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Abstract

In this thesis we theoretically study low-dimensional, strongly corrleated systems

of cold atoms, which are not in an equilibrium situation. This is motivated by recent

experimental progress, which has made it possible to study quantum many-body physics in

a controllable and clean setting; and parameters can be changed during the experiment.

In Chapter 2 and 3 we study phases and quantum phase transitions of ‘tilted’ Mott

insulator of bosons. We analyze a variety of lattices and tilt directions in two dimensions:

square, decorated square, triangular, and kagome. We show that there are rich possibilities

for correlated phases with non-trivial entanglement of pseudospin degrees of freedom en-

coded in the boson density. For certain configurations three-body interactions are necessary

to ensure that the energy of the effective resonant subspace is bounded from below. We

find quantum phases with Ising density wave order, with superfluidity transverse to the tilt

direction, a quantum liquid state with no broken symmetry. We also find cases for which

the resonant subspace is described by effective quantum dimer models.

In Chapter 4 we study spin 1/2 chains with a Heisenberg interaction which are

coupled in a way that would arise if they are taken off graphene at a zig-zag edge.

In Chapter 5 we theoretically analyze interference patterns of parametrically driven one-

dimensional cold atomic systems. The parametric driving leads to spatial oscillations in the

interference patter, which can be analyzed to obtain the sound velocity of the 1d system,

and to probe spin-charge separation.
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Chapter 1

Introduction

Recent experimental progress in the field of ultracold atomic gases has made it

possible to study quantum many-body physics in a controllable and clean setting (see Ref

[1] for a review). This makes cold atoms in optical lattices candidates for analogue quantum

simulators of real materials and model Hamiltonians in equilibrium. They are also partic-

ularly well suited to realize and study non-equilibrium quantum systems for the following

reasons: cold atoms can be almost perfectly isolated from their environment, and parame-

ters can be changed during the experiments.

Since the observation of a quantum phase transition from a superfluid state to an interaction

driven insulating state [2] there has been a lot of effort to simulate other correlated quan-

tum phases, such as magnetic phases. Many proposals suggest using an internal degree of

freedom of the atoms to simulate a spin degree of freedom. Virtual hopping processes then

lead to an effective magnetic interaction called superexchange. The energy scale of those

processes is still low compared to experimentally reachable temperatures, and so magnetic

long range order has not yet been observed.

An important milestone was recently reached taking a surprising new route: An equilibrium

quantum phase transition of an antiferromagnetic spin chain was simulated using spinless

bosons in a non-equilibrium situation. Starting with a one dimensional array of 87Rb atoms

in an optical lattice, an additional potential gradient1 (‘tilt’) drove the transition to a state

with density wave order. This happened in a metastable state, which is not the ground state

of the full bosonic hamiltonian. However, the dynamics of the tilted lattice was confined to

1Experimentally the tilt is realized by a magnetic field gradient.
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2 Chapter 1: Introduction

Figure 1.1: Snapshots of an experimental simulation of an antiferromagnetic Ising spin chain
in longitudinal and transverse magnetic field taken by the Greiner group; see Ref. [3, 4].
The chains are aligned in longitudinal direction, and each image shows five independent
chains. Tunneling of atoms in vertical direction is surpressed. Images were taken with a
Quantum Gas Microscope [5, 6] for different strength of the tilt. First image is for weakest
tilt, last image for strongest tilt. Experimentally the tilt is realized by a magnetic field
gradient. A dark site corresponds to having no atom on that site, a bright site corresponds
to either one or two atoms. See Chapter 2 for a more detailed discussion of this transition.
Images courtesy Greiner group.



Chapter 1: Introduction 3

a resonantly connected effective subspace, which has an energy bounded from below [3, 7],

and so a mapping to an antiferromagnetic Ising model in a transverse and longitudinal

field is possible. Understanding non-equlibirium properties helped simulating equilibrium

physics of a model with different degrees of freedom. The idea to drive a system, which can

be prepared in the lab, out of equilibrium in order to simulate equilibrium properties of a

previously inaccessible model with different degrees of freedom, is a new tool in the toolbox

of ultracold atoms as analogue quantum simulators. Fig. 1 shows and absorption images

for several tilt magnitudes taken by the Greiner group.

In two dimensions there are of course more knobs to turn, allowing for a larger

variety of models that can be simulated. We can use different lattice geometries, and in

addition to tuning the tilt magnitude, we can also change the tilt angle. In Chapter 2 we will

show that, for example, two dimensional Ising order appears in a square lattice tilted into a

non-equilibrium state; and that other lattices lead to intriguing models, as quantum dimer

models and frustrated Ising antiferromagnets. In Chapater 3 we will analyze a particular

lattice configuration in detail, and discuss its quantum phase transitions as a function of

tilt angle and tilt magnitude.



Chapter 2

Metastable Phases of Tilted Two

Dimensional Mott Insulators

We study the ‘tilting’ of Mott insulators of bosons into metastable states. These

are described by Hamiltonians acting on resonant subspaces, and have rich possibilities for

correlated phases with non-trivial entanglement of pseudospin degrees of freedom encoded

in the boson density. We extend a previous study (Phys. Rev. B 66, 075128 (2002)) of cubic

lattices to a variety of lattices and tilt directions in 2 dimensions: square, decorated square,

triangular, and kagome. For certain configurations three-body interactions are necessary

to ensure that the energy of the effective resonant subspace is bounded from below. We

find quantum phases with Ising density wave order, with superfluidity transverse to the

tilt direction, and a quantum liquid state with no broken symmetry. The existence of the

quantum liquids state is shown by an exact solution for a particular correlated boson model.

We also find cases for which the resonant subspace is described by effective quantum dimer

models.

2.1 Introduction

The observation of the superfluid-insulator quantum phase transition of ultracold

bosonic atoms in an optical lattice [2] has launched a wide effort to engineering other cor-

related quantum states of trapped atoms. Much of the effort has focused on entangling

the spin quantum number of the atoms between different lattice sites: superexchange in-

teractions between neighboring lattice sites have been observed [8], but longer range spin

4



Chapter 2: Metastable Phases of Tilted Two Dimensional Mott Insulators 5

correlations have not yet been achieved.

Here we focus on a proposal [7, 9] to obtain quantum correlated phases in a pseu-

dospin degree of freedom which measures changes in boson number across the links of a

tilted lattice [10]. The interactions which entangle the pseudospins are not suppressed by

factors of t/U (where t is the tunneling between lattice sites, and U is the local boson

repulsion), and so non-trivial entanglement is likely to be readily accessible [3]. This pro-

posal takes advantage of the unique feature of ultracold atom systems, namely, the ability

to study many-body non-equilibrium physics [3, 11, 12, 13, 14], and suggests that various

intriguing phases can appear as metastable states. Moreover, the recent advent of site-

resolved imaging of ultracold atoms in optical lattices [5, 6, 15] opens the way to the direct

detection of the pseudospin and the investigation of its quantum correlations.

The previous theoretical work on tilted lattices [7, 9, 16] focused on simple cubic

lattices in spatial dimensions d = 1, 2, 3, with the tilt along one of the principal cubic axes.

In d = 1, this theory predicted Ising density wave order for strong tilt, and this has been

observed in recent experiments [3]. Here, we will study a variety of other lattices and tilt

directions. We will find analogs of the density wave and anisotropic superfluid phases found

earlier. However we will also find new quantum liquid states, and some cases which map

onto the quantum dimer model. These states entangle the displacements of all the atoms,

and so should be attractive targets of future experiments. We will find an exact liquid

ground state for a particular correlated boson model.

We begin by recalling the Hamiltonian of a tilted Mott insulator. It is described

by the generalized bosonic Hubbard model [17] with an additional potential gradient along

a certain direction: H = Hkin +HU +Htilt:

Hkin = −t
∑
<ij>

(
b̂†i b̂j + b̂†j b̂i

)
(2.1)

HU =
U

2

∑
i

n̂i(n̂i − 1) +
U3

6

∑
i

ni(ni − 1)(ni − 2) + . . . (2.2)

Htilt = −E
∑

i

e · ri n̂i. (2.3)

Here b̂i are canonical boson operators on lattice sites i at spatial co-ordinate ri, and n̂i ≡ b̂†i b̂i.
The first term in HU describes two body interactions. The second term is an effective three

body interaction, generated by virtual processes involving higher bands [18, 19]. Such a

term is present in ultracold atomic systems, as has recently been measured [18, 19, 20].
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As we will show, the presence of this term dramatically changes the physics of tilted two

dimensional lattices, therefore we include it in our model. The potential gradient is E, and

the fixed vector e is normalized so that the smallest change in potential energy between

neighboring lattice sites has magnitude E. We will assume a filling of one atom per site in

the parent Mott insulator in most of the following discussion.

We are interested in the dynamics of the resonant subspace that appears when the

lattice is tilted so that E becomes of order U . Specifically, we will work in the limit

|∆| , t� E,U, (2.4)

where we define

∆ = U − E. (2.5)

We also define our tuning parameter

λ ≡ ∆
t
, (2.6)

and allow λ to range over all real values. Thus we include processes which carry energy

denominators of order U −E to all orders, but neglect processes which have energy denom-

inators of order U or E.

Let us now review the properties [7] of a tilted chain of sites in d = 1; see Fig. 2.1.

As explained in Ref. [7], the limit Eq. (2.4) defines a strongly interacting many-body problem

in the resonant subspace, which can be described by an effective Hamiltonian. Unlike the

underlying Hubbard model in Eq. (2.3), the energy of this effective Hamiltonian is bounded

from below, and it makes sense to study its stable ground state and low-lying excitations

by the traditional methods of equilibrium many body theory. This will help us describe the

dynamics of experimental studies in the metastable resonant subspace of the full Hubbard

model in Eq. (2.3) defined by Eq. (2.4). It was found that the resonant subspace was

described by a quantum Ising model for an Ising pseudospin residing on the links of the

chain: an up spin represented the transfer of an atom across the link (or the creation

of a dipole particle-hole pair), while the down spin had no change from the parent Mott

insulator. In other words, in a parent Mott insulator with occupancy n0 per site, a down

spin was a pair of sites with occupancy (n0, n0), while an up spin was (n0− 1, n0 + 1). The

Ising model had both a longitudinal and transverse external field, representing the energy

of the dipole and the tunneling amplitude of the atom respectively. However, two nearest

neighbor dipoles cannot be created simultaneously, and this implied the presence of infinitely
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(a)

(b)

(c)

Figure 2.1: (a) Parent Mott insulator, which is the ground state for λ→∞. (b,c) Ground
states with Ising density wave order for λ→ −∞.

strong nearest-neighbor antiferromagnetic exchange interactions. It is this infinitely strong

exchange which allows easy access to strong-correlation physics in such tilted lattices [3].

The phase diagram of the Ising antiferromagnet with both longitudinal and transverse fields

has also been studied by others, [21, 22] with different physical motivations. For λ → ∞,

the Ising model had a paramagnetic ground state, corresponding to configurations close to

the parent Mott insulator. In contrast for λ→ −∞, the Ising model had antiferromagnetic

long-range order, corresponding to a maximum density of particle-hole pair excitations

about the Mott insulator. There are two possible ways of arranging these excitations,

depending upon whether the particles reside on the odd or even sites, and this ordering is

linked to the antiferromagnetic order of the Ising model. In between these limit cases, a

quantum phase transition was found [7] at an intermediate value of λ: this transition was

in the universality class of the quantum Ising ferromagnet in a transverse field and zero

longitudinal field [21, 22, 7].

Next, let us review [7] cubic lattices in dimensions d > 1, with a tilt along a

principal lattice axis, with |U3| � t. Then we have to distinguish the physics parallel and

transverse to the tilt direction. Parallel to the tilt direction, the physics is similar to d = 1:

there is an Ising density wave order associated with dipolar particle-hole pairs, which turns

on as λ decreases. In contrast, transverse to the tilt direction, the quantum motion of in-
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dividual particles and holes is allowed, not just of dipole bound states. Such motion raises

the possibility of Bose condensation of particles/holes and of the appearance of superflu-

idity. However, the single particle or hole motion is constrained to be purely transverse.

Consequently there are an infinite number of conservation laws, one for each lattice layer

orthogonal to the tilt direction: the total number of particles in any layer is constrained to

equal the total number of holes in the preceding layer. Because of these conservation laws,

the superfluidity is not global, but restricted to each transverse layer separately: there is

no Josephson tunneling term which links the superfluid order parameter of adjacent layers.

Of course, because of the translational symmetry in the effective Hamiltonian parallel to

the tilt, the superfluidity appears simultaneously in all the layers. In this superfluid state,

atomic motion is insulating parallel to the tilt, and superfluid transverse to the tilt. Such

transverse-superfluid states also appear as λ decreases, and can co-exist with the Ising order

parallel to the tilt. The previous work [7] did not note the U3 term, even though its presence

is required for the applicability of the d > 1 dimensional results therein.

In the present Chapter we will examine several tilted two dimensional lattices.

We find that the physics not only depends on the lattice geometry and tilt direction, but

also on the magnitude of U3 compared to other energy scales of the systems. This U3

term is needed to guarantee the stability of some lattices, as for example the cubic lattices

reviewed above. The reason is the following. Let us assume a parent Mott insulator with

filling n0 = 1. Processes of the kind (1, 1) → (0, 2) cost repulsion energy U , and gain tilt-

energy E (if the two participating sites differ in potential energy E). These processes are

tuned to be resonant. Depending on the lattice structure, it may then happen that two sites

differing in potential E are each occupied by two bosons. The process (2, 2)→ (1, 3) costs

repulsion energy U +U3, and gains potential energy E. In the case |U3| � t this process is

off-resonant. We can then identify a resonant subspace which focuses on the (1, 1)→ (0, 2)

processes only. This was implicitly assumed in Ref. [7] without discussion of the crucial

role played by U3, and will be assumed in our Sections 2.2-2.4. In such cases, our effective

Hamiltonian1 method applies, the energy of the resonant subspace is bounded from below,

and we can use equilibrium methods to study the phase diagrams.

1It is worth noting here that these effective Hamiltonians always have full translational symmetry both
parallel and transverse to the tilt directions, unlike Eq. (2.3) which is only invariant under translations
transverse to the tilt. Of course, there is no equivalence between the physics parallel and transverse to the
tilt direction, and the lattice rotation symmetry is reduced by the tilt, even in the effective Hamiltonian.
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On the other hand, if |U3| . t, we cannot neglect processes of the type (2, 2) →
(1, 3). In the presence of such processes, the resonant Hilbert space is increased. This can

have dramatic consequences on the physics; in some cases, we find that the energy in the

resonant subspace becomes unbounded from below, and the system becomes unstable.

The present Chapter will examine several lattice configurations of Eq. (2.3) in

d = 2. We will assume |U3| � t in all cases, except in Section 2.5. We will find analogs of

the Ising and transverse-superfluid phases described above in these lattices. However, we

will also find a qualitatively new phenomenon: the appearance of quantum liquid ground

states with no broken symmetries. These phases appear in these lattices for two main

reasons. First, even for a large tilt, not all the sites can participate in the creation of

particles or holes due to the geometrical constraints present in these lattice configurations.

Such geometrical constraints generate exponentially large degenerate states in the limit of

infinite tilt. Secondly, the lattice structure ensures that there is no free motion of unbound

particles or holes in the direction transverse to the tilt in the resonant subspace. The absence

of such unbound motion prevents transverse-superfluidity, allowing for the appearance of

the quantum liquid states.

The outline of the remainder of the Chapter is as follows. In Section 2.2 we study

a square lattice with a tilt in a diagonal direction, while in Section 2.3 we study a triangular

lattice with different tilt directions. In these cases, we will find analogs of phases studied

previously, involving Ising density wave and transverse-superfluid order. In Section 2.4,

we will consider the kagome and certain decorated square lattices. Here, the transverse-

superfluid order is suppressed for certain tilt directions, and novel quantum liquid ground

states appear. Also, for another tilt direction on the kagome, the Ising density wave order

is suppressed, and we obtain effective decoupled one dimensional systems. In Section 2.5,

we briefly discuss the U3 = 0 case.

2.2 Square lattice

As noted in Section 2.1, this section always assumes |U3| � t. We have already

reviewed the results of Ref. [7] for a square lattice tilted along a principle lattice direction.

Ref. [7] also briefly considered a tilt along a diagonal lattice direction, and we will discuss

this case more completely in the present section.

For the diagonal tilt, we choose the vector e = (1, 1) in the Hubbard model in
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Figure 2.2: Full blue circles denote quasiparticles, and black circles with light yellow filling
denote quasiholes. The tilt vector is e = (1, 1) and the resonant particle-hole excitations
are as shown in the figure.

Eq. (2.3). In this situation each site has two neighbors to which resonant tunneling is

possible; see Fig. 2.2. Here and in the following, we label the lattice sites as (l,m) where

l (m) represents the x (y) coordinate, respectively. Using the methods of Ref. [7], the

Hamiltonian of the resonant subspace can be written as

Hph = −t
√
n0(n0 + 1)

∑
lm

[(
p̂†l(m+1) + p̂†(l+1)m

)
ĥ†lm + H.c.

]
+

∆
2

∑
l,m

(
p̂†lmp̂lm + ĥ†lmĥlm

)
.

(2.7)

Here we have introduced bosonic quasiparticles p̂†lm and quasiholes ĥ†lm, and we identify the

parent Mott insulator with filling n0, |Mn0〉, as quasiparticle and quasihole vacuum, |0〉,
and so

p̂†l,m |0〉 :=
1√

n0 + 1
b̂†l,m |Mn0〉 , (2.8)

ĥ†l,m |0〉 :=
1
√
n0
b̂l,m |Mn0〉 . (2.9)

These operators are hard-core bosons and so we have the constraints

p̂†l,mp̂l,m ≤ 1, (2.10)

ĥ†l,mĥl,m ≤ 1, (2.11)

p̂†lmp̂lmĥ
†
lmĥlm = 0. (2.12)

We are now interested in describing the global ground state of the effective Hamiltonian

in Eq. (2.7) while it is subject to the constraints in Eqs. (2.2). It is useful to first consider

the limits of λ→∞ and λ→ −∞, followed by a general discussion.
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Figure 2.3: The matrix elements for the above processes are +teff for process (a), and −teff
for (b) and (c).

2.2.1 Limit λ→∞

To zeroth order in 1/λ, the unique ground state is the vacuum, the parent Mott

insulator. All particle-hole excitations are gapped with the same energy (see Fig. 2.2),

E1 = ∆. At second order in 1/λ, we obtain an effective Hamiltonian for particles and holes,

whose structure is strongly constrained by Eq. (2.2). A number of distinct processes appear

in the perturbation theory:

• Overall energy shift due to virtual processes. The vacuum couples to all states with

one neighboring particle-hole pair, and so the vacuum energy is shifted down. Each

particle-hole state couples to zero and two particle-hole states. To second order the

energy E0 for the vacuum and E1 for states with one particle hole pair are:

E0 = −2N
t2

∆
n0(n0 + 1), (2.13)

E1 = = ∆− (2N − 8)
t2

∆
n0(n0 + 1). (2.14)

where N is the number of lattice sites.
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• Hopping of particles and holes along direction transverse to the tilt: Particles and

holes can hop individually via second order processes along lines which are orthogonal

to the tilt direction, see Fig. 2.3b,c. The magnitude of the effective hopping is

teff =
t2n0(n0 + 1)
|∆|

. (2.15)

It is this process which leads to transverse superfluidity. Of course, because the

superfluidity is now one-dimensional, it is only quasi-long range, and characteristic of

a Luttinger liquid.

