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Abstract
We examine models of fermions with infinite-range interactions which realize non-Fermi liquids with a

continuously variable U(1) charge density Q, and a non-zero entropy density S at vanishing temperature.

Real time correlators of operators carrying U(1) charge q at a low temperature T are characterized by

a Q-dependent frequency !S = (q T/~)(@S/@Q) which determines a spectral asymmetry. We show that

the correlators match precisely with those of the AdS2 horizons of extremal charged black holes. On

the black hole side, the matching employs S as the Bekenstein-Hawking entropy density, and the laws

of black hole thermodynamics which relate (@S/@Q)/(2⇡) to the electric field strength in AdS2. The

fermion model entropy is computed using the microscopic degrees of freedom of a UV complete theory

without supersymmetry.

1

ar
X

iv
:1

50
6.

05
11

1v
4 

 [h
ep

-th
]  

12
 A

ug
 2

01
5

Physical Review X 5, 041025 (2015) 



I. INTRODUCTION

Holography provides us with powerful tools for investigating models of quantum matter without

quasiparticle excitations. The best understood among these are strongly-coupled conformal field

theories (CFTs) in spatial dimensions d � 2. Our understanding of such models is built upon

the foundation provided by the solvable example of maximally supersymmetric Yang-Mills theory,

which is known to be holographically dual to string theory on anti-de Sitter space [1].

However, many holographic studies [2–4] have focused on experimentally important examples

of strongly-coupled quantum matter which are not CFTs. Of particular interest are compressible

states without quasiparticles, or ‘strange metals’, in dimensions d � 2. Broadly defined, these

are quantum states without quasiparticles in which a conserved U(1) charge density Q can be

continuously varied at zero temperature by a conjugate chemical potential, and the U(1) and

translational symmetries are not spontaneously broken. Solvable examples of strange metals with

holographic duals would clearly be of great interest.

Here we consider the strange metal state introduced by Sachdev and Ye [5] (SY) in a model

of fermions with infinite-range interactions. The fermion density Q is conserved and continuously

variable, and there is a non-zero entropy density, S, at vanishing temperature [6, 7]. The fermion

Green’s function is momentum independent and so has no Fermi surface (but there is a remnant

of the Luttinger theorem, as discussed in Appendix A). The Green’s function is divergent at low

frequency (!) and temperature (T ) with a known scaling function [6–8] (the explicit form is in

Eq. (3) below), determined by the fermion scaling dimension, �, its U(1) charge q = 1, and a

spectral asymmetry frequency we shall denote by !S . This frequency determines the asymmetry

between the particle and hole excitations of the non-Fermi liquid. The values of � and q are fixed

and universal (as in traditional critical phenomena), while that of !S varies with the compressible

density Q in an apparently non-universal manner. However, the same !S , scaled by the value of

q, appears in the correlators of all operators.

One general way to fix the precise value of !S , without a priori knowledge of the full ! depen-

dence of the correlator, is the following. The product of the retarded (GR) and advanced (GA)

Green’s functions obeys

GR(!)GA(!) = �e (! � !S) , (1)

where �e(!) is some even function of !. So the content of Eq. (1) is that GRGA becomes an even

function of frequency after the frequency shift, !S . With this definition, it was found [6–8] that

there is a surprising general relationship between !S and the zero temperature entropy S density

!S =
q T

~
@S
@Q . (2)

Such a relationship was first found in the ‘multichannel Kondo’ problem of a local spin degree

of freedom at the boundary of a CFT2 (i.e. a CFT in 1+1 spacetime dimensions) [6]. It was
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later extended [7, 8] to the fermion model of SY, in which we define S and Q per site, and there

are no explicit CFT2 degrees freedom; instead each fermion site is influenced by a self-consistent

environment, and this environment plays a role similar to that of the CFT2 in the Kondo problem.

Both S and !S are non-universal functions of the compressible density Q, but they are related as

in Eq. (2). It is quite remarkable to have a dynamical frequency determined by a thermodynamic

property (which is also defined classically) divided by ~; other notable instances of connections

between observables characterizing low frequency dissipation and static thermodynamics or fun-

damental constants are in Refs. 9 and 10. For the SY state, this value of !S relies on emergent

symmetries at low energies, but also requires careful regularization of the single-site canonical

fermions present at high energies. In other words, the entropy S density in Eq. (2) counts all the

degrees of freedom in a UV finite fermion model. Indeed, in this context, Parcollet et al. [6] note:

“It is tempting to speculate that a deeper interpretation of these facts is still to be found”.

As we shall demonstrate in this paper, the above properties of the SY state match precisely

with the quantum theory holographically dual to extremal charged black holes with AdS2 horizons

[11–14]. As a specific example, we will work with the Einstein-Maxwell theory of (planar or

spherical) charged black holes embedded in asymptotically AdSd+2 space, with d � 2 (the Reissner-

Nordström-AdS solution); however, the key features apply to a wide class of black hole solutions

[15–21]. The correlators of this gravitational theory have the same functional dependence upon

!, T , q, �, and !S as those of the SY state, given in Eq. (3) below, and this agreement can be

understood by the common conformal and gauge invariances of the two theories [22–24]. However,

there is a deeper correspondence between the two theories in that Eq. (2) for the value of !S

also applies in the gravitational theories. The holographic computation of correlators yields the

value of !S (e.g. by using Eq. (1)), while the right-hand-side of Eq. (2) is obtained from a

classical gravitational computation of the Bekenstein-Hawking (or Wald) entropy. The equality in

Eq. (2) follows from the classical general relativity of AdS2 horizons of charged black holes (see

Section III B), and this potentially provides the long sought interpretation for the value of !S .

