long-wavelength modulation, as is

evident from Figs. 22 and 23. This long-wavelength modulation serves as an envelope to the

oscillations given by the second factor in Eq. (6.10). The latter indicates indicates that the

bond order has opposite signs on the x and y directed bonds: this short distance behavior

corresponds locally to an Ising-nematic order, which is also evident in Figs. 22 and 23. The

ordering in Eq. (6.10) becomes global Ising-nematic order in the limit Q⃗ℓ → 0. Non-linear

terms in the effective action for the bond order will lock in commensurate values of Q⃗ℓ, and

so it is possible that strong-coupling effects will prefer Q⃗ℓ = 0.

As already remarked, the particle-hole symmetry of our theory guarantees a degeneracy

between the d-wave superconducting vertex and the density-wave vertex. However, this

degeneracy is lifted once effects which break the particle-hole symmetry are introduced. One

such effect is the curvature of the Fermi surface at the hot spots. Nominally, the curvature

is irrelevant under the scaling towards hot spots (2.16). However, we recall that the double-
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log structure in Eq. (5.6) originates from an interplay between scaling in a Fermi-liquid

and quantum critical scaling. Moreover, we know that the scaling of the superconducting

vertex and the density-wave vertex in a Fermi liquid are very different: at one loop the

corrections to former are logarithmic, while corrections to latter are suppressed by ω1/2.

Thus, one might expect that the Fermi surface curvature will play an important role in the

renormalization of the density-wave vertex, reducing its enhancement compared to the BCS

vertex and establishing superconductivity as the dominant instability of the SDW critical

point. We check this by an explicit calculation below.

We introduce the Fermi-surface curvature into the theory via a perturbation,

Lc =
1

2m

∑

ℓ,i

|(∇ · n̂ℓ
∥,i)ψ

ℓ
i |2 (6.11)

where n̂ℓ
∥,i = ẑ × v̂ℓ

i is the unit tangent to the Fermi surface of ψℓ
i .

Let us define the insertion of the density-wave order parameter Oℓ
µ into the fermion

correlation function,

ΓOψψ†(k1, k−1)δσσ′ =

∫

dDx1d
Dx−1⟨Oℓ

µ(0)ψ
−ℓ
1σ (x−1)ψ

†ℓ
1σ′(x1)⟩1PIe

i(k1x1−k−1x−1) (6.12)

At tree level ΓOψψ†(k1, k−1) = 1. The one loop correction to the vertex is given by the

diagram in Fig. 20b). We perform the calculations with propagators dressed by the one-

loop fermion self-energy and by the curvature (6.11). Details are presented in Appendix B 4.

To leading logarithmic accuracy we obtain,

δΓOψψ† = −
µα

3π(α2 + 1)
log2

Λ2

γω
(6.13)

which is a factor of 3 smaller than the corresponding expression for the superconducting

vertex (5.6).

Finally, we note the resemblance between our results and those obtained by Halboth and

Metzner,27 and Honerkamp et. al,28 using a functional renormalization group treatment of

the Hubbard model. They find dominant instabilities to SDW order and d-wave pairing,

along with a sub-dominant enhancement of Ising-nematic order. They assumed their Ising-

nematic order was at Q⃗ℓ = 0, but their results could be limited by the finite resolution of

Fermi surface points, and their specific Fermi surface configurations. It would be interesting

if higher resolution studies of more generic Fermi surfaces lead to ordering compatible with

Eq. (6.8).
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VII. CONCLUSIONS

Quantum phase transitions involving symmetry breaking in the presence of a Fermi sur-

face can be associated with the appearance of a condensate of particle-hole pairs of the

Fermi surface quasiparticles. Such transitions can be divided into two broad classes: those

in which the particle-hole condensate carries net momentum Q⃗ ̸= 0, and those in which the

particle-hole condensate is at Q⃗ = 0. Both classes were considered by Hertz in his 1976

paper6, using a self-consistent RPA approach, formulated in terms of a RG analysis of an

effective action for the condensate fluctuations. He argued that for both cases, and for all

spatial dimensions d ≥ 2, the condensate fluctuations were effectively Gaussian, and hence

the leading critical behavior could be exactly calculated.

We have re-examined both classes of Fermi surface transitions in this and a previous

paper16. While Hertz’s conclusions are expected to be largely correct in d = 3, they break

down11 in both classes for the physically important case of d = 2. Our previous paper16

proposed and analyzed a critical theory in d = 2 for a paradigm of the Q⃗ = 0 case: the

onset of Ising-nematic order. This theory involved both the bosonic order parameter and

the fermionic quasiparticles as fundamental degrees of freedom, which interact strongly at

the quantum critical point. The present paper has considered a typical case in d = 2 with

Q⃗ ̸= 0, the onset of spin density wave (SDW) order, using a field theory for the bosonic

order parameter and the fermions proposed by Abanov and Chubukov10.

Our analysis for Q⃗ ̸= 0 begins by focusing on the vicinity of the “hot spots” on the Fermi

surface shown in Fig. 1. Zooming in on a single pair of hot spots, and shifting one of the hot

spots by a momentum Q⃗, we obtain the situation shown in Fig. 2, where we can approximate

the two Fermi surfaces near the hot spots by two non-collinear straight lines. The two Fermi

surfaces are coupled at the hot spot by the SDW order parameter φ, and the low energy

physics is then described by the field theory in Eq. (2.1). In the phase with SDW order

with ⟨φ⟩ ≠ 0, the Fermi surfaces reconnect into the configuration shown in Fig. 3, leading

to electron and hole pockets appearing from the original large Fermi surface in Fig. 1.

Our RG analysis of Eq. (2.1) was performed using the 1/N expansion, where the fermions

are endowed with an additional flavor index which runs over N values. Initially, it seems

that the counting of powers of 1/N is simple: each boson propagator comes with a factor

of 1/N , and each fermion loop yields a factor N . Using this “naive” counting, all RG flow

equations were computed to order 1/N in Section III. We found a consistent renormalization

of the couplings in the local field theory in Eq. (2.1); the damping parameter γ appearing

in the boson propagator was tied to the local couplings via Eq. (2.9), and this relation

was maintained under the RG. The flow of the spin-damping rate under RG implies that

the dynamical critical exponent z renormalizes away from its RPA value z = 2. This is

in stark contrast to Hertz theory6 and previous studies of the present theory.14 One of the

main consequences of the RG flow in Section III was a logarithmic divergence in the ratio

of Fermi velocity components with length scale: this implied that the Fermi surfaces at the
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quantum critical point took the shape in Fig 8. The effective dynamical nesting of the Fermi

surfaces at low energies gives rise to a divergence of anomalous dimensions, which may lead

to a first order phase transition.