• When particles and holes are proximate to each other, we should consider their hop-

ping as contributing to the hopping of a dipole particle-hole pair. One such process

is shown in Fig. 2.3a, and it leads to the motion of a particle (or rotation of a dipole)

with matrix element opposite to that without an adjacent hole.

Collecting these processes, we can write down an effective Hamiltonian in the manifold of

excited states with one particle hole pair (with energy ≈ ∆). We label (lp, mp) the position

of the quasiparticle, and (lh, mh) the position of the hole. Clearly the vacuum state only

couples to states where particle and hole are on neighboring transverse diagonals, so that

mp + lp = mh + lh +1 = d. We only need three integers to describe the positions of particle

and hole: d,mp,mh. We label the states by

|d,mp,mh〉 = p̂†d−mp,mp
ĥ†d−mh−1,mh

|0〉 (2.16)

and the effective Hamiltonian in this manifold is

Hph, eff = E1 + teff
∑
d,m

[
(|d,m,m〉+ |d,m,m− 1〉) (〈d+ 1,m,m|+ 〈d+ 1,m+ 1,m|)

+ |d,m,m〉 〈d,m+ 1,m|+ |d,m,m〉 〈d,m,m− 1|+ H.c.
]

−teff
∑

d,mp 6=mh

[
|d,mp,mh〉 〈d,mp + 1,mh|+ |d,mp,mh〉 〈d,mp,mh − 1|+ H.c.

]
. (2.17)

Here the first sum is for hopping of particle-hole pairs, both in transverse and longitudinal

direction of the tilt. The second sum is for particles and holes hopping individually in

transverse direction. Diagonalization of this Hamiltonian, as in Ref. [7], yields a continuum

of separated particle-hole excitations, along with a dipolar particle-hole bound state.
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Figure 2.4: λ→ −∞: Three possible states with maximum dipole density. At zeroth order
in 1/|λ|, these states are degenerate, along with an infinite number of other state with the
same dipole density. At second order in 1/|λ|, two states are selected as the global ground
states: the checkerboard state on the top-left, and its symmetry-related partner. The state
in the top-right has a domain wall between the two checkerboard states: the domain wall
costs energy t2/(2 |U − E|) per unit length.

2.2.2 Limit λ→ −∞

At zeroth order in 1/|λ| there are an infinite number of degenerate ground states,

all maximizing the number of particle-hole pairs. Three such states are shown in Fig. 2.4.

In Ref. [7], it was stated that these degenerate ground states can be labelled by the set of

dimer coverings of the square lattice: this is incorrect, because given a set of particle and

hole configurations, there is, in general, no unique assignment of them into nearest-neighbor

dipoles.

We can examine the lifting of the ground state degeneracy in a perturbation theory

in 1/|λ|. At leading order, the matrix elements in the ground state subspace are all diagonal.

Each particle that has one hole to the left or below, can undergo a virtual annihilation,

reducing the energy by (t2/|∆|)n0(n0 + 1) = teff . If it has two neighbors that are holes (left

and below) it can do two virtual hopping processes, reducing its energy by 2teff . Thus we

should optimize the latter configurations: this leads to two degenerate ground states, which

look like checkerboards. These states break a lattice translation symmetry, and there is an
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Ising order parameter.

2.2.3 Discussion

The basic phenomenology that has emerged from our discussion so far of the

diagonal tilted square lattice is quite similar to that for the principal axis tilt considered in

Ref. [7]. For λ → ∞, we have continua of particle-hole excitations, while for λ → −∞ we

have a state with Ising density wave order,

and domain wall excitations. While for the principal axis tilt, these results ap-

peared already at first order in 1/|λ|, here for the diagonal tilt case we had to go to order

1/λ2 to obtain the free hopping of particles and holes, and the appearance of the Ising order.

We don’t expect these distinctions to be important at smaller values of |λ|, and so the phase

diagram of the diagonal tilt case should be similar to that of the principal axis tilt: Ising

order appearing as λ decreases, along with transverse quasi-superfluidity at intermediate

values of λ.

2.3 Triangular lattice

As in Section 2.2, this section also assumes |U3| � t. The triangular lattice case

is very similar to the square lattice case. The phase transitions are to Ising density-wave

ordered states and possibly transverse quasi-superfluid phases. The tilt breaks the rotation

symmetry, so the dipole states on the tilted triangular lattice are not frustrated.

2.3.1 Tilt along a principal lattice direction

For the tilt along a lattice direction, e.g. ~a1, we choose the tilt magnitude so that

the creations of dipoles along the two other lattice directions, ~a2 and ~a3, are resonant (see

Fig. 2.5a) but the dipole creation along the direction ~a1 is not. Therefore, the effective

Hamiltionian in the resonant subspace for this case is the same as for the square lattice

with a diagonal tilt, and all conclusions from Section 2.2 apply here.

One could also choose the tilt magnitude so that processes along ~a1 are resonant.

Then all processes along ~a2 and ~a3 are off-resonant, and the resonant subspace separates

into decoupled one-dimensional systems.
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Figure 2.5: (a) Triangular lattice tilted along principal lattice direction. The effective
Hamiltonian of the resonant subspace for this system is the same as the one for a square
lattice with diagonal tilt. Full blue circles denote quasiparticles, and black circles with
yellow filling denote quasiholes. (b) Triangular lattice tilted perpendicular to a principal
lattice direction. For large negative λ, there are two-fold degenerate ground states with
broken lattice symmetry.
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2.3.2 Tilt perpendicular to a principal lattice direction

Here we briefly consider a triangular lattice with tilt along a principal direction.

In the limit λ → ∞, the ground state is the parent Mott insulator and all excitations are

gapped. Particles and holes can separate and hop along the axis transverse to the tilt

direction and reduce their kinetic energy.

On the other hand, for large and negative λ, there are precisely two degenerate

ground states, as illustrated in Fig. 2.5b. There is an Ising density wave order parameter

associated with these states. These states and their symmetries are similar to those found

for the tilted square lattice in Ref. [7], and a similar phase diagram is expected.

2.4 Decorated square and kagome lattices

As in Sections 2.2 and 2.3, this section also assumes |U3| � t. We will now consider

frustrated models in the sense that in the strongly tilted limit, λ → −∞, not all sites can

participate in dipole creation. This requires lattices with a larger unit cell, as will become

clear from our discussion. Furthermore, the tilt direction of those lattices can be chosen

such that independent motion of particles and holes is not possible in the resonant subspace.

We can then label the resonant subspace by a set of dipole coverings. In the limit λ→ −∞,

we will obtain a large degeneracy in the dense dipole states. This degeneracy is lifted by

corrections in inverse powers of |λ|. The leading corrections are not diagonal in the basis of

dipole coverings: this sets up the possibility for novel quantum liquid phases.

2.4.1 Decorated square lattice with a diagonal tilt

Here we consider a decorated square lattice tilted along a diagonal direction, as

illustrated in Fig. 2.6a. We define the distance between nearest-neighbor sites to be a so

that the unit cell of the square lattice in Fig. 2.6a has size 2a.

Interestingly, the effective Hamiltonian for the resonant subspace resulting from

the tilted kagome lattice shown in Fig. 2.6b is the same as the one obtained in the decorated

square lattice in Fig. 2.6a. While the geometry of the kagome lattice is different from the

decorated square lattice, for the specific tilt of Fig. 2.6b, dipoles cannot be resonantly

created along the links parallel to the tilt direction. This reduces the geometry of the tilted

kagome to the tilted decorated square lattice. Using this identity, we will present most of
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Figure 2.6: (a) Decorated square lattice in diagonal tilt, and (b) kagome lattice with tilt
along lattice direction, where the tilt strength is chosen so that only processes along the
diagonal lines are resonant. These two models lead to the same effective Hamiltonian in the
resonant subspace. Excitations of the parent Mott insulator are dipoles (shown as think
lines connecting quasiparticle and quasihole). The particles and holes cannot separate.
Each dipole link blocks four other links from forming dipoles (shown as crosses). Those are
also the four links onto which each dipole is allowed to hop through virtual processes.
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the results using the decorated square lattice illustrated in Fig. 2.6a.

The decorated square lattice has 3 sites per unit cell. Let N be the number of

unit cells, and we assume periodic boundary conditions. There are two kinds of sites on

this lattice: N sites that have four neighbors, and 2N sites that only have two neighbors.

We define the unit cell so that a site with four neighbors is in its center. We will refer to

these sites as central sites.

The Hamiltonian in the resonant subspace is

H = ∆
∑

a

d̂†ad̂a − t
√
n0(n0 + 1)

∑
a

(
d̂a + d̂†a

)
, (2.18)

where a labels the lattice links, and d̂†a creates a dipole on this link. The resonant subspace

has the constraints

d̂†ad̂a ≤ 1, (2.19)

and

d̂†ad̂ad̂
†
a′ d̂a′ = 0 (2.20)

if a and a′ share a lattice site, see Fig. 2.6. Note that particles and holes cannot separate

on this lattice through hopping in the resonant subspace. It is notable that this effective

model restores the rotational symmetry of the lattice and is symmetric under rotation of

π/2 around the central sites.

Limit λ→∞

Here the ground state is the parent Mott insulating state. The excitations are

gapped and the lowest excitations are given by the creation of a single dipole. To zeroth

order in 1/λ, all states with one dipole are degenerate. We now describe the effective

Hamiltonian for the manifold of excited states with energy ≈ ∆ to second order in 1/λ.

First of all, there are energy shifts for the vacuum energy E0 and energy of one dipole E1,

given by

E0 = −4Nteff (2.21)

E1 = ∆− (4N − 6)teff (2.22)

with

teff =
t2n0(n0 + 1)
|∆|

. (2.23)
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Figure 2.7: Labeling of sites and links on the decorated square lattice.

Additionally, second order processes lead to hopping of the dipoles. Note that a dipole

always involves one central site and one neighboring site located to the right, left, up or

down relative to the central site. Thus, we label the dipole states by |l,m, σ〉, where (l,m)

denotes the position of the central site and σ = 1, 2, 3, 4 indicates the direction of the dipole,

see Fig. 2.7. With this notation, the effective Hamiltonian for one dipole excitation is given

by

H1dimer = E1 + teff
∑

σ 6=σ′,m,l

|l,m, σ〉
〈
l,m, σ′

∣∣
+teff

∑
l,m

[|l,m, 1〉 〈l,m+ 1, 3|+ |l,m, 2〉 〈l + 1,m, 4|+ H.c.] . (2.24)

The first sum represents hopping of the dipole at a central site from one orientation to

another, and the second sum represents hopping from one unit cell to another. Diagonalizing

the above Hamiltonian Eq. (2.24), one obtains the spectra of a single dipole excitation given
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by

ε1(kx, ky) = E1 − 2teff (2.25)

ε2(kx, ky) = E1 (2.26)

ε3(kx, ky) = E1 +
(

1−
√

5 + 2 cos(2akx) + 2 cos(2aky)
)
teff (2.27)

ε4(kx, ky) = E1 +
(

1 +
√

5 + 2 cos(2akx) + 2 cos(2aky)
)
teff (2.28)

where 2a is the distance between two neighboring central sites. The first two bands are ‘flat

bands’ as they do not depend on momentum.

Limit λ→ −∞, quantum liquid state

Exact solution for λ → −∞. To zeroth order in 1/λ, all states which maximize the

number of dipoles are degenerate, and they are all ground states of the effective Hamiltonian.

These states require every central site on the square lattice to have a dipole (on the kagome

lattice, every site marked with a square has a dipole), as illustrated in Fig. 2.8. There is an

exponentially large number of such states which satisfy this requirement.

To second order in 1/|λ|, dipoles can hop as long as the constraint Eq. (2.20) is

satisfied. As there is a dipole on every central site, the constraint implies that dipoles may

only change their orientation while remaining at the same central site. Thus, we can write

the hopping of the dipoles as a 4-state quantum clock model, with the clocks residing on

the vertices of the square lattice. The hopping Hamiltonian can be written as (see Fig. 2.8)

Hclock =
∑
lm

Hl,m

Hl,m = ∆− teff(|1〉+ |2〉+ |3〉+ |4〉)(〈1|+ 〈2|+ 〈3|+ 〈4|) (2.29)

where (l,m) is the site index, and |σ〉 is a shorthand for |l,m, σ〉 representing the orientation

of the dipole sitting at (l,m). It should be remembered that states within the resonant

subspace have the important constraint that two dipoles sitting at neighboring central sites

cannot be directed toward each other. Such constraints are not contained in Hclock. If we

define the projection operator onto the resonant subspace which satisfies the constraints

as P , the effective Hamiltonian with the constraints is given by projecting the hopping

Hamiltonian,

Hc
clock = PHclockP. (2.30)



Chapter 2: Metastable Phases of Tilted Two Dimensional Mott Insulators 21

e

(a)

1

2

3

4

4-state 
clock model

e

(b)

Figure 2.8: λ → −∞: quantum 4-state clock model: (a) decorated square lattice, (b)
kagome lattice. Both lattices lead to the same effective Hamiltonian. Minimum of the
energy for the effective Hamiltonian is obtained when the number of dipoles is maximum.
This requires, on the square lattice, every central site to have a dipole, and on the kagome
lattice, every site marked with a square to have a dipole. As a result, we can look at the
system in the limit λ → −∞ as a collection of four state clocks, one each on the central
sites of the square lattice, or on the marked sites of the kagome. The states on neighboring
clocks are constrained by the requirement that the dipoles cannot overlap.
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In the following we will show that the exact ground state of the Hamiltonian with

constraint Hc
clock is obtained through the projection of the ground state of the Hamiltonian

without constraint, Hclock, onto the resonant subspace which satisfy the constraints Eq.(4.1).

The ground state of the unconstraint single-site Hamiltonian Hl,m is given by |1〉 + |2〉 +
|3〉 + |4〉 with eigenenergy ∆ − 4teff , and there are three degenerate excited states2 with

eigenenergy ∆. Therefore, the ground state of Hclock is given by

|ψ0〉 = N
∏
l,m

(|l,m, 1〉+ |l,m, 2〉+ |l,m, 3〉+ |l,m, 4〉) (2.31)

where N is some normalization constant. As we will show in the following, the exact ground

state of Hc
clock is given by

|ψc〉 = P |ψ0〉 . (2.32)

Any configuration with maximum number of dipoles corresponds to a product state given

by
∏

l,m |l,m, σl,m〉 where σl,m = 1, 2, 3, 4. Then the state |ψc〉 is nothing but the equal

superposition of all the product states in the resonance subspace in the limit λ→ −∞ i.e.

all the configurations with maximum number of dipoles.

The proof proceeds in two steps. First, we will show that this nodeless state |ψc〉
is an eigenstate of the Hamiltonian Hc

clock. Second, we will show that it is necessarily the

unique ground state of the Hamiltonian Hc
clock.

In order to see that |ψc〉 is an eigenstate of Hc
clock, we check that Hc

clock |ψc〉 is again

the equal superposition of all the configurations with maximum number of dipoles. Consider

a particular configuration with maximum number of dipoles represented by the product state

|M〉. We count how many different configurations in |ψc〉 produce |M〉 after the action of

Hc
clock. This is equivalent to counting how many different state can be created from |M〉

through the action of Hc
clock. For any |M〉, there are in total 2N different configurations

that are connected with |M〉 through an action of Hc
clock, where N is the total number

of dipoles in the system. The decorated square lattice has in total 2N non-central sites,

and in a configuration with maximum number of dipoles |M〉, N of them are part of a

dipole and N of them are not. Now the action of Hc
clock is a change of the orientation

of a dipole at a central site, and the action can change the configuration by hopping a

2Interestingly, it is possible to fill the lattice with these excited states while respecting the constraint:
some of the highest energy eigenstates of Hclock are also eigenstates of Hc

clock. Note that states of the form
|σ〉−|σ′〉, with σ 6= σ′, are excited eigenstates of the single site Hamiltonian (2.29). These states only occupy
two links. We could, for example, fill the lattice with the state |1〉 − |2〉 on every site.
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dipole to these non-central sites that are not occupied by a dipole in |M〉. Since each

unoccupied non-central site is connected with 2 central sites, there are in total 2N different

configurations connected with |M〉. This consideration is true for any |M〉, so we conclude

that Hc
clock |ψc〉 = N (∆− 3teff) |ψc〉. Notice that the Hamiltonian Eq. (2.29) contains terms

which bring a configuration back to itself, so the eigenenergy is N (∆− 3teff). Indeed |ψc〉
is an eigenstate.

Now we show that this state is necessarily the unique ground state. Note that if

we take as the basis the product states which correspond to configurations with maximum

number of dipoles, all the off-diagonal matrix element of Hc
clock are negative. Moreover,

repeated applications of Hc
clock can connect any configuration with maximum number of

dipoles to any other configurations with maximum number of dipoles. This statement is

even true when the system is placed on a manifold with non-trivial topology, such as a

torus. From these two conditions, it follows through Perron-Frobenius theorem [23, 24, 25]

that the ground state of the effective Hamiltonian Eq. (2.29) is the superposition of product

states with strictly positive amplitudes. Moreover, since two of such states cannot be

orthogonal to each other, this ground state is unique. This statement is true for any finite

system with doubly periodic boundary conditions. However, the above argument does not

tell us anything about the scaling of the energy gap to the next lowest eigenvalues as a

function of system sizes. Even though we know the exact ground state, the question of

whether the system is gapped or gapless, and whether the ground state remains unique in

the thermodynamic limit is still open3 .

