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We present a functional renormalization group analysis of a quantum critical point in a two-dimensional
metal involving Fermi surface reconstruction due to the onset of spin density wave order. The critical theory is
controlled by a fixed point in which the order parameter and fermionic quasiparticles are strongly coupled, and
acquire spectral functions with a common dynamic critical exponent. We obtain results for critical exponents,
and for the variation in the quasiparticle spectral weight around the Fermi surface.
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Introduction. Quantum phase transitions between two
Fermi liquids, one of which spontaneously breaks transla-
tional symmetry and so reconstructs its Fermi surface, have
been of long standing theoretical and experimental interest.
Important new examples of experimental realizations have
emerged in the past few years [1-3], and so a full theoretical
understanding is of some urgency. However, despite several
decades of theoretical work, key questions remain open espe-
cially in the important case of two spatial dimensions.

Early theories [4-9] for such quantum phase transitions fo-
cused on effective models for the quantum fluctuations of the
order parameter, while treating the Fermi surface reconstruc-
tion as an ancillary phenomenon. However, it has since be-
come clear [10] that such an approach is inadequate, and the
Fermi surface excitations are primary actors in the critical
theory. Ref. 11 postulated a critical theory for Fermi sur-
face reconstruction, in which the Fermi surface excitations
and the bosonic order parameter were equally important and
both acquired anomalous dimensions. These excitations were
strongly coupled to each other by a “Yukawa’ coupling of uni-
versal strength, and their correlators scaled with a common
dynamic critical exponent, z. Explicit computations were per-
formed in the context of a 1 /N expansion (where N is the num-
ber of fermion flavors) for the onset of spin density wave or-
der, but no such critical theory appeared at the two-loop level.
Indeed, it was pointed out that at higher loops [11-13] there is
a breakdown of the 1/N expansion, and so it remained unclear
whether the postulated fixed point existed.

Here we will address the problem of Fermi surface recon-
struction at the onset of spin density wave order by an analysis
based on a formally exact functional renormalization group
approach [14, 15]. In an approximation where we truncate the
flow equations to a set of discrete points on the Fermi surface
and keep the shape of the Fermi surface fixed, we establish the
existence of a fixed point with the scaling structure postulated
in Ref. 11, describing the quantum phase transition between
two Fermi liquids. A significant feature of this method is that
it ties the parameters controlling the order parameter fluctua-
tions to those associated with the fermion excitations, and this
is important for a proper description of the scaling structure.
We present numerical results for the critical exponents of the
boson and fermion spectral functions, and for the variation in
the fermionic quasiparticle residue around the Fermi surface.

Model. Our computation will be carried in the context of
the ‘spin-fermion’ model of antiferromagnetic fluctuations in
a Fermi liquid [9]. This involves a spin density wave order
parameter $ at wavevector K = (mr, ) coupled to fermions ¥
moving on a square lattice. The analytic analyses have fo-
cused on the vicinity of the ‘hot spots’ on the Fermi surface:
these are the 8 points on the Fermi surface which can gener-
ically be connected to each other by K. The fermion dis-
persions were linearized and truncated around the hot spots.
However a complete analysis requires that we avoid the spu-
rious singularities associated with truncated Fermi surfaces,
and deal only with continuous Fermi surfaces. Here, we will
choose the Fermi surface configurations of a recent analysis
[16] which allowed Monte Carlo studies without a sign prob-
lem. This paves the way for an eventual comparison of our
renormalization group results with Monte Carlo. Our present
method applies also to general Fermi surfaces, and provides
access to real-time spectral functions which are not easily ob-
tainable from imaginary-time Monte Carlo.