Section IV looked at higher loop effects which showed that the naive counting of powers

of 1/N was not correct. The enhancements in powers of N arose from infrared singularties

appearing when internal fermion lines were restricted to momenta on the Fermi surface,

similar to the Fermi surface enhancements discovered by S.-S. Lee for the problem of a

Fermi surface coupled to a U(1) gauge field. These enhancements distinguish the present

problem from that considered in Refs. 18 and 19: the Ising-nematic transition in a d-wave

superconductor. Formally, the latter problem is described by a field theory similar to that

of the present paper: fermions with linear dispersion coupled via a Yukawa interaction to a

scalar field φ. Also, in both problems we find a logarithmic divergence of velocity ratios in

the infrared at order 1/N for the RG flows. However, for the d-wave superconductor, with

Dirac fermions whose energy vanishes only at isolated “hot spots”, the 1/N expansion was

found to be stable at higher loops. In contrast, for the present SDW problem, the fermion

hot spots are connected to “cold” Fermi lines, and singularities associated with these lines

lead to a breakdown in the naive 1/N counting. Because of this breakdown, the nature of

the N → ∞ limit of Eq. (2.1) remains unclear.

Next, we examined the instability of the SDW metal to the onset of superconductivity

near the quantum critical point in Section V. We found a strong tendency towards spin-

singlet pairing, with pairing amplitude having opposite signs across a pair of hot spots. For

the cuprate Fermi surface in Fig. 1 this includes dx2−y2 pairing, while for the pnictide Fermi

surfaces this includes s+− pairing. This pairing instability was manifested in a log-squared

divergence of the renormalization of the pairing vertex, arising from an interplay of the

infrared singularities associated with the Fermi surfaces and the hot spot. This log-squared

singularity cannot be resolved by the present RG approach, and other methods are needed

to determine its consequences. An important problem for future research is to understand

the feedback of the pairing fluctuations on the non-Fermi liquid singularities at the metallic

hot spot. Clearly, superconductivity appears near the quantum critical point as T → 0. The

interesting question is the behavior above Tc, involving the interplay between the metallic

quantum criticality and the pairing fluctuations.

In our discussion of the critical theory for the SDW transition in Section II, we noted

that the field theory had emergent pseudospin SU(2) symmetries (Eq. (2.6)) containing the

particle-hole transformation; note that the pseudospin rotations can be carried out indepen-

dently on different pairs of hot spots. Given the strong instability towards d-wave pairing

near the SDW critical point described in Section V, it is natural to examine the action of the

SU(2) pseudospin symmetries on the d-wave pairing order parameter. This was described

in Section VI, where we found a similar log-squared enhancement of the susceptibility to a

modulated valence bond solid (VBS) order parameter illustrated in Figs. 22 and 23. Notice

that at short scales this ordering has an Ising-nematic character: this corresponds to the
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breaking of a 90 degree rotation symmetry of the square lattice by the values of the bond

order parameter in Eq. (6.10). It would be interesting if future work supports a connection

between the ordering instability of Section VI, and the bond and Ising-nematic ordering ob-

served in experiments29–34. While the present analysis has focused exclusively on the vicinity

of the hot spots, it is quite possible that strong coupling physics away from the hot spot

could lock in a preference for commensurate values, such as Q⃗ℓ = 0, in Eq. (6.10), leading

to global Ising-nematic order. Also, it would be interesting to study the changes in the VBS

ordering for the case of a SDW transition at an incommensurate ordering wavevector, like

that found in the hole-doped cuprates.

Finally, we note an interesting possibility for future theoretical work. Given the break-

down of the 1/N expansion for the theory in Eq. (2.1) for the SDW critical point in a

two-dimensional metal, other systematic methods of analyzing this field theory are clearly

needed. Following Ref. 23, one possibility is to modify the (∇φ⃗)2 term in Eq. (2.1) to k1+xφ⃗2,

where k is the momentum carried by φ. Then at the RPA level, we obtain a theory with

z = 1 + x, and an expansion in small x appears possible.
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Appendix A: RG computations

In this appendix we give the details of our calculations in Sections II and III.

1. RPA polarization

We begin with the RPA polarization bubble,

Πab(q) = 2Nδab
∑

ℓ

∫

dlτd2l⃗

(2π)3
(Gℓ

1(l + q)Gℓ
2(l) +Gℓ

2(l + q)Gℓ
1(l)) (A1)

The two terms in brackets come from the two graphs in Fig. 4 with different directions of the

particle flow. As discussed in Section II such graphs are equal by the emergent particle-hole

symmetry. Thus, focusing on the contribution from ℓ = 1,

Πℓ=1(q) = 2N

∫

dlτd2 l⃗

(2π)3
1

(iη(lτ + qτ )− v⃗1 · (⃗l + q⃗))(iηlτ − v⃗2 · l⃗)
+ (q → −q) (A2)
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We change variables to l1 = v̂1 · (⃗l+ q⃗), l2 = v̂2 · l⃗, and take the limit η → 0 using the relation,

1

x+ iη
=

P

x
− πisgn(η)δ(x) (A3)

which yields,

Πℓ=1(q) =
N

vxvy

∫

dlτd2l⃗

(2π)3

(

P

l1
+ πisgn(lτ + qτ )δ(l1)

)(

P

l2
+ πisgn(lτ )δ(l2)

)

+ (q → −q)

(A4)

Evaluating the integrals over l1, l2,

Πℓ=1(q) = −
N

8πvxvy

∫

dlτ sgn(lτ + qτ )sgn(lτ ) + (q → −q) (A5)

Here, we’ve taken the principal value integral to be zero, as it would be if we used a particle-

hole symmetric regularization. Otherwise, one can check that any terms generated by the

pv integral are of the form iqτ and are cancelled by the (q → −q) term of Eq. A5. Now,

subtracting the value of the polarization bubble at q = 0, we obtain,

Πℓ=1(q)−Πℓ=1(q = 0) = −
N

8πvxvy

∫

dlτ (sgn(lτ + qτ )sgn(lτ )− 1) + (q → −q) =
N

2πvxvy
|qτ |

(A6)

which, taking into account contributions from the other hot spots, gives,

Π(q) = Π(q = 0) +
Nn

2πvxvy
|qτ | (A7)

2. Fermion self energy

We next proceed to the self-energy of fermion ψℓ=1
1 , Fig. 5,

Σ1,σσ′(p) = τaσρτ
a
ρσ′

∫

dlτd2l⃗

(2π)3
G2(p− l)D(l)

=
3

N
δσσ′

∫

dlτd2l⃗

(2π)3
1

iη(pτ − lτ )− v⃗2 · (p⃗− l⃗)

1

γ|lτ |+ l⃗2
(A8)

We take the limit η → 0 and use Eq. (A3). Moreover, we change variables, so that l⊥ = v̂2 · l⃗
and l∥ is the momentum component along the Fermi surface of ψ2 (i.e. perpendicular to v̂2).