Correlation functions. In order to probe the properties of the ground state |ψc〉, we

numerically computed correlations for the state in Eq. (2.32). For the correlations of local

operators in a state which is the equal superposition of product states, the correlations can

be related to the corresponding classical problem [26]. Here we study the density-density

correlation 〈n̂0,0n̂0,m〉 on the central sites. nl,m is the density of the central site at (l,m)

measured relative to the density of the Mott insulator, so that nl,m can, in principle, take

3By looking at Fig. 2.8 one might be tempted to compare this system to a loop model, for example by
drawing lines following the direction of the dipoles from one central site to the next one. This leads to a
model where lines may begin anywhere, they may never end (every dipole points to some site which also has
a dipole on it), but lines may merge; and so ultimately every line ends in some loop. Acting upon any state
with the Hamiltonian a single time can change the structure completely, and so this model seems not to be
related to a loop model.
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Figure 2.9: Density-density correlation function 〈n̂0,0n̂0,m〉 on the central sites (the ones
marked by a square in Fig. 2.8), obtained using transfer matrices and periodic boundary
conditions. Correlations decay rapidly in an exponential fashion. A fit to the exponential
f(m) = a exp(−bm) + c gives a = 0.9999, b = 2.225, c = 7.371× 10−5, this corresponds to
a correlation length of less than half a lattice spacing.

the values +1, 0,−1. Here +1 (−1) means that there is an extra (a missing) boson on that

lattice site, and that this site has formed a dipole with a neighbor below or to the left

(above or to the right). nl,m = 0 would mean that this central site is not participating in

a dipole bond; in the limit λ → −∞ all central sites have nl,m = ±1. We used row-to-row

transfer matrices with rows of length up to 5 unit cells and periodic boundary conditions

to compute density-density correlations [27]. Results for lattice sizes 3 × 10, 4 × 12, and

5 × 10 are plotted in Fig. 2.9. We obtain essentially the same results for different lattice

sizes, and a fit of the correlation function to the exponential f(m) = a exp(−bm) + c gives

a = 0.9999, b = 2.225, c = 7.371× 10−5, corresponding to a correlation length of less than

half a lattice spacing. Similarly, dipole-dipole correlations can also be calculated: let d̂σ,l,m

be an operator that projects onto states which have dipole orientation σ at site (l,m). We

find that correlations 〈d̂σ,0,0d̂σ′,l,m〉 − 〈d̂σ,0,0〉〈d̂σ′,l,m〉 decay exponentially.

Discussion. The exponential decay of the equal-time correlations suggests that the

λ → −∞ liquid state has a gap to all excitations. Furthermore this liquid state is non-
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degenerate on a torus, implying the absence of topological order, and we expect the ground

state to remain unique in the thermodynamic limit N → ∞. Thus there is a possibility

that the parent Mott insulator state at λ→∞ is adiabatically connected to the liquid state

at λ→ −∞, without an intervening quantum phase transition.

Ultracold atom experiments are expected to realize this quantum liquid state as

long as the temperature is lower than the energy scale of teff ∝ t2/|E − U |. Since the

magnitude of teff can be controlled by changing the tilting strength E, it is likely that the

temperature of the order of teff is achievable in experiments. Moreover, recent experiments

by Bakr et. al. [6] showed that the Mott phase contains particularly low entropy com-

pared to the surrounding superfluid, and fits with theoretical curve suggest that the Mott

phase is as low temperature as a few nK. Therefore, together with the demonstration of

lattice tilting [2, 3] and possibility to create various lattice structures through a holographic

mask technique [5], realization of this quantum liquid state should be possible with current

technology.

2.4.2 Doubly-decorated square lattice

Although the quantum liquid state found in Section 2.4.1 has non-trivial entan-

glement, it does not have topological order. Here we show that by decorating the square

lattice further, it is possible to obtain a model whose resonant subspace is labeled by the

set of dimer packings of the undecorated square lattice. The dipole hopping terms appear

in the perturbation theory of 1/λ, and the effective Hamiltonian in this resonant subspace

is expected to take a version of the quantum dimer model [26].

In this model, we consider a square lattice decorated by two sites at each link

between lattice sites, as shown in Fig. 2.10a. Quantum spin models on a similar decorated

square lattice were considered in Ref. [28]. In the limit λ → −∞, the ground states in

the resonant subspace are those with maximum number of dipoles. As before, there are

a large number of such states and they are all degenerate in this limit. The dipoles now

come in two flavors: those which have one end on a central site of the square lattice, and

those which reside exclusively on a link between central sites. Along a link between two

central sites, the first kind of dipoles always come in pairs. We associate this pair with a

“dimer” which connects two neighboring central sites (see Fig. 2.10b). Because there can

be only one dimer on each site for λ→ −∞, the dimers are close-packed, and there is a one-
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Figure 2.10: (a) The doubly-decorated square lattice. (b) Dense dipole configuration obtain
in the limit λ→ −∞. Each dipole is represented by the thick line, and consists of a particle-
hole pair. Links with two dipoles are identified as having a “dimer”, and these are indicated
by the ovals. These dimers are described by an effective quantum dimer model.

to-one correspondence between the degenerate ground state manifold and the set of dimer

packings of the square lattice. Including corrections in powers of 1/|λ| we expect an effective

Hamiltonian which acts on a Hilbert space of states labeled by the dimer coverings: this

must have the form of the quantum dimer model [26]. In particular, a plaquette-flip term

appears at order 1/ |λ|12; up to this order, all diagonal terms in the basis of dipole coverings

are equal and independent of the configurations. We leave the details of the calculations as

well as possible extensions to a future work, and give a general discussion below.

On the square lattice, quantum dimer models are generically expected to have

ground states with valence bond solid orders [29]. At critical points between different solid

orders, topologically ordered spin-liquids can be obtained [30, 31]. The quantum dimer

model realized in this system consists of only a kinetic term, and no energy cost or gain for

parallel dimers,

Hdimer = −tdimer

∑
plaquettes

(|||〉 〈=|+ |=〉 〈|||) . (2.33)

This model is not critical, and so valence bond order is expected, but the precise nature of

the square lattice symmetry breaking remains under study. An early exact diagonalization

study [32] suggested a plaquette phase, more recent quantum Monte Carlo calculations [33]

predicted a columnar phase, and recently a mixed columnar-plaquette phase has been pro-

posed [34]. As λ increases away from λ = −∞, configurations with less number of dipoles
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e

Figure 2.11: a) Kagome lattice tilted perpendicular to a principal lattice axis: resonant
particle-hole excitations are illustrated. After a particle-hole pair is created, either the
particle or the hole can hop along the direction transverse to the tilt. b) Decorated square
lattice tilted along a principal lattice axis.

become energetically favorable. These states are analogous to those in the doped quantum

dimer model [26, 35], where other novel phases are possible [36]. As the parent Mott insu-

lator at λ = ∞ is non-degenerate, it cannot be connected adiabatically to all the possible

λ → −∞ states with topological order or broken symmetry: there must be at least one

intervening quantum phase transition.

2.4.3 Kagome lattice tilted perpendicular to a principal lattice axis

At last, we study the kagome lattice tilted perpendicular to a principle axis, as

illustrated in Fig. 2.11. Similar conclusions hold for a decorated square lattice tilted along

a principal lattice direction. Because of the low connectivity in the lattice structure, dipole

creations are frustrated in the limit λ → −∞ and even in this limit, some sites cannot

not participate in the creation of dipoles. As a result, there is no Ising ordering and the

transverse superfluidity persists in the limit λ→ −∞, as we describe below.

Limit λ→∞

The ground state is again the Mott insulator, and the excitations are particles and

holes. For every particle-hole pair, either the particle or the hole is located on a transverse

layer where it can hop, while the other is fixed and cannot move, see Fig. 2.11. The
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Figure 2.12: λ → −∞. Single non-degenerate ground state with half-filled Tonks gases
along horizontal lines for λ = −∞.

dispersion of the hopping quasiholes is

εh(k) = ∆− 2n0t cos(ka),

while for hopping quasiparticles it is

εp(k) = ∆− 2(n0 + 1)t cos(ka).

Therefore, the hopping quasiparticles have lower energy than the hopping quasiholes. The

excitations are gapped for λ→∞, but excitations become gapless for some critical value λc.

Limit λ→ −∞

The ground state in the resonant subspace has the maximum number of dipoles.

Due to the geometry of the kagome lattice, some sites are frustrated in the sense that they

cannot participate in the creations of dipoles. These sites allow the particles and holes to

move along the horizontal direction perpendicular to the tilt, forming Luttinger liquids. As

the kinetic energy of quasiparticles is lower than that of the quasiholes, the ground state

maximizes the number of moving quasiparticles in a transverse layer and localizes all the

quasiholes, as shown in Fig. 2.12. Each transverse layer thus realizes a “Tonks-Girardeau

gas” of bosons at half-filling [37], and the ground state realizes a collection of uncoupled

gapless Luttinger liquids. These are gapless only in the limit λ = −∞. Perturbation theory

to second order in 1/λ generates a dimerized hopping term, i.e. the effective hopping
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between two sites in a one-dimensional chain which share a neighbor above them becomes

different from the hopping between sites which share a neighbor below. This breaks the

translation symmetry along the one-dimensional layers explicitly, doubles the unit cell, and

opens a gap, as the Tonks gases are exactly at half filling. Therefore, to order 1/λ2 the

one-dimensional systems remain decoupled, but they are no longer gapless.

2.5 Modifications for |U3| � t

In this section we briefly discuss how the physics of tilted lattices is modified if

the U3 term in Eq. (2.3) vanishes. In this case all processes (n, n) → (n − 1, n + 1) for

general n are resonant at the same tilt magnitude. This greatly increases the size of space

of states resonantly connected to the parent Mott insulator. As we will show in some

cases the energy of this enlarged space is not bounded from below, and we then cannot use

equilibrium methods to describe the physics. In other cases the resonant subspace remains

bounded from below, but the phases differ from the ones found for |U3| � t. We will

illustrate this by two examples: square lattice tilted along a principle lattice direction, and

diagonally tilted decorated square. We leave a more complete discussion for future study.

2.5.1 Square lattice tilted along a principal lattice direction

This case was considered in Ref. [7]. However, the results there apply only if the

resonant subspace is limited by a large |U3|. For small |U3| the physics is quite different, as

we now describe.

In particular, we can no longer use equilibrium methods, as the energy of the

subspace resonantly connected to the parent Mott insulator is not bounded from below,

when λ → −∞. Once a particle-hole pair is created, the particle and hole are each free to

move in the direction transverse to the tilt. It is then possible that two quasiparticles are

adjacent to each other, in such a way that they can undergo a resonant transition. The

system can resonantly reach states with an arbitrarily large number of bosons on a lattice

site, as illustrated in Fig. 2.13, leading to an arbitrarily large negative energy.
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Figure 2.13: Square lattice tilted along a lattice direction for U3 = 0. The number in each
square represents the number of bosons at that site. Here the occupancy of the parent Mott
insulator is n0 = 1. We illustrate resonant processes which eventually lead to the creation
of lattice sites occupied by 4 bosons. It is possible to continue this pattern, thus we obtain
any arbitrarily large number nB of bosons on a single site, through resonant processes. In
the end, only a total number of nB lattice sites remain changed (shown in green). Having
nB bosons on a site reduces potential energy nB(nB−1)∆/2. One could fill the lattice with
such patterns. Thus the energy of states resonantly connected to the parent Mott insulator
is not bounded from below.
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particle-hole 
pairs:

Figure 2.14: Decorated square lattice in diagonal tilt, filling factor n0 = 1, U3 = 0. Quasi-
particles are shown as dark blue circles, quasiholes as circles with yellow filling. Two
neighboring quasiparticles can form another dipole bond (2, 2) → (1, 3) which reduces the
energy by ∆. This is indicated in the figure by dotted blue lines. Quasiholes contain no
bosons, and they cannot form another dipole bond. To minimize its energy, the system
not only maximizes the number of dipoles on the lattice, but also maximize the number of
neighboring quasiparticles. The set of states fulfilling these requirements maps to the dimer
coverings of a square lattice, and one such dimer covering is shown above.

2.5.2 Diagonally tilted decorated square lattice

This lattice remains stable: the energy of the enlarged resonant subspace is bounded

from below. This stability is related to the lower connectivity of the lattice structure, and

the suppression of transverse superfluidity in Section 2.4.1. Let us consider the phases in

the limit λ→ −∞. We distinguish two cases: filling factor n0 = 1, and filling factor n0 > 1.

Filling of parent Mott insulator: n0 = 1

Particle-hole pairs each reduce potential energy by ∆, and they may be arranged

in such a way that each quasiparticle is adjacent to another quasiparticle. This allows for

a third resonant transition, (2, 2)→ (1, 3), which again reduces potential energy by ∆. As

illustrated in Fig. 2.14, this always leads to a central site being occupied by three bosons.
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Two such sites are never adjacent to each other, so that an occupation number of four or

more bosons on any site cannot be reached resonantly. The energy remains bounded from

below. In the limit λ → −∞ the resonantly connected subspace has a large number of

ground states, and there is a one-to-one correspondence between this degenerate ground

state manifold and the set of dimer packings on the square lattice. A plaquette-flip term of

the dimers appears in order 1/λ12. Thus we obtain a remarkable mapping of the effective

Hamiltonian to the quantum dimer model. Unlike the large U3 case in Section 2.4, here

the dimer model appears already for the singly-decorated square lattice, and so should be

easier to realize experimentally.

Filling of parent Mott insulator: n0 > 1

If the filling factor is two or larger, then two adjacent ‘quasiholes’ can undergo a

resonant transition (n0 − 1, n0 − 1) → (n0 − 2, n0), reducing the potential energy by ∆.

Potential energy is minimized if each ‘quasihole’ and each ‘quasiparticle’ can undergo such

a transition, as illustrated in Fig. 2.15. This leads to a two fold degenerate ground state

with density-wave order: all central sites are occupied by either (n0 +2) or (n0− 2) bosons,

while all other sites contain n0 bosons.

2.6 Conclusions

This Chapter has shown that there are rich possibilities for generating non-trivial

quantum states upon tilting a Mott insulator of bosons. Our classical intuition tells us

that applying a strong tilt to a Mott insulator should lead to a runaway instability of

particles flowing downhill. However, quantum mechanically, for a single band model in the

absence of external dissipation, and with a significant three-body interaction U3, this does

not happen. Instead particle motion is localized in the direction of the tilt, and free motion

is only possible in orthogonal directions. It is useful to introduce the idea of a resonant

subspace of states which are strongly coupled to the parent Mott insulator when the tilt

approaches its critical value. Within this resonant subspace, we can define an effective

Hamiltonian whose energy is bounded from below, and which has well defined equilibrium

quantum phases and phase transitions. We presented a variety of such effective models

here, and described general aspects of their phase diagrams. As in the previous work [7], we

found phases with Ising density wave order along the tilt direction, and superfluid/Luttinger
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Figure 2.15: Decorated square lattice in diagonal tilt, filling factor n0 > 1, U3 = 0. In this
case ‘quasiholes’ can also undergo a resonant transition, which is shown as orange dotted
lines. There are two degenerate ground states with density-wave order: the one shown in
the figure, and its symmetry related partner.
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liquid behavior in the direction transverse to the tilt. More interestingly, we showed that

on a variety of frustrated or decorated lattices, particle motion can be suppressed also in

directions transverse to the tilt. Then, the tilted lattices map onto quantum clock or dimer

models, with novel quantum liquid and solid phases.

We also briefly noted, in Section 2.5, the situation when |U3| was small. In some

cases, the energy of the resonant subspace is unbounded from below, and so non-equilibrium

methods will be necessary to understand the physics. However, for the simple case of the

decorated square lattice, we found a mapping of the effective Hamiltonian to that of the

quantum dimer model in a limiting case, as illustrated in Fig. 2.14.

It is clear that the models studied here have extensions to numerous other lattices

and decorations, and that there are many promising avenues for obtaining exotic phases.

It would also be interesting to study the analogous models of fermions, which could display

metallic states associated with motion in the transverse directions. In principle, all these

models should be readily accessible in experiments on trapped ultracold atoms.

2.7 Appendix: Decorated square lattice in the λ→ −∞ limit

2.7.1 Ground state correlation functions

To calculate correlation functions in the exact ground state of the effective clock

model, Eq. (2.32), we make use of the following “transfer matrix” method. For an equal-

amplitude ground state, correlations of operators, Ô, which are diagonal in the basis of

dipole coverings, can be related to a corresponding classical problem

〈Ô〉 =
〈ψc| Ô |ψc〉
〈ψc |ψc 〉

=
∑

M 〈M | Ô |M〉
Dc

. (2.34)

Here, the sum over M runs over all states that maximize the number of dipoles and respect

constraints Eq. (2.19) and (2.20). We assume that all the states |M〉 are properly normal-

ized, 〈M |M 〉 = 1, and define Dc =
∑

M 〈M |M 〉 = dim(Hc) as the dimension of the Hilbert

space with constraint. The density operator n̂l,m measuring the relative density at central

site (l,m) is diagonal in the basis of dipole coverings; it has eigenvalues ±1. Therefore,

〈n̂(0,0)n̂(l,m)〉 can be written as

〈n̂(0,0)n̂(l,m)〉 =
N+ −N−

Dc
, (2.35)
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where N± is the number of configurations which have 〈M | n̂(0,0)n̂(l,m) |M〉 = ±1. The

problem of calculating correlation functions of the ground state reduces to counting the

number of classically allowed dipole coverings. This counting can be done using row-to-row

transfer matrices.

Let T be the transfer matrix for a row of length Nx unit cells. T is a 4Nx × 4Nx

matrix and acts on the space of dipole configurations within that row. Note that this Hilbert

space includes configurations which are not allowed by the constraint. Such configurations

are excluded by setting the corresponding matrix elements of T to zero. The matrix elements

of T are either 1 or 0, so that Tc′,c = 1 if the sequence of two row configurations c, c′ contains

no violations of the constraint, and Tc′,c = 0 otherwise. The dimension of the Hilbert space

for a Nx×Ny lattice with periodic boundary conditions is then given by the trace of powers

of the transfer matrix,

Dc = Tr(TNy). (2.36)

A naive numerical implementation of Eq. (2.36) (without using the sparseness of T ) gives

a complexity of O(Ny43Nx), compared to going over all the states in the Hilbert space with

complexity O(4NxNy). The values for N± can be similarly found by including projection

matrices in the trace, for example

N+ = Tr
(
TNy−mPp;lT

mPp;0

)
+ Tr

(
TNy−mPh;lT

mPh;0

)
. (2.37)

Here Pp;l (Ph;l) is a projection matrix that projects onto configurations which have a particle

(a hole) at site l = 0, 1, . . . , Nx− 1 of a given row, respectively. Using this method different

correlations for the dipole-directions can also be calculated.

2.7.2 Connecting the ground state to a site-factorizable state

In this appendix, we provide evidence that the ground state of Hc
clock, Eq. (2.32),

is not topologically ordered. To show this, we demonstrate that the ground state of Hc
clock

can be smoothly connected to the ground state of Hclock (without the “hard core” constraint

of the dipole-clocks). The ground state of Hclock is a site factorizable state, and therefore

it is topologically trivial. The fact that |ψc〉 can be connected to it, while keeping the

correlation length finite, is a strong indication that |ψc〉 does not have topological order

either. To connect the ground state of Hc
clock to the ground state of Hclock, Eq. (2.29), we
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define the wave function

|ψ(ε)〉 =
∑
C

εn(C)/2 |C〉 . (2.38)

Here the sum over C runs over all 4N dipole coverings with one dipole per unit cell, including

those which do not respect the constraint. The function n(ε) is an integer counting the

number of colliding arrows in configuration C. All allowed configurationsM have n(M) = 0.