The model of Ref. [16] contains fermions in two bands, ¥,
a = 1,2 (although our present method can also be applied to
single band models) coupled to 5 in the effective action
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where fk represents integrals over spatial momentak = (ky, k)
over the Brillouin zone, and over frequencies ky. The fermion
spinors are defined by Wy (k) = (Yo 1(k) Y k), @ = 1,2.
We already introduce here the cutoff A along which we later
integrate our renormalization group flow toward A — 0. With
A = Ayy we have the bare lattice action. The boson quadratic
terms consists of the control parameter r and a spatial gradient
squared to account for spatial variations of the order parameter
field ¢. The quantum dynamics of ¢ will be generated in the
RG flow; putting a q% term into Eq. (1) does not change our
results. The fermion dispersions for nearest-neighbor hopping
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FIG. 1: (Color online) Reconstructing Fermi surfaces (&¢; = 0,

black-dashed line; &k, = 0, blue-solid line for Eq. (2)) from the para-
magnetic phase (a) to the zeros of the quasi-particle energies in the
antiferromagnetic (SDW) phase (b). Gaps open at the ‘hot spots’,
that is, where the Fermi surfaces of the two flavors intersect. In this
paper, we focus on the SDW transition that is the singular point right
when the Fermi surfaces reconstruct. The C, lattice symmetry of the
original fermions is preserved.

are
‘fk,a = _Zt(t,x Cos kx - 2t(1,y cos ky — Ma- (2)

A consistent mapping to “physical” fermions can be achieved
with the an anisotropic choice of hoppings [16], . = 1 and
te=05and: 11, =1, 1y = —tc, tiy = Le, by = —1, yielding
the Fermi surfaces shown in Fig. 1.

A mean-field analysis of Eq. (1) predicts an antiferromag-
netic spin-density wave (SDW) ground state at » = 1.34 which
spontaneously breaks the spin SU(2) symmetry of Eq. (1).
The Fermi surface topology “reconstructs” and gaps open at
the hot spots as shown in Fig. 1. On a mean-field level, the
SDW transition at zero temperature of Eq. (1) is first order,
as was also found in related single-band models for electronic
antiferromagnets [17, 18]. In the present paper, we however
focus on continuous SDW transitions at zero temperature.

Key results. We now describe the three key results of this
paper. (i) We find an infrared strong-coupling fixed point for
the Yukawa-coupling A* which governs the RG flow of the
coupled Fermi-Bose action down to the lowest scales A — 0.
This induces scaling relations among the anomalous expo-
nents for the Fermi velocity, the quasi-particle weight and the
Yukawa vertex. (ii) Both the quasi-particle weight and the
Fermi velocity vanish as a power-law when scaling the mo-
menta toward the hot spot; the Fermi velocity slower than the
quasi-particle weight. (iii) The (quantum) dynamical scaling
of the electronic single-particle and collective spin fluctua-
tions follows from an emergent dynamical exponent attaining
the same (fractional) value for both, fermions and boson.

As explained in more detail in the Supplemental Material,
our RG analysis is based on the (formally exact) flow equa-
tion for the effective action I" Q [&, v, 5], the generating func-
tional for one-particle irreducible correlation functions in the
form derived by Wetterich [14, 15]. The regulator R intro-
duces a cutoff dependence into the effective action so that Fj}

smoothly interpolates between the bare action, Eq. (1), at the
ultraviolet scale T4~ [t}, v, 5] = TAw [zﬁ, v, <Z] and the fully
renormalized effective action in the limit of vanishing cutoft:
limp o T [(Z, A q?] =T [(Z, 2 5] The Wetterich equation has
a one-loop structure and in a vertex expansion the S-functions
for the n-point correlators are determined by (cutoff deriva-
tives of) one-particle irreducible one-loop diagrams with fully
dressed propagators and vertices. Upon self-consistent inte-
gration of the coupled set of S-functions, contributions of arbi-
trary high loop order are generated. In this paper, we truncate
the effective action to the full fermion two-point function (in-
cluding a fermion self-energy Z’;(ko, k)), the full bosonic two-

point function (including a bosonic self-energy Zg(qo, q)), and
the Yukawa coupling A2,

The centerpiece of our analysis is the flow equation for the
Yukawa coupling:

~ 1 1)~
AN = (Z (nz,l + 1z, + N4y + nAﬂ) — Tyuk — 5),1/\ , 3)

where (;1’\)2 = (/lA)z /(A ,/Z]’}IZ}\Z A?IA}\Z) is rescaled by
the frequency (Z;}l) and momentum (AAI) derivatives of the
fermion self-energy generated under the RG flow as per Fig. 2
(a). The power-law divergences as well as all other non-
universal contributions to the flow of the two fermion self-
energy factors and the Yukawa coupling itself are absorbed
into the anomalous exponents:

_ dlog z) _ dlog A} _ dlog 2t
0T T dogA T M T T dlogA 0 M T T dlogA
“4)

Nyuk is driven by the direct contribution to the flow of A*
exhibited in Fig. 2 (b). All couplings are projected to zero
fermionic frequency, a discrete set of fermionic momenta on
the Fermi surfaces, and zero bosonic frequency and momenta.
This is where the most singular renormalizations occur.

(Ko, k) k+q (Ko, k)
q
(ko ) k+q (ko, k)

FIG. 2: Diagrammatic representation of the flow equation for the
fermion self-energy Z?(ko, k) (a) and the Yukawa coupling (b).
Straight lines denote Fermi propagators of flavor 1 and 2, wiggly
lines boson propagators are endowed with a regulator R* (specified
in the Supplemental Material). Intersections of wiggly with straight
lines represent the Yukawa coupling. The cutoff-derivative with re-
spect to R* is implicit. All propagators and vertices are “dressed”
self-consistently and are functions of A.



FIG. 3: (Color online) Quantum critical RG flows of the Yukawa
coupling and the anomalous exponents at the hot spot kys. The fixed-
point values are A* = 2.38, nz, = 0.78, 4, = 0.44 and ny, = 0.11.
The scaling plateaus for s > 6 depicted over ~ 4 orders of magnitude
would be attained indefinitely but are limited by the numerics only.
The infrared is to the right of the plot (A = Ayve™).

Specifically, the inverse quasi-particle weight is computed
from the flowing self-energy by [19]

0
78 =1 - —328 (ko, K)lky=0kks 5
1 61/(0 fl( 0 )lko 0,k=kp ( )
where Kr is a momentum on the Fermi surface and the initial
. . N . .
condition is Zj,\lu = 1. The momentum renormalization factor
is obtained from a momentum gradient of the fermion self-

energy
L VZ}\l (ko, k)|
[Véral

with the initial condition A% = 1. Here, V = (0,,0,) and
Ny ; is unit normal vector onto the Fermi surface of flavor 1.
We shall see below that the momentum gradient scales dif-
ferently than the frequency derivative at the quantum critical
point. In a different context, for Fermi systems with van Hove
singularities, this asymmetry was established to all orders in
perturbation theory by Feldman and Salmhofer [20]. Neces-
sary conditions to discover this are: (i) the co-dimension of
the Fermi surface manifold is greater than zero (it is zero in a
one-dimensional Fermi systems) and (ii) one includes the ad-
ditional, relevant transversal momentum direction parallel to
the Fermi surface into the analysis.

With these definitions, the scale-dependent “dressed”
fermion propagator which occurs self-consistently in all RG
equations becomes

(6)

AR =1+

ko=0.k=kg
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G (k) = (7)

with Z}\l =1 /Zj‘}1 resembling the quasi-particle weight at
low energies and the effective modulus of the Fermi velocity
AA

1

A
vyl = o5
| fl| zy

A self-consistent numerical solution of the flow equations
for the Yukawa vertex A%, the fermion self-energy Z?(ko, k)
and the boson self-energy EIb\(qo, q) (to be described below) is
attracted toward an infrared strong-coupling fixed point. As
can be read off from Fig. 3, the S-function for the Yukawa
coupling, Eq. (3), vanishes for s > 6 resulting in a scaling
relation for the fermion and Yukawa anomalous exponents:

dlog A* 1
dlog A - (772/' + ’7Af) =Ty + 5 3

N =

0 &

where we dropped the flavor index as they become degener-
ate at the hot spot. A similar strong-coupling fixed-point and
scaling relations (without singular vertex corrections) have re-
cently been obtained at the QCP of Dirac cone toy model be-
tween a semimetal and a superfluid [21].

