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Abstract

We model the underdoped cuprates using fermions moving in a background with local antifer-

romagnetic order. The antiferromagnetic order fluctuates in orientation, but not in magnitude,

so that there is no long-range antiferromagnetism, but a ‘topological’ order survives. The normal

state is described as a fractionalized Fermi liquid (FL*), with electron-like quasiparticles coupled

to the fractionalized excitations of the fluctuating antiferromagnet. The electronic quasiparticles

reside near pocket Fermi surfaces enclosing total area x (the dopant density), centered away from

the magnetic Brillouin zone boundary. The violation of the conventional Luttinger theorem is

linked to a ‘species doubling’ of these quasiparticles. We describe phenomenological theories of the

pairing of these quasiparticles, and show that a large class of mean-field theories generically dis-

plays a nodal-anti-nodal ‘dichotomy’: the interplay of local antiferromagnetism and pairing leads

to a small gap near the nodes of the d-wave pairing along the Brillouin zone diagonals, and a large

gap in the anti-nodal region.
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I. INTRODUCTION

The nature of the ground state in the underdoped regime of the hole-doped cuprate

superconductors remains a central open issue. Angle resolved photoemision spectroscopy

(ARPES) and scanning tunneling microscopy (STM) have been the main tools to explore

such a regime. In both probes, an unexpected angular dependence of the electron spectral

gap function has been revealed: a ‘dichotomy’ between the nodal and anti-nodal regions of

the Brillouin zone in the superconducting state1–5. Specifically, this dichotomy is realized by

deviations in the angular dependence of the gap from that of a short-range d-wave pairing

amplitude ∼ (cos kx − cos ky).

This paper will describe the superconducting instabilities of a recently developed model6

of the normal state of the underdoped cuprates based upon a theory of fluctuating local

antiferromagnetic order7–10. A related normal state model of fluctuating antiferromagnets

has been discussed by Khodas and Tsvelik11, who obtained results on the influence of spin-

wave fluctuations about the ordered state similar to ours6. These results have been found

to agree well with ARPES observations12–15. Another approach using fluctuating antifer-

romagnetism to model the underdoped cuprates has been discussed recently by Sedrakyan

and Chubukov16. We will also connect with the scenario emerging from recent dynamical

mean-field theory (DMFT) studies17–19.

The theory of Ref. 6 describes the normal state in the underdoped regime as a fractional-

ized Fermi liquid (FFL or FL*), although this identification was not explicitly made in that

paper. So we begin our discussion by describing the the structure of the FL* phase.

The FL* phase is most naturally constructed20,21 using a Kondo lattice model describing

a band of conduction electrons coupled to lattice of localized spins arising from a half-filled

d (or f) band. The key characteristics of the FL* are (i) a ‘small’ Fermi surface whose

volume is determined by the density of conduction electrons alone, and (ii) the presence

of gauge and fractionalized neutral spinon excitations of a spin liquid. In the simplest

picture, the FL* can be viewed in terms of two nearly decoupled components, a small Fermi

surface of conduction electrons and a spin liquid of the half-filled d band. The FL* should

be contrasted from the conventional Fermi liquid, in which there is a ‘large’ Fermi surface

whose volume counts both the conduction and d electrons: such a heavy Fermi liquid phase

has been observed in many ‘heavy fermion’ rare-earth intermetallics. Recent experiments
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on YbRh2(Si0.95Ge0.05)2 have presented evidence22 for an unconventional phase, which could

possibly be a FL*.

A concept related to the FL* is that of a “orbital-selective Mott transition”23 (OSMT),

as discussed in the review by Vojta24. For latter, we begin with a multi-band model, like

the lattice Anderson model of conduction and d electrons, and have a Mott transition to

an insulating state on only a subset of the bands (such as the d band in the Anderson

model). The OSMT has been described so far using dynamical mean field theory (DMFT),

which has an over-simplified treatment of the Mott insulator. In finite dimensions, any such

Mott insulator must not break lattice symmetries which increase the size of a unit cell, for

otherwise the state reached by the OSMT is indistinguishable from a conventionally ordered

state. Thus the Mott insulator must be realized as a fractionalized spin liquid with collective

gauge excitations; such gauge excitations are not present in the DMFT treatment. With a

Mott insulating spin liquid, the phase reached by the OSMT becomes a FL*.

Returning our discussion to the cuprates, there is strong ARPES evidence for only a single

band of electrons, with a conventional Luttinger volume of 1+x holes at optimal doping and

higher (here x is the density of holes doped into the half-filled insulator). Consequently, the

idea of an OSMT does not seem directly applicable. However, Ferrero et al.
18 argued that

an OSMT could occur in momentum space within the context of a single-band model. They

separated the Brillouin zone into the ‘nodal’ and ‘anti-nodal’ regions, and represented the

physics using a 2-site DMFT solution. Then in the underdoped region, the anti-nodal region

underwent a Mott transition into an insulator, while the nodal regions remained metallic.

A similar transition was seen by Sordi et al. in studies with a 4-site cluster19. While these

works offers useful hints on the structure of the intermediate energy physics, ultimately the

DMFT method does not allow full characterization of the different low energy quasiparticles

or the nature of any collective gauge excitations.

We turn then to the work of Ref. 6, who considered a single band model of a fluctuating

antiferromagnet. Their results amount to a demonstration that a FL* state can be con-

structed also in a single band model, and this FL* state will form the basis of the analysis of

the present paper. The basic idea is that the large Fermi surface is broken apart into pockets

by local antiferromagnetic Néel order. We allow quantum fluctuations in the orientations of

the Néel order so that there is no global, long-range Néel order. However, spacetime ‘hedge-

hog’ defects in the Néel order are suppressed, so that a spin liquid with bosonic spinons and
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a U(1) gauge-boson excitation is realized25,26. Alternatively, the Néel order could develop

spiral spin correlations, and suppressing Z2 vortices in the spiral order realizes a Z2 spin

liquid with bosonic spinons27,28. The Fermi pockets also fractionalize in this process, and we

are left with Fermi pockets of spinless fermions; the resulting phase was called the algebraic

charge liquid8–10 (ACL). Depending upon the nature of the gauge excitations of the spin

liquid, the ACL can have different varieties: the U(1)-ACL and SU(2)-ACL were described

in Refs.10, and Z2-ACL descends from these by a Higgs transition involving a scalar with

U(1) charge 2, as in the insulator27,28.