Thus changing the value of ε interpolates between the ground state of Hc
clock, |ψc〉, and the

ground state of Hclock, |ψ0〉,

|ψ(ε = 0)〉 = |ψc〉 , (2.39)

|ψ(ε = 1)〉 = |ψ0〉 . (2.40)

As the density operator n̂(l,m) is still diagonal in the basis of C, we can again use (gener-

alized) transfer matrices to compute density-density correlation functions for any value of

ε. The result is shown in Fig. 2.16, and we find no divergence in the correlation length.

This supports our conjecture that the ground state |ψc〉 is topologically trivial. Of course,

we have not calculated all possible correlation functions, so this is an evidence, but not a

proof.

To calculate the correlation functions, we make use of equations (2.35), (2.36), and

(2.37), with one modification: the transfer matrix T (ε) now depends on the parameter ε in

the following way

(T (ε))c′,c = εn(c′,c), (2.41)

where n(c′, c) is the number of collisions in row-configuration c′, plus the number of collisions

between rows c and c′. The number of collisions in the other row, c, does not come in here,

to avoid double counting.
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Figure 2.16: Density-density correlations of a wavefunction which interpolates between the
ground states of Hc

clock and Hclock, see text. Different colors stand for different values of the
parameter ε. The correlation length does not diverge, it decreases as ε→ 0. This provides
evidence that the state |ψc〉 is topologically trivial.



Chapter 3

Phase Diagram of the Tilted

Decorated Square Lattice

3.1 System and Model

In this chapter we study the phase diagram of the decorated square lattice in

diagonal tilt, and in slightly off diagonal tilt. We have already described the phases of the

diagonally tilted decorated square lattice in the previous chapter: in the weakly tilted limit

the Mott insulator remains stable, while in the strongly tilted limit the ground state is a

unique and gapped disordered dipole liquid state.

In diagonal tilt the Hamiltonian in the resonant subspace is given by Eq. (2.18)

H = ∆
∑

a

d̂†ad̂a − t
√
n0(n0 + 1)

∑
a

(
d̂a + d̂†a

)
,

where a labels the lattice links, and d̂†a creates a dipole on this link. The resonant subspace

has the constraints d̂†ad̂a ≤ 1, and d̂†ad̂ad̂
†
a′ d̂a′ = 0, if a and a′ share a lattice site, see

Fig. 3.2. As in the previous chapter we have defined ∆ = U − E and we work in the limit

|∆| , t� |U | , |E| , |U3| ,. For most of the following discussion we will use units in which

t
√
n0(n0 + 1) = 1 (3.1)

Note that using these units, the one dimensional chain has its Ising transition at ∆ = −1.31

for n0 = 1 [7]. If the tilt is not exactly diagonal, ~E = (Ex, Ey), then we have two tuning

parameters

38
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• ∆x = U − Ex= energy cost for dipoles in x direction (left-right); we define

λx =
∆x

t
√
n0(n0 + 1)

,

• ∆y = U − Ey = energy cost for dipoles in y direction (up-down); we define

λy =
∆y

t
√
n0(n0 + 1)

,

and we tune ∆x and ∆y separately. We are still in the regime

|∆x| , |∆y| , t� |U | , |E| , |U3| ,

which gives us two independent tuning parameters which can take all real values: λx and

λy. The Hamiltonian in the effective resonant subspace becomes

Ĥ = ∆x

∑
i∈x-links

d̂†i d̂i + ∆y

∑
j∈y-links

d̂†j d̂j − t
√
n0(n0 + 1)

∑
a

(
d̂a + d̂†a

)
, (3.2)

where the first sum runs only over links aligned in x direction, second sum only over links

aligned in y direction, last sum over all links. The constraints Eq. (2.19) and Eq. (2.20)

hold. Note that a non-diagonal tilt reduces the rotation symmetry of the effective resonant

subspace: it is no longer invariant under rotation by 90 degrees, we illustrate this by drawing

a decorated rectangular lattice, see Fig. 3.1b.

3.1.1 Description by a constrained five-state model

We can describe the resonantly connected subspace for all values of our tuning

parameters λx and λy by a constrained five-state model on a simple square lattice. We

again let our unit cell be centered about the sites with four neighbors, see Fig. 2.7. Each

of the unit cells may be in one out of five states, see Fig. 3.1: It may contain no dipole

(state |0〉), or it may contain one dipole, and there are four links to choose from (states

|1〉, |2〉, |3〉, |4〉). The Hamiltonian of a single site1 is then given by (using units in which

1For ∆x = ∆y this Hamiltonian has three degenerate dark states at energy ∆ and two other eigenvalues at
εgs/es = ∆

2
± 1

2

√
∆2 + 16 which correspond to the eigenstates |φgs〉 = sin θ |0〉+ 1

2
cos θ (|1〉+ |2〉+ |3〉+ |4〉),

|φes〉 = cos θ |0〉+ 1
2

sin θ (|1〉+ |2〉+ |3〉+ |4〉), where tan θ = 4

−∆+
√

∆2+16
. For ∆x = ∆ythere are only two

dark states.
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Figure 3.1: a) Notation of the constrained five-state model. b) If ∆x 6= ∆y then horizontal
dipoles have a different energy cost than vertical ones. We illustrate this by a decorated
rectangular lattice. The effective resonant subspace has all the symmetries of this lattice.

t
√
n0(n0 + 1) = 1)

Hsite = Hpot +Hkin

Hpot = ∆x (|2〉 〈2|+ |4〉 〈4|) + ∆y (|1〉 〈1|+ |3〉 〈3|)

Hkin = − |0〉 (〈1|+ 〈2|+ 〈3|+ 〈4|) + h.c.. (3.3)

Summing over all sites we obtain the free Hamiltonian of the five state system

Hfree =
Lx,Ly∑
x,y=1

Hsite(x, y).

Additionally there is a constraint that the dipoles may not overlap: two neighboring unit

cells may not point toward each other. We take this into account by projecting out all the

states which would create such a collision

Hc = PcHfreePc

where Pc is a projection operator which projects out all the states that are forbidden by

the constraint.

3.1.2 Mapping to a frustrated Ising spin model

In [3] and [7] the physics of a tilted one dimensional Mott Insulator was described

by an antiferromagnetic Ising spin chain in a transverse and longitudinal field. In the same

spirit, we map the diagonally tilted decorated square lattice to an antiferromagnetic spin

model, also in longitudinal and transverse field, on a frustrated lattice. Note that the spin
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E

a) b)

Figure 3.2: a) decorated square lattice: this is the lattice for the bosons. The spins reside
on the links, which form the lattice b). The effective resonant subspace of the boson model
maps to an antiferromagnet on this lattice, in a strong longitudinal and in a transverse
magnetic field. If the tilt is not exactly diagonal, then spins on horizontal lines experience
a different longitudinal field than spins on vertical lines. The spin lattice is not bipartite,
and so the antiferromagnet is frustrated.

degrees of freedom reside on the links of the decorated square lattice, so that the lattice

of the spin model is an ‘octagon-square-cross’ lattice as depicted in Fig. 3.2. This lattice

has four sites per unit cell, and each spin has zcoord = 4 neighbors. As the lattice is not

bipartite, an antiferromagnetic spin model on this lattice is frustrated, and two-dimensional

Ising density wave order is not possible. The Hamiltonian of the resonant subspace can be

described by the following spin model

H = J

∑
〈i,j〉

Si
zS

j
z − hLR

z

∑
i∈LR

Si
z − hUD

z

∑
i∈UD

Si
z − hx

∑
i

Si
x

 (3.4a)

hLR
z =

(
2− ∆x

J

)
, hUD

z =
(

2− ∆y

J

)
(3.4b)

hx =
2t
J

√
n0(n0 + 1) (3.4c)

where ~S = 1
2~σ. The second sum (i ∈ LR) is over all spins which reside on lines in horisontal

direction, see Fig. 3.2, and the third sum (i ∈ UD) is over spins that reside on vertical

lines. While the first three terms all commute with each other, the last term does not. It
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is this transverse field which makes this a quantum problem. The strong antiferromagnetic

interaction and the strong longitudinal field are introduced to realize the constraint: having

two neighboring spin down costs an energy of order J . The mapping becomes exact in the

limit J →∞. As in one dimension, this is of course not a mapping of the full bosonic model

to a spin model, but of the resonantly connected subspace.

We will phrase most of the following discussion in the language of the constrained

five-state model, keeping in mind that the results can directly be applied to the frustrated

Ising spin model.

3.1.3 Limiting cases

We understand the system in the following limiting cases

1. ∆x,∆y →∞, ∆x/∆y = 1: This is the parent Mott insulator state, the dipole vacuum.

Dipole creation costs an infinite amount of energy, and so no dipoles are created.

2. ∆x,∆y → −∞, ∆x/∆y = 1: This is the quantum liquid state described in Section 2.4.

The number of dipoles is maximized, and the ground state is an equal amplitude

superposition of all dipole product states that fulfill the constraint. As we have shown

in the previous chapter, this is a disordered state; the ground state is unique and

gapped.

3. ∆y → +∞; ∆x/∆y → 0: along this line vertical dipole states on links aligned in

y direction can never be occupied, as they cost an infinite amount of energy, while

horizontal dipoles along links in x direction are accessible. In this limit it is clear that

the system decouples into a collection of horizontal one dimensional chains. These

chains are effectively one dimensional, they undergo a phase transition in the Ising

universality class2 at a critical value of ∆y = −1.31 (which is the same as in the one

dimensional case).

We expect the one dimensional order within each chain to persist when ∆y takes on finite

values. Neighboring chains may then interact via dipole states aligned in y direction, which

might lead to a coupling between these chains, and thus to two-dimensional order.

The dipole liquid state in the limit of strong diagonal tilt and the Mott insulator in the

2The symmetry which is broken in the ordered phase is a reflection symmetry. The lattice does not have
this translation symmetry unless ∆x strictly ∞.
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limit of weak tilt have the same symmetries: no broken symmetries. In the following we will

show that the quantum liquid phase is continuously connected to the parent Mott insulator

without an intervening quantum phase transition.

3.1.4 Order parameters

In the following we will use Quantum Monte Carlo (QMC) simulations to study the

phase diagram for all values of the tuning parameters λx and λy. We expect one dimensional

order to persist in some region of the phase diagram, and so we introduce order parameters

which probe for 1D Ising order, as well as order parameters which probe for two-dimensional

order.

Before introducing our order parameters, we begin by reviewing the order param-

eter of the one dimensional system in [7, 3]: a staggered magnetization which breaks lattice

symmetries (translation, inversion, and reflection symmetry). In the language of the spin

mapping in Section 3.1.2, and Ref. [3] it is given by

M =
1
L

∑
l

(−1)lσz
l .

In our case in the limit ∆y =∞, ∆x/∆y = 0 each unit cell of the decorated square lattice

has only three states available, and we can directly translate this staggered magnetization

to our notation. Each chain aligned along the x direction and at position y then has its

own, independent order parameter

MLR(y) =
1
Lx

∑
x

(p̂→ − p̂←)x,y =
1
Lx

∑
x

mLR(x, y), (3.5)

where p̂d is a projection operator that projects onto the dipole state d. The (staggered)

magnetization of each unit cell has been defined for dipoles along left-right direciton only

as

mLR(x, y) = p̂← − p̂→

When ∆y 6= ∞, then each unit cell has two additional states available3. We can still use

the above definition, and add another component to the order parameter,

mUD(x, y) = p̂↓ − p̂↑

3This breaks the translation symmetry of the one dimensional chain explicitly: There is no translation
relating the state |→〉 to the state |←〉, under which the order parameter would change sign. There is,
however, an inversion symmetry and a reflection symmetry left, which can be spontaneously broken by an
ordered state.
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the magnetization for dipoles aligned in y direction. We combine the two to a vector,

~m(x, y) =

 mLR(x, y)

mUD(x, y)


we will refer to this as the “magnetization” of a unit cell of our system. ~m(x, y) transforms

as a vector and is odd under inversion (and rotation about 180 degrees),

(x, y)→ (−x,−y) : ~m→ −~m

(x, y)→ (−x, y) :

 mLR

mUD

→
 −mLR

mUD


(x, y)→ (x,−y) :

 mLR

mUD

→
 mLR

−mUD


To probe for two-dimensional order in the system, we define the total magnetization

~M =
1

LxLy

∑
x,y

~m(x, y). (3.6)

and measure

〈 ~M2〉 =
1
L2

x

1
L2

y

∑
x,x′,y,y′

(
〈mLR(x, y)mLR(x′, y′)〉+ 〈mUD(x, y)mUD(x′, y′)〉

)
.

If the chains are aligned ferromagnetically, then this order parameer is non-zero. To probe

for antiferromagnetically aligned chains we define a total staggered magnetization

~Mstagg,x =
1

LxLy

∑
x,y

(−1)x ~m(x, y),

~Mstagg,y =
1

LxLy

∑
x,y

(−1)y ~m(x, y).

For anisotropic tilt we expect the most important effect to be an order within

each chain. These chains may or may not be coupled to form two-dimensional order. It is

therefore usefull to define order parameters which probe for one dimensional order along x

or y direction only. For this purpose we will use MLR(y), Eq. 3.5, and average its absolute

value over all chains,

〈〈M2
LR〉〉 =

1
Ly

∑
y

〈M2
LR(y)〉 =

1
Lx

1
L2

y

∑
y

〈

(∑
x

mLR(x, y)

)2

〉,

=
1
Lx

1
L2

y

∑
x,y,y′

〈mLR(x, y)mLR(x, y′)〉
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and similarly for for chains aligned along y

〈〈M2
UD〉〉 =

1
L2

x

1
Ly

∑
x,x′y

〈mUD(x, y)mUD(x′, y)〉.

3.2 Quantum Monte Carlo study of the problem

To find the phase diagram for all values of λx and λy we study the problem by

Quantum Monte Carlo simulation.

3.2.1 Mapping to a three dimensional classical problem

Let us first map the single site Hamiltonian 3.3 to a one dimensional classical

statistical mechanics problem. Next we will map the two-dimensional constrained five state

problem to a three dimensional classical problem. The partition function of the single site

quantum system at temperature T is given by

Z = Tr
(
e−βHsite

)
where β = 1/T and we work in units where ~ = kB = 1. We can now rewrite this expression

using β = aMτ , which then allows us to separate the non-commuting potential and kinetic

energy term,

Z = Tr
((
e−aH

)Mτ
)

= Tr
((
e−aHpote−aHkin +O

(
a2
))Mτ

)
,

this introduces the so called Trotter error [reference] of order a2. To map to a classical

system, we define the transfer matrices

T1 = e−aHpot =



0 0 0 0 0

0 e−a∆x 0 0 0

0 0 e−a∆y 0 0

0 0 0 e−a∆x 0

0 0 0 0 e−a∆y



T2 = e−aHkin =



1 a a a a

a 1 0 0 0

a 0 1 0 0

a 0 0 1 0

a 0 0 0 1


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and rewrite

Z = Tr
(
(T1T2)

Mτ

)
+O

(
a2
)

We can now map this quantum problem to a classical statistical mechanics problem with an

additional dimension, the “imaginary time direction” in the following way. The off-diagonal

matrix elements of the quantum Hamiltonian become a nearest neighbor energy cost for

configurations along this new imaginary time direction. Let σ be one of the five states,

Z =
4∑

σ=0

〈σ| (T1T2)
Mτ |σ〉 =

4∑
σ=0

〈σ|

(
T1T2

∑
σ′

∣∣σ′〉 〈σ′∣∣)Mτ

|σ〉

=
∑
{στ}

Mτ∏
τ=1

〈στ |T1T2 |στ+1〉

and this is how an additional dimension appears! We can make this mapping more explicit

by interpreting the log of T2 as a Hamiltonian acting between different time slices

〈στ |T2 |στ+1〉 = e−Hclass
2 (στ ,στ+1)

with

Hclass
2 (στ,στ+1) =



0 − log(a) − log(a) − log(a) − log(a)

− log(a) 0 ∞ ∞ ∞
− log(a) ∞ 0 ∞ ∞
− log(a) ∞ ∞ 0 ∞
− log(a) ∞ ∞ ∞ 0


in imaginary time direction there is also a hard constraint: a dipole state cannot be neighbor

to any different dipole state. This is not at all related to the constraint in real space. There

is an energy cost for bonds between |0〉 and a dipole. The diagonal part of the classical

Hamiltonian is the same as for the quantum Hamiltonian, and Hclass = Hclass
1 + Hclass

2 .

Finally, the partition function can be written as

Z =
∑
{στ}

e−Hclass({στ})

Here {στ} means a particular configuration of all the different time slices, and
∑
{σl} sums

over all possible configuration of the Mτ time slices. It is also worth noting that we do not

need the classical Hamiltonian for the QMC simulations: instead we work directly with the

transfer matrices.
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It is now straightforward to generalize this to the two-dimensional quantum prob-

lem. In fact, the only off-site terms are the ones coming from the hard constraint. This

translates directly to the classical Hamiltonian:

Z = Tr
(
e−βPcHclockPc

)
= Tr

((
e−aPcHkinPce−aPcHpotPc

)Mτ
)

=
∑
{σx,y,τ}

e−Hclass({σx,y,τ})

and the Hamiltonian Hclass now has the additional hard core constraint in real space direc-

tion.

3.2.2 QMC updates

We simulate the corresponding classical statistical mechanics problem, and so we

need a three dimensional lattice. Instead of summing over all possible configurations {σx,y,τ}
– that would of course be impossible – we generate a sample of configurations which appear

with the right probabilities, given by the weight

w({σx,y,τ}) = e−Hclass({σx,y,τ}).

Single updates

To create such a sample, we prepare an initial lattice in which all sites are occupied

by the same state, which is randomly chosen. Then one Monte Carlo sweep does the

following single updates

• go through all sites of the lattice

• for each site choose a random new state

• calculate probability of accepting this step. Let the current site be (x, y, τ), and its

state σx,y,τ , let the proposed state be σ′x,y,τ . If the new state creates a collision in

real space or in imaginary time, then the move is rejected, otherwise the accpetance

probability is

p = min
(

1,
w(new)
w(old)

)
(3.7)

w(new)
w(old)

=
e−h(...,σ′x,y,τ ,... )

e−h(...,σx,y,τ ,... )
(3.8)

(3.9)
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and so we can use directly the elements of the transfer matrices T1T2:

w(new)
w(old)

=
〈σx,y,τ−1|T1T2

∣∣σ′x,y,τ

〉 〈
σ′x,y,τ

∣∣T1T2 |σx,y,τ+1〉
〈σx,y,τ−1|T1T2 |σx,y,τ 〉 〈σx,y,τ |T1T2 |σx,y,τ+1〉

. (3.10)

to decide whether a move is accepted or not, we only need to know the state of the

site’s nearest neighbors.