For a general black hole solution, the values of !S and S depend on Q in a manner di↵erent

from the SY state, but they all continue to obey Eq. (2). This di↵erence is not surprising, given

that the Q-dependence of S for the SY state uses its canonical site-fermion structure in the UV, a

characteristic which is not expected to be captured by a gravity dual. But the validity of Eq. (2)

in the SY state, and in a wide class of gravity theories, is strong evidence that there is a gravity

dual which captures all the universal low energy properties of the SY state.

The common two-point correlator of a fermionic operator with U(1) charge q, and scaling
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dimension �, in both the SY and AdS2 theories is [6–8, 13, 25, 26]

GR(!) = GA⇤(!) =
�iCe�i✓

(2⇡T )1�2�

�

✓
� � i~(! � !S)

2⇡kBT

◆

�

✓
1 � � � i~(! � !S)

2⇡kBT

◆ , (3)

where � = 1/4 for the q = 1 fundamental fermion of the SY state, the amplitude C is a real and

positive, and the angle �⇡� < ✓ < ⇡� is given by

e2⇡qE =
sin(⇡�+ ✓)

sin(⇡� � ✓)
. (4)

Here we have found is convenient to introduce a dimensionless, T -independent, parameter E related

to !S by

E =
1

2⇡q

~!S

kBT
(5)

We have therefore introduced three parameters, !S , E , and ✓, all of which characterize the spectral

asymmetry, and they can be determined from each other in Eqs. (4) and (5). The T ! 0 limit of

the Fourier transform of Eq. (3) shows that E also defines a ‘twist’ in the imaginary time fermionic

correlator

G(⌧) ⇠
(

� ⌧�2� , ⌧ > 0

e�2⇡qE |⌧ |�2� , ⌧ < 0.
(6)

It is easy to verify that Eq. (3) obeys Eq. (1). We show a plot of Eq. (3) in Fig. 1 which illustrates

the ‘shift’ property of GR(!)GA(!).

For the SY state, the previous work [6–8] establishes the additional relation in Eq. (2), which

now relates the spectral asymmetry parameters !S , E , and ✓ to @S/@Q. The T = 0 properties

of the SY state reviewed above are summarized in the left panel of Fig. 2. For our subsequent

discussion, it is useful to combine Eqs. (2) and (5) in the form

@S
@Q = 2⇡E . (7)

In the holographic computation of Eq. (3), the temperature, T , is the Hawking temperature of

the black hole horizon [27], and the dimensionless spectral asymmetry parameter E appearing in

Eq. (6) (and Eq. (3)) is determined by the strength of the electric field (see Eq. (57)) supporting

the near-horizon AdS2 geometry [13, 26, 28] (see Fig. 2). A key observation in the holographic

framework is that E , now related to the electric field, obeys an important identity which follows

from the laws of black hole thermodynamics [29] (see Fig. 2; we set ~ = kB = 1 in the remaining

discussion):
@SBH

@Q = 2⇡E , (8)
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G

R(!)GA(!)

FIG. 1. Plots of the Green’s functions in Eq. (3) for � = 1/4, q = 1, T = 1, A = 1, E = 1/4 with

~ = kB = 1. Note that while neither ImG

R(!) or ReGR(!) have any definite properties under ! $ �!,

the product G

R(!)GA(!) becomes an even function of ! after a shift by !S = 2⇡qET = ⇡/2.

where SBH is the Bekenstein-Hawking entropy densiy of the AdS2 horizon. Indeed, Eq. (8) is a

general consequence of the classical Maxwell and Einstein equations, and the conformal invariance

of the AdS2 horizon, as we shall show in Section III B. Moreover, a Legendre transform of the

identity in Eq. (8) was established by Sen [15, 16] for a wide class of theories of gravity in the

Wald formalism [17–21], in which SBH is generalized to the Wald entropy.

The main result of this paper is the identical forms of the relationship Eq. (7) for the statistical

entropy of the SY state, and Eq. (8) for the Bekenstein-Hawking entropy of AdS2 horizons. This

result is strong evidence that there is a gravity dual of the SY state with a AdS2 horizon. Con-

versely, assuming the existence of a gravity dual, Eqs. (7) and (8) show that such a correspondence

is consistent only if the black hole entropy has the Bekenstein-Hawking value, and endow the black

hole entropy with a statistical interpretation [30].

It is important to keep in mind that (as we mentioned earlier) the models considered here have

a di↵erent ‘equation of state’ relating E to Q: this is specified for the SY state in Eq. (A5), for the

planar black hole in Eq. (58), and for the spherical black hole in Eq. (B8).

The holographic link between the SY state and the AdS2 horizons of charged black branes has

been conjectured earlier [22–24], based upon the presence of a non-vanishing zero temperature

entropy density and the conformal structure of correlators. The results above sharpen this link by

establishing a precise quantitative connection for the Bekenstein-Hawking entropy [31, 32] of the

black hole with the UV complete computation on the microscopic degrees of freedom of the SY
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FIG. 2. Summary of the properties of the SY state (Section II) and planar charged black holes (Section III)

at T = 0. The spatial co-ordinate ~x has d dimensions. All results apply also to spherical black holes

considered in Appendix B. The AdS2 ⇥ R

d metric has unimportant prefactors noted in Eq. (55) which

are not displayed above. The fermion mass m has to be adjusted to obtain the displayed power-law. The

spectral asymmetry parameter E appears in the fermion correlators and in the AdS2 electric field. As the

charge Q is increased, the horizon moves closer to the boundary, and its area, Ah, increases. In black

hole thermodynamics, the Bekenstein-Hawking entropy density, SBH is related to area of the horizon via

SBH = Ah/(4GNAb), where GN is Newton’s constant.

state.