Then,

Σ1(p) =
3

N |v⃗|

∫

dlτdl⊥dl∥
(2π)3

(

P

l⊥ − v̂2 · p⃗
+ πisgn(lτ − pτ )δ(l⊥ − v̂2 · p⃗)

)

1

γ|lτ |+ l2⊥ + l2∥
(A9)
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Thus, the imaginary part of Σ is given by,

ImΣ1(p) =
3

N |v⃗|

∫

dlτ
8π

sgn(lτ − pτ )
1

√

γ|lτ |+ |v̂2 · p⃗|2
(A10)

where we have performed the integral over l⊥, l∥. Since, ImΣ(pτ = 0) = 0,

ImΣ1(p) =
3

N |v⃗|

∫

dlτ
8π

(sgn(lτ − pτ )− sgn(lτ ))
1

√

γ|lτ |+ |v̂2 · p⃗|2

= −
3

2πN |v⃗|γ
sgn(pτ )

(

√

γ|pτ |+ (v̂2 · p⃗)2 − |v̂2 · p⃗|
)

(A11)

On the other hand, the real part of Σ is given by,

ReΣ1(p) = −
3v̂2 · p⃗
2N |v⃗|

∫

dlτdl∥
(2π)2

1
√

γ|lτ |+ l2∥

1

γ|lτ |+ l2∥ + (v̂2 · p⃗)2
(A12)

Changing variables to u =
√

γlτ + l2∥,

ReΣ1(p) = −
3(v̂2 · p⃗)
2π2Nγ|v⃗|

∫

dl∥

∫ ∞

|l∥|
du

1

u2 + (v̂2 · p⃗)2

= −
3(v̂2 · p⃗)
2π2Nγ|v⃗|

∫

dl∥
|v̂2 · p⃗|

tan−1

(

|v̂2 · p⃗|
|l∥|

)

(A13)

The integral over l∥ is ultra-violet divergent. Cutting off the integral at |l∥| = Λ, we obtain

to logarithmic accuracy,

ReΣ1(p) = −
3v̂2 · p⃗
π2N |v⃗|γ

log
Λ

|v̂2 · p⃗|
(A14)

Combining eqs. (A11), (A14) we obtain the self-energy (3.26).

3. Boson-fermion vertex

Proceeding to the first correction in 1/N to the boson-fermion vertex, Fig. 6,

δΓa
σσ′(p, q) = (τ bτaτ b)σσ′

∫

dlτd2l⃗

(2π)3
G2(l + p)G1(l + p+ q)D(l) (A15)

Evaluating the matrix product,

δΓ(p, q) = −
1

N

∫

dlτd2 l⃗

(2π)3
1

v⃗2 · (⃗l + p⃗)− iη(lτ + pτ )

1

v⃗1 · (⃗l + p⃗+ q⃗)− iη(lτ + pτ + qτ )

1

γ|lτ |+ l⃗2

(A16)
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The integral (A16) is logarithmically divergent in the UV. To extract this divergence, we

may set all external momenta to zero:

δΓ(p, q)
UV
= −

1

N

∫

dlτd2l⃗

(2π)3
1

(−vxlx + vyly − iηlτ )(vxlx + vyly − iηlτ )

1

γ|lτ |+ l2x + l2y
(A17)

The poles in ly coming from the two fermion propagators in Eq. (A17) are in the same half-

plane; we may choose to close the ly integration contour in the opposite half-plane, picking

up the pole from the bosonic propagator:

δΓ(p, q)
UV
= −

1

N

∫

dlτdlx
(2π)2

1

(−vxlx − ivysgn(lτ )
√

γ|lτ |+ l2x)(vxlx − ivysgn(lτ )
√

γ|lτ |+ l2x)

×
1

2
√

γ|lτ |+ l2x
(A18)

Changing variables to u =
√

γ|lτ |+ l2x,

δΓ(p, q)
UV
=

2

Nγ

∫ ∞

−∞

dlx
2π

∫ ∞

|lx|

du

2π

1

v2xl
2
x + v2yu

2
(A19)

We now go to polar coordinates, vxlx + ivyu = |v⃗|ρeiθ,

δΓ(p, q)
UV
=

1

Nπ(2πvxvyγ)

∫ ∞

0

dρ

ρ

∫ π−tan−1 α

tan−1 α

dθ (A20)

The integral over ρ is logarithmically divergent in the UV ; cutting off the integral at ρ ∼ Λ,

δΓ(p, q)
UV
=

2

πnN
tan−1 1

α
logΛ (A21)

4. Boson self energy

We now proceed to the 1/N corrections to the boson self-energy, Fig. 7. We first analyze

the contribution of diagrams a),b) and c), which we label δΠI . Utilizing the expression

(2.15) for the fermion induced quartic coupling, we obtain,

δΠab
I (q) =

1

2

∫

dlτd2l⃗

(2π)3
Γabcc(q,−q, l,−l)D(l)

=

∫

dlτd2l⃗

(2π)3
(fabcc(q,−q, l,−l) + faccb(q, l,−l,−q) + facbc(q, l,−q,−l))D(l)

(A22)
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The first two terms in Eq. (A22) vanish (these terms correspond to the diagrams in Fig. 7

a),b) ). Thus, only the diagram in Fig. 7 c) contributes,

δΠI(qτ , q⃗) = |qτ |A(qτ , q⃗) +B(qτ , q⃗) (A23)

with

A(qτ , q⃗) = −
N

πvxvy

∑

ℓ

∫

dlτd2l⃗

(2π)3
Gℓ

1(l − q)Gℓ
2(l + q)D(l) (A24)

B(qτ , q⃗) =
N

πvxvy

∑

ℓ

∫

dlτd2 l⃗

(2π)3
|lτ |Gℓ

1(l − q)Gℓ
2(l + q)D(l) (A25)

The quantity A(qτ , q⃗) is logarithmically divergent in the UV . The coefficient of the di-

vergence may be extracted by setting the external momenta and r to zero. Then, from

Eq. (A16), we recognize,

A(qτ , q⃗)
UV
=

N

πvxvy

∑

ℓ

δΓ(p, q) =
4γ

nπ
tan−1 1

α
logΛ (A26)

Now, let us evaluate B. We temporarily keep only the contribution from the hot spot pair

ℓ = 1.