The numerical values of the exponents (see Fig. 3) deter-
mine the scaling behavior of the fermion propagator Eq. (7)
and the associated dynamical exponent zy. The Yukawa ver-
tex diverges as a power-law

1
Ak~ AOIL T

/lA—VO ~
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A can be associated with the momentum distance from the hot
spot; at A = 0 the hot spots are resonantly connected by the
ordering wave vector K of the incipient spin-density wave. At
the hot spot, the fermionic quasi-particle weight vanishes as a
power-law:

Z?HO ~ Anzf — A0.78 (10)

destroying the Fermi liquid character of fermionic quasi-
particle excitations. In a non-selfconsistent calculation we can
also compute the fermion self-energy from Eq. (5) away from
the hot spot by solving the flow equations evaluated at general
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FIG. 4: (Color online). Infrared values of the momentum resolved in-
verse quasi-particle weights Zj}l_’o [ko = 0, k,, k,] non-selfconsistently
computed from Eq. (5) along the Fermi surface. Fig. 5 exhibits flows
of the corresponding exponents for the six data points closest to the
maximum/hot spot on the right flank. Here the hot spot is located at
kusy = 2.0944 and kys , = 1.0472.



FIG. 5: (Color online). Non-fermi liquid regimes at intermedi-
ate scales of the anomalous exponent for the quasi-particle weight
Nzp ko = 0,ky, ky] for six choices of momenta progressively ap-
proaching the hot spot (corresponding to the 6 data points closest to
the maximumy/hot spot on the right flank of Fig. 4). The momentum
K¢ is furthest from the hot spot and k| is closest to it. The infrared is
to the right of the plot (A = Ayye™).

fermionic momenta k. The result for a momentum cut along
the Fermi surface is exhibited in Fig. 4. The renormalization
of the quasi-particle weight is strongly peaked around the in-
tersection of the Fermi surfaces at the hotspot. Away from
the hot spot, the suppression of the quasi-particle weight is
less pronounced leading to asymptotically vanishing anoma-
lous exponents in the infrared A — 0 (Fig. 5). Nevertheless, in
the vicinity of the hot spot, magnetic fluctuations are still very
strong leading to sizable non-Fermi liquid scaling regimes
at intermediate scales with the maximum progressively ap-
proaching the hot spot value Nz, ko = 0,ky = kusx, ky =
kus,y] = 0.78 for momenta closer to it.

In the numerics for Fig. 4, we stopped the flow at s = 7
(recall that A = Ayve™) leading to finite (but very large) val-
ues of Zy; even at the hot spot. We used a momentum cut of
100 points producing for each grid point in Fig. 4 the scale-
resolved flows shown in Fig. 5.

The Fermi velocity vanishes as well but with a smaller ex-
ponent

|v?—>0| ~ Azr=lAf = AZ[*] - A0.34 , (11)
so that the dynamical exponent for the fermions is
f = 1+7]Zf_77Af= 1.34 . (12)

An important ingredient to the scaling laws above is the self-
consistently flowing boson propagator

-1
Q2+ 7+ ZMgo,q) + R

D"(qo.q) = (13)

where R" is an infrared momentum regulator that vanishes
for A — 0. The flow equation for the bosonic self-energy
Zﬁ(qo,q) is a convolution of two fermion propagators with
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FIG. 6: Particle-hole bubbles used for the flow of the boson self-
energy in Eq. (13). All propagators and vertices are “dressed” self-
consistently and depend on A.

two Yukawa vertices (Fig. 6). The asymptotic static and dy-
namic scaling of the spin fluctuation propagator is given by

. -1 »