It also worthwhile to note here that in the usual matrix large M limit of the AdS/CFT corre-

spondence [1], S and Q are both of order M2 [13]. So !S and E both remain of order unity in this

limit.
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We will present an infinite range model and its solution in Section II. An important result here

is the emergent conformal and gauge invariance in Eq. (26), which strongly constrains the low

energy theory. We then turn to the Einstein-Maxwell theory of charged horizons in Section III

and show that it also obeys Eqs. (1–8). We conclude with a discussion of broader implications is

in Section IV.

II. INFINITE RANGE MODEL

SY considered a model of SU(M) spins with Gaussian random exchange interactions between

any pair of N sites, followed by the double limit N ! 1 and then M ! 1. Their Hamiltonian is

H =
1

(NM)1/2

NX

i,j=1

MX

↵,�=1

Jijc
†
i↵ci�c

†
j�cj↵, (9)

where the ci↵ are canonical fermions obeying

ci↵cj� + cj�ci↵ = 0 , ci↵c
†
j� + c†j�ci↵ = �ij�↵�, (10)

and there is a fermion number constraint

1

M

X

↵

c†i↵ci↵ = Q, (11)

on every site i, with 0 < Q < 1. The exchange interactions Jij are independent Gaussian random

numbers with zero mean and equal variance.

Kitaev [24] has recently pointed out that the SY state can also be realized in a simpler model of

Majorana fermions in which only a single large N limit needs to be taken, and which also suppresses

spin-glass order [7, 33–35]. We will present our results here using a complex fermion generalization

of Kitaev’s proposal, but we emphasize that essentially all results below apply equally to the

original model of SY in Eq. (9). We consider the Hamiltonian of spinless fermions ci

H =
1

(2N)3/2

NX

i,j,k,`=1

Jij;k` c
†
ic

†
jckc` � µ

X

i

c†ici, (12)

with

cicj + cjci = 0 , cic
†
j + c†jci = �ij, (13)

and the Jij;k` are complex, independent Gaussian random couplings with zero mean obeying

Jji;k` = �Jij;k` , Jij;`k = �Jij;k` , Jk`;ij = J⇤
ij;k`

|Jij;k`|2 = J2. (14)
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Because there is only a fermion interaction term in H, and no fermion hopping, Eq. (12) can be

viewed as ‘matrix model’ on Fock space, with a dimension which is exponentially large N . The

conserved U(1) density, Q is now related to the average fermion number by

Q =
1

N

X

i

D
c†ici

E
, (15)

which replaces the on-site constraint in Eq. (11). The value of 0 < Q < 1 can be varied by the

chemical potential µ. The solution described below applies for any µ, and so realizes a compressible

state.

Note that we could equally have defined Q without the 1/N prefactor in Eq. (15); then we

would have to define S as the total entropy, and both Q and S would be proportional to N in the

large N limit. The latter scaling would then be similar to the M2 scaling of these quantities in

the usual matrix large M limit of the AdS/CFT correspondence [1]. But we choose to work here

with an intensive definition of Q and S, and keep the 1/N in Eq. (15).

Introducing replicas cia, with a = 1 . . . n, we can average over disorder and obtain the replicated

imaginary time (⌧) action

S =
X

ia

Z 1/T

0

d⌧c†ia

✓
@

@⌧
� µ

◆
cia � J2

4N3

X

ab

Z 1/T

0

d⌧d⌧ 0

�����
X

i

c†ia(⌧)cib(⌧
0)

�����

4

; (16)

(here we are neglecting normal-ordering corrections which vanish as N ! 1). Following SY,

we decouple the interaction by two successive Hubbard-Stratonovich transformations. First, we

introduce the real field Qab(⌧, ⌧ 0) obeying

Qab(⌧, ⌧
0) = Qba(⌧

0, ⌧). (17)

In terms of this field

S =
X

ia

Z 1/T

0

d⌧c†ia

✓
@

@⌧
� µ

◆
cia +

X

ab

Z 1/T

0

d⌧d⌧ 0

(
N

4J2
[Qab(⌧, ⌧

0)]2

� 1

2N
Qab(⌧, ⌧

0)

�����
X

i

c†ia(⌧)cib(⌧
0)

�����

2)
. (18)

A second decoupling with the complex field Pab(⌧, ⌧ 0) obeying

Pab(⌧, ⌧
0) = P ⇤

ba(⌧
0, ⌧) (19)

yields

S =
X

ia

Z 1/T

0

d⌧c†ia

✓
@

@⌧
� µ

◆
cia +

X

ab

Z 1/T

0

d⌧d⌧ 0

(
N

4J2
[Qab(⌧, ⌧

0)]2 +
N

2
Qab(⌧, ⌧

0) |Pab(⌧, ⌧
0)|2

� Qab(⌧, ⌧
0)Pba(⌧

0, ⌧)
X

i

c†ia(⌧)cib(⌧
0)

)
(20)
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Now we can integrate out the fermions and obtain an action which can be solved in the saddle-point

approximation in the limit of large N . The saddle-point equations are

Pab(⌧, ⌧
0) =

D
c†a(⌧)cb(⌧

0)
E

Qab(⌧, ⌧
0) = J2 |Pab(⌧, ⌧

0)|2 (21)

Notice we have dropped the site index on the fermions, because all sites are equivalent and the

saddle-point equations are defined as a single-site problem.