Although these ACLs are potentially stable phases of matter, they are generically suscep-

tible to transformation into FL* phases. As was already noted in Ref. 8, there is a strong

tendency for the spinless fermions to found bound states with the bosonic spinons, leading

to pocket Fermi surfaces of quasiparticles of spin S = 1/2 and charge ±e. Also, as we

will review below, there is a ‘species-doubling’ of these bound states7,8,29, and this is crucial

in issues related to the Luttinger theorem, and to our description of the superconducting

state in the present paper. When the binding of spinless fermions to spinons is carried to

completion, so that Fermi surfaces of spinless fermions has been completely depleted, we are

left with Fermi pockets of electron/hole-like quasiparticles which enclose a total volume of

precisely x holes6. The resulting phase then has all the key characteristics of the FL* noted

above, and so we identify it here as a FL*. The U(1)-ACL and Z2-ACL above lead to the

conducting U(1)-FL* and Z2-FL* states respectively. Ref. 6 presented a phenomenological

Hamiltonian to describe the band structure of these FL* phases. Thus this is an explicit

route to the appearance of an OSMT in a single-band, doped antiferromagnet: it is the local

antiferromagnetic order which differentiates regions of the Brillouin zone, and then drives

a Mott transition into a spin liquid state, leaving behind Fermi pockets of holes/electrons

with a total volume of x holes.

We should note here that the U(1)-FL* state with a U(1) spin liquid is ultimately unstable

to the appearance of valence bond solid (VBS) order at long scales30. However the Z2-FL* is

expected to describe a stable quantum ground state. The analysis of the fermion spectrum

below remains the same for the two cases.

Phases closely related to the U(1)-FL* and Z2-FL* appeared already in the work of

Ref. 7. This paper examined ‘quantum disordered’ phases of the Shraiman-Siggia model31,

and found states with small Fermi pockets, but no long-range antiferromagnetic order. The
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antiferromagnetic correlations where either collinear or spiral, corresponding to the U(1)

and Z2 cases. However, the topological order in the sector with neutral spinful excitations

was not recognized in this work: these spin excitations were described in terms of a O(3)

vector, rather than SU(2) spinor description we shall use here. Indeed, the topological order

is required in such phases, and is closely linked to the deviation from the traditional volume

of the Fermi surfaces.20,21

We also note another approach to the description of a FL* state in a single band model,

in the work of Ribeiro, Wen, and Ran32–34. They obtain a small Fermi surface of electron-

like “dopons” moving in spin-liquid background. However, unlike our approach with gapped

bosonic spinons (and associated connections with magnetically ordered phases), their spinons

are fermionic and have gapless Dirac excitation spectra centered at (±π/2,±π/2).

We will take the U(1)-FL* or Z2-FL* state with bosonic spinon spin liquid as our model

for the underdoped cuprates in the present paper. We will investigate its pairing properties

using a simple phenomenological model of d-wave pairing. Our strategy will be to use the

simplest possible model with nearest-neighbor pairing with a d-wave structure, constrained

by the requirement that the full square lattice translational symmetry and spin-rotation

symmetry be preserved. Even within this simple context, we will find that our mean-field

theories of the FL* state allows us to easily obtain the ‘dichotomy’ in the pairing amplitude

over a very broad range of parameters. We also note that the pocket Fermi surfaces of

the FL* state will exhibit quantum oscillations in an applied magnetic field with a Zeeman

splitting of free spins, and this may be relevant to recent observations35.

We mention here our previous work36–38 on pairing in the parent ACL phase. These

papers considered pairing of spinless fermions, while the spin sector was fully gapped: this

therefore led to an exotic superconductor in which the Bogoliubov quasiparticles did not

carry spin. In contrast, our analysis here will be on the pairing instability of the FL* state,

where we assume that the fermions have already bound into electron-like quasiparticles, as

discussed above and in more detail in Ref. 6. The resulting Bogoliubov quasiparticles then

have the conventional quantum numbers.

Our primary results are illustrated in Fig. 1. We also show a comparison to a conven-

tional state with co-existing spin density wave (SDW) and d-wave pairing, and to recent

experiments. The left panels illustrate Fermi surface structures in the normal state. The

right panels show the angular dependence of the electron gap in the superconducting states:
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FIG. 1: Color online: Our new results for the FL* phase (second row), compared with the Hartree-
Fock/BCS theory (top row) and experiments (bottom row). The left panels illustrate Fermi surface
structures in the normal state. The right panels shows the angular dependence of the electron gap
in the superconducting states. (a) Spectral weight of the electron in the normal state with SDW
order at wavevector K = (π,π). Here we simply apply a potential which oscillates at (π,π)
to the large Fermi surface in the overdoped region. (b) Minimum electron gap as a function of
azimuthal angle in the Brillouin zone. The full (red) line is the result with a pairing amplitude
∼ (cos kx − cos ky) co-existing with SDW order, while the dashed (black) line is the normal SDW
state. (c) Spectral weight of the electron in the FL* state, with parameters as in Fig. 3; note that
the pocket is no longer centered at (π/2,π/2). (d) Spectral gap functions in the superconducting
(full (red) line) and normal (dashed (black) line) states of Fig. 3. (e) The Fermi pocket from a
ARPES experiment15; related observations appear in Refs. 12,13. (f) The dichotomy of the spectral
gap function from the observations of Ref. 3. See the text for more details.
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for each angle θ, we determine the minimum electron spectral gap along that direction in

the Brillouin zone, and plot the result as a function of θ.