/1\15(1) [DR(qO,q)] ~ A" |qo| + q’ ~ |q0|1.66 +q?. (14)
with 7, = 0.66. Remarkably, the boson dynamical exponent
p=2-1nz=134=2z;, (15)

takes the same value as the fermion dynamical exponent. It
is a distinguishing feature of this infrared fixed-point of elec-
trons in metals at a spin-density wave transition that the dy-
namical exponent attains fractional value different from 1
(which is the exact value for quantum-critical fermion sys-
tems with Lorentz-symmetry, see Ref. [22] and references
therein) and different from 2 (which is the mean-field value
of the Hertz theory [5]). Our fermion anomalous dimensions
and z can be mapped to those of Ref. 11 for values of the
Fermi velocity-anisotropy in a range around ¢ = 0.5, and
upon ignoring the marginal RG flow of & (which is implicitly
assumed in (6)); our boson anomalous dimension renormaliz-
ing the q? term in the propagator is essentially zero, and we
trace this to differences in the RG scheme from Ref. 11.

It would be interesting to classify all relevant operators to
our fixed point, and investigate the stability of our strong-
coupling fixed point further. As a first simple step in this
direction, we have extended the truncation for the fermion
dispersions to allow for changes in the Fermi surface curva-
ture (keeping the position of the hot spot fixed). A scale-
dependent @" that modifies the hoppings, #1 x/y — t1 vy + &"
and 1 y/y — 12,y — @", does the job. We found only relatively
small, finite renormalizations of &*. However, a proper self-
consistent investigation of a flowing Fermi surface with the
full dispersion used in this paper requires an advanced trunca-
tion and likely also a self-consistent determination also of the
position of the Fermi surfaces and the hotspots as a function
of A. Potential tendencies toward magnetic ordering at in-
commensurate wave vectors might also be captured that way.
Such a state-of-the-art truncation was recently presented for
self-energy flows in the repulsive Hubbard model close to van
Hove filling [23].

Other promising future directions are the inclusion of (d-
wave) superconductivity [24], an extension to the quantum-
critical regime at finite temperatures, and the exploration of
the antiferromagnetic phase with broken symmetry close to
the quantum critical point [30].
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SUPPLEMENTAL MATERIAL

Our results are obtained from the renormalization group
flow of the action Eq. (1) at the quantum-critical point (r = 0)
under the formally exact evolution equation [14]

—rA [v.7] = —Str{RA [T Dol + RY| } . (16)

r g)A is the second derivative with respect to the fields defined

below. R™ is a matrix containing A-dependent cutoff func-
tions that regularizes the infrared singularities of the fermion
and boson propagators. The dot is short-hand notation for a
scale-derivative R* = 9,R™. Both sides of this equation are
projected onto a “super”-field basis y, y containing fermionic
and bosonic entries:

ox(k)
by(k)
¢ (k)
Y1(k)
Y,,(k)
X (k) = [ ¢4(k) (17)
1,1 (k)
Yo (k)
Yoy (k)
a4 (k)
U, (k)

and its conjugate-transposed (k). Stris a “super” trace over
frequency, momenta, and internal indices and installs an addi-
tional factor of —1 for contributions from the purely fermionic
sector of the trace of Grassmann-valued matrices. We will
solve Eq. (16) in a vertex expansion truncating any gener-
ated vertices beyond the Yukawa vertex. The flowing fermion
self-energy E?(ko, k) and the boson self-energy Ez\(qo, q) are
parametrized in a derivative expansion keeping the Fermi sur-
faces fixed.
The cutoff matrix in Eq. (16) is given by