Cluster updates: flipping many sites at once

To speed things up, we also want to flip many sites at once. One simple way of

doing this is to group a sequence of the same dipole state in imaginary time into one cluster,

then propose a new dipole state for every site in this entire cluster. If this move does not

create any collision in real space, then the acceptance probablility is simply given by

A(X → Y ) = min
(

1,
w(Y )
w(X)

)
= min

(
1,
(
〈σ′|T1 |σ′〉
〈σ|T1 |σ〉

)Lcluster
)
,

where Lcluster is the length of the cluster.

Another update which flips many spins at once is the FlipChainUpdate. This

update chooses a plane in (x,τ) direction. If no collisions are created throught this move,

then every site pointing left is fliped to point right, and vice versa (|4〉 ↔ |2〉). This

update does not change the statistical weight of the configuration, and so it can always be

accepted. A similar update exists in the (y,τ) plane, which flips |1〉 ↔ |3〉 . Because of the

hard constraints in real space direction it is not straightforward to generalize the cluster

updates used for example for the Ising model [38, 39] to this system.

Detailed balance

This procedure will sample a system at equilibrium if the following condition is

fulfilled [40, 41]
Ne(X)
Ne(Y )

=
w(X)
w(Y )

=
P (Y → X)
P (X → Y )

where X and Y stands for configurations, Ne(X) is the equilibrium probability of being in

that configuration, and P (X → Y ) is the probability that a walker will make a transition

to Y if it is in X, this is

P (X → Y ) = T (X → Y )A(X → Y )



Chapter 3: Phase Diagram of the Tilted Decorated Square Lattice 49

where T is the probability of making a trial step (X → Y ), and A is the probability of

accepting that step,

A(X → Y ) = min
(

1,
w(Y)
w(X)

)
For our single updates we have T = const (each of the four other states is chosen with the

same probability), and thus detailed balance is fulfilled.

Once we have produced the configurations according to their statistical weight,

we can measure correlation functions in real space and in imaginary time, and the order

parameters defined in Section 3.1.4.

3.2.3 Quantum Monte Carlo Results

Phase diagram

Results of the QMC simulations are summarized in the phase diagram shown

in Figure 3.3. We find no phase transition4 along the line of diagonal tilt, ∆x = ∆y.

The disordered dipole state described in Section 2.4.1 for ∆x,∆y → −∞ appers to be

continuously connected to the parent Mott insulator at ∆x,∆y → +∞ . There is a critical

line where the system undergoes a transition to an ordered state with one dimensional order

along individual chains. For ∆y < ∆x these chains are aligned in y direction (lower right

corner of the phase diagram in Fig. 3.3), and 〈〈M2
UD〉〉 6= 0, while 〈 ~M2〉 = 〈 ~M2

stagg,x〉 =

〈 ~M2
stagg,y〉 = 0. We will show below that the system indeed seems to be disordered in

transverse direction; it looks like each chain has a two fold degenerate ground state, which is

independenent of the order parameters of the neighboring chains, and so the two-dimensional

system has a ground state degeneracy 2Lx , where Lx is the linear system size in x direction,

i.e. the number of chains. Correlations in x directions decay exponentially with a correlation

length that is less than the lattice spacing ξx � a. There is no region in the phase diagram

where either 〈 ~M2〉, Eq. 3.6, or 〈 ~M2
stagg,x〉 or 〈 ~M2

stagg,y〉 takes a non-zero value.

Binder cumulant

The binder cumulant gives a good estimate for the critical point, and it does not

depend on critical exponents [42]. For an Ising order parameter, M , the binder cumulant

4extracting the gap from imaginary time correlations (not shown) shows that the system remains gapped
everywhere along this line.
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Figure 3.3: Phase diagram obtained from QMC study. The phase boundary was obtained
from crossing of the binder cumulant of the pseudo-magnetization, see text. Square lattice
of size Lx = Ly = (4, 8, 16, 32, 64) the imaginary time slice thickness was a = 0.04, imag-
inary time direction was scaled with the linear system size, Mτ = (40, 80, 160, 320, 640),
corresponding to temparatures T = (0.625, 0.3125, 0.1562, 0.0781, 0.0391). Essentially the
same phase diagram is obtained from order parameter scaling assuming the Ising exponent
η = 1/4.
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is defined as

U = 1−
〈
M4
〉

3 〈M2〉2
.

When the binder cumulant is plotted for different system sizes, all curves should cross at

the critical point for the following reason. While for an infinite system the magnetization

vanishes at the critical point as

M ∝ (−τ)β ,

where τ is the reduced temperature τ = T/Tc−1, ξ is the correlation length, β is the critical

exponent of the magnetization, and ν is the correlation length exponent. For a finite system

there are corrections to scaling, described by a scaling function φ, which only depends on

ξ/L,

M = (−τ)β φ (ξ/L) = (−τ)β φ̃
(
τL1/ν

)
We used ξ = τ−ν to rewrite the scaling function for a different argument. The average

magnetization squared, and raised to the fourth power, have different scaling functions,〈
M2
〉

= (−τ) 2βu2

(
τL1/ν

)
〈
M4
〉

= (−τ) 4βu4

(
τL1/ν

)

and so the binder cumulant is a function of this same argument, τL1/ν

U(τ, L) = 1−
u4

(
τL1/ν

)
3
(
u2

(
τL1/ν

))2 = f
(
τL1/ν

)
, (3.11)

At the critical point we have τ = 0, and so the binder cumulant at this point should not

depend on system size5. In the thermodynamic limit for an Ising system in the ordered

phase U → 2
3 , and U → 0 in the disordered phase. Fig. 3.4 shows the binder cumulant of

the one dimensional order parameters 〈〈M2
LR〉〉 and 〈〈M2

UD〉〉 for different cuts through the

phase diagram.

Order parameter scaling and the critical exponent η

The phase transition point can also be found from order paramter scaling. This

will depend on the correlation length exponent, η. Let M again be an Ising order parameter,

5there are of course higher order corrections to scaling, and so for very small systems we do not expect
the crossing points to agree exactly
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Figure 3.4: Binder cumulant for order parameters 〈〈M2
LR〉〉 and 〈〈M2

UD〉〉 for a horizontal
cut through the phase diagram, keeping ∆x = −5 fixed, plotted for different system sizes,
Lx = Ly = 4, 8, 16, 32, 64.
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Figure 3.5: Binder cumulant of 〈〈M2
UD〉〉 along different cuts throught the phase diagram:

here ∆x = 10 and ∆x = −2.
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at the critical point the correlation decays as a power law,

〈M(r)M(0)〉 ∝ |r|−(D−2+η) = |~r|−(d+z−2+η)

〈M2〉 = L−η

here D is the dimension of the classical system, and d = D + 1 is the dimension of the

quantum system, z is the dynamic critical exponent. The correlation length exponent for the

2D classical Ising model is η = 1/4. In Figure 3.6 we plot 〈〈M2
LR〉〉L−1/4 and 〈〈M2

UD〉〉L−1/4

for different system sizes. The crossing point of these lines agrees with the one found from

the binder cumulant.

Critical exponent ν

If we rescale the x axis for the binder cumulant, and plot it as a function of

(λ− λc)L1/ν , then the data points for all system sizes should collapse. We indeed observe

a good data collapse for the correlation length exponent of the classical two-dimensional

Ising model, ν = 1, see Fig. 3.7.

Absense of two-dimensional order

We probe for two-dimensional order by measuring 〈 ~M2〉. This quantity scales with

system size exactly as a collection randomly aligned magnetized one dimensional chains.

This suggests that there is no two-dimensional order: while in some regions of the phase

diagram there is long range order along individual chains, there is no two dimensional order,

see Figure 3.8.

Discussion

• The decorated square lattice can be regarded as a collection of one dimensional chains

both in x direction and in y direction which cross and interact with each other via

the hard constraint.

• For an unisotropic tilt, e.g. ∆x < ∆y < 0 we focus on chains aligned in the direction

of stronger tilt, here the x direction. The only way two parallal chains can interact is

via the hard constraint of the more expensive dipoles in the y direction.
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Figure 3.6: Order parameter scaling, assuming the correlation length exponent η = 1/4 of
the classical two-dimensional Ising model. Good agreement of the crossing points, also with
the ones found from the binder cumulant.
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Figure 3.7: Data collapse for the critical exponent ν = 1 of the classical two-dimensional
Ising model. The x axis is centered around the critical point and rescaled by L1/ν
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Figure 3.8: Scaling of the total magnetization with system size, 〈 ~M2〉 × L. For randomly
aligned magnetized chains we expect〈 ~M2〉 ∝ 1/L, while for perfectly aligned chains 〈 ~M2〉 =
const and for antiferromagnetic order in transverse direction 〈 ~M2〉 = 0. In the disordered
phase 〈 ~M2〉 ∝ 1/(LxLy). This plot shows that in the ordered phase the system behaves as
a collection of independent chains with one dimensional order within each chain. Similar
results are obtained for different cuts through the phase diagram.
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• If ∆y > 0 these transverse dipole are associated with an energy cost compared to the

vacuum state, and so we expect the constraint of those dipols to have little effect on

the system, thus we expect the interchain coupling – if at all present – to be small.

• Critical exponents of the 2D classical Ising model (Onsager exponents) give a reason-

alby good data collapse at all points along the critical lines.

• Quantum Monte Carlo results suggest that there is no coupling at all between the

sign of the magnetization of the chains anywhere in the ordered phase.

3.3 Effective field theory close to the critical points

Let us now study the effective field theory close to the critical point. Motivated by

results of the previous Chapters we start from uncoupled Ising chains. We will phrase our

discussion for the critical line for ∆x < ∆y, in the left part of the phase diagram. Of course

the phase diagram is symmetric about the diagonal axis ∆x = ∆y, and so all conclusions

apply to the other critical line as well.

3.3.1 Microscopic model for the coupling between the chains

In a perfectly ordered phase, ∆x → −∞, ∆y → +∞, there are no dipoles in

transverse direction, and therefore there can not be any coupling between the chains. Each

chain has its own independent order parameter, and all unit cells of each chain have the

same state, which does not depend on the neighbors. However, for finite values of ∆y

neighboring chains can feel each other trough domain wall excitations.

In each chain there are two different domain walls which always come in pairs. We

will refer to them as visible and invisible domain walls, see Fig. 3.9

• visible domain walls change the sign of the order parameter from → to ← , and to

avoid the hard constraint there has to be at least one central site which cannot be part

in a horizontal dipole bond. There is an energy cost associated with these domain

walls. Furthermore there is an additional energy cost if two neighboring chains both

have a visible domain wall at the same x coordinate,

• invisible domain walls change the sign of the order parameter from ← to →, and all

participating central sites may still have a horizontal dipole. There is no energy cost
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a) b)

Figure 3.9: a) Perfectly ordered state which is a ground state in the limit ∆x → −∞,
∆y 6= −∞. In this state there are no dipoles in y direction, and so there cannot be any
coupling between the chains. The ground state degeneracy in this limit is 2Ly and the
system is well described by a collection of uncoupled Ising chains. b) Two different kinds of
domain wall excitation. We will refer to the kind shown in the top row as ‘visible’ domain
walls, as there is one unit cell which cannot have a dipole aligned in x direction. This
unit cell will reduce its energy by fluctuating between the states zero, up, and down. The
neighboring chains can see this domain wall as it takes away sites for them to fluctuate: it
is energetically favorable for them not to have the same kind of domain wall at the same x
coordinate. An ‘invisible’ domain wall, which costs no energy, is shown in the bottom row.
This kind of domain wall cannot be seen by the neighboring chains. Note that these two
different kinds of domain wall always come in pairs.

associated with such domain walls, and neighboring chains cannot see it.

In the language of an Ising model

∆σz
i = σz

i+1 − σz
i = +2 : visible domain wall

∆σz
i = σz

i+1 − σz
i = −2 : invisible domain wall

and the interaction between visible domain walls takes the form

H1,2 =
1
16

∆σz
1,i

(
∆σz

1,i + 2
)
∆σz

2,i

(
∆σz

2,i + 2
)
.

Here i is an index labeling the sites along each chain. Note that we need all these terms to

project only onto visible domain walls. The sign of H12 is positive, and the magnitude of

this coupling scales as teff ∝ t2

∆x
.

H1,2 =
1
16
(
∆σz

1,i∆σ
z
1,i + 2∆σz

1,i

) (
∆σz

2,i∆σ
z
2,i + 2∆σz

2,i

)
=

1
16

∆σz
1,i∆σ

z
1,i∆σ

z
2,i∆σ

z
2,i︸ ︷︷ ︸

A

+4∆σz
1,i∆σ

z
2,i︸ ︷︷ ︸

B

+2
(
∆σz

1,i∆σ
z
2,i∆σ

z
2,i + ∆σz

2,i∆σ
z
1,i∆σ

z
1,i

)︸ ︷︷ ︸
C


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• Term A will give us an energy-energy coupling, σz
1i+1σ

z
1iσ

z
2i+1σ

z
2i, and a mass term

σz
j,iσ

z
j,i+1 for each chain j = 1, 2, which will shift the position of the critical point,

∆σz
1,i∆σ

z
1,i =

(
σz

1,i+1 − σz
1,i

) (
σz

i+1 − σz
i

)
= 2− 2σz

1,i+1σ
z
1,i

A = ∆σz
1,i∆σ

z
1,i∆σ

z
2,i∆σ

z
2,i = 4

(
1− σz

1,i+1σ
z
1,i

) (
1− σz

2,i+1σ
z
2,,i

)
(3.12)

= 4
(
1− σz

1,i+1σ
z
1,i − σz

2,i+1σ
z
2,i + σz

1,i+1σ
z
1,iσ

z
2,i+1σ

z
2,i

)
(3.13)

In the following we will consider the RG flow of the energy-energy term, and bosonize

it. Note that this term is symmetric under a sign change of the order parameter of a

single chain, σ1i → −σ1i, σ2i → −σ2i, and so it cannot generate an order parameter

coupling, which does not have this symmetry.

• Term B is irrelevant by counting scaling dimensions, [λB] = −1/4. However, this

one may generate an order parameter - order parameter coupling σz
1σ

z
2 between two

neighboring chains. In the continuum limit it will become

HB = λB

∫
dx∂xσ

z
1(x)∂xσ

z
2(x). (3.14)

It is not easy to bosonize this term: it becomes non-local after the Jordan-Wigner

transfrom due to the string operator.

3.3.2 Renormalization group flow equations of the coupling constants

Now we study the flow of the coupling constants under RG. We consider the Hamil-

tonian of two coupled chains with the couping terms we found above from the microscopic

Hamiltonian

H = H1 +H2 + λeeσ
z
1(x+ a)σz

1(x)σ
z
2(x+ a)σz

2(x) + λB∂xσ
z
1(x)∂xσ

z
2(x)

here H1 and H2 stand for each of the two chains. In the continuum limit, after a Jordan

Wigner6 transformation, each chain can be described by the field theory [43]

Hj =
∫
dx
[ c
2

(
ψ†j∂xψ

†
j − ψj∂xψj

)
+ ∆ψ†jψj

]
(3.15)

At the critical point we have ∆ = 0.

6after Jordan-Wigner transform the operators within the same chain have fermionic commutation rela-
tions. Operators of different chains still commute [ψ1(x), ψ2(x

′)] = 0. This is because the string operator
is defined in each chain separately. This will not matter because the Hamiltonian only contains pairs of
operators of each chain.
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Generating an order parameter - order parameter coupling

The microscopic model does not have any term coupling the order parameters of

two neighboring chains. But the term Eq. (3.14) will generate such an order parameter

coupling term, if this is not forbidden by a hidden microscipic symmetry.

We can describe the low energy effective field theory of each chain by a field theory

of a real field, which is symmetric under σ → −σ, and so let each chain j be described by

Hj =
(
∇σz

j

)2 + r
(
σz

j

)2 + u
(
σz

j

)4 (3.16)

then the following two terms will generate the order parameter coupling

HB = λB

∫
dk

2π
k2σz

1(k)σ
z
2(k) (3.17)

Hee = λee

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π
dk4

2π
σz

1(k1)σz
1(k2)σz

2(k3)σz
2(k4)δ(k1 + k2 + k3 + k4)

in momentum shell RG

λooσ1(k1)σ2(k3)

〈∫ Λ

Λ/b

dk2

2π
dk

2π
k2σz

1(k)σ
z
2(k)σ1(k2)σz

2(−k1 − k2 − k3)

〉
. (3.18)

This term is relevant, the scaling dimension of the coupling constant is [λoo] = 7/4. This

term would cause neighboring chains to align (either ferromagnetically or antiferromagnet-

ically).

Marginal energy - energy coupling: continuous change of critical exponent ν

Since we do not see any two-dimensional order in QMC we will also study the next

most relevant term

σz
1(x)σ

z
1(x)σ

z
2(x)σ

z
2(x) (3.19)

then using the operator product expansion we get the energy energy term

σz
1(x)σ

z
1(x) = 1 + ε1(x) = 1 + ψ†1(x)ψ1(x) (3.20)

and so

σz
1(x)σ

z
1(x)σ

z
2(x)σ

z
2(x) = (1 + ε1(x)) (1 + ε2(x)) (3.21)

= 1 + ε1(x) + ε2(x) + ε1(x)ε2(x) (3.22)
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so there is a shift to the position of the critical point of each chain, and there is

an energy energy coupling

ε1(x)ε2(x) = ψ†1(x)ψ1(x)ψ
†
2(x)ψ2(x) (3.23)

the coupling λ has scaling dimension 0, using [43]

[∆] = 1, [ψ] = 1/2

[x] = −1, [τ ] = −z = −1

[σz] = 1/8, [λ] = 0

so from counting scaling dimension one finds this term to be marginal7 , and so we need to

look at the next order in the flow equations. The flow equations are

dλee

dl
= − λ2

ee∆
2

π
(√

1 + ∆2
)3 ,

d∆
dl

= ∆
(

1− λee
1

π
√

1 + ∆2

)
. (3.24)

it looks like the entire line λ = 0 is a fixed line. There is a continuously changing correlation

length exponent ν, which is very unusual. The correlations length exponent8 depends on

the coupling strength as follows

ν =
1

1−Dλ
≈ 1 +Dλ+O(λ2)

with D = 1/π.

7This works as follows: the important quantity is the scaling dimension [λ] of the coupling constant in
front of the operator. This determines whether or not the operator is relevant. If [λ] > 0 then this coupling
constant grows under scaling, and the operator is relevant. If [λ] < 0 then the operator is irrelevant, as the
coupling constant becomes smaller in RG flow. All dimensions have to add up to zero, e.g. in

R
dτdxλÔ,

where Ô is some operator, then [τ ] + [x] + [λ] + [Ô] = 0. Here we have Ô = ψ†1ψ1ψ
†
2ψ2, [Ô] = 2, and so

[λ] = 0.