The results of the traditional Hartree-Fock/BCS theory on SDW order and d-wave pairing

appear in (a) and (b). The SDW order has wavevector K = (π, π), and the d-wave pairing is

the conventional (cos kx − cos ky) form. In the normal state, the Fermi pocket is centered at

the magnetic Brillouin zone boundary, as shown in (a). An important feature of this simple

theory is that the state with co-existing SDW and d-wave pairing has its maximum gap at

an intermediate angle, as shown in (b): this reflects the “hot spots” which are points on the

Fermi surface linked by the SDW ordering wavevector K. No experiment has yet seen such

a maximum at an intermediate angle.

One set of our typical results for the FL* theory are shown in (c) and (d). As it was shown

in the previous work6, the normal state in (c) shows a Fermi pocket which is clearly not

centered the magnetic zone boundary (at (±π/2,±π/2)); furthermore, its spectral weight

is not the same along the Fermi surface, and has a arc-like character. At the same time,

(d) shows the angular dependence of the electron gap in the superconducting state; unlike

the SDW theory, this FL* state has a pairing amplitude which is a monotonic function of

angle and has its maximum at the antinodal point. It also shows the “dichotomy” in the

gap amplitude between the nodal and anti-nodal regions. For the purpose of comparison, we

illustrate two experimental results in (e) and (f). Clearly, our mean-field theory can provide

reasonable explanation for the experimental data in both the normal and superconducting

states, and we believe it is a candidate for the under-doped cuprate materials.

The structure of this paper is following. In Section II, we introduce the normal state

Hamiltonian for the fermions, and investigate the symmetry transformations of possible

pairings. We classify possible pairings which preserve full square lattice symmetry, and

introduce a low energy effective pairing Hamiltonian. In Section III, spectral gap functions

for various cases are illustrated assuming dx2−y2 wave pairing. It is shown that our model

can reproduce the dichotomy behavior, and we compare our theory with the YRZ model

proposed by Yang, Rice and Zhang39–43, and the related analyses by Wen and Lee44,45. For

completeness, it is shown that U(1) gauge fluctuation can mediate the needed d wave pairing

in Appendix C.
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II. EFFECTIVE HAMILTONIAN

The basic setup of the FL* state has been reviewed in some detail in Refs. 6,10, and so

we will be very brief here. The starting point7,29,31,46–49 is to transform from the underlying

electrons ciα to a rotating reference frame determined by a matrix R acting on spinless

fermions ψp.

ciα = Ri
αpψp. (1)

Rαp is a SU(2) matrix with α =↑, ↓ for spin index, p = ± for gauge index, and we parame-

terize

Ri =



zi↑ −z∗i↓

zi↓ z∗i↑



 (2)

with |zi|2 = 1 . In the ACL state, the bosonic zα and the fermionic ψp are assumed to be

the independent quasiparticle excitations carrying spin and charge respectively. Then we

examined the formation of bound states between these excitations. A key result was that

was a “doubling” of electron-like quasiparticles, with the availability of two gauge neutral

combinations,

Fiα ∼ ziαψi+ , Giα ∼ εαβz
∗
iβψi−. (3)

This doubling is a reflection of the ‘topological order’ in the underlying U(1) or Z2 spin

liquid; it would not be present e.g. in a SU(2) spin liquid10. The Fiα and the Giα will be

the key actors in our theory of the FL* phase here. Their effective Hamiltonian is strongly

constrained by their non-trivial transformations under the space group of the Hamiltonian,

which are listed in Table I.

From these symmetry transformations, we can write down the following effective
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Tx Rdual
π/2 Idualx T

Fα Gα Gα Gα εαβF †
β

Gα Fα Fα Fα εαβG†
β

Cα Cα Cα Cα εαβC†
β

Dα Dα Dα Dα εαβD†
β

TABLE I: Transformations of the lattice fields under square lattice symmetry operations. Tx:
translation by one lattice spacing along the x direction; Rdual

π/2 : 90◦ rotation about a dual lattice

site on the plaquette center (x → y, y → −x); I
dual
x : reflection about the dual lattice y axis

(x → −x, y → y); T : time-reversal, defined as a symmetry (similar to parity) of the imaginary
time path integral. Note that such a T operation is not anti-linear.6

Hamiltonian6

Htot = H0 +Hint

H0 = −
�

ij

tij(F
†
iαFjα +G†

iαGjα) + λ
�

i

(−1)ix+iy(F †
iαFiα −G†

iαGiα)

−
�

i<j

t̃ij (F
†
iαGjα +G†

iαFjα). (4)

Here tij is taken to be similar to the bare electron dispersion, characterizing the Fermi surface

in the over-doped region; λ is a potential due to the local antiferromagnetic order; and t̃ij

is the analog of the Shraimain-Siggia term31 which couples the two species of electron-like

quasiparticles F and G to each other; it is this term which is responsible for shifting the

center of the pocket Fermi surfaces in the normal state away from the magnetic Brillouin zone

boundary. Hint is the invariant interaction Hamiltonian: there could be many interaction

channels, which induces superconductivity of the (F,G) particles, such as negative contact

interaction, interaction with other order parameters, and the gauge field fluctuation. In this

paper, we do not specify particular interaction and we assume that pairings are induced.