Bℓ=1(qτ , q⃗) =
1

πvxvy

∫

dlτd2l⃗

(2π)3
1

(vxlx + vyly − v⃗1 · q⃗ − iη(lτ − qτ ))

×
1

(−vxlx + vyly + v⃗2 · q⃗ − iη(lτ + qτ ))

|lτ |
(γ|lτ |+ l2x + l2y + r)

. (A27)

Note that the region |lτ | < |qτ | does not contain any UV divergences. Thus, to compute the

UV divergent part, we can confine our attention to the region |lτ | > |qτ |. In this case, the

two poles in ly coming from the fermion propagators in Eq. (A27) lie in the same half-plane;

we may choose to close the ly integration contour in the opposite half-plane, picking up the

pole from the bosonic propagator:

Bℓ=1(qτ , q⃗)
UV
=

1

πvxvy

∫

|lτ |>|qτ |

dlτdlx
(2π)2

1

vxlx − ivysgn(lτ )
√

γ|lτ |+ l2x + r − v⃗1 · q⃗

×
1

−vxlx − ivysgn(lτ )
√

γ|lτ |+ l2x + r + v⃗2 · q⃗
|lτ |

2
√

γ|lτ |+ l2x + r
(A28)
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Note that we may extend the integration over lτ in Eq. (A28) back to the whole real line

without influencing the UV part of the result. Thus,

Bℓ=1(qτ , q⃗)
UV
= −

1

πvxvy

∫ ∞

0

dlτ
2π

∫ ∞

−∞

dlx
2π

1

(vxlx − ivy
√

γlτ + l2x + r − v⃗1 · q⃗)

×
1

(vxlx + ivy
√

γl0 + l2x + r − v⃗2 · q⃗)
lτ

2
√

γlτ + l2x + r
+ c.c. (A29)

It is convenient to change variables to u =
√

γ|lτ |+ l2x + r,

Bℓ=1(qτ , q⃗)
UV
= −

1

πvxvyγ2

∫ ∞

−∞

dlx
2π

∫ ∞

√
l2x+r

du

2π

u2 − l2x − r

(vxlx − ivyu− v⃗1 · q⃗)(vxlx + ivyu− v⃗2 · q⃗)
+ c.c.

(A30)

The r in the lower limit of the integral over u may be dropped without influencing the UV

behaviour. We now go to polar coordinates, vxlx + ivyu = |v⃗|ρeiθ,

Bℓ=1(qτ , q⃗)
UV
= −

1

π(2πvxvyγ)2
|v⃗|2

vxvy

∫

ρdρ

∫ π−tan−1 α

tan−1 α

dθ
ρ2( 1α sin2 θ − α cos2 θ)− vxvy

|v⃗|2 r

(ρeiθ − v̂2 · q⃗)(ρe−iθ − v̂1 · q⃗)
+ c.c.

(A31)

The integral over ρ is quadratically divergent. Expanding the divergent part in q⃗ and r,

Bℓ=1(qτ , q⃗)
UV
= −

2

πn2

|v⃗|2

vxvy

∫

ρdρ

∫ π−tan−1 α

tan−1 α

dθ

[

(

1

α
sin2 θ − α cos2 θ

)(

1 +
1

ρ
(v̂1 + v̂2) · q⃗ cos θ

+
1

ρ2
(

(v̂1 · q⃗)(v̂2 · q⃗) + ((v̂1 · q⃗)2 + (v̂2 · q⃗)2) cos 2θ
)

)

−
vxvy
|v⃗|2

r

ρ2

]

(A32)

As usual, the term constant in q⃗ corresponds to a shift in the position of the critical point

and will be dropped below. The term linear in q⃗ vanishes under θ → π − θ, i.e. lx → −lx
(more rigorously, this term must vanish by symmetry, once the contributions from all 4 pairs

of hot spots are summed). Finally, the term quadratic in q⃗ and the term linear in r give

logarithmic divergences. Cutting off the integral over ρ at ρ ∼ Λ,

Bℓ=1(qτ , q⃗)
UV
=

4

πn2
logΛ

[

q2x
α2

(

tan−1 1

α
+

α

1 + α2

)

+ α2q2y

(

tan−1 1

α
−

α

1 + α2

)

+ r tan−1 1

α

]

(A33)

Now, summing over the four pairs of hot spots, we restore rotational invariance,

B(qτ , q⃗) =
2

πn

[

1

α
− α +

(

1

α2
+ α2

)

tan−1 1

α

]

q⃗2 logΛ+
4

πn
tan−1 1

α
r logΛ (A34)

We now compute the diagram in Fig. 7 d), which we label δΠII . This diagram is present

already in the Hertz-Millis theory and, being momentum independent, leads only to a renor-
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malization of r,

δΠII(q) = 5u

∫

dlτd2 l⃗

(2π)3
D(l)

UV
= −

5

N
ur

∫

dlτd2l⃗

(2π)3
1

(γ|lτ |+ l⃗2)2
= −

5ur

πNγ

∫

d2l⃗

(2π)2
1

l⃗2

= −
5

2π2N
ũr logΛ (A35)

Now combining Eqs. (A23), (A26), (A34), (A35) we obtain the UV part of the correction

to the boson propagator, Eq. (3.34).

Appendix B: Violatations of large-N counting

1. Boson-fermion vertex correction at three loops

In this section we compute the vertex correction in Fig. 9. As shown in section IV, an

attempt to evaluate this graph directly with bare fermion propagators results in infra-red

divergences. To cure this problem, we dress the fermion propagators by the one-loop self-

energy (3.26). For simplicity, we include only the imaginary part of the self-energy respon-

sible for the dynamics. The frequency independent real part responsible for the logarithmic

running of the velocity v will be ignored here. Thus, we use,

Gℓ
i(ω, k⃗) =

1

−i cfN g(ω, v̂ℓ
ī · k⃗) + v⃗ℓ

i · k⃗
(B1)

where 1̄ = 2, 2̄ = 1 and

g(ω, k) = sgn(ω)(
√

γ|ω|+ k2 − |k|), cf =
3

2π|v⃗|γ
(B2)

Then, the diagram in Fig. 9 is given by,

δΓφψ2ψ†
1

= −28N

∫

d3k

(2π)3
d3l1
(2π)3

d3l2
(2π)3

G−1
1 (k)G−1

2 (k − l1)G
−1
1 (k − l2)G

−1
2 (k)G1

2(l1)G
1
1(l2)

×D(l1)D(l2)D(l2 − l1) (B3)