— di Ao pAs pA Ay Ay
= diag(R}", Ry R) R LR =R LRG|
Ar pAr pAr pAy
RfZ,T’RfZ‘l’ Rf2,T’ Rfll) ’ (18)

where one is in principle free to choose the fermion and boson
cutoff scales Ap(A) and Af(A) and associated regulator func-
tions Ry, ; independently [26, 27]. The corresponding “flow
trajectories” in cutoff space (in the plane of Fig. 7) from the
bare action (red dot) to renormalized, effective action (green
dot) will be different. We will choose the trajectory along
the arrows illustrated in Fig. 7, that is we take Ay — 0
and Ry — 0 before integrating out order parameter fluctua-
tions which are excluded for momenta smaller than A;. The
fermions are however not discarded as in the Hertz theory [5],
but coupled self-consistently into the flow for all A € {A}Y, 0}
thereby imposing important boundary conditions for the inte-
gration of order parameter fluctuations down the vertical axis
in Fig. 7.
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FIG. 7: (Color online) Illustrative flow trajectory in cutoff space. At
each step AA, of the integration over bosonic momenta along the
vertical axis the entire range of fermionic momenta is swept over
(grey-striped box).

For the bosons, we use a Litim cutoff for momenta

R): = Ry = R): = Ry = Ap (—q* + A*)0(A° - ¢

). (19)

where AZ\ is bosonic momentum renormalization factor to be
specified below. In the following, we will set A’ = A. The
fermionic entries in Eq. (18) are zero.

The fermionic matrix elements of the generalized matrix

-1
propagator [I“g)’\ v, x] + RA] occurring in Eq. (16) become:

G (k) = =10 (k)1 o (k)

5 5 B
- +RA
e gy | e
Ak
-1

= — ) (20)
—tko + k1 + 2?1 (ko, k)

and analogously for the other flavor and spin components.
The explicitly cutoff-dependent boson propagators are

DR(q) = DR(g) = ~(¢(@)p(—))R

— <6— -1
=—-|——7T Y +RA
ox(q1) ox(q2) _ba
X=x=0
q1=492=4
-1

Q> + 7 +X}(q0. @) + R
m lal> A
A2+r+ZA(q0 qQ) lal <A
and analogously for the other spin projections y, z. The func-
tional derivatives are evaluated at zero fields here, as we ap-
proach the QCP from the paramagnetic phase.

The flow equation for the fermion self-energy (depicted di-
agrammatically in Fig. 2) is

ONEN ko K] = 3(2)’ f
q.R

; 2n

Ghk+Di(q),  (22)

and similarly for flavor 2 upon interchanging 1 < 2. We use a
short-hand notation encapsulating frequency, momentum in-
tegrations and a cutoff derivative with respect to the bosonic

f . (271)2[ RA@RA]

The prefactors and signs of the flow equations are computed
by comparing coeflicients between the left-hand-side and the
right-hand-side of Eq. (16) as outlined in Sec. II of Ref. 28.
The 11x11 Grassmann-valued (super-) matrices are evaluated
using the GrassmannOps.m package in Mathematica. How to
take a supertrace can be found in Ref. 29.

cutoff function: fq R

The boson self-energy is determined self-consistently from
the particle hole bubble (Fig. 6) at all stages of the flow:

27 (@0, 9) = — (T1"(g0. @) — T1(0, 0)) (23)
=2 () j]: (G4 (k + 9) - G\ () Gy (k)
+GH (k) (Ghtk+9) - GHk) |

The following ansatz captures the leading frequency and
momentum-dependence of the particle-hole bubble:

(g0, 9) = Zplqol + Apq* . (24)

At the yellow dot in Fig. 7, the Fermi propagators are still
Fermi-liquid like (E}\sv = 0) because we have not yet inte-
grated out any order parameter fluctuations which, by Fig. 2,
generate a finite fermion self-energy. At that point, the coef-
ficients Z;\UV, AQU" take finite numerical values. At all stages
of the flow, when integrating the flow down the vertical axis
of Fig. 7, the bosonic Z-factor and A-factor are determined
self-consistently according to the prescription:

11" (g0,0) — 1T (g0, 0)

q0
14(0, @) — I1*(0,0)

q2

zZ)=-

qo=A

AN =1-

g0 (25)

This allows them to pick up potentially singular renormaliza-
tions during the flow. The boson momentum factor is isotropic
in momentum space; interchanging g, <> g, delivers the same
value for Ag\.