Then we focus on studying properties of possible pairings and their consequences on physical

quantities such as spectral gaps. In Appendix C, we illustrate one possible channel to achieve

such superconductivity.
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For some of our computations, it is more convenient to use an alternative basis for the

fermion operators

Ci,α =
1√
2
(Fi,α +Gi,α) , Di,α = (−1)ix+iy 1√

2
(Fi,α −Gi,α). (5)

The C and D fermions have the same space-group transformation properties as the physical

electrons. Then, the Hamiltonian becoms

H0 =
�

k,α



Ck,α

Dk,α




† 

�c(k) λ

λ �d(k)







Ck,α

Dk,α



 (6)

We chose energy dispersion’s forms following the previous work6, with �(k) a Fourier trans-

form of tij and �̃(k) a Fourier transform of t̃ij, and K = (π, π):

�(k) = −2t1(cos kx + cos ky) + 8t2 cos kx cos ky − 2t3(cos 2kx + cos 2ky)

�̃(k) = −t̃0 − 2t̃1(cos kx + cos ky) + 8t̃2 cos kx cos ky − 2t̃3(cos 2kx + cos 2ky)

�c(k) = �(k) + �̃(k)− µ

�d(k) = �(k+K)− �̃(k+K)− µ. (7)

The C and D particles have spin and electric charges like electrons. Therefore, any linear

combination can be a candidate for the physical electron degree of freedom. In the previous

work6, we matched the C particles to the electrons of large Fermi surface state without

antiferromagnetism; following this, for simplicity we will take the C to be the physical

electron, but our results do not change substantially with other linear combinations. Then

the D particles are emergent fermion induced by fluctuating SDW order. Note that the

C,D particles live in the full first Brillouin zone of the square lattice, and not the magnetic

Brillouin zone.

Issues related to the Luttinger theorem were discussed in previous work6,8,9. The total

area of the Fermi pockets described by H0 is precisely x, the dopant hole density. Here the

area is to be computed over the full first Brillouin zone of the square lattice, as the full

square lattice symmetry is preserved by our model. Also note that our phenomenological

Hamiltonian H0 has been designed to apply only to low energy excitations near the Fermi
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surface. However, rather than focusing on these momentum space regions alone, considera-

tions of symmetry are far simpler if we define the dispersion in real space on the underlying

square lattice, as we have done here. For this somewhat artificial lattice model, as discussed

in Ref. 6, the total fermion density on each site i is

�

α

�
C†

i,αCi,α +D†
i,αDi,α

�
=

�

α

�
F †
i,αFi,α +G†

i,αGi,α

�
= 2− x (8)

The traditional Luttinger theorem measures electron number modulo 2, and so it should

now be clear that occupying the independent electron states of the lattice H0 will yield a

Fermi surface with the desired area of x.

Before proceeding further, let us review the above discussion. We started our theory with

electrons in one band, and considered spin density wave fluctuation. The strong fluctuation

induced particle fractionalization, and bound states whose degree of freedoms are doubled

appeared. The resulting phase is nothing but the FL* we introduced above. Therefore, the

ACL phase provides a natural way to connect the FL* with one band theory.

To study superconductivity of the FL* phase, let us consider invariant pairing operators.

With the (F,G) particles, there are many possible combinations in principle. However, it is

more convenient to work in terms of the C and D particles because they transform just like

electrons under the symmetry operation. So we can write down the 4 pairing operators

Oc
∆(i, j) = εαβCi,αCj,β, Od

∆(i, j) = εαβDi,αDj,β

Ocd
∆ (i, j) = εαβCi,αDj,β, Odc

∆ (i, j) = εαβDi,αCj,β (9)

Note that we only consider even parity pairing, and there are only three pairings,

Oc, Od, Ocd +Odc (see Appendix B).

III. SPECTRAL GAP

Throughout this paper, we assume that all pairings are d wave, more specifically, dx2−y2 .

The assumption of the d wave pairings can be realized by the gauge fluctuation (see Ap-

pendix C) or by other channels like conventional spin density wave fluctuations. Then, with
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the pairing amplitudes as in Eq. (9), we can write down the mean field Hamiltonian

HMF
tot = H0 +HMF

∆

=
�

k





C†
k,↑

C−k,↓

D†
k,↑

D−k,↓









�c(k) −∆c(k) λ −∆X(k)

−∆c(k)∗ −�c(k) −∆X(k)∗ −λ

λ −∆X(k) �d(k) −∆d(k)

−∆X(k)∗ −λ −∆d(k)∗ −�d(k)









Ck,↑

C†
−k,↓

Dk,↑

D†
−k,↓




(10)

where ∆c is the Fourier transform of Oc
∆, ∆d is the Fourier transform of Od

∆, and ∆X is the

Fourier transform of Ocd
∆ +Odc

∆ . For their wavevector dependence we take the forms

∆c(k)

∆c0
=

∆d(k)

∆d0
=

∆X(k)

∆X0
= cos kx − cos ky (11)

where ∆c0, ∆d0 and ∆X0 are the respective gap amplitudes.

In principle, we could determine these pairing amplitudes from solving a set of BCS-like

self-consistency equations. However, in the absence of detailed knowledge of the pairing

interactions, we will just treat the ∆c0, ∆d0 and ∆X0 as free parameters. In other words,

we are in the deep superconducting phase with adjusted parameters. Then our task is to

study spectral gap behaviors with given band structures and pairings. More technically, the

Green’s function of the C particle, which determines the electron properties, are studied

focusing on the pole of the C particles’ Green’s function. The pole basically contains infor-

mation about the electron’s dispersion relation, and its minimum determines spectral gap

properties. The latter is defined as the minimum gap along a line from the Brillouin zone

center at an angle θ: thus the nodal point is at θ = π/4, and the anti-nodal point at θ = 0.