The external fermions are taken to have hot spot index ℓ = 1, while the fermions in the

loop are taken to have ℓ′ = −1. As discussed in section IV, the contributions from ℓ′ = 2

and ℓ′ = 4 are not enhanced in N , while ℓ′ = 1 contributes a UV finite term of O(1) when

the external fermion momenta are chosen to lie on the Fermi surface. As we are mainly

interested in corrections to mean-field scaling, we only retain UV divergent contributions

below. Hence, all the external momenta of the diagram have been set to 0. Substituting the
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one-loop corrected propagators (B1), we obtain,

δΓφψ2ψ†
1

= −28N

∫

d3k

(2π)3
d3l1
(2π)3

d3l2
(2π)3

1

−i
cf
N g(kτ , v̂1 · k⃗)− v⃗2 · k⃗

×
1

−i
cf
N g(kτ , v̂2 · k⃗)− v⃗1 · k⃗

1

−i cfN g(kτ − l1τ , v̂1 · (k⃗ − l⃗1))− v⃗2 · (k⃗ − l⃗1)
×

1

−i cfN g(kτ − l2τ , v̂2 · (k⃗ − l⃗2))− v⃗1 · (k⃗ − l⃗2)
1

−i
cf
N g(l1τ , v̂1 · l⃗1) + v⃗2 · l⃗1

×
1

−i
cf
N g(l2τ , v̂2 · l⃗2) + v⃗1 · l⃗2

D(l1)D(l2)D(l1 − l2) (B4)

We may divide the spatial momenta into two groups: v̂1 · k⃗, v̂2 · k⃗, v̂2 · l⃗1, v̂1 · l⃗2 and v̂1 · l⃗1,
v̂2 · l⃗2. The singular manifold of the diagram is given by setting the momenta in the first

group to zero and can be parameterized by the two variables in the second group. We begin

by integrating over the first set of variables, picking up the contribution from the poles of the

fermion propagators. As this integration is saturated at momenta of O(1/N), we can neglect

the dependence of the boson propagators and fermion self-energies on these momenta. We

then obtain the result in terms of an integral over the singular manifold.

Due to the symmetry, G(l) = −G(−l), the contributions to the integral from kτ > 0 and

kτ < 0 are equal. Now, changing momentum variables to v̂1 · p⃗, v̂2 · p⃗, and integrating over

v̂2 · l⃗1, v̂1 · l⃗2,

δΓφψ2ψ†
1

= −7N
|v⃗|4

(vxvy)3

∫ ∞

0

dkτ

2π

∫

d(v̂1 · k⃗)d(v̂2 · k⃗)d(v̂1 · l⃗1)d(v̂2 · l⃗2)
(2π)4

[
∫ ∞

kτ

−
∫ 0

−∞

]

dl1τ

2π

[
∫ ∞

kτ

−
∫ 0

−∞

]

dl2τ

2π
D(l1)D(l2)D(l1 − l2)

∣

∣

∣

∣

v̂1 ·⃗l2=v̂2 ·⃗l1=0

1

−i
cf
N (g(l1τ , v̂1 · l⃗1)− g(kτ − l1τ , v̂1 · (k⃗ − l⃗1))) + v⃗2 · k⃗

×
1

i
cf
N g(kτ , v̂1 · k⃗) + v⃗2 · k⃗

1

−i cfN (g(l2τ , v̂2 · l⃗2)− g(kτ − l2τ , v̂2 · (k⃗ − l⃗2))) + v⃗1 · k⃗
×

1

i cfN g(kτ , v̂2 · k⃗) + v⃗1 · k⃗
(B5)

Now, performing the integral over v̂1 · k⃗, v̂2 · k⃗,

δΓφψ2ψ†
1

= −7N3 |v⃗|2

(vxvy)3c2f

∫ ∞

0

dkτ

2π

∫ ∞

kτ

dl1τ

2π

∫ ∞

kτ

dl2τ

2π

∫

d(v̂1 · l⃗1)d(v̂2 · l⃗2)
(2π)2

1

g(kτ , 0) + g(l1τ) + g(l1τ − kτ , v̂1 · l⃗1)
×

1

g(kτ , 0) + g(l2τ ) + g(l2τ − kτ , v̂2 · l⃗2)

×D(l1)D(l2)D(l1 − l2)

∣

∣

∣

∣

v̂1 ·⃗l2=v̂2 ·⃗l1=0
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Changing variables to l1,2τ = kτx1,2, l1,2y =
√
γkτy1,2,

δΓφψ2ψ†
1

=
1

2
X(α)

∫ ∞

0

dkτ

kτ
= X(α) logΛy (B6)

with

X(α) = −
7

18π2n

(

1

α
+ α

)2 ∫ ∞

1

dx1

∫ ∞

1

dx2

∫ ∞

−∞
dy1

∫ ∞

−∞
dy2

1
√

x1 + y21 +
√

x1 − 1 + y21 − 2|y|1 + 1

×
1

√

x2 + y22 +
√

x2 − 1 + y22 − 2|y|2 + 1
×

1

x1 +
1
4(

1
α + α)2y21

×
1

x2 +
1
4(

1
α + α)2y22

×
1

|x1 − x2|+ 1
4(

1
α + α)2(y21 + y22)− 1

2(
1

α2 − α2)y1y2
(B7)

2. Quartic vertex

In this section we evaluate the five loop correcton to the boson four-point function shown

in Fig. 18. We recall that by the particle-hole symmetry of our theory, diagrams with a

reversed direction of the two fermion loops have the same value. We focus only on the

diagrams where the fermions in the two loops come from opposite hot spots as these give

a result, which is of O(N3) and logarithmically divergent. To identify the coefficient of the

logarithmic divergence we may set all the external momenta to zero. Then by rotational

invariance each hot spot pair gives the same contribution. Moreover, we can also consider

the diagram as in Fig. 18 but with fermions 1 and 2 interchanged. By reflection symmetry,

this has the same UV divergence. Finally, we should be able to absorb the UV divergence

into the coefficient of the quartic vertex φ⃗2
2
, which specifies the spin structure,

δΓa1a2a3a4
4

UV
=

1

3
(δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3)δΓ3333

4 (B8)

and

δΓ3333
4 = −4 · 6 · 2 · n · S ·N2

∫

d3p1d3p2d3l1d3l2d3l3
(2π)15

D(l1)D(l3)D(l1 − l2)D(l2 − l3)

× G1
1(p1)G

1
2(p1)

2G1
1(p1 − l1)G

1
2(p1 − l2)G

1
1(p1 − l3)

× G−1
1 (p2)G

−1
2 (p2)

2G−1
1 (p2 − l1)G

−1
2 (p2 − l2)G

−1(p2 − l3) (B9)

with

S = tr(τ 3τ 3τaτ bτ cτd)tr(τ 3τ 3τaτ bτ cτd) = 84 (B10)

We will used the same strategy for evaluating the integral (B9) as for computing the

vertex correction in section B1. The singular manifold in the present case is specified by

vanishing p⃗1, p⃗2, v̂1 · l⃗1, v̂2 · l⃗2, v̂1 · l⃗3 and can be parameterized by the three momenta v̂2 · l⃗1,
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v̂1 · l⃗2, v̂2 · l⃗3. We will integrate explicitly over the first set of momenta and leave the result

as an integral over the later three momenta.