The flow equation as per Fig. 2 for the Yukawa coupling is

3
AN = — (/l’\) f,, Mk + @Gk + g)D(q) .

(26)

We now give the explicit expressions of the flow equations
(22,23,26). To that end, it is convenient to use the rescaled

. ~ A
Vanables ZA =2, é-‘kl = f“‘ as well as rescaled momenta:
ko=%G0=2,3, =
For the the fernnonlc frequency exponent, there is

and gy =



Nz =3 (}i

32 g~ 0o J~
|| f f +\1-7 di, f @ZAQ 1 1 27
oy - . 2 2
Visgg 27 Jow 21 (“10 - |U?2|§kHs+q,2) (ZZ\|610| +A£)

and similarly (1 & 2) for flavor 2. The frequency integral over gy can be performed analytically so that at each step of the
flow, two-dimensional integrations over g, and g, have to be performed numerically. The Yukawa anomalous exponent contains

fermion propagators of both flavors:

Nyuk = — (j-A

For the flow of the fermionic momentum factors we use the
projected k, and k, derivatives of Eq. (22)

ONAD, . = i, 10, O [ko, K]

7 . o =
" ” fl dgy f V-3 dg, f @ZAA
f1 N 2 J_o 21

b .~ = .~ z ~ 2
igo = I 1Exus+a.1 iGo = 0 lkys+q2 (Zé\|g]0| + Az\)

1 1 1

(28)

With n7z,, given in Eq. (27), these take the form

A
A/\ - Afl.v
fLy Z;\l :

A@AAﬂ Y (Uzﬂ - nAf'l-X)A
Ab

ko=0,k=kyss
OnAR, = i a0 INER ko K|, (29) NONAT = (2 =, ) A (31)
.k=Kns
. dlog A x dlog A% v
with the initial conditions AA AAUV = 1. The Fermi sur-  With the exponents 7a;,, = =R Man, = ~—gga Al
face normal projector is (s1m11arly for flavor 2) every step of the flow, we compute then per Eq. (6)
21‘1’)(/ , sin kx/ ,
Mt = — (30) A+ (3,)
J@esink,,) + (26, sink,)’ il = . (32)
( 1x SN Ky 1y SI Ky f V&1 klk=kys
AN
The flow equations for the rescaled variables are A% flx = ZfA“, Expressions for the exponents:
f1
|
A oo Rl g, VYR g dg. [ dgo., a2t sin (kusx + GrA) 1
Mgt = Mgt 3 (/l ) lvﬂ' |Df2|A~ 2 12 2 o 2T 2 2 - A E 2 (5A)7 NS
flx J-1 B (140 - |Uf2|§kﬂs+q,2) (Zb IGol + Ab)
SA\2 A [ A |U}\l| ! gy -6 d%c = dgo A2t2y sin (kHS’y + E]«VA) 1
Mapy = Migsy1 3 (/l ) Ivfl| Iva'A . o 2 §2Ab . z 2 (5 A)? (33)
fly J-1 “VI - (16]0 - |U§C\2|§kgs+q,2) (Zg\lflol + A,,)
[
Finally, the (rescaled) boson frequency factor and momen- tum factor are self-consistently determined from
|
P dky dky 1 dk, 1 1 1
AAJmmwf f o[ 5= |+
2 A i(ko + 1) = v [ ko = [0k ) iko = [V léka
dk, dk, 1 dk, 1 1
/lA V'UleUlef f f - 7 A Ty A 7 A +(le2)
27 A2 ik = [V [€krg, ko = V7 Ikt | iko = [V, 1ék2 oA
(34

Egs. (3,27,28,31,33,32,34) are solved numerically as a function of flow parameter A = AUVe™*

so that s = 0 corresponds to

the UV (AYY = 1). The hotspot coordinates are kysx = 1.0472, kysy = 2.0944. As initial conditions, we choose A%V = 0.25,

ZpY =Zp = Land AR =

A?;V = 1. The initial values for the boson propagator are Z]’,\UV

=0.052 and A2 = 1.011.
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