Although we have three free gap parameters, our results are quite insensitive to their

values. For simplicity we will mainly work (in Sections IIIA and III B) with the case with

a single gap parameter ∆c0 �= 0, and others are set to zero ∆d0 = ∆X0 = 0. We will briefly

consider the case with multiple gap parameters in Section III C, and find no significant

changes from single gap case.
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FIG. 2: Color online: Spectral gap functions and the Fermi surfaces with the Case I, (t2 = 0.15t1,
t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0, t̃3 = 0, t̃0 = −0.3t1, µ = −0.6t1, λ = 0.4t1. (a) The spectral
weight of the electron Green function with the relaxation time τ t1 = 200. (b) Fermi surfaces of
�c(k) (dashed inner (red)) , �d(k) (dashed outer (blue)), and the eigenmodes (thick (black)) of H0.
The dotted line is the magnetic zone boundary. (c) The spectral gap function with and without
∆c. The dotted (black) line is for the normal case. The thick (red) line is for superconducting state
with ∆c0 = 0.1t1. (d) The spectral gap function with and without ∆d,X . The dotted (black) line
is for the normal case. The thick (green) line is for the superconducting state with ∆X0 = 0.1t1.
The dashed (blue) line is the superconducting state with ∆d0 = 0.1t1.

A. Single Gap : case I

We consider the case with t2 = 0.15t1, t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0, t̃3 = 0,

t̃0 = −0.3t1, µ = −0.6t1, λ = 0.4t1 in Fig. 2. In (a), the calculated spectral weight of the C

particle is illustrated following the previous paper.6 The shape is obviously pocket-like, but

its spectral weight depends on position on the Fermi surface. In (b), we illustrate the bare

energy Fermi surfaces and their eigenmode Fermi surface. Note that the two bare energy

bands (�c,d(k)) are different from the usual SDW formations with Brillouin zone folding. In

the latter, there is only one electron band, and SDW onset divides the Brillouin zone two
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pieces (�(k), �(k + K)). But in our case, the two bands have different energy spectrums

of the electron-like particle (C) and the emergent particle (D). And λ determines mixing

energy scale between the C and D particles.

In (c), the spectral gap function with and without a given pairing, ∆c is illustrated. Near

the node, it is obvious that the pairing gap contributes to the spectral gap in a d wave pairing

way as expected. However, between the node and anti-node, there is a huge peak. The peak

position is nothing but the mixing point between C,D particles. Therefore, the peak exists

whether there is a pairing or not. Near the anti-node, the spectral gap is bigger than the

near-node’s but much smaller than the mixing point peak. It indicates there is tendency

to make electron pockets near the anti-node. For example, if we decrease the magnitude

of λ, which basically represent the mixing energy scale, then the gap near the anti-node

becomes smaller, and eventually the electron-like pockets appears near the anti-node with

the pre-existing hole type pockets. (See the Appendix) Note that this situation is formally

the same as the pairing with the SDW fluctuation mediating pairing case (see Fig. 1).

The “hot spot” between the node and the anti-node has the largest gap magnitude, which

corresponds to our mixing point. Such a spectral gap behavior is not the experimentally

observed one. Therefore, we cannot have the needed dichotomy near the anti-node in this

case; the anti-nodal gap is always smaller than the one of the maximum mixing point.

Following the similar reasoning, the experimentally observed dichotomy does not appear

in the conventional SDW theory unless additional consideration beyond mean-field theory

is included. In (d), we illustrate other pairing cases (∆d,X). As we can see, the role of

the pairings are similar to the conventional one (∆c), and qualitatively they are the same.

Therefore, it is not possible to achieve the observed dichotomy by considering the exotic

pairings. They cannot push the maximum peak of the normal state to the anti-nodal region.

The message of this calculation is simple. With the band structure we considered here, the

observed dichotomy in the spectral gap function cannot be obtained, even though the normal

state can explain experimentally observed Fermi surface structures. Moreover, it also implies

that it is difficult to explain the observed dichotomy with the Hartree-Fock/BCS mean-field

theory of the Fermi liquid.

However, we now show how our FL* theory gets a route to explain the dichotomy below.
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FIG. 3: Color online: Spectral gap functions and the Fermi surfaces for the Case II (t2 = 0.15t1,
t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0, t̃3 = 0, t̃0 = −0.3t1, µ = −0.8t1, λ = 0.6t1). Note that the
only change from Fig. 2 is in the values of µ and λ. (a) The spectral weight of the electron Green
function with the relaxation time τ t1 = 200. (b) Fermi surfaces of εc (dashed inner (red)) , εd
(dashed outer (blue)), and the eigenmodes (thick (black)) of H0. The dotted line is the magnetic
zone boundary. (c) The spectral gap function with and without ∆c. The dotted (black) line is for
the normal case with ∆c = 0. The thick (red) line is the superconducting state with ∆c0 = 0.1t1.
(d) The spectral gap function with and without ∆d,X . The dotted (black) line is for the normal
case. The thick (green) line has ∆X0 = 0.1t1. The dashed (blue) line has ∆d0 = 0.1t1.

B. Single Gap : case II

In Fig. 3 we illustrate the case with t2 = 0.15t1, t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0, t̃3 = 0,

t̃0 = −0.3t1, µ = −0.8t1 , λ = 0.6t1. These parameters are as in Section IIIA, except that

the values of µ and λ have changed. As we discuss below, this changes the structure of the

dispersion of the ‘bare’ C and D particles in a manner which leaves the normal state Fermi

surface invariant, but dramatically modifies the spectral gap in the superconducting state.

As we can see in (a), the calculated spectral weight of the C particle is qualitatively

the same as the Fig. 2’s. The shape is obviously pocket-like, and its spectral weight also

depends on position of the Fermi surface similarly. Therefore, in the normal state, there is

no way to distinguish the two cases because the low energy theory are all determined by
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the Fermi pocket structures. However, in (b), the bare energy Fermi surfaces of �c(k) and

�d(k) are clearly different from the previous one’s. Even though the bare Fermi surfaces look

unfamiliar, they are irrelevant for the observed Fermi surface which is determined by the

eigenmodes of H0 (black line), and which is qualitatively the same as the Case I.