We do not expect spin-glass solutions in this model, and so we restrict our attention to replica

diagonal solutions in which

Pab(⌧, ⌧
0) = �abG(⌧ 0 � ⌧), (22)

where G(⌧) is the usual fermion Green’s function. In the operator formalism for the underlying

Hamiltonian, this Green’s function is defined in Euclidean time by

G(⌧1, ⌧2) = � 1

N

X

i

D
T⌧

⇣
ci(⌧1)c

†
i (⌧2)

⌘E
(23)

where T⌧ denotes time-ordering, andG(⌧1�⌧2) = G(⌧1, ⌧2). Now the largeN saddle-point equations

become [5]

G(i!n) =
1

i!n + µ � ⌃(i!n)
, ⌃(⌧) = �J2G2(⌧)G(�⌧), (24)

where !n is a Matsubara frequency. Although they are innocuously simple in appearance, these

equations contain a great deal of emergent scaling structure.

In the low energy scaling limit, !, T ⌧ J , the i!n + µ�⌃(i!n = 0) is irrelevant [5]. Then, it is

useful to write these equations in imaginary (Euclidean) time, separating the two time arguments

of the Green’s functions (the self energy has the value of ⌃(i!n = 0) subtracted out):
Z

d⌧2G(⌧1, ⌧2)⌃(⌧2, ⌧3) = ��(⌧1 � ⌧3)

⌃(⌧1, ⌧2) = �J2 [G(⌧1, ⌧2)]
2 G(⌧2, ⌧1) (25)

A crucial property of these equations is that they are invariant under the time re-parameterization

⌧ ! �, under which

⌧ = f(�)

G(⌧1, ⌧2) = [f 0(�1)f
0(�2)]

�1/4 g(�1)

g(�2)
G(�1, �2)

⌃(⌧1, ⌧2) = [f 0(�1)f
0(�2)]

�3/4 g(�1)

g(�2)
⌃(�1, �2) (26)

where f(�) and g(�) are arbitrary functions, corresponding to emergent conformal and U(1) gauge

invariances. The conformal symmetry of the low energy Green’s functions has been noted earlier

9



[8, 22–24], and in the form in Eq. (26) by Kitaev [24] (without the g(�) factors). The gauge

transformation g(�) is a real number in Euclidean time, but it becomes a conventional U(1) phase

factor in Minkowski time. For the original model of SY [5], the gauge invariance was explicitly

present in the underlying Hamiltonian. In contrast, our Hamiltonian here in Eq. (12) is not gauge-

invariant, and only has a global U(1) symmetry; nevertheless, a U(1) gauge invariance emerges in

the low energy theory.

Note that the i!n term in Eq. (24) breaks both the conformal and gauge invariances. Although

the i!n can mostly be neglected in studying the scaling limit, it is important in selecting the proper

low energy solution of Eq. (25) from the highly degenerate possibilities allowed by Eq. (26).

A. Low energy Green’s function

We now show that the fermion Green’s function in Eq. (3) follows directly from the conformal

and gauge invariances in Eq. (26), when combined with constraints from analyticity and unitarity.

This Green’s function was obtained earlier [5–8] by explicit solution of the integral equation in

Eq. (25) (and also, as discussed in Section III, by the solution [13, 26] of a Dirac equation on a

thermal AdS2 background with a non-zero electric field). Given our reliance on conformal and

gauge invariances, the computations below are straightforwardly generalized to other operators

with di↵erent values of q.

At the Matsubara frequencies, the Green’s function is defined by

G(i!n) =

Z 1/T

0

d⌧ei!n⌧G(⌧), (27)

and this is continued to all complex frequencies z via the spectral representation

G(z) =

Z 1

�1

d⌦

⇡

⇢(⌦)

z � ⌦
. (28)

The spectral density ⇢(⌦) > 0 for all real ⌦ and T . The retarded Green’s function is GR(!) =

G(!+i⌘) with ⌘ a positive infinitesimal, while the advanced Green’s function is GA(!) = G(!�i⌘).

At T = 0, given the scale invariance implicit in Eq. (26), we expect G(z) to be a power-law of

z. More precisely, Eq. (26) implies

G(z) = C
e�i(⇡/4+✓)

p
z

, Im(z) > 0, |z| ⌧ J, T = 0. (29)

Positivity of ⇢(⌦) now implies C > 0 and �⇡/4 < ✓ < ⇡/4. An inverse Fourier transform yields

G(⌧) =

8
>><

>>:

�C sin(⇡/4 + ✓)p
⇡⌧

, ⌧ � 1/J, T = 0

C cos(⇡/4 + ✓)p
�⇡⌧

, �⌧ � 1/J, T = 0.

(30)
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We obtain the non-zero temperature solution by choosing the conformal map in Eq. (26) as

⌧ =
1

⇡T
tan(⇡T�) (31)

where � is the periodic imaginary time co-ordinate with period 1/T . Applying this map to Eq. (30)

we obtain

G(�) =

8
>>><

>>>:

�Cg(�) sin(⇡/4 + ✓)

✓
T

sin(⇡T�)

◆1/2

, 0 < � <
1

T

Cg(�) cos(⇡/4 + ✓)

✓
T

sin(�⇡T�)

◆1/2

, 0 < �� <
1

T
.

(32)

The function g(�) is so far undetermined apart from a normalization choice g(0) = 1. We can now

determine g(�) by imposing the KMS condition

G(� + 1/T ) = �G(�) (33)

which implies

g(�) = tan(⇡/4 + ✓)g(� + 1/T ). (34)

The solution is clearly

g(�) = e�2⇡ET� (35)

where the new parameter E and the angle ✓ are related as in Eq. (4) for � = 1/4 and q = 1. The

final expression determining G(�) is

G(�) = �C
e�2⇡ET�

p
1 + e�4⇡E

✓
T

sin(⇡T�)

◆1/2

, 0 < � <
1

T
, (36)

and this can be extended to all real � using the KMS condition. The result in Eq. (3) now follows

from a Fourier transform.