Let us call I(p1τ , p2τ ) the result of integrating over all momenta and frequencies in Eq.

(B9), except p1τ and p2τ . Then, using the particle-hole symmetry, G(p) = −G(−p), and

the inversion symmetry, G−1(pτ , p⃗) = G1(pτ ,−p⃗), we obtain I(p1τ , p2τ ) = I(−p1τ ,−p2τ ) and

I(p1τ , p2τ ) = I(p2τ , p1τ ). Thus,

δΓ3333
4 = −210 · 32 · 7 ·N2

(

|v⃗|2

2vxvy

)5 ∫ ∞

0

dp1τ

2π

∫ p1τ

−p1τ

dp2τ

2π

∫

dl1τdl2τdl3τ

(2π)3
∫

d(v̂1 · p⃗1)d(v̂2 · p⃗1)d(v̂1 · p⃗2)d(v̂2 · p⃗2)d(v̂1 · l⃗1)d(v̂2 · l⃗1)d(v̂1 · l⃗2)d(v̂2 · l⃗2)d(v̂1 · l⃗3)d(v̂2 · l⃗3)
(2π)10

1

−i cfN g(p1τ , 0) + v⃗1 · p⃗1
×

1

(−i cfN g(p1τ , 0) + v⃗2 · p⃗1)2
×

1

−i
cf
N g(p1τ − l1τ , v̂2 · l⃗1) + v⃗1 · (p⃗1 − l⃗1)

×
1

−i cfN g(p1τ − l2τ , v̂1 · l⃗2) + v⃗2 · (p⃗1 − l⃗2)
×

1

−i cfN g(p1τ − l3τ , v̂2 · l⃗3) + v⃗1 · (p⃗1 − l⃗3)

×
1

−i cfN g(p2τ , 0)− v⃗1 · p⃗2
×

1

(−i cfN g(p2τ , 0)− v⃗2 · p⃗2)2
×

1

−i
cf
N g(p2τ − l1τ , v̂2 · l⃗1)− v⃗1 · (p⃗2 − l⃗1)

×
1

−i cfN g(p2τ − l2τ , v̂1 · l⃗2)− v⃗2 · (p⃗2 − l⃗2)
×

1

−i cfN g(p2τ − l3τ , v̂2 · l⃗3)− v⃗1 · (p⃗2 − l⃗3)

× D(l1)D(l3)D(l1 − l2)D(l2 − l3) (B11)

Integrating over v̂1 · l⃗1, v̂2 · l⃗2, v̂1 · l⃗3,

δΓ3333
4 = −i210 · 32 · 7 ·N2 |v⃗|7

(2vxvy)5

∫ ∞

0

dp1τ

2π

∫ p1τ

−p1τ

dp2τ

2π
[
∫ ∞

p1τ

−
∫ p2τ

−∞

]

dl1τ

2π

[
∫ ∞

p1τ

−
∫ p2τ

−∞

]

dl2τ

2π

[
∫ ∞

p1τ

−
∫ p2τ

−∞

]

dl3τ

2π
∫

d(v̂1 · p⃗1)d(v̂2 · p⃗1)d(v̂1 · p⃗2)d(v̂2 · p⃗2)d(v̂2 · l⃗1)d(v̂1 · l⃗2)d(v̂2 · l⃗3)
(2π)7

1

−i cfN g(p1τ , 0) + v⃗1 · p⃗1
×

1

(−i cfN g(p1τ , 0) + v⃗2 · p⃗1)2

×
1

−i cfN g(p2τ , 0)− v⃗1 · p⃗2
×

1

(−i cfN g(p2τ , 0)− v⃗2 · p⃗2)2

×
1

−i cfN (g(p1τ − l1τ , v̂2 · l⃗1) + g(p2τ − l1τ , v̂2 · l⃗1)) + v⃗1 · (p⃗1 − p⃗2)

×
1

−i cfN (g(p1τ − l2τ , v̂1 · l⃗2) + g(p2τ − l2τ , v̂1 · l⃗2)) + v⃗2 · (p⃗1 − p⃗2)

×
1

−i cfN (g(p1τ − l3τ , v̂2 · l⃗3) + g(p2τ − l3τ , v̂2 · l⃗3)) + v⃗1 · (p⃗1 − p⃗2)

× D(l1)D(l3)D(l1 − l2)D(l2 − l3)|v̂1 ·⃗l1=v̂2 ·⃗l2=v̂1 ·⃗l3=0 (B12)
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Now, integrating over v̂1 · p⃗1, v̂2 · p⃗1,

δΓ3333
4 = −i210 · 32 · 7 ·N2 |v⃗|5

(2vxvy)5

∫ ∞

0

dp1τ

2π

∫ p1τ

−p1τ

dp2τ

2π

∫ ∞

p1τ

dl2τ

2π
∫

d(v̂1 · p⃗2)d(v̂2 · p⃗2)d(v̂2 · l⃗1)d(v̂1 · l⃗2)d(v̂2 · l⃗3)
(2π)5

1

−i cfN g(p2τ , 0)− v⃗1 · p⃗2
×

1

(−i cfN g(p2τ , 0)− v⃗2 · p⃗2)2

×
1

(−i cfN (g(p1τ , 0) + g(l2τ − p1τ , v̂1 · l⃗2) + g(l2τ − p2τ , v̂1 · l⃗2)) + v⃗2 · p⃗2)2

×

[

∫ ∞

p1τ

dl1τ

2π

∫ ∞

p1τ

dl3τ

2π

1

i cfN (g(p1τ , 0) + g(l1τ − p1τ , v̂2 · l⃗1) + g(l1τ − p2τ , v̂2 · l⃗1))− v⃗1 · p⃗2

×
1

i cfN (g(p1τ , 0) + g(l3τ − p1τ , v̂2 · l⃗3) + g(l3τ − p2τ , v̂2 · l⃗3))− v⃗1 · p⃗2

+

∫ ∞

p1τ

dl1τ

2π

∫ p2τ

−∞

dl3τ

2π

1

−i cfN (g(p1τ , 0) + g(l1τ − p1τ , v̂2 · l⃗1) + g(l1τ − p2τ , v̂2 · l⃗1)) + v⃗1 · p⃗2