8ν is the correlation length exponent, ξ−1 ∼ Λ |g − gc|ν . It is defined as the inverse of the RG flow
eigenvalue of the most relevant perturbation about a quantum critical point [43, 44].Without coupling, each
Ising chain has ν = 1. The relation between the scaling dimension A of the most relevant eigenvalue and
the correlation length exponent ν can be seen as follows: starting from the flow equation d∆

dl
= A∆, solve

to obtain ∆(l) = ∆0e
Al = ∆0(Λ0/Λ̃)A. Here Λ0 is the original cutoff, and Λ̃ is the new cutoff. We used

el = Λ0/Λ̃. The relevant energy scale is that of ∆̃ when ∆(l) ≈ Λ0. Then ∆ is no longer a small perturbation
and the system enters a new phase. So we need to solve for the Λ̃, the gap scales like this. Λ̃ = Λ0(∆0/Λ0)

1/A.

And so gap ∼ ∆
1/A
0 = |g − gc|1/A. By definition [43] gap ∼ |g − gc|νz; gap ∼ ξ−z. This system has z = 1,

and so ν = 1/A. To first order A is the scaling dimension of the coupling constant of the most relevant
operator.
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Bosonization

Each chain can be described by one Majorana fermion. Two chains can be com-

bined and described by one Dirac fermion, which we can then bosonize. Starting from

Eq. 3.15 we write ψ as one majorana fermion with left moving and right moving part

(α = 1√
2
(χR + χL); β = 1√

2
(χR − χL).)

ψj = α+ iβ =
1 + i√

2
χj,R +

1− i√
2
χj,L (3.25)

ψ†j = α− iβ =
1− i√

2
χj,R +

1 + i√
2
χj,L (3.26)

while the ψ operators have the usual fermionic anti-commutation relations, and ψ2 = 0, the

majorana fermions are real, and fulfill χ†R = χR, and thus χ2
R = 1. The Hamiltonian for

each chain is

Hj =
∫
dx

[
c

2

(
−iχjR

∂χjR

∂x
+ iχjL

∂χjL

∂x

)]
+ i∆χLχR (3.27)

and the energy-energy coupling

H12 = −χ1L(x)χ1R(x)χ2L(x)χ2R(x) (3.28)

Now we combine two Majorana fermions to one Dirac fermion ψ = ψR + ψL (note this is

not the same ψ as in Eq. 3.15)

χ1R = ψR + ψ†R (3.29)

χ2R =
1
i

(
ψR − ψ†R

)
(3.30)

and same for the left-movers. The uncoupled Hamiltonian H1+H2 becomes a Dirac fermion

with a mass term that vanishes at the critical point:

H1 +H2 =
∫
dx2c

[
−iψ†R

∂ψR

∂ψ†L
+ i

∂ψ†L
∂ψ L

]
+ 2i∆

(
−ψ†LψR + ψ†RψL

)
(3.31)

H12 =
(
ψL + ψ†L

)(
ψR + ψ†R

)(
ψL − ψ†L

)(
ψR − ψ†R

)
(3.32)

using boson fields

ψR = lim
α→0

1√
2πα

e−i(φ−θ) (3.33)

ψL = lim
α→0

1√
2πα

e−i(φ+θ) (3.34)
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we find the bosonized form (Π̂(x) = 1
π∇θ(x)), here K = 1

H1 +H2 =
1
2π

∫
dx
[
cK (πΠ(x))2 +

c

K
(∇φ(x))2

]
+

4∆
α

sin(2φ(x)) (3.35)

the term coming from the coupling gives many contributions, most of them are irrelevant.

In this notation

cos(Aφ) and sin(Aφ) are relevant if K < 8
A2 ,

cos(Aθ) and sin(Aθ) are relevant if K > A2

8

Contributions from H12:

• most importantly there is an interaction term

ψLψRψ
†
Lψ
†
R + H.c. =

2
(2π)2

[
(∇φ)2 − (∇θ)2

]
,

which will renormalize the Luttinger parameters

u = c

√
1−

(
λ

πc

)2

(3.36)

K =

√
1 + λ/(πc)
1− λ/(πc)

≈ 1 +
λ

πc
+O(λ2) (3.37)

• there is a term that is marginal at K = 1, but irrelevant at K 6= 1

ψLψRψ
†
LψR + H.c.→ cos(2(φ− θ)),

which has scaling dimension K+ 1
K , and so it is relevant for K+ 1

K < 2. It is marginal

at K = 1 and becomes irrelevant as soon as K 6= 1.

• other terms are cos(4φ) and cos(4θ), and those are irrelevant.

so the main effect of the coupling is the change of the Luttinger parameters. This affects

the flow equation of ∆:

d∆(l)
dl

= ∆(l)(2−K) = ∆(l)
(

1− λ

πc

)
(3.38)

this agrees with Eq. 3.24

Relation ot the Ashkin-Teller model

This model of two chains with an energy-energy coupling is related to the so called

Ashkin Teller model [45, 27], which also predicts a continuously changing correlation length

exponent.
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3.3.3 Discussion

While in the perfectly ordered state different chains cannot see the sign of each

other’s order parameters, there is a repulsion between certain kinds of domain walls. The

effective field theory analysis has shown that his term generates an order parameter order

parameter coupling under RG flow, which is relevant and should cause the chains to order.

This term also contains an energy-energy coupling, which for two coupled chains changes

the correlation length exponent ν. Additionally a term which shifts the location of the

critical point of each is generated.

3.4 Coupled or uncoupled chains: Exact diagonalization study

Quantum Monte Carlo results show a system which decouples into a collection of

one dimensional chains, while a field theory analysis suggests that a coupling between the

chains should be generated. The following scenarios might explain this disagreement

• hidden symmetry : there could be a subtle microscopic symmetry which forbids any

coupling between the order parameters of the chains. The next relevant term is then

the energy-energy coupling, which leads to a change of the critical exponent ν but no

ordering of the chains; or

• finite size effects: the coupling between the chains could be present, but too small to

see at the system size studied with QMC. Simulating larger lattices should then, in

principle, find a phase with two-dimensional order.

We expect the coupling between the chains to be most important in the regime ∆y < 0,

where dipoles in direction transverse to the chains are prefered to the zero-dipole state. Here

we resolve this question by an exact diagonalization study of a toy model, which consists

of two chains and qualitatively captures the interchain constraint, and thus the coupling, if

present.

3.4.1 Toy model

We use a simplified model, instead of five states, there are only three dipole states

in every unit cell, see Figure 3.10 . The state with no dipole has been integrated out9, while

9this of course only works for ∆x,∆y < 0
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one of the horizontal dipole states is missing: this enhances the coupling and reduces the

size of the Hilbert space, which enables us to study longer chains. We expect this toy model

to qualitativley describe the interchain coupling of our system.

Figure 3.10: Two chain model. Each central site (marked with a square) can be in one out
of three states. A chain of length 4 is shown. This model should capture the interchain
behavior of our model qualitatively.

The Hamiltonian for each of these unit cells reads

Hsite =


∆b tb tb

tb ∆a ta

tb ta ∆a


where ∆a is the energy cost for a dipol along chain direction, and ∆b is the energy cost for

a dipole in direction transverse to the chains. The effective hopping elements ta, and tb are

obtained from second order perturbation theory, and they both have a negative sign (since

∆a < ∆b < 0).

tb =
1
2
t2n0 (n0 + 1)

(
1

∆a
+

1
∆b

)
,

ta =
n0 (n0 + 1) t2

∆a
,

and we work in units where t
√
n0(n0 + 1) = 1. In addition to the single site Hamiltonian,

there is the hard-core constraint that two central sites cannot point towards each other.

This constraint reduces the size of the Hilbert space. The size of the Hilbert space for any

chain lenght L can be computed exactly using transfer matrices, see Table 3.1. For long

chains it grows as dim(H) ∼ 5.35L.
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3.4.2 Results

We diagonalized this system for a chains of up to length nine10, with periodic

boundary conditions. At first sight these results do suggest that these chains are not

coupled: it looks like there are four ground states. However, we also observe an energy

density associate with ferromagnetic order. For the system sizes we were able to diagonalize,

however, this energy density is much smaller than the effective hopping element of the order

parameter of each chain, and thus smaller than the finite size gap of each chain.

Gap to the first few excited states: looks like four ground states

Diagonalizing this system for several points in the ordered phase shows a scaling

of the gap to the first three excited states which strongly suggests that the system has four

ground states. We compare this to two isolated chains, which show a very similar scaling,

see Fig. 3.11

Scaling of the gap: looks like independent Ising transitions

For an infinite system close to the critcal poing the gap should behave as ∆gap ∼
|λ− λc|ν = ξ−z, where λ is the tuning parameter, and λc is its critical value. For a finite

system, there is a scaling function, which depends only on the ration ξ/L

∆gap = E1 − E0 = |λ− λc|zν φ̃ (ξ/L) = |λ− λc|zν L
−z

L−z
φ̃
(
|λ− λc|−ν /L

)
= L−zf (L |λ− λc|ν) = L−zφ

(
L1/ν(λ− λc)

)
and so if we plot (E1 − E0)L−z for different system sizes, all curves should cross at the

critical point. Here we expect z = 1. By rescaling also the y-axis, everything should collapse.

This allows to measure the correlation length expoinent ν.

Even though this is a very small system, we can look at the scaling for different

system sizes. Here I used ∆y = −5 fixed, and plot for different values of ∆x, see Figures 3.13,

and 3.14. I find good data collapse using the Ising exponents z = 1 and ν = 1.

10while we can diagonalize chains of length nine in all regions of the phase diagram, in some regions the
splitting between the lowest eigenvalues seems to become smaller than machine precision, this limits our
analysis.
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Figure 3.11: Logarithmic plot for energy of the first three excited states relative to the
ground state as a function of system length, for (a) one ladder as described above and
for (b) two isolated chains. The lines E1 − E0 and E2 − Eo are on top of each other.
This suggests that the order parameters of the chains are not coupled. Similar behavior is
observed at other points in the ordered region of the phase diagram.



Chapter 3: Phase Diagram of the Tilted Decorated Square Lattice 69

a)
∆a ∆gap1

b, crit, ∆gap3
b, crit, ∆single chain

b, crit,

−4 −3.4280 −3.4262 −3.2223
−5 −4.5428 −4.5417 −4.3906
−6 −5.6193 −5.61832 −5.4968
−8 −7.7145 −7.7139 −7.6257

b)

−5 −4.5 −4 −3.5 −3 −2.5 −2

−5.5

−5

−4.5

−4

−3.5

−3

∆
y

∆ x

 

 

decorated square
single chain

Figure 3.12: Shift of critical point due to inter-chain coupling a) Exact diagonalization of
the toy model: critical value ∆b,crit for a system of two coupled chains to a system of two
isolated chains. The critical point is shifted, so there is some effect due to the coupling. b)
QMC: the figure shows the critical line of the decorated square lattice and the critical line
of a single chain. We observe a similar shift of the critical line. The direction of the shift
both from QMC and from exact diagonalization agrees with the field theory, Eq. (3.13)
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Figure 3.13: a) Spacing between the lowest two eigenvalues, as a function of ∆xfor various
system sizes. b) spacing between the third eigenvalues and the ground state. The crossing
points are almost equal, but not quite: ∆gap1

x, crit, = −4.5428, ∆gap3
x, crit, = −4.5417. If I did the

same thing for two isolated chains, the crossing points would agree. The critical point for
a single chain is different, it is ∆single chain

x, crit = −4.3906. So there is at least a shift to the
critical point due to the presence of a second chain.
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Figure 3.14: scaling for the gap to first excited state. ∆b,crit = −4.5428 was used; good
data collapse with Ising exponents . Using a larger or smaller value for ν gives less good
data collapse, see plots in Appendix.

Estimate for energy-energy coupling by comparing to two isolated chains

The analysis so far seems to be suggesting that the order parameters of the two

chains are not coupled. Yet there is an effect of the interaction since the critical point is

shifted compared to a single isolated chain. We can estimate the energy-energy coupling by

comparing the ground state energy of two isolated chains with the one of our ladder, see

Fig. 3.15.

Estimate of the order parameter coupling

Can we conclude that there is no coupling between the order parameters of the

chains? The gap to the first three excited states seems to vanish exponentially, yet the

following suggest that an order parameter coupling will appear for longer chains

1. There is a splitting between the first and the second excited state, E1−E2. This split-

ting is very small, but it grows approximately linearly with system size, see Fig. 3.16.

If these were truly four ground states, then the splitting should vanish exponentially.
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Figure 3.15: Comparing ground state energy of a ladder to the ground state energy of two
isolated chains: energy cost for coupling.

2. We can show that there is no hidden symmetry forbidding order parameter coupling:

if we fix the boundary conditions11 to make the chains either aligned or antialigned,

there is a difference in ground state energy of these two systems which grows linearly

with system size, see Fig. 3.17. We can use the slope of this curve as an estimate for

the coupling of the order parameters per unit cell.

3. We can apply a small bias field, which is larger than the splitting between the for lowest

eigenstates to align the chains either ferromagnetically or antiferromagnetically. There

is again a difference in ground state energy, which grows linearly with system size, see

Fig. 3.18, and which again gives an estimate for the order parameter coupling.

The slopes of all three curves agree approximately, giving us a good estimate for the order

parameter coupling of the chains. For the system sizes we studied so far, however, this

11We can view the segment under consideration as a part of a very long system, which is aligned either fer-
romagnetically or antiferromagnetically. The remainder of the long system provides the boundary conditions
for the segment.
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Figure 3.16: splitting between first and second excited state grows with system size. This
suggests that there is indeed a coupling between the order parameters of these two chains,
which is smaller than the finite size gap of each chain for our system sizes.
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Figure 3.17: Fixing the boundary conditions so that the chains are either aligned or an-
tialigned. The energy difference grows linearly with system size and antiferromagnetic
boundary conditions are energetically favorable.

coupling is smaller than the effective tunneling element between the different ground states,

i.e. smaller than the finite size gap. For larger chains this order parameter coupling will

start to dominate over the tunneling, and then there will only be two ground state.

The coupling between two chains – if present – is antiferromagnetic. We can also

understand this as from the difference of dimension of the Hibert space for ferromagnetic

vs antiferromagnetic boundary conditions, see Tab. 3.1. The Hilbert space is larger for

ferromagnetic boundary conditions, giving the system more states to fluctuate to. This

reduces the energy.

3.4.3 Conclusions

At first sight this small system exact diagonalization study suggests that there

should be no coupling between the order parameters: two coupled chains seem to have four

ground states, just as two uncoupled chains. Having a closer look at the splitting between

the different ground states, applying a bias field, and fixing the boundary conditions, how-

ever, we have been able to measure an antiferromagnetic coupling between two neighboring
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Figure 3.18: Difference in ground state energy for a system with ferromagnetic and antifer-
romagnetic bias field.

L dim (Hpcb) dim (Hferro) dim (Hantiferro)
2 32 13 14
3 158 65 73
4 828 341 389
5 4408 1815 2081
6 23564 9701 11140
7 126106 51913 59641
8 675076 277897 319309
9 3614144 1487763 1709535
10 19349432 7965181 9152606

Table 3.1: Dimension of Hilbert space for different boundary conditions: periodic, ferro-
magnetic, and antiferromagnetic, see text. Note that the dimension of Hilbert space is
larger for antiferromangetic boundary conditions.
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chains.

For the system sizes studied in exact diagonalization this coupling is smaller than

the tunneling element between the two ground states. For systems sizes studies with QMC

may become on the order of the finite size gap, but it is still orders of magnitude smaller

than the temperature of the system. This is why we cannot see the coupling in QMC.

In conclusion we can say that the system seems to have strong finite size effects.

It is very likely that the true phase diagram in the thermodynamic limit should have two

regions with two-dimensional long range order. The phase transition would then be in the

universality class of the 3D classical Ising model.

A quantum simulator of ultracold atoms would however be limited by the system

size and see a one dimensional transition to ordered chains, just as we did in QMC.



Figure 3.19: Quantum phase transition – an artist’s view.



Chapter 4

Graphene-Like Coupled Spin

Chains

We theoretically study graphene-like coupled spin 1/2 chains with a Heisenberg

antiferromagnetic interaction. The chains are coupled in a way that would arise if they

were taken off a honeycomb lattice at a zig-zag edge, see Fig. 4.1: along each chain only one

out of two spins is coupled to the neighboring chain on the right, while the remaining spins

are coupled to the left. Two chains thus form a ladder where every other rung is missing.

Focussing on the case where the inter-chain coupling is stronger than the coupling along

the chains, we use a bond-operator representation, where two spins are coupled, to obtain

a mean-field theory. We also apply a unit cell mean field theory. We compare our results to

Quantum Monte Carlo calculations and obtain good qualitative agreement. Such systems

could be realized with ultracold atoms, an elongated trap, and optical lattices.

4.1 Introduction

A recent work [46] analyzed the possibility of reproducing graphene physics with

cold atoms, and of extending it to the interacting regime by creating a two-dimensional

honeycomb optical lattice and loading it with ultracold fermionic atoms, such as 6Li, in two

different internal states. The key advantage is that the relevant experimental parameters

(e.g. configuration and strength of the optical potential, inter-atomic interaction strength

tuned via Feshbach resonance) can be accurately controlled. In particular, it was shown

that the three different hopping amplitudes between nearest-neighbor sites can be tunned

77
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Graphene-Like Coupled Spin Chains

We theoretically study graphene-like coupled spin 1/2 chains with a Heisenberg anti-ferromagnetic interaction. The chains are coupled in a way 
that would arise if they were taken off a honeycomb lattice at a zig-zag edge. Two chains thus form a ladder where every other rung is missing. 
We focus on the case where the inter-chain coupling is stronger than the coupling along the chains and use the bond-operator representation 
where two spins are coupled to obtain a mean field theory. We compare our results to Monte Carlo calculations and obtain good qualitative 
agreement. Such systems could be realized with ultracold atoms, an elongated trap and optical lattices, and they could help provide insight to 
the transition from one dimension to two dimensions.

Abstract

Conclusions and Outlook
• the mean field theory derived by using a bond-operator approach seems to be capturing 

the physics well
• qualitative agreement with Quantum Monte Carlo calculations

• use coupled Lüttinger Liquids to describe the case of weakly coupled chains (! > 1)
• away from half filling: t-J model

Motivation

zig-zag edge
of honeycomb 
lattice

J
λJ

λJ λJ

λJ

J

left right

honeycomb lattice has been proposed for ultracold atoms [1] where the parameters 
can be tuned. An additional trapping potential could realize graphene like coupled 
chains. At half filling, we consider a spin model. 