We illustrate our spectral gap behavior with and without the pairing, ∆c, in (c), which

was already shown in the introductory section. Without the given pairing, the normal state

has the finite gapless region where the pockets exist, and there is a stable spectral gap in the

anti-node. It is easy to check the anti-nodal gap depends on the mixing term, λ, between

the C and D particles. With the pairing, the Fermi pockets are gapped and only the node

remains gapless. The spectral gap function has expected d wave type gap near the node, and

the observed dichotomy is clearly shown. Therefore, the origin of the two gaps are manifest;

the nodal gap is obviously from the C particle pairing and the anti-nodal gap is originated

from the mixing term, which is inherited from the spin-fermion interaction term. In (d),

we illustrate other exotic pairings (∆d,X). As we can see, role of the pairings are similar to

the conventional pairing (∆c), and qualitatively they are the same. So, there is no way to

distinguish what pairings are dominant only by studying spectral gaps.

Now let us compare our results to the ones of the YRZ model39–43. In the YRZ model,

based on a specific spin liquid model, the pseudo-gap behavior is pre-assumed by putting

an explicit dx2−y2 gap function in the spectrum, which means the characteristic of the anti-

nodal gap is another input parameter. With the two d wave gaps (pairing and pseudo-gap),

the experimental results were fitted.

In our FL* theory, the anti-nodal gap behavior is determined by the interplay between

λ and the bare spectrum �c,d(k) Indeed, the pseudo-gap corresponding term, λ, is s wave

type in terms of YRZ terminology. The λ term represents local antiferromagnetism, and

this ‘competing’ order which plays a significant role in the anti-nodal gap. The parameter

λ is just input for making the Fermi pockets in the normal state with other dispersion

parameters. As mentioned before, it explains the distinct origins of the nodal and anti-

nodal gaps. Also, although our theory contains other pairings, ∆d,X , we did not need that

freedom to obtain consistency with experimental observations.

Of course, non-local terms of λ could be considered. And it is easy to show that the

dx2−y2 like terms are not allowed because of the rotational symmetry breaking. Putting the

non-local λ term is secondary effect, and we do not consider it here.
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FIG. 4: Multiple gaps. The left panel is the same as the Fig. 2 with two superconducting gaps
∆d0 = 0.3t1 and ∆c0 = 0.1t1. And the right panel is the same as the Fig. 3 with ∆d0 = 0.3t1 and
∆c0 = 0.1t1. In both, the dashed (green) line is with the two gaps. And the plain and dotted lines
are the same as the previous plots.

C. Multiple gaps

So far, we have only considered the cases with one pairing gap. Of course, multiple gaps

are possible and we illustrate possible two cases in Fig. 4, which contain ∆c,d with the two

normal band structures. Here, we choose the same phase in both pairings. The spectral

gap behaviors are not self-destructive, which means the magnitude of spectral gap with two

pairings is bigger than the one with the single pairings. One comment is that even multiple

gaps do not change qualitative behavior of the spectral gap functions, which means that the

Case I could not have the observed dichotomy even with the multiple gaps.

In Fig. 5, two pairings with the opposite sign are illustrated. Clearly, we can see the

self-destructive pattern with the same gap magnitudes. Even a node appears beyond the

nodal point. Therefore, it is clear that the relative phase between two pairings plays an

important role to determine the gap spectrum.

IV. CONCLUSIONS

This paper has presented a simple phenomenological model for pairing in the underdoped

cuprates, starting from the FL* normal state described in Ref. 6. This is an exotic normal

state in which the Cu spins are assumed to form a spin liquid, and the dopants then occupy

states with electron-like quantum numbers. A key feature of this procedure8, is that there

is a ‘doubling’ of the electron-like species8 available for the dopants to occupy: this appears
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FIG. 5: Multiple gaps with the relative phase difference. Details are the same as Fig. 3. The red
line is for two superconducting gaps with the same sign gaps, ∆d0 = 0.1t1 and ∆c0 = 0.1t1. And
the green line is for the opposite sign gaps, ∆d0 = −0.1t1 and ∆c0 = 0.1t1.

to be a generic property of such doped FL* states.

Our previous work6 showed how this model could easily capture the Fermi surface struc-

ture of the underdoped normal state. In particular, a mixing between the doubled fermion

F and G species from the analog of the ‘Shraiman-Siggia’ term31 led to Fermi pockets which

were centered away from the antiferromagnetic Brillouin zone boundary.

Here we considered the paired electron theory, assuming a generic d-wave gap pairing of

the cos kx − cos ky variety. Despite this simple gap structure, we found two distinct types of

electron spectral gaps in this case, illustrated in Figs. 2 and 3. The distinction arose mainly

from the strength of a parameter, λ, determining the strength of the local antiferromagnetic

order.

For weaker local antiferromagnetic order, and with a normal state Fermi surface as in

Fig. 2a, the angular dependence of the gap had a strong maximum near the intermediate

“hot spot” on the underlying Fermi surface. A similar structure is seen in the traditional

Hartree-Fock/BCS theory of SDW and d-wave pairing on a normal Fermi liquid, and this

structure is incompatible with existing experiments.

For stronger local antiferromagnetic order, we were able to maintain the normal state

Fermi surface as in Fig. 3a, but then found a gap function which had the form shown in

Figs. 3c,d, which displays the ‘dichotomy’ of recent observations. Thus in this theory, it is

the fluctuating local antiferromagnetism which controls the dichotomy.

Finally, we compare our theory with model proposed by Yang, Rice, and Zhang39–43, and

closely related results of Wen and Lee44,45. Their phenomenological form of the normal state
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electron Green’s function has qualitative similarities to ours6, but there are key differences

in detail:

(i) The ‘back end’ of the YRZ hole pocket is constrained to be at (π/2, π/2), while there is

no analogous pinning in our case.

(ii) The electron spectral weight vanishes in the YRZ theory at (π/2, π/2), while our theory

has a small, but non-zero, spectral weight at the back end.

(iii) Our theory allows for a state with both electron and hole and pockets, while only hole

pockets are present in the YRZ theory.

These differences can be traced to the distinct origins of the ‘pseudogap’ in the two theories.