For other fermionic operators with general charge q and scaling dimension �, the above argu-

ments show that the � dependence of Eq. (36) will be replaced by

G(�) ⇠ �e�2⇡qET�

✓
T

sin(⇡T�)

◆2�

, 0 < � <
1

T
, (37)

and its Fourier transform will have the frequency shift

!S = 2⇡qTE . (38)

The T ! 0 limit of Eq. (37) leads to Eq. (6).

The above analysis can be easily repeated for bosonic operators of charge q and scaling dimension

�. The result in Eq. (3) continues to apply, while Eq. (4) is modified to

e2⇡qE = �sin(⇡�+ ✓)

sin(⇡� � ✓)
. (39)
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The constraint on the allowed values of ✓ is now ⇡� < ✓ < ⇡(1 � �).

The constants C and ✓ (or E) appearing in Eq. (3) can also be determined exactly for the

microscopic model in Eq. (12), as reviewed in Appendix A; however, their values depend upon the

specific UV completion used here, and do not apply to the holographic model of Section III. In

particular the ‘equation of state’ for Q as a function of E is in Eq. (A5).

B. Entropy

To complete our results for the SY state, we need to establish the connection in Eq. (2) between

!S and the zero temperature entropy density S. This is connection is the focus of our work, and

it also relies on the conformal and gauge invariances in Eq. (26). However, in addition, we need

information on the UV complete nature of the fermion model, and in particular, the fact that the

short-time behavior of the fermion Green’s function is determined by canonical fermions obeying

the anti-commutation relations in Eq. (13).

The computation of the entropy follows Refs. 6 and 7, and relies on the thermodynamic Maxwell

relation ✓
@S
@Q

◆

T

= �
✓
@µ

@T

◆

Q
. (40)

In the T ! 0 limit, Parcollet et al. [6] (Section VI.A.2) show that the right-hand-side of Eq. (40)

can be evaluated using the imaginary time Green’s function, and we review their computation here.

Their argument requires not only the scaling behavior of the Green’s function at times ⌧ � 1/J

given in Eq. (37), but also the short time behavior which is beyond the conformal regime. First,

we observe from Eq. (24) the large frequency behavior

G(i!n) =
1

i!n
� µ

(i!n)2
+ . . . (41)

which implies, from Eq. (28),

µ = �
Z 1

�1

d⌦

⇡
⌦⇢(⌦), (42)

which makes it evident that µ depends only upon the particle-hole asymmetric part of the spectral

density. Next, we can relate the ⌦ integrals to the derivative of the imaginary time correlator

µ = �@⌧G(⌧ = 0+) � @⌧G(⌧ = (1/T )�). (43)

Making the analogy to Eq. (36), we pull out an explicitly particle-hole asymmetric part of G(⌧)

by defining

G(⌧) ⌘ e�2⇡ET ⌧g(⌧) , 0 < � <
1

T
. (44)

Note that E was introduced as a parameter in Eq. (36), and then appears in Eq. (3) via Eq. (38).

(It might appear that we can absorb the chemical potential, µ, in the Hamiltonian by a temporal

12



gauge transformation, and that such a transformation combined with Eq. (44) implies µ = �2⇡ET
and so yields @µ/@T ; however this argument is flawed because µ also includes a Q-dependent

piece at T = 0, which must also be accounted for in the gauge transformation. The non-zero Q
ground state is not invariant under gauge transformations.) We proceed in our computation of µ

by inserting Eq. (44) into Eq. (43) to obtain

µ = 2⇡ET
⇥
G(⌧ = 0+) +G(⌧ = (1/T )�)

⇤
� @⌧g(⌧ = 0+) � e�2⇡E@⌧g(⌧ = (1/T )�) (45)

For the term in the first square brackets, we have

G(⌧ = 0+) +G(⌧ = (1/T )�) = G(⌧ = 0+) � G(⌧ = 0�1) = �1, (46)

which follows from the KMS condition and the fermion anti-commutation relation in Eq. (13);

also, this is related to the high frequency behavior G(|z| ! 1) = 1/z. Writing the second term

in Eq. (45) in terms of a spectral density ⇢g(⌦) for g(⌧), we obtain

µ = �2⇡ET �
Z 1

�1

d⌦

⇡

⌦
⇥
⇢g(⌦) � e�2⇡E⇢g(�⌦)

⇤

1 + e�⌦/T
; (47)

(we note that there is a sign error on the right-hand-side of Eq. (65) in Ref. 6, and �⇢g(�⌦)

should be ⇢g(�⌦)). At this point, Ref. 6 argues that at low T and fixed Q, ⇢g must be particle

hole symmetric with ⇢g(⌦) = ⇢g(�⌦), and that the T dependent part of the integral above scales

as T 3/2. We therefore have ✓
@µ

@T

◆

Q
= �2⇡E , T ! 0, (48)

and then the Maxwell relation in Eq. (40) leads to Eq. (8).

Using the relationship between Q and E specified in Appendix A in Eq. (A5), and the limiting

value S = 0 in the empty state Q = 0, we can integrate Eq. (8) to obtain the full zero temperature

entropy [7].