[1] Phys. Rev. A 80, 043411 (2009)

Method: Bond operator approach and mean field

couple spins along rungs (also missing ones)

Expressing spin operators and Hamiltonian in this basis

assuming condensation of singlets, derive effective mean field theory

neglecting triplet-triplet interaction

solving saddle point equations gives mean field parameters, and other physical quantities 
canbe computed. 

references on bond operator approach: 

alternatively: low energy subspace 
of unit cellcoupled rungs

uncoupled ‘rungs’ - degenerate

deriving mean field 
theory similarly for the 
low energy subspace

Results

The QMC calculations have been performed using software from the ALPS 
project (alps.comp-phys.org)
F. Alet, S. Wessel and M. Troyer, Phys. Rev. E 71, 036706 (2005).
A.F. Albuquerque et al., J. of Magn. and Magn. Materials 310, 1187 (2007).
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Figure 4.1: Motivation: spin chains coupled in a way that would arise if they were chopped
off graphene at a zig-zag edge. Left: zig-zag edge of a honeycomb lattice. Right: two
graphene-like coupled spin chains.

independently. When one of the hopping amplitude is much smaller than the two other,

the situation of weakly-coupled zig-zag chains is obtained. In the regime of strong repulsion

between the fermions, one is lead, at first order, to an effective Heisenberg anti-ferromagnetic

interaction between spin 1/2. More precisely, in each chain, one out of two neighboring spins

is coupled to a spin of the neighboring chain to the right, while the other one is coupled to

the left. Adding a transverse confinement parallel to these weakly coupled chain results in

the possibility of having only a few coupled chains, and, finally, for two chains, where only

one out of two spins is coupled to the neighboring chain, a situation which differs from the

standard spin ladders.

This Chapter is organized as follows. In Section 4.2 we describe the system and

Hamiltonian. In Section 4.3 we consider the case of strong bonds and weak chains. We apply

a bond operator approach and a unit-cell-mean-field approach, as well as Quantum Monte

Carlo (QMC) calculations. In Section 4.4 we consider the opposite case, where the coupling

along the chain is strong, while the inter-chain coupling is weak. We use we describe each

chain by a Luttinger liquid and argue that, similar to the regular spin ladder any small

coupling between the chains opens up a gap. Conclusions are presented in Section 4.5
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Figure 4.2: Model: two coupled spin chains with Heisenberg interaction. Only even rungs
are present. Odd sites are not coupled to the neighboring chain.

4.2 Model and Hamiltonian

We study graphene-like coupled spin chains with Heisenberg antiferromagnetic

interactions. For two spin chains, this corresponds to a Heisenberg spin ladder where every

other rung is removed (i.e. all the odd rungs have been removed), see Fig. 4.2. The system

is described by the following Hamiltonian Ĥ = Ĥ0 + λĤλ

Ĥ0 =
N∑
i

~Sl,(2i) · ~Sr,(2i) (4.1a)

Ĥλ =
2N∑

j,m=l,r

~Sm,(j) · ~Sm,(j+1) (4.1b)

Here the first index is a chain index, l or r, and the second index labels the spins along a

chain.

In the following we will take two mean-field approaches and compare them to QMC

calculations: a rung basis mean field and a unit cell mean field, keeping only the lowest

energy eigenstates of each unit cell.
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4.3 Weak chains and strong bonds: J⊥ � J‖

4.3.1 Bond operator approach: Rung basis mean field

The bond operator approach introduced by S. Sachdev and R.N. Bhatt in Ref. [47],

can be used to study spin ladders, as done by Gopalan, Rice, and Sigrist in Ref. [48]. Here

we briefly review the bond operator approach and then apply it to our system. First, we

describe each rung of a spin ladder (a regular ladder or our graphene-like ladder) in a

singlet-triplet basis

|s〉 =
1√
2

(|↑↓〉 − |↓↑〉) , (4.2a)

|tx〉 =
1√
2

(|↑↑〉 − |↓↓〉) , (4.2b)

|ty〉 =
1√
2

(|↑↑〉+ |↓↓〉) , (4.2c)

|tz〉 =
1√
2

(|↑↓〉+ |↓↑〉) . (4.2d)

We define operators s† and t†α which create the state |s〉 and |tα〉 respectively. We now

express the spin operators in this basis

Sl,α =
1
2

(
s†tα + t̂†αs− iεα,β,γ t̂

†
βtγ

)
, (4.3a)

Sr,α =
1
2

(
−s†tα − t̂†αs− iεα,β,γ t̂

†
βtγ

)
. (4.3b)

The Hamiltonian in this representation becomes

Ĥ0 = J

N∑
i

(
−3

4
ŝ†2is2i +

1
4
t̂†2i,αt2i,α

)
−

2N∑
j

µj

(
ŝ†jsj + t̂†jαtj,α − 1

)
(4.4a)

and Hλ = H1 +H2 with

H1 =
J

2

2N∑
j

(
t̂†j,αtj+1,αŝ

†
j+1sj + t̂†j,αt̂

†
j1,αsjsj+1 + H.c.

)

H2 = −J
2

2N∑
j

1
2
(1− δα,β)

(
t̂†j,αt̂

†
j+1,αtj,βtj+1,β − t̂†j,αt̂

†
j+1,βtj+1,αtjβ + H.c.

)
where we have introduced the chemical potential to ensure the constraint ŝ†s+

∑
α t̂
†
αtα = 1

at each rung. In the following we neglect H2, as contributions from this part are negligible

with respect to those from H1. The Hamiltionian H0 + λH1 can be solved by mean field
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decoupling. We assume that the singlets condense and take the mean field value s̄e =

〈s2i〉 and s̄o = 〈s2i+1〉. Here e stands for even, and o for odd, and we assume that also

uncoupled rungs condense into singlets. This is justified for two reasons, as we will show:

in Section 4.3.4 we present an effective model for the uncoupled spins only, and show

that in second order in λ an effective antiferromagnetic coupling between these two spins

is generated. Secondly, small system exact diagonalization and QMC calculations shows

that the singlet occupation in the uncoupled rungs is indeed high. We take the chemical

potentials to be equal for all coupled rungs µ2i = µe and also for all uncoupled rungs

µ2i+1 = µo, due to translational invariance. We note that for the uncoupled rungs singlet

and triplets are degenerate. The Hamiltonian in momentum space becomes

H0 = N

(
−3

4
Js̄2e − µos̄

2
0 − µes̄

2
e + µ0 + µe

)
+
∑

k

t̂†k,αtk,α

(
J

4
− µe

)
− d̂†k,αdk,αµ0

H1 = Js̄os̄e

∑
k,α

cos(ka)
(
d̂†k,αtk,α + t̂†k,αdk,α + d̂†k,αt̂

†
−k,α + dk,αt−k,α

)
, (4.5)

and it can be diagonalized by a Bogoliubov transform

H = N

(
−3

4
Js̄2e − µos̄

2
0 − µes̄

2
e + µ0 + µe

)
(4.6)

−3N
2

(
J

4
− µe − µo

)
+
∑

k

[
ε1(k)

(
γ̂†αkγ̂αk +

3
2

)
+ ε2(k)

(
ζ̂†αkζ̂αk +

3
2

)]
,

with

ε1,2(k) =

√
A2 +B2 ∓

√
(A2 −B2)2 + 16ABC2 cos2(ka)

√
2

, (4.7)

where we have parametrized

A =
(
J

4
− µe

)
,

B = −µ0,

C = λJs̄os̄e. (4.8)

Next we solve for the parameters µe, µo, se, and so by solving the four saddle point equations

〈 ∂H
∂µj
〉 = 0, 〈∂H

∂s̄j
〉 = 0 (4.9)

here j = e, o. These saddle point equations are solved numerically and results are shown in

Section 4.3.3.
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Figure 4.3: Singlet occupation on coupled and uncoupled rungs obtained from our meanfield
approach, from QMC, and from exact diagonalization of a small system (16 spins).

Singlets on the uncoupled rungs

QMC and small system exact diagonalization (16 spins, periodic boundary con-

ditions) show that the single occupation on the uncoupled rungs is indeed high, see figure

Fig. 4.3 and 4.4. Comparing singlet occupation of the ground state and the first excited

state suggest that low energy excitations break a singlet bond on the uncoupled rungs.

4.3.2 Unit cell mean field

Here we extend our approach by assuming a condensation of the ground state of

each unit cell. We couple the four spins of each unit cell, see Fig. 4.5. This is similar to

the plaquette basis approach used in Ref. [49], but here our unit cell has a λ-dependence,

while in Ref. [49] it was taken constant. Diagonalizing the unit cell shows a low energy
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Figure 4.4: Singlet occupation on coupled and uncoupled rungs for the ground state (thick
black line) and for the first excited states (thin red line), obtained from small system
exact diaonalization (16 spins). The singlet occupation decreases for the first excited state,
suggesting that low energy excitation come from breaking singlet bonds along those rungs.
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Figure 4.5: unitcell and its energy eigenvalues. Note that for λ � 1 the singlet triplet
gap is very small. On the other hand, as λ becomes larger, the distance between the third
eigenvalue and the second one, becomes smaller than the singlet triplet gap.

eigenvalue ×4 Stot deg. Eigenvector with Sz = 0
−(1 + 2λ+ 2

√
1− 2λ+ 4λ2) 0 1 as(|1〉+ |6〉) + bs(|2〉+ |5〉) + cs(|3〉+ |4〉)

−(1 + 2
√

1 + λ2) 1 3 − cos θt(|1〉 − |6〉) + sin θt(|2〉 − |5〉)
1− 2λ 1 3 1√

2
(− |3〉+ |4〉)

−1− 2λ+ 2
√

1− 2λ+ 4λ2 0 1 a4(|1〉+ |6〉) + b4(|2〉+ |5〉) + c4(|3〉+ |4〉)
−1 + 2

√
1 + λ2 1 3 sin θt(|1〉 − |6〉) + cos θt(|2〉 − |5〉)

1 + 2λ 2 5 1√
6
(|1〉+ |2〉+ |3〉+ |4〉+ |5〉+ |6〉)

Table 4.1: Eigenstates of a unit cell: eigenvalue, total spin, and degeneracy. For the last
column we used |1〉 = |↑↑↓↓〉, |2〉 = |↑↓↑↓〉, |3〉 = |↑↓↓↑〉, |4〉 = |↓↑↑↓〉, |5〉 = |↓↑↓↑〉,
|6〉 = |↓↓↑↑〉.

subspace consisting of one ground state with total spin zero, next three degenerate states

with Stot = 1. For simplicity we first only keep this low energy subspace and disregard

the states with higher energy. Table 4.1 shows eigenstates, their total spin, degeneracy and

eigenvectors.

The unperturbed gap between the ground state energy εs and the energy of the first exci-

tation εt is given by

∆0 := εt − εs =
1
2

(
λ−

√
1 + λ2 +

√
1− 2λ+ 4λ2

)
.

In this section we define the states |s〉 as the ground state of a unit cell and |tα〉 are the three

degenerate first excited states. As in the previous section we define corresponding bosonic
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Figure 4.6: Labeling of the spins withing a unitcell.

annihilation and creation operators s, s†, tα, t†α, and express our Hamiltonian Eq. (4.1) in

this basis. We divide our Hamiltonian in two parts H = Hunitcell + 1
2

∑
i6=j H

link
i,j , the first

part is already diagonalized by the choice of basis, and

H link
1,2 = λJ

(
~SA

1 · ~SB
2 + ~SD

1 · ~SC
2

)
. (4.10)

Here we labeled the spins in each unit cell A,B,C,D, see figure Fig. 4.6. Neglecting again

the triplet-triplet terms, we find the following expression

H link = λJαt

∑
j

(s†js
†
j+1tjαtj+1α + s†jsj+1tjαt

†
j+1α + H.c.) (4.11)

where αt = 2(a2
sa

2
t − b2sb2t ) (the coefficients are defined in Table 4.1) is given as a function

of λ by

αt = −λ1− λ+ 3
√

1 + λ2 + 2
√

1− 2λ+ 4λ2

12
√

1 + λ2
√

1− 2λ+ 4λ2
. (4.12)

Assuming condensation of the lowest energy state, we obtain a quadratic Hamiltonian in

momentum space

HMF = N
(
εss̄

2 − µs̄2 + µ
)

+
∑
k,α

Λkt
†
k,αtk,α + ∆k

(
t̂†k,αt̂

†
k,−α + tk,αtk,−α

)
(4.13)

with

Λk = εt − µ+ 2λαM s̄
2 cos(kb), (4.14)

∆k = λαM s̄
2 cos(kb). (4.15)
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a Bogoliobov transform yields

HMF = N
(
εss̄

2 − µs̄2 + µ
)
− 3N

2
(εt − µ)

+
3
2

∑
k

ωk +
∑
kα

ωkγ
†
kαγkα (4.16)

ωk =
√

Λ2
k − (2∆k)2 (4.17)

We again need to solve the saddle point equations 〈∂HMF
∂µ 〉0 = 0, 〈∂HMF

∂ s̄ 〉0 = 0, which take

the following form(
−s̄2 +

5
2

)
=

3
2

1
π

(
1√

1 + d
K
(
D2
)

+
√

1 + dE
(
D2
))

,

(µ− εs) = 6
λ |α|
dπ

(√
1 + dE

(
D2
)
− 1√

1 + d
K
(
D2
))

,

here K and E denote the elliptical integrals1 of the first and second kind [50]. The ground

state energy is then given by

EG

NJ
= (εss̄2 − µs̄2 + µ)− 3

2
(εt − µ) +

3
π

(εt − µ)
√

1− dE
(
D2
)

(4.18)

and the energy gap by

∆ =
√

(εt − µ)2 − 4(εt − µ)2λ |α| s̄2. (4.19)

We also included the next triplet band, however, this brings only very slight improvement,

see Fig. 4.7

4.3.3 Results

In this section we summarize our results of the mean-field and QMC calculations.

The QMC calculations have been performed using the SSE algorithm with directed loop

from the ALPS project [51, 52]. The results presented in this paper have been obtained

for chain length L = 60, corresponding to 240 spins. The typical number of sweeps, after

thermalization, is 600 000. The energy gap ∆ is extracted from the spin susceptibility χ(β)

by fitting with the expression e−β∆/
√
β as a function of the inverse temperature β. For

small value of λ, β values as large as 1000 has been used. We have checked that the results

remains the same when increasing the chain length.

1we used the following definition of the elliptic integrals, which is the same as Ref. [50]:R π/2

0
dθ√

1−k2 sin2 θ
= K(k2), and

R π/2

0

p
1− k2 sin2 θdθ = E(k2).
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Figure 4.7: Ground state energy: QMC and mean field calculation

Ground state energy

Fig. 4.7 shows the ground state energy of the graphene-like coupled ladder. For

small λ, the rung basis MF agrees better with QMC results. This is probably because there

it not much of a difference between the ground state of the unit cell and the bonds on each

site for that regime, but the rung basis keeps the entire Hilbert space. Then, as λ gets

larger, the unit cell basis works better. This might be because then the true ground state

becomes more and more different from the one of the rung basis; and the unit cell basis

incorporates more of the short scale physics, so it describes the system more accurately.

Energy gap

Fig. 4.8 shows the energy gap as a function of λ, which shows a good qualitative

agreement. Surprisingly, the unit cell basis mean-field is closer to the QMC than the bond
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Figure 4.8: Results for the energy gap from mean-field and QMC calculations as a function of
λ on a log-log scale. All cases (bond operator mean-field, unitcell meanfield and QMC) show
a quadratic dependence of the energy gap on λ for small values of λ, and good qualitative
agreement in this region.

operator MF for small λ. For larger λ unit cell mean field overestimates the gap. This could

be related to the fact that the unperturbed gap (∆0 = εt− εs) of this model is growing with

lambda, while the unperturbed gap for the bond operator approach does not depend on λ.

4.3.4 Limit J‖/J⊥ → 0: effective model

In the limit λ � 1, where the chains are very weak, we can derive an effective

Hamiltonian for the uncoupled spins only. We assume that all the coupled spins are locked

into singlets, and integrate them out. The effective Hamiltonian has both antiferromagnetic

and ferromagnetic coupling, in fact, the coupling along the chains changes sign and becomes



Chapter 4: Graphene-Like Coupled Spin Chains 89

λJλJ

J

2
-λ2J

2
 λ2J  λ2Jλ2J

Figure 4.9: Effective model for the uncoupled chains, to second order in λ. Dashed
green lines represent ferromagnetic coupling, while black lines represent antiferromagnetic
coupling.

ferromagnetic, see Fig. 4.9,

Ĥeffective = −λ
2J

2

∑
j,m=l,r

~Sm,2j−1 · ~Sm,2j−1

+λ2J

∞∑
j=0

~Sl,2j+1 · ~Sr,2j+1

+
λ2J

2

∞∑
j=

~Sl,2j−1 · ~Sr,2j+1 + ~Sr,2j−1 · ~Sr,2j+1 (4.20)

indeed, an effective coupling along the initially uncoupled bonds appears to second order

in λ. Note that we can ‘untwist’ this chains, redefining each new chain to be following

the crossed antiferromagnetic links. This yields an antiferromagnetic spin ladder, with an

additional ferromagnetic crossed interaction. Applying the bond operator approach to this

model gives precisely the same mean-field equations as for a regular spin ladder [48]. This

effective model also explains the quadratic dependence of the gap on λ for small λ.
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4.4 Weakly coupled spin chains: J⊥/J‖ → 0

In this section we briefly consider the opposite limit, λ → ∞: strong coupling

along the chains, and week links. We describe each of the chains by a Luttinger Liquid

Hamiltonian [53]

HLL =
~
2π

∫
dx

[
uK

~2

(
πΠ̂(x)

)2
+
u

K
(∇φ(x))2

]
(4.21)

there is an additional sine-Gordon term, which is not relevant at the Heisenberg point,

and the single Heisenberg antiferromagnetic spin 1
2 chain is in a gapless Luttinger liquid

phase [53]. At the Heisenberg point we have K = 1
2 , and φ(x) and Π(x) are the conjugate

Luttinger fields, fulfilling canonic commutations relations. Expression for the original spin

operators in terms of the Luttinger fields of a single chain are given by [53]

Sz(x) = − 1
π
∇φ(x) +

(−1)x

πα
cos(2φ(x)) (4.22)

S+(x) =
e−iθ(x)

√
2πα

[(−1)x + cos(2φ(x)] (4.23)

our graphene-like ladder is described by the following Hamiltonian

H = H0
1 +H0

2 + J⊥
∑

j

~S2j,1 · ~S2j,2 (4.24)

where H0
1 (H0

2 ) is the Luttinger liquid Hamiltonian for the left (right) chain. We can rewrite

this in a more convenient form

H = H0
1 +H0

2 + J⊥
1
2

∑
j

~Sj,1 · ~Sj,2 + J⊥
1
2

∑
j

(−1)j ~Sj,1 · ~Sj,2. (4.25)

The first sum corresponds to the rungs of a regular spin ladder (each site of the chain is

coupled to a site of the other chain) with half the interaction strength. The second sum

is additionally present in our system, canceling all the odd rungs. We proceed to showing

that the most relevant terms in this Hamiltonian are the ones coming from the first sum.