Our pseudogap has connections to local antiferromagnetism which fluctuates in orientation

while suppressing topological defects. Pairing correlations also play an important role in

the pseudogap, but these are neglected in our present mean-field description: these were

examined in our previous fluctuation analyses of the ACL36,37. The YRZ pseudogap is due

to a d-wave ‘spinon pairing gap’ in a resonating valence bond spin liquid. All approaches

have a similar transition to superconductivity, with a d-wave pairing gap appearing over

the normal state spectrum, and a nodal-anti-nodal dichotomy: thus any differences in the

superconducting state can be traced to those in the normal state.

The differences between our normal state theory with bosonic spinons, and other work

based upon fermionic spinons32–34,39–45 become more pronounced when we consider a transi-

tion from the normal state to a state with long-range antiferromagnetic order. In our theory,

such a transition is naturally realized by condensation of bosonic spinons, with universal

characteristics discussed earlier26,50. Such a natural connection to the antiferromagnetically

ordered state is not present in the YRZ theory.
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FIG. 6: Color online: Spectral gap functions and the Fermi surfaces for the Case II (t2 = 0.15t1,
t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0, t̃3 = 0, t̃0 = −0.3t1, µ = −0.6t1, λ = 0.25t1). Note that the only
change from Fig. 3 is in the value of λ. (a) The spectral weight of the electron Green function with
the relaxation time τ t1 = 200. (b) Fermi surfaces of εc (dashed inner (red)) , εd (dashed outer
(blue)), and the eigenmodes (thick (black)) of H0. The dotted line is the magnetic zone boundary.
(c) The spectral gap function with and without ∆c. The dotted (black) line is for the normal case
with ∆c = 0. The thick (red) line is the superconducting state with ∆c0 = 0.05t1. (d) The spectral
gap function with and without ∆d,X . The dotted (black) line is for the normal case. The thick
(green) line has ∆X0 = 0.05t1. The dashed (blue) line has ∆d0 = 0.05t1.

Appendix A: Electron pockets

We consider the case with t2 = 0.15t1, t3 = −0.3t2, t̃1 = −0.25t1, t̃2 = 0, t̃3 = 0,

t̃0 = −0.3t1, µ = −0.6t1, λ = 0.25t1 in Fig. 6. These parameters are as in Section IIIA,

except that the value of λ has lowered. In other words, the ‘bare’ spectrums are the same,

but electron pockets near the anti-node appear due to the low mixing term.

As we can see in (a), the calculated spectral weight of the C particle shows the hole and

electron pockets with different spectral weights. We illustrate our spectral gap behavior with

and without the pairing in (c) and (d). Without pairings, the normal state has the finite

gapless region where the pockets exist, and there is an intermediate region peak similar to
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FIG. 7: Color online : Spectral gap behaviors varying with λ. The thick(red), dotted(black) and
dashed(green) lines are for λ/t1 = 0.4, 0.3, 0.25 with the same pairing magnitude, ∆X = 0.05t1.

the SDW case. With pairings, the Fermi pockets are gapped and only the node remains

gapless. The spectral gap function shows similar behavior as in our case I. In Fig. 7, spectral

gap function varying the the mixing term is illustrated to see the evolution of the dip near

the anti-node.

We note that electron pockets can also appear in the YRZ formulation, but have very

different shapes51.

Appendix B: Invariant pairings

There are four combinations of invariant pairing terms of the F and G:

OA
∆(i, j) = εαβ(Fi,αFj,β +Gi,αGj,β)

OB
∆(i, j) = εαβ(Fi,αGj,β +Gi,αFj,β)

Oa
∆(i, j) = εαβ(−1)jx+jy(Fi,αFj,β −Gi,αGj,β)

Ob
∆(i, j) = εαβ(−1)jx+jy(Gi,αFj,β − Fi,αGj,β) (B1)

In Table II, we illustrate the transformation of various pairing terms. The four pairings

havean interesting exchange symmetry. Obviously OA,B
∆ have even under the exchange oper-

ation. If we consider nearest neighbor sites,(i, j), it is easy to show that Ob
∆ is even and Oa

∆

is odd under the exchange. Therefore, for the dx2−y2 symmetry, the Oa does not contribute
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Tx Rdual
π/2 Idualx T

εαβFαFβ εαβGαGβ εαβGαGβ εαβGαGβ -εαβF †
βF

†
α

εαβGαGβ εαβFαFβ εαβFαFβ εαβFαFβ -εαβG†
βG

†
α

εαβFαGβ εαβGαFβ εαβGαFβ εαβGαFβ -εαβG†
βF

†
α

εαβGαFβ εαβFαGβ εαβFαGβ εαβFαGβ -εαβF †
βG

†
α

TABLE II: Transformations of the pairing terms. We suppress the lattice index(i, j) before and after
transformations. Note that the Time Reversal column (T ) contains (−) term and the conjugate
partner also have the (−) sign.

to pairings.

The conversion between the two representations are as follows:

Oc
∆(i, j) = εαβCi,αCj,β =

1

2
(OA

∆ +OB
∆)(i, j)

Od
∆(i, j) = εαβDi,αDj,β =

(−1)∆x+∆y

2
(OA

∆ −OB
∆)(i, j)

Ocd
∆ (i, j) = εαβCi,αDj,β =

1

2
(Oa

∆ +Ob
∆)(i, j)

Odc
∆ (i, j) = εαβDi,αCj,β =

(−1)∆x+∆y

2
(Oa

∆ −Ob
∆)(i, j), (B2)

where ∆x+∆y is coordinates’ difference between two particles, for example, zero for the s

wave and one for the d wave.

Appendix C: Pairing Instability

In this section, we introduce one way to achieve the d wave instability from the gauge

fluctuation. There could be many other channels to induce the d wave channel such as

“conventional” SDW fluctuation, so this section shows possibility of obtaining the desired

pairings.