III. CHARGED BLACK HOLES

This section (apart from Section III B) mainly recalls the results of Faulkner et al. [13, 26] on

planar, charged black holes in AdSd+2, and makes the correspondence with the properties of the

SY state. We will also largely follow their notation, apart from the change d ! d + 1 required

by our definition of d as the spatial dimension (instead of the spacetime dimension). The case of

spherical black holes in global AdS is more complicated and is considered in Appendix B; it has a

more complex equation of state, but also obeys all results claimed in Section I. The discussion in

the latter part of Section III B shows how the needed features of Faulkner et al. can be obtained

in a more general class of black hole solutions.
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We consider the Einstein-Maxwell theory of a metric g and a U(1) gauge flux F = dA with

action

S =
1

22

Z
dd+2x

p
�g


R +

d(d+ 1)

R2
� R2

g2F
F 2

�
, (49)

where 2 = 8⇡GN , R is the Ricci scalar, R is the radius of AdSd+2, and gF is a dimensionless

gauge coupling constant. The equations of motion of this action have the solution [11, 12]

ds2 =
r2

R2

�
�fdt2 + d~x2

�
+

R2

r2
dr2

f
(50)

with

f = 1 +
⇥2

r2d
�

✓
rd+1
0 +

⇥2

rd�1
0

◆
1

rd+1

A = µ

✓
1 � rd�1

0

rd�1

◆
dt (51)

This solution is expressed in terms of three parameters ⇥, r0, and µ; these parameters are deter-

mined by the charge density, Q, and temperature, T , of the boundary theory via the relations

µ =
gF⇥

cdR2rd�1
0

, Q =
2(d � 1)

cd

⇥

2RdgF

T =
(d+ 1)r0
4⇡R2

✓
1 � (d � 1)⇥2

(d+ 1)r2d0

◆
, cd =

r
2(d � 1)

d
. (52)

The Bekenstein-Hawking entropy density [31, 32] of this solution is

SBH =
2⇡

2

⇣r0
R

⌘d

. (53)

We turn next to the holographic implications of this solution at low energy [13, 26, 36], which is

controlled by the near-horizon geometry. At T = 0, the horizon is at r = [⇥2(d � 1)/(d+ 1)]1/(2d),

and so we introduce the co-ordinate ⇣ by

r �
⇥
⇥2(d � 1)/(d+ 1)

⇤1/(2d)
=

1

⇣
; (54)

we approach the horizon as ⇣ ! 1 (see Fig. 2). In terms of ⇣, the near horizon geometry at T = 0

is

ds2 = R2
2

(�dt2 + d⇣2)

⇣2
+

[⇥2(d � 1)/(d+ 1)]1/d

R2
d~x2. (55)

The geometry has factorized to AdS2 ⇥ Rd, where the AdS2 radius is given by

R2 =
Rp

d(d+ 1)
. (56)
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In the same low energy limit the gauge field is (see Fig. 2)

A =
E
⇣
dt. (57)

which determines the strength of the AdS2 electric field in terms of the dimensionless parameter

E . Notice that the value of E in Eq. (57) is invariant under any rescaling of the co-ordinates

which preserves the (�dt2 + d⇣2)/⇣2 structure of the AdS2 metric. From the present near-horizon

computation we find the value

E =
gF sgn(Q)p
2d(d+ 1)

. (58)

Eq. (58) is the ‘equation of state’ connecting Q to E , and the analogous expression for the fermion

model is in Eq. (A5), and for the spherical black hole is in Eq. (B8); the non-analytic Q dependence

in Eq. (58) becomes analytic for the spherical black hole in Appendix B. We recall that gF is a

dimensionless coupling, and so E is also dimensionless, and depends only upon gF and d; in

particular, E is independent of 2, and so remains of order unity in the matrix large M limit of

holography [1], as noted in Section I.

We also take the T = 0 limit of Eq. (53) from Eq. (52), and find

SBH =
2⇡gF |Q|p
2d(d+ 1)

, T ! 0. (59)

Comparing Eqs. (58) and (59), we find that Eq. (8) is indeed obeyed. Note that for the present

case of a planar black hole, we can combine Eqs. (58) and (59) into the simple relationship [13]

SBH = 2⇡QE . (60)

Eq. (60) does not hold for a spherical black hole; but the more fundamental relation for @SBH/@Q
in Eq. (8) does hold, and is verified in Appendix B, which also derives the di↵erent ‘equation of

state’ relating E and Q for a spherical black hole.

A. Fermion correlations

To confirm the link to the fermion model, we need to show that the E obtained above in Eq. (57)

is the same as the E (or the related !S via Eq. (5)) appearing as the spectral asymmetry parameter

in the response functions in Eqs. (3) and (6) (see Fig. 2). For this, we need the Green’s function

of matter fields moving on a thermal AdS2 metric. The finite temperature generalization of the

AdS2 factor in Eq. (55) is [13, 26]

ds2 =
R2

2

⇣2


�

�
1 � ⇣2/⇣20

�
dt2 +

d⇣2

(1 � ⇣2/⇣20 )

�
, (61)
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and that of the gauge field is

A = E
✓
1

⇣
� 1

⇣0

◆
dt (62)

where

T =
1

2⇡⇣0
. (63)

The action of a fermionic spinor,  , of charge q moving in the backgrounds of Eqs. (61) and (62)

is

S = i

Z
d2x

p
�g

�
 �↵D↵ � m  

�
(64)

wherem is a bulk fermion mass, �↵ are the Dirac Gamma matrices, andD↵ is a covariant derivative

with charge q. The correlator of  in this thermal AdS2 [25] plus electric field background has

been computed in some detail by Faulkner et al. [13, 26], and their result was already displayed

in Eq. (3) in our notation. This computation shows that E = !S/(2⇡qT ) (Eq. (5)) is indeed the

same parameter appearing in Eqs. (57) and (62). In this AdS2 computation, the scaling dimension