×
1

−i cfN (g(l1τ − p1τ , v̂2 · l⃗1) + g(l1τ − p2τ , v̂2 · l⃗1) + g(p1τ − l3τ , v̂2 · l⃗3) + g(p2τ − l3τ , v̂2 · l⃗3))

+

∫ p2τ

−∞

dl1τ

2π

∫ ∞

p1τ

dl3τ

2π

1

−i
cf
N (g(p1τ , 0) + g(l3τ − p1τ , v̂2 · l⃗3) + g(l3τ − p2τ , v̂2 · l⃗3)) + v⃗1 · p⃗2

×
1

−i cfN (g(p1τ − l1τ , v̂2 · l⃗1) + g(p2τ − l1τ , v̂2 · l⃗1) + g(l3τ − p1τ , v̂2 · l⃗3) + g(l3τ − p2τ , v̂2 · l⃗3))

]

D(l1)D(l3)D(l1 − l2)D(l2 − l3)|v̂1 ·⃗l1=v̂2 ·⃗l2=v̂1 ·⃗l3=0 (B13)

Observe that under l1 ↔ l3 the first term in the square brackets is invariant, while the

second and third terms map into each other. Utilizing this fact and integrating over v̂1 · p⃗2,
v̂2 · p⃗2,

δΓ3333
4 = −212 · 32 · 7 ·N7 |v⃗|3

(2vxvycf )5

∫ ∞

0

dp1τ

2π

∫ p1τ

0

dp2τ

2π

∫ ∞

p1τ

dl1τ

2π

∫ ∞

p1τ

dl2τ

2π
∫

d(v̂2 · l⃗1)d(v̂1 · l⃗2)d(v̂2 · l⃗3)
(2π)3

1

g(p1τ , 0) + g(p2τ , 0) + g(l1τ − p1τ , v̂2 · l⃗1) + g(l1τ − p2τ , v̂2 · l⃗1)

×
1

(g(p1τ , 0) + g(p2τ , 0) + g(l2τ − p1τ , v̂1 · l⃗2) + g(l2τ − p2τ , v̂1 · l⃗2))3

×

[

∫ l1τ

p1τ

dl3τ

2π

1

g(p1τ , 0) + g(p2τ , 0) + g(l3τ − p1τ , v̂2 · l⃗3) + g(l3τ − p2τ , v̂2 · l⃗3)

+

∫ p2τ

−∞

dl3τ

2π

1

g(l1τ − p1τ , v̂2 · l⃗1) + g(l1τ − p2τ , v̂2 · l⃗1) + g(p1τ − l3τ , v̂2 · l⃗3) + g(p2τ − l3τ , v̂2 · l⃗3)

]

D(l1)D(l3)D(l1 − l2)D(l2 − l3)|v̂1 ·⃗l1=v̂2 ·⃗l2=v̂1 ·⃗l3=0 (B14)

We now introduce dimensionless variables, p2τ = xp1τ , liτ = yip1τ , v̂2 · l⃗1 =
√
γp1τz1,
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v̂1 · l⃗2 =
√
γp1τz2, v̂2 · l⃗3 =

√
γp1τz3. Then,

δΓ3333
4 =

1

2
N3Y (α)γ

∫ ∞

0

dp1τ

p1τ
= N3Y (α)γ logΛ (B15)

with

Y (α) = −
56

27π2

(

1

α
+ α

)4 ∫ 1

0

dx

∫ ∞

1

dy1

∫ ∞

1

dy2

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2

∫ ∞

−∞
dz3

1

1 +
√
x+

√

y1 − 1 + z21 +
√

y1 − x+ z21 − 2|z1|

×
1

(1 +
√
x+

√

y2 − 1 + z22 +
√

y2 − x+ z22 − 2|z2|)3

×

[

∫ y1

1

dy3
1

1 +
√
x+

√

y3 − 1 + z23 +
√

y3 − x+ z23 − 2|z3|

+

∫ x

−∞
dy3

1
√

y1 − 1 + z21 +
√

y1 − x+ z21 +
√

1− y3 + z23 +
√

x− y3 + z23 − 2|z1|− 2|z3|

]

×
1

y1 +
1
4(

1
α + α)2z21

1

|y3|+ 1
4(

1
α + α)2z23

1

|y1 − y2|+ 1
4(

1
α + α)2(z21 + z22) +

1
2(α

2 − 1
α2 )z1z2

×
1

|y2 − y3|+ 1
4(

1
α + α)2(z22 + z23) +

1
2(α

2 − 1
α2 )z2z3

(B16)

3. Pairing vertex

This appendix will describe the direct evaluation of the pairing vertex correction in

Eq. (5.5). We first attempt to perform the calculation using bare fermion propagators,

δΓV ψ†ψ† =
−3µ

N |v⃗|2

∫

dlτdl⊥dl∥
(2π)3

1

γ|lτ |+ l2⊥ + l2∥
×

1

l⊥ − v̂2 · k⃗1 − i
η

|v⃗|
(lτ − k1τ )

×
1

l⊥ + v̂2 · k⃗−1 + i
η

|v⃗|
(lτ + k−1τ )

where we’ve introduced variables l⊥ = v̂2 · l⃗, l∥ = ϵij(v̂2)ilj . For simplicity, let us choose

k1τ = k−1τ = ω > 0. We now perform the integral over l⊥. For |lτ | < ω both poles in the

fermion propagators are in the same half-plane and we can pick up just the pole from the

bosonic propagator. In the opposite regime, |lτ | > ω, we get contributions from both the

54



bosonic and fermionic poles. Thus,

δΓV ψ†ψ† =

−
3µ

N |v⃗|2

[

−
∫ ∞

0

dlτ
2π

∫

dl∥
2π

1
√

γlτ + l2∥

1
√

γlτ + l2∥ + iv̂2 · k⃗1

1
√

γlτ + l2∥ − iv̂2 · k⃗−1

(B17)

+
|v⃗|
2η

∫ ∞

ω

dlτ
2π

∫

dl∥
2π

(

1

lτ − i v⃗2η · (k⃗1 + k⃗−1)

1

γlτ + l2∥ + (v̂2 · k⃗1)2
(B18)

+
1

lτ + i v⃗2η · (k⃗1 + k⃗−1)

1

γlτ + l2∥ + (v̂2 · k⃗−1)2

)

]

(B19)

The contribution from the bosonic pole in Eq. (B17) gives an expected logarithmic diver-

gence,

δbosΓV ψ†ψ† ∼
3µ

Nπ2γ|v⃗|2
log

Λ

|v̂2 · k⃗|
(B20)