To constrain the Hamiltonian, let us consider symmetry transformations of the field

strengths associated with the U(1) gauge field of the CP1 model describing the zα spinons
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Tx Rdual
π/2 Idualx T

B -B -B +B -B

Ex -Ex -Ey +Ex Ex

Ey -Ey +Ex -Ey Ey

Ψ τxΨ τxΨ τxΨ iσy(Ψ†)T

TABLE III: Symmetry transformations of the U(1) field strength of the CP1 model, and of the
fermion field Ψ = (F G)T .

in Table III

B = ∆xAy −∆yAx , Ex = ∆xAτ −∆τAx , Ey = ∆yAτ −∆τAy ,Ψ =



F

G



 .(C1)

Pauli matrix, τ(σ), is defined in the (F,G) (spin) space. The only invariant coupling up to

the second order derivatives is6

Sγ = γ

�

τ,x

E ·Ψ†τ y(∇)Ψ

= −iγ

�

τ,x

E · (F †
α∇Gα −G†

α∇Fα). (C2)

It is interesting to note that this coupling is precisely the geometric phase coupling between

the antiferromagnetic and valence bond solid (VBS) order parameters discussed recently in

Ref. 52. The electric field is the spatial component of the skyrmion currrent in the Néel

state, and it couples here to a fermion operator which has the same quantum numbers as the

spatial gradient of the phase of VBS order; thus Eq. (C2) corresponds to the spatial terms

in Eq. (3.8) in Ref. 52. Here we see that the electric field couples to a ‘dipole moment’ in

the fermions.

We can also look for a coupling between the magnetic field, B, and the fermions. There

is no coupling up to the second order derivatives of fermionic fields. The main reason for

the absence is that rotation and inversion transformations have opposite signs acting on the

magnetic field. If we go beyond the second order derivative, we can find a coupling to the
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FIG. 8: Vertex correction of a pairing channel. The wavy line is for the propagator of the electric
fields, and the plain (dotted) line is for the C(D) particle’s. Note that the coupling with the
electric field (filled dot) contains the momentum component. Here we represent the C particle
pairing vertex renormalization.

magnetic field such as

SB = γB

�

τ,x

BΨ†(∂2
x − ∂2

y)(∂x∂y)τ
yΨ. (C3)

This term is also one associated with the geometric phase between the antiferromagnetic

and VBS orders, corresponds to the temporal term in Eq. (3.8) in Ref. 52.

The fluctuations of the gauge field are controlled by the action

SA =
NT

2

�

�n

�
d2k

4π2

�
ΠE(k, �n)|E|2 + ΠB(k, �n)|B|2

�
, (C4)

where ΠE and ΠB are polarization functions from the matter fields. Because of the non-

minimal coupling between the electric and magnetic fields and the fermions, there is no

screening, and these polarization functions are just constants at low momenta and frequen-

cies. Also, although the bosonic spinons do couple minimally to the electromagnetic field,

they are gapped and also yield only a constant contribution to the polarizations.

With the C,D representation, the coupling term to the electric field becomes

Sγ = −γ

�

ω,Ω,k,q

E(q,Ω) · k
�
D†

α(k + q +Q,ω + Ω)Cα(k,ω)− C†
α(k + q,ω + Ω)Dα(k +Q,ω)

�
.

It is manifest that C and D particles are only mixed with the finite momentum Q difference.

Let us consider pairing vertex

Vpairing =
�

k

δc(k)C†
k,↑C

†
−k,↓ + δd(k)D†

k,↑D
†
−k,↓ + h.c. (C5)

To see the superconducting instability, we need to evaluate the vertex correction of the

24



pairing channel such as the diagram in Fig. 8. The presence of the λ requires numerical

evaluations. Instead of considering numerical calculations, let us turn off the mixing term,

λ, and see which pairings are preferred with approximations. We will discuss about the

non-zero mixing term later.

The renormalized pairing vertex of C particles is

δc(k)ren ∼ δc(k)− γ2k2
F,dδ

d(k +Q)
Nd

ΠE

�

ε,ω

1

ω2 + ε2d
, (C6)

where 1/ΠE is the constant electric field propagator. As usual, we assume that the inte-

gration is dominant near Fermi surfaces and the k2 becomes k2
F . Also we extract the gap

function of D particles out of the integration. The factor Nd is the density of states of

D particles. Note that the minus sign in front of the second term is from the momentum

dependence of the interaction and the relative sign of the gap functions. Likewise, the D

particle pairing correction is

δd(k +Q)ren ∼ δd(k +Q)− γ2k2
F,cδ

c(k)
Nc

ΠE

�

ε,ω

1

ω2 + ε2c
(C7)

In both equations, the last integrals show the usual BCS type logarithmic divergence. We

can determine momentum dependence of the pairings with these equations. If we assume s

wave pairings, then the corrections become negative and the renormalized pairings become

suppressed. On the other hand, d wave pairings can change the sign of the integration and

enhance the superconductivity. Such momentum dependence results from the momentum

dependent vertex term in Eq. (C2) with a given relative pairing sign. In the gauge exchange,

the momentum dependence plays the same role as spin-exchange in the usual d wave BCS

pairing.

So far, we have fixed the relative sign between the two pairings by hand. Our calculation

indicates possibility of d wave pairings, but the channel of the instability can vary with

changing the relative pairing sign. There could be fully gapped pairing with opposite signs,

s±.

Evaluating the vertex corrections, we have assumed no mixing term, λ, at the lowest

approximation. Now let us turn on the mixing term. Then, the Fermi surfaces of the two

particles start mixing and details of the Fermi surfaces change. Of course, (C,D) pairings
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can be mixed by λ. But the mixing point is first gapped out and the Fermi surfaces become

pockets. So there is no significant pairing mixing by λ and we can treat pairings separately.

Details of the Fermi surface change, but we can argue that pairing channels remain intact

at low energy.
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