� is related to the bulk spinor mass by

� =
1

2
�

q
m2R2

2 � q2E2. (65)

B. Black hole thermodynamics

We close this section by noting a significant property of the above solution of classical general

relativity at all T and Q. From the laws of black holes thermodynamics [29], we deduce that the

horizon area and the chemical potential must obey a thermodynamic Maxwell relation

✓
@SBH

@Q

◆

T

= �
✓
@µ

@T

◆

Q
, (66)

which is the analog of that in the fermion model computation in Eq. (40). And indeed we do find

from Eqs. (52) and (53) that Eq. (66) is obeyed with

✓
@µ

@T

◆

Q
= � 4⇡(d � 1)gF⇥rd0

cd(d+ 1)r2d0 + cd(d � 1)(2d � 1)⇥2
. (67)

In determining the value of (@µ/@T )Q as T ! 0, rather than explicitly evaluating Eq. (67), it

is instructive to use a more general argument which does not use the explicit form of the solution

in Eqs. (51) and (52). From the original action in Eq. (49) and the metric in Eq. (50), Gauss’s law

for the scalar potential in the bulk is

2R2

2g2F

d

dr

✓
rd

Rd

dAt

dr

◆
= 0, (68)
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and the constant of integration is the boundary charge density

2R2

2g2F

✓
rd

Rd

dAt

dr

◆
= Q. (69)

We can write the solution of Eq. (69) as

At(r) = µ(T ) �
✓
Rd�22g2F
2(d � 1)

◆
Q
rd�1

, (70)

where the r-dependent term in Eq. (70) is independent of T at fixed Q, and the chemical potential

µ equals At(r ! 1) when we choose At = 0 on the horizon. Now we transform to the near-

horizon AdS2 geometry by making a T -independent change of variables from r to ⇣ as in Eq. (54),

r = r⇤ + 1/⇣, where r = r⇤ is the position of the horizon at T = 0, but we won’t need the actual

value of r⇤. Then Eq. (70) implies that, as ⇣ ! 1, the near-horizon scalar potential must of the

form in Eq. (62), where now we define ⇣ = ⇣0 as the position of the horizon at non-zero T , where

E is a parameter independent of T , and

✓
@µ

@T

◆

Q
= E @

@T

✓
� 1

⇣0

◆

Q
. (71)

The T -dependence of ⇣0 in Eq. (63) follows from the conformal mapping between the T = 0 AdS2

metric in Eq. (55) and T > 0 metric in Eq. (62) [26]. So we find by this general argument that

✓
@µ

@T

◆

Q
= �2⇡E , T ! 0, (72)

which is the same as the fermion model result in Eq. (48). It can be verified that Eq. (72) holds also

in the spherical geometry of Appendix B. Combining Eq. (72) with Eq. (66), we obtain Eq. (8),

which is a special case of results obtained from the Wald formalism [15–21].

We note that the above derivation of Eq. (72) relied only on Gauss’s Law and the conformal

invariance of the AdS2 near-horizon geometry: this implies that such results hold for a wide class

of black hole solutions [15–21].

IV. DISCUSSION

In our discussion of the SY state of the infinite-range fermion model in Eq. (12), we noted

that the fermion Green’s function was almost completely determined by the emergent conformal

and gauge invariances in Eq. (26). These conformal and gauge invariances also fairly uniquely

determine the holographic theory of matter moving in curved space in the presence of an electric

field. So, with the benefit of hindsight, we can understand the equivalence of the fermion Green’s

functions obtained in Sections II and III.
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However, we have gone beyond the identification of Green’s functions, and also shown that the

zero temperature entropy of the SY state can be mapped onto that of the AdS2 theory (see Fig. 2).

Specifically, we chose an appropriate combination of observables in Eqs. (1,2) to allow us to gener-

ally define a common frequency !S , and we showed that this frequency was related to precisely the

same derivative of the entropy in both the SY state and in charged black holes (where the entropy

was the Bekenstein-Hawking entropy). In both cases, establishing this relationship required an

analysis of the details of the model, and it did not follow from general symmetry arguments alone.

In particular, for the SY state, the entropy computation required careful treatment of the manner

in which the emergent gauge and conformal invariances, present at low energies, were broken by

the on-site canonical fermions, present at high energies.

This common relationship between !S and the entropy indicates an equivalence between the

low-energy degrees of freedom of the two theories in Sections II and III, and strongly supports the

existence of gravity dual of the SY state with a AdS2 horizon. The present results also imply the

ci fermion, with q = 1, of the theory in Eq. (12) is holographically dual to the  fermion, with

q = 1, [13, 36] of Eq. (64). As the microscopic ci fermion carries all of the Q charge of the theory

in Eq. (12), we expect that  also carries a non-negligible fraction of the charge (in the large N

limit) behind the AdS2 horizon. Both models likely also have higher dimension operators, but

these have not been analyzed so far (see however Ref. 24).

Note that the above discussion refers to the near-horizon AdS2 geometry. The larger Reissner-

Nordström-AdS solution is to be regarded here as a convenient (and non-universal) embedding

space which provides a UV regulation of the gravitational theory. With such an embedding, we are

able compute well-defined values for S and Q. Presumably other gravitational UV embeddings, will

have di↵erent ‘equations of state’ between E and Q, but the will nevertheless obey the fundamental

relation in Eq. (8) provided they contain a AdS2 horizon. We explicitly tested the independence

on the UV embedding in Appendix B by comparing the cases of planar and spherical black holes.