On the other hand, the contribution from the fermionic poles in Eqs. (B18),(B19) gives

a much stronger infra-red singularity. If we set the total momentum of the fermion pair

k⃗1 + k⃗−1 to zero, then

δferΓV ψ†ψ† ∼ −
3µ

4πNη|v⃗2 · k⃗1|
f

(

γ|ω|
|v̂2 · k⃗1|2

)

(B21)

with

f(a) =

∫ ∞

a

dx
1

x

1√
x+ 1

(B22)

If the total pair momentum is non-vanishing, in particular, if γ
η |v⃗2 ·(k⃗1+k⃗−1)| ≫ (v̂2 ·k⃗1)2, γω,

then,

δferΓV ψ†ψ† = −
3µ

4N |v⃗|
√
2γη

1
√

|v⃗2 · (k⃗1 + k⃗−1)|
(B23)

As usual, we cure the strong infra-red divergences by using a one-loop dressed fermion

propagator (B1). Then,

δΓV ψ†ψ†(k1, k−1) = −
3µ

N |v⃗|2

∫

d3l

(2π)3
1

γ|lτ |+ l⃗2
×

1

v̂2 · (⃗l − k⃗1)− i
cf

N |v⃗|
g(lτ − k1τ , v̂1 · (⃗l − k⃗1))

×
1

v̂2 · (⃗l + k⃗−1) + i
cf

N |v⃗|
g(lτ + k−1τ , v̂1 · (⃗l + k⃗−1))

For simplicity, we take the external fermion momenta to lie at the hot spots, k⃗1 = k⃗−1 = 0.

Moreover, as before, we choose the external frequencies, k1τ = k−1τ = ω > 0. Switching to
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variables, l⊥, l∥, we perform the integral over l⊥. As we saw above, the contribution from

the pole in the bosonic propagator could be calculated without dressing the fermion Green’s

function and was of O(1/N) - we drop this piece below. On the other hand, as we will see

the contribution from the poles in fermionic propagators is of O(1) in N . Moreover, since

l⊥ ∼ O(1/N) at these poles, we may ignore the dependence of the fermion self-energy on

l⊥, which gives, v̂1 · l⃗ = 2α
α2+1 l∥. In this manner, we obtain,

δΓV ψ†ψ† = −
6µ

cf |v⃗|

∫ ∞

ω

dlτ
2π

∫

dl∥
2π

1

γlτ + l2∥

×
1

g(lτ − ω, 2α
α2+1 l∥) + g(lτ + ω, 2α

α2+1 l∥)
(B24)

We now perform the integral over lτ . This integral is convergent in the ultra-violet. However,

when ω → 0, it is logarithmically divergent in the infra-red. This infra-red divergence comes

from the region γlτ ≪ l2∥. Changing variables to γlτ = xl2∥, we obtain,

δΓV ψ†ψ† = −
3µ

π2γ|v⃗|cf

∫ ∞

0

dl∥
l∥

∫

γω

l2
∥

dx

x+ 1

1
√

x+ ( 2α
α2+1)

2 − γω
l2
∥
+
√

x+ ( 2α
α2+1)

2 + γω
l2
∥
− 4α

α2+1

(B25)

For l2∥ ≫ γω, performing the integral over x to logarithmic accuracy,

δΓV ψ†ψ† ≈ −
6µα

π2γ|v⃗|cf(α2 + 1)

∫ ∞

√
γω

dl∥
l∥

log

(

l2∥
γω

)

= −
µα

π(α2 + 1)
log2

(

Λ2

γω

)

(B26)

4. Density vertex

In this appendix, we compute the one-loop renormalization of the density-wave vertex,

shown in Fig. 20b),

δΓOψψ†(k1, k−1) = 3µ

∫

d3l

(2π)3
D(l)G1

2(k1 − l)G−1
2 (k−1 − l). (B27)

If we ignore the effects of Fermi-surface curvature, G(l) = −G(−l), and Eq. (B27) reduces to

its counterpart in the superconducting channel with k−1 → −k−1. In the present calculation,

we will keep the effects of the Fermi-surface curvature using a propagator,

Gℓ
i(l) =

1

− icf
N g(lτ , v̂ℓ

ī · l⃗) + v⃗ℓ
i · l⃗ + (n̂ℓ

∥,i · l⃗)2
(B28)

Here, we ignore any dressing of the curvature by the interactions.

For simplicity, we set external momenta to zero and choose k1τ = −k−1τ = ω > 0. As in

Appendix B 3, we introduce variables l⊥ = v̂2 · l⃗, l∥ = ϵij(v̂2)ilj. Proceeding as in Section V,

56



we keep only the contribution to the integral (B27) from the Fermi liquid regime, γlτ ≪ l2∥.

Then,

δΓOψψ† =
3µ

N

∫

dl∥
2π

∫

γ|lτ |!l2∥

dlτ
2π

∫

dl⊥
2π

1

l2∥
1

iZ−1(l∥)(lτ − ω)− |v⃗|l⊥ − 1
2m l2∥

1

iZ−1(l∥)(lτ + ω) + |v⃗|l⊥ − 1
2m l2∥

(B29)

Performing the integral over l⊥,

δΓOψψ† = −
3µ

N |v⃗|

∫

dl∥
2π

∫ l2∥/γ

ω

dlτ
2π

Z(l∥)

l2∥

lτ

l2τ +

(

Z(l∥)l
2

∥

2m

)2 (B30)

Notice that the Fermi-surface curvature is present in the denominator of Eq. (B30). This

is in contrast to the corresponding calculation in the superconducting channel, where the

Fermi-surface curvature drops out. Performing the integral over lτ ,

δΓOψψ† = −
3µ

2πN |v⃗|

∫ ∞

√
γω

dl∥
2π

Z(l∥)

l2∥
log

l4∥

(γω)2 +

(

γZ(l∥)l
2

∥

2m

)2 (B31)

where we have ignored terms subleading in l∥ in the numerator of the logarithm. Recall,

Z(l∥) ∼ N |v⃗|l∥. Hence, for l∥ ≪ (mω/N |v⃗|)1/3 the lτ integral is cut-off in the infrared by

the external frequency and the Fermi surface curvature may be neglected. On the other

hand, for l∥ ≫ (mω/N |v⃗|)1/3 the integral is cut-off by the curvature. By comparison, in the

superconducting channel the integral is cut-off by the external frequency in both regimes

resulting in a stronger enhancement. Notice that the cross-over scale (mω/N |v⃗|)1/3 is much

larger than the infra-red cut-off of the l∥ integral
√
γω. Evaluating the integral over l∥ to

leading logarithmic accuracy,

δΓOψψ† = −
µα

3π(α2 + 1)
log2

(

Λ2

γω

)

(B32)
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