The above identification between the ci and  fermions di↵ers from that made previously by

the author in Refs. 22 and 23. There,  was argued to be dual to a higher dimension composite

fermion operator of the original model of SY [5]. This previous identification was based upon the

requirement that local bulk operators must be dual to gauge-invariant operators on the boundary,

and the original model [5] had a microscopic gauge invariance which did not allow the choice of ci as

dual to  . However, in the present model in Eq. (12), there is no microscopic gauge invariance, and

so we are free to use ci as the dual of the bulk  field. It turns out that the low energy boundary

theory for ci does have a gauge invariance (as in Eq. (26)), but this is an emergent gauge invariance

which is broken by UV terms needed to regularize the theory. The present situation is analogous

to the theory of the Ising-nematic quantum critical point in metals, where the regularized model

for the electrons is not gauge-invariant, but the low energy theory defined on two Fermi surface

patches does have an emergent gauge structure [37, 38]. And the present situation is di↵erent from
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that in the ‘slave particle’ theories of condensed matter, where the gauge structure emerges from

fractionalizing particles into partons, which influenced the reasoning of Refs. 22 and 23. Instead

the same particle can be gauge-invariant in the underlying theory, and acquire an emergent gauge

charge in the low energy theory. There is some similarity between this interpretation and ideas in

Ref. 39.

Finally, we note recent work [24, 40, 41] on ‘a bound on chaos’ which also related characteristic

times of the real-time dynamics of strongly-coupled quantum systems to thermodynamics, ~, and
black hole horizons.
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Appendix A: Non-universal constants of the fermion model

We compute the constants C and ✓ (or E) appearing in Eq. (3) for the microscopic model in

Eq. (12). The results of this appendix do not apply to the holographic model of Section III.

We can compute the self-energy from Eq. (30) and the second equation in Eq. (24)

⌃(⌧) =

8
>>><

>>>:

�C3J2 cos(2✓) sin(⇡/4 + ✓)

2(⇡⌧)3/2
, ⌧ � J, T = 0

C3J2 cos(2✓) cos(⇡/4 + ✓)

2(�⇡⌧)3/2 , �⌧ � J, T = 0

. (A1)

A Fourier transform now leads to

⌃(z) = �J2C3 cos(2✓)

⇡
ei(⇡/4+✓)

p
z , Im(z) > 0, |z| ⌧ J, T = 0. (A2)

We now see that Eqs. (29) and (A2) are consistent with the first equation in Eq. (24), provided

we choose the value of C to be

C =

✓
⇡

J2 cos(2✓)

◆1/4

. (A3)
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Finally, the value of ✓ can be related to the density Q by a computation which parallels the

Luttinger-Ward analysis [42] for a Fermi liquid. The present model has no spatial structure, and

so no possibility of a Fermi surface. However, if we apply the steps of the Luttinger-Ward proof of

the volume enclosed by the Fermi surface, we find an expression relating density Q to the spectral

asymmetry angle ✓. In other words, ✓ plays a role similar to the Fermi wavevector in a Fermi

liquid. And the relationship between Q and ✓ is [7]

Q =
1

2
� ✓

⇡
� sin(2✓)

4
. (A4)

Note that the constraint �⇡/4 < ✓ < ⇡/4 implies that 0 < Q < 1, as expected. In terms of E , this
relationship is

Q =
1

4
(3 � tanh(2⇡E)) � 1

⇡
tan�1

�
e2⇡E

�
. (A5)

The right-hand-side is a monotonically decreasing function of E which ranges between 1 and 0, as

E increases from �1 to 1.

Appendix B: Spherical black holes

We consider the case of spherical black holes in global AdS, following the analysis of Ref. 12.

For simplicity, we will limit ourselves to the T = 0 case.

Now we choose a solution of the Einstein-Maxwell equations of motion of Eq. (49) with metric

ds2 = �V (r)dt2 + r2d⌦2
d +

dr2

V (r)
(B1)

where d⌦2
d is the metric of the d-sphere, and

V (r) = 1 +
r2

R2
+

⇥2

r2d�2
� M

rd�1
, (B2)

has a zero at r = r0 so that

M = rd�1
0

✓
1 +

r20
R2

+
⇥2

r2d�2
0

◆
. (B3)

The zero temperature case has [12]

⇥2 =
r2d�2
0 [(d � 1)R2 + (d+ 1)r20]

(d � 1)R2
. (B4)

In the near-horizon region, we introduce, as in Section III, the co-ordinate ⇣ via

r � r0 =
R2

2

⇣
, (B5)
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where Eq. (56) is now replaced by

R2 =
Rp

d(d+ 1) + (d � 1)2R2/r20
, (B6)

and the near-horizon metric becomes AdS2⇥ Sd, with

ds2 = R2
2


�dt2 + d⇣2

⇣2

�
+ r20d⌦

2
d. (B7)

Turning to the gauge field sector, the charge density, Q, and AdS2 electric field parameter E in

Eq. (57) are

Q =
rd�1
0

p
2d [(d � 1)R2 + (d+ 1)r20]

2gF

E =
gF r0

p
2d [(d � 1)R2 + (d+ 1)r20]

2 [(d � 1)2R2 + d(d+ 1)r20]
. (B8)

The ‘equation of state’ obeyed by E and Q is obtained by eliminating r0 between the equations in

Eq. (B8); this leads to a very lengthy expression which we shall not write out explicitly.

Using the Bekenstein-Hawking entropy density

SBH =
2⇡

2
rd0, (B9)

and
@SBH

@Q =
@SBH/@r0
@Q/@r0

, (B10)

and evaluating the derivatives via Eq. (B8), we can now verify that Eq. (8) is indeed obeyed. Note

that SBH 6= 2⇡QE here, unlike Eq. (60) for the planar case.
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