It is well know that these terms open up a gap for any small coupling J⊥.Writing out the

interaction Hamiltonian (first and second sum) yields:

Ĥint = Hint,reg +Hint,stag (4.26)
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where Hint,reg contains all the terms that are present in a regular spin ladder,

Hint,reg =
∫ [

g1
(2πa)2

cos(
√

2θa) +
2g2

(2πa)2
cos(
√

8φa) +
2g3

(2πa)2
cos(
√

8φs)

+Jz
⊥a

(∇φs)2 − (∇φa)2)
π2

+
J⊥

4πa2
cos(
√

2θa)
[
cos(
√

8φa) + cos(
√

8φs)
] ]
dx (4.27)

where the couplings are g1 = πjx,y
⊥ a and g2 = g3 = Jz

⊥a. Our additional staggered part is

Hint,staggered =
∫
dx
√

2Jz
⊥

π2a2

[
(∇φs) cos(

√
2φs) cos(

√
2φs) cos(

√
2φa)

+ (∇φs) cos(
√

2φs) cos(
√

2φs) cos(
√

2φa)
]

+
∫
dx

2Jxy
⊥

πa2 cos(
√

2θa) cos(
√

2φs) cos(
√

2φa). (4.28)

To get an idea on how the system behaves, we compute the scaling dimensions for each

of the terms. We find that the most relevant perturbations are the ones of Hint,reg, which

open up a gap. There are also terms in Hint,staggered which are relevant, but these are less

relevant. This suggests that the graphene-like coupled spin ladder behaves qualitatively like

the regular ladder, for all λ 6= 0. This approach being a low energy effective theory will not

gives us values for the ground state energy or the gap.

Let Ô be some operator, and dim[Ô] = ∆ is called the operator’s scaling dimension

as the correlations of that operator decay as 〈Ô(x)Ô(0)〉 ∝ 1
x2∆ . If the operator now enters

the Hamiltonian with a coupling, gÔ, and the scaling dimension of the coupling constant is

given by dim[g] = 2−∆. Its flow equations, to first order in l is dg
dl = (2−∆)g, where the

system is rescaled as x→ xe−l, see [43]. The scaling dimension of position and momentum

are thus given by dim[x] = −1, dim[k] = 1, and dim[∇] = 1. The fields φ and θ themselves

do not flow, dim[φ] = dim[θ] = 0. The operator is a relevant perturbation if ∆ < 2, it is

marginal if ∆ = 2 and irrelevant if ∆ > 2.

In this notation, operator cos(Aφ), whereA is some constant, has scaling dimension

dim [cos(Aφ)] = KA2/8, as

〈cos (Aφ(x)) cos (Aφ(0))〉 ∝ e−
A2

2
〈(φ(x)−φ(0))2〉 ∝

(
a

|x|

)KA2/2

,

and similarely dim [cos (Aθ)] = A2

4K . To find the scaling dimensions of terms containing

derivatives of the fields, we rewrite the correlations in the following form. For example if
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Operator Ô ∆ = dim[Ô] ∆ for Ka = Ks = 1
2

cos(
√

8φa) 2Ka 1
cos(
√

8φs) 2Ks 1
cos(
√

2θa) 1
2Ka

1
(∇φs) cos(

√
2φs) cos(

√
2φa) Ka

2 + Ks
2 + 1 1.5

(∇φs) sin(
√

2φs) sin(
√

2φa) Ka
2 + Ks

2 + 1 1.5
cos(
√

2θa) cos(
√

2φs) cos(
√

2φa) 1
2Ka

+ Ks
2 + Ka

2 1.5
cos(
√

2θa) cos(
√

8φs) 2Ks + 1
2Ka

2
cos(
√

2θa) cos(
√

8φa) 2Ka + 1
2Ka

2

Table 4.2: Scaling dimensions of the operators in our Hamiltonian. The most relevant
operators are the ones that also apper on the regular spin ladder.

the following term (coming from cos(
√

2φ)) can be rewritten as

〈∇φ(x)ei
√

2φ(x)∇φ(x′)ei
√

2φ(x′)〉 =
1
2
d

dx

d

dx′
〈ei
√

2φ(x)ei
√

2φ(x′)〉 =
1
2
d

dx

d

dx′
e−〈(φ(x)−φ(x′))2〉

=
d

dx

d

dx′

(
a

|x− x′|

)K

∝ −K(K + 1)

|x− x′|K+2
,

and we can read off its scaling dimension. Table 4.2 shows the scaling dimensions of various

terms appearing in our Hamiltonian. This suggest that two graphene-like coupled spin

chains behave qualitatively similar to a regular spin ladder, and that the system is gapped

for all values of λ, with the exception of the special points: λ = 0 (no chains) and λ → ∞
(no rungs).

We see that the most relevant terms for the graphene-like coupled spin chains are

the same as the most relevant terms of the regular spin ladder: these terms open up a gap

to all excitations. This strongly suggests that this system behaves qualitatively similar to

the regular spin ladder.

4.5 Conclusion and Outlook

We have used various methods to study graphene-like coupled spin chains: a bond-

operator mean-field approach, unit cell mean-field, and Quantum Monte Carlo, as well as

scaling arguments applied to two coupled Luttinger liquids. Our results suggest that two

graphene-like coupled spin chains behave qualitatively similar to a regular spin ladder, and

that all excitations are gapped for all finite, non-zero values of λ. There are many possible
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extensions to this work. First of all, one could consider the situations where more and more

chains are added, studying this way the 1D-2D transition towards the graphene situation.

In particular, since there is numerical evidence for the existence of a spin liquid phase in the

fermi-hubbard model on the honeycomb lattice [54], it would be interesting to see how this

phase emerges from the quasi-1D situation. From that point of view, it would be interesting

to extend the present study to either the t-J model or the fermi-hubbard model on these

graphene-like coupled chains.



Chapter 5

Interference of

Parametrically-Driven 1d

Quantum Gases

We theoretically analyze interference patterns of parametrically driven one dimen-

sional ultracold atomic gases. By modulating the interaction strength periodically in time,

we propose to excite collective modes in a pair of independent one-dimensional gases at

energies corresponding to the drive frequency. The excited collective modes lead to spatial

oscillations in the correlations of the interference pattern, which can be analyzed to obtain

the sound velocity of the collective modes. We discuss both bosonic and fermionic systems,

and how such experiments could be used to probe spin charge separation.

5.1 Introduction

One-dimensional systems show many interesting properties like charge fractional-

ization and separation of charge excitations from spin excitations. There is experimental

evidence for these properties in various systems [55, 56, 57, 58, 59, 60, 61]. Recent progress

in trapping and cooling of cold atoms, has made it possible to study one-dimensional sys-

tems and their properties in both fermions and bosons [62, 63, 64, 12, 65, 66]. One of the

primary tools in measuring properties of cold atoms are interference experiments.

Surprisingly, it has been shown that interfering two independently created Bose

94
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Figure 5.1: Proposed setup: two independently created one-dimensional systems of ultracold
atoms are first parametrically driven by changing the inter-atomic interaction strength
periodically in time (e.g. by changing the transverse trapping frequency), at time T the
driving stops and the systems are released from their traps and allowed to overlap. An
absorption image is taken, showing wiggely fringes along the z axis. These fringes contain
information about the two-point correlation function within each gas (before expansion)
and can be analyzed to obtain the sound velocity of the collective modes.
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Einstein condensates (e.g. by releasing the confining potential and letting them expand and

overlap) gives rise to spatially periodic patterns in each experimental shot. As there is no

well defined phase between the two condensates, the maxima and minima of the pattern are

at different positions in each shot, so that the average over many shots, corresponding to a

quantum-mechanical ensemble average 〈ρ̂(~r)〉 = 0, contains no interference fringes. The key

to this effect is that we can decompose the state of the two condensates, each containing a

definite number of particles, into a superposition of states of well defined relative phases.

Measuring the interference pattern collapses the wavefunction of the combined system to a

state with definite phase, and thus produces a periodic pattern. To theoretically study this

effect, we need to study the density-density correlation function 〈ρ̂(~r1)ρ̂(~r2)〉 instead of the

average density, since the quantum mechanical average of the density formed in interference

experiments samples all possible relative phases and thus hides the interference pattern.

The above arguments hold true even for an interfering pair of one-dimensional systems,

with one important modification: as there is no long range order, the maxima formed in

the interference pattern are wavy lines instead of straight lines. This waviness contains

information about the correlation function within each 1d system [67, 68].

Here we propose an experimental approach to create and directly probe excitations

in one-dimensional ultracold atom systems of both bosons and fermions. In particular, for

systems composed of mixtures of two species, our method allows us to see separation to

spin and charge modes. Our approach is to start with a pair of one-dimensional systems,

parametrically drive excitations by temporally periodic modulation of the particle particle

interaction strength, and finally analyze the interference pattern, see Fig. 5.1 Experiments

involving parametric driving to create excitations in one-dimensional fermionic gases have

recently been proposed in Refs [69, 70]. In this work, in addition to fermionic gases, we

study also bosonic gases, which are of experimental interest.

In interference experiments with one-dimensional systems of cold atoms, the gases

are released from their traps and allowed to expand. We label the longitudinal direction as

the z the axis, and the two systems lie in the x-z plane, see Fig. 5.1. Due to the strong

transverse confinement, when released from their traps, the atoms expand mainly in the

transverse directions. Therefore, we shall neglect the motion of atoms in the longitudinal

direction during the expansion. Once the gases have expanded to a size much larger than

the initial distance d between the two systems, an absorption image is taken. We neglect the

slowly varying envelope and the expectation value of the density in case of independently
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created quasicondensates is a constant, 〈ρ̂(x, z)〉 = ρtofρ0, where ρ0 is the line density of each

quasicondensate. The density-density correlations function, however, contains an oscillating

term at wave vector Q = dm
~t , m is the particle mass, t the time of expansion. See Section

5.6 for a detailed derivation of the following equation:

〈ρ̂(r1)ρ̂(r2)〉 ∝
(
ρ2
0 ±

∣∣∣〈ψ̂†(z1)ψ̂(z2)〉
∣∣∣2 cos(∆xQ)

)
, (5.1)

where ri stands for (xi, zi), ∆x = x1−x2, the upper (lower) sign applies to bosons (fermions).

ψ̂(z) denotes the particle annihilation operator in either of the equivalent initial 1d systems.

To derive Eq. (5.1) we have neglected the motion of atoms along the longitudinal direction

during expansion; assumed that the two systems are initially identical and independent;

assumed large expansion times (e.g. the size of the overlapping clouds is much larger than

their initial separation d). See appendix 5.6; Ref [68] contains a more detailed discussion.

Typically, experimental data is analyzed by looking at the integrated density-

density correlation function [67, 71],∫ L

0
dz1dz2〈ρ̂(x, z1)ρ̂(0, z2)〉 ∝ ρ2

0L
2 + 〈|AL|2〉 cos(Qx),

where L is the length of the integration, and the interference amplitude AL is given by

〈|AL|2〉 = L
∫ L
0 dz

∣∣∣〈ψ̂†(z)ψ̂(0)〉
∣∣∣2. One can now define the interference contrast CL =

|AL| /ρ0L, which decays as the integration length L is increased, encoding the decay of

the correlation functions in the one-dimensional systems [67].

Our approach is to study the interference pattern of one-dimensional gases that

have been parametrically driven out of equilibrium. The driving is done by a temporally

periodic change of interaction strength for a certain time T before the gases are released from

their traps. To extract information from the interference pattern, we suggest to take the

Fourier transform along the z-axis, and then study correlations for that Fourier transform.

We define
ˆ̃ρ(x, q) =

∫ L

0
eiqzρ̂(x, z)dz (5.2)

and then consider the quantity 〈 ˆ̃ρ(x, q)ˆ̃ρ(0,−q)〉 which is given by

〈 ˆ̃ρ(x, q)ˆ̃ρ(0,−q)〉 ∝ cos(xQ)L
∫ L

0
dz cos(qz)

∣∣∣〈ψ̂†(z)ψ̂(0)〉
∣∣∣2 .

Thus, by Fourier transforming the interference pattern, one can obtain the Fourier transform

of the correlation function of a single 1D gas,

|A(q, T )|2 := L

∫ L

0
dz cos(qz)

∣∣∣〈ψ̂†(z)ψ̂(0)〉
∣∣∣2 . (5.3)
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The quantity |A(q, T )|2 is also a function of the total driving time T (we have suppressed

this time argument T in ψ̂ and ρ̂ in the above equations). This analysis can in principle be

done for fermions and bosons.

Our main results are: (1) We find that parametric drive at frequency Ω creates

pairs of excitations with total momentum zero. Therefore, the quantity |A(q)| shows a

resonance peak at the wave vector corresponding to half the driving frequency, q = Ω/2ui

(and, in principle, associated multiples), where ui is the sound velocity of the corresponding

mode. Such an analysis can be used to find the sound velocity of the 1D bose system. (2)

For a two component Bose system, we find two primary peaks corresponding to “spin” and

“charge” velocity. (3) Similarly one could analyze an interference pattern of a driven 1D

system of two component fermions, where one expects two peaks corresponding to spin and

charge excitations. For fermions, however, there are some complications due to the rapid

decay of the correlation functions, which we will address in Section 5.4.

The remainder of this Chapter is organized as follows: In Section 5.2 we introduce

the formalism and describe the relation between a driven 1d gas and a driven simple har-

monic oscillator. In Section 5.3 we calculate the correlation functions of driven systems and

show how information about the driving can be extracted from the interference pattern.

In Section 5.4 we address the problem of observing spin charge separation for fermionic 1d

systems.

5.2 Parametric driving and Luttinger mode squeezing

5.2.1 Description of a 1d system: Luttinger liquid

One-dimensional systems of interacting bosons or fermions can in general be de-

scribed by Hamiltonian

Ĥ =
∫ L

0
− ~2

2m
ψ̂†σ(z)∇2ψ̂σ(z) (5.4)

+
∫ L

0

∫ L

0
gσσ′(z − z′)ψ̂†σ(z)ψ̂σ(z)ψ̂†σ′(z

′)ψ̂σ′(z′)dzdz′,

where g(z) is the interaction strength, and ψ̂†(z) creates a particle at point z. Low en-

ergy excitations may in turn be described by the Luttinger liquid Hamiltonian which in
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momentum space is given by a sum of harmonic oscillators

Ĥ =
1
2

∑
q 6=0

(
πu

K
Π̂qΠ̂−q +

uK

π
q2ϕ̂qϕ̂−q

)
. (5.5)

where Π̂ and ϕ̂ are conjugate fields:
[
ϕ̂q, Π̂q′

]
= iδq,−q′ , K and u are the Luttinger pa-

rameters, u corresponds to the sound velocity, and K is a dimensionless parameter. For a

finite system of length L we quantize the momentum q = 2π
L n. We shall first consider the

case of spinless bosons and then generalize to a two component Bose mixture and fermions

with spin. For a weakly interacting one component Bose system (K > 1) the Luttinger

parameters are given by1

K = π~
√
ρ0/gm, u =

√
ρ0g

m
(5.6)

where ρ0 is the 1D line density, and g is the interaction parameter, related to the three

dimensional scattering length as through g = 2hνTas [13, 72], where νT is the transverse

trapping frequency. The relation between the physical boson creation operator and the

Luttinger fields is given by

ψ̂†(z) =
√
ρ0 + Π̂(z)e−iϕ̂(z) (5.7)

and the correlation function in the ground state has a power law decay

〈ψ†(z)ψ(0)〉0 ∝ ρ0

(
z

ξh

)− 1
2K

, (5.8)

where ξh = 2K/ρ0 is a short distance cutoff. Let us now assume that there are two species

of bosons (e.g. two hyperfine states or two different atoms), labelled ↑ and ↓. We further

assume that the interaction between two atoms of the species labelled up and the one

between two atoms of the species down are the same, g↑↑ = g↓↓ = g‖, a condition that can

be realized in experiments using hyperfine states |F = 1,mF = −1〉 and |F = 2,mF = +1〉
of 87Rb [73, 67, 74]. We label g⊥ the interaction strength between different species. In this

case the Hamiltonian separates into a “charge” part with gc = g‖+g⊥ and “spin” part with

gs = g‖ − g⊥. The ground state correlation function becomes

〈ψ†(z)ψ(0)〉0 ∝ ρ0

(
z

ξh

)− 1
4Kc
− 1

4Ks

(5.9)

1This expression holds for weakly interacting bosons; for non-interacting bosons K →∞; and for impen-
etrable bosons K = 1.
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where Kc (Ks) is related to gc (gs) through Eq. (5.6).

Next let us consider a fermionic system of two components labelled ↑ and ↓. In

the case of ultracold atomic gases, two fermions of the same species cannot interact via

s-wave scattering (g‖ = 0). In the following we assume δ-interactions and denote by g the

interaction constant between two fermions of opposite spin. The Hamiltonian separates in

a charge part Hρ and a spin part Ĥσ. Both charge and spin part have the form of Eq. (5.5)

with the Luttinger parameters2 given by [53]

uνKν = vF , (5.10)
uν

Kν
= vF

(
1± g

πvF

)
, (5.11)

here ν = ρ, σ and the upper (lower) sign applies to the charge (spin) mode. The single

particle annihilation operators are given by ψ↑(z) = ψ↑,R(z) + ψ↑,L(z), where the index R

(L) stand for a right (left) moving particle, and

ψ̂†↑R(z) → √
ρ0e
−ikF ze−i(−ϕ̂↑(z)+θ↑(z)), (5.12)

ψ̂†↑L(z) → √
ρ0e

ikF ze−i(ϕ̂↑(z)+θ↑(z)), (5.13)

analogously for ↓. The fields which decouple the Hamiltonians in Hρ and Hσ are given by

ϕρ =
1√
2

(ϕ↑ + ϕ↓) , (5.14)

ϕσ =
1√
2

(ϕ↑ − ϕ↓) . (5.15)

and same for θν , which enters in the Luttinger liquid Hamiltonian as ∇θν(z) = πΠν(z).

The spin part of the Hamiltionan has an additional sine Gordon term, arising

from backscattering between fermions with opposite spin (g1⊥ term). However, this term

renormalizes to zero [53] if Kσ > 1 (repulsive interactions), otherwise it creates a gap in

the spectrum of the spin Hamiltonan. In this work we concentrate on repulsive interactions

and the sine-Gordon term is not relevant.

The single particle correlation function in the ground state

〈ψ↑(z)ψ↑(0)〉 = 2ρ0 cos(kF z)
(
z

ξh

)− 1
4

“
Kρ+ 1

Kρ
+Kσ+ 1

Kσ

”
(5.16)

is oscillating at the length scale of particle spacing.

2For fermions: Kρ < 1 for repulsive interaction and Kρ > 1 for attractive interaction. K = 1 for free
fermions.
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5.2.2 Parametric driving and squeezing

Experimentally the interaction parameter g can be changed by either changing the

scattering length as, or by changing the transverse confinement. Let us now imagine a 1d

system that is parametrically driven by changing g periodically in time for a certain time

T ,

g(t) = ḡ
(
1− δ′ cos(Ωt)

)
, (5.17)

where ḡ is the average value of interaction and Ω is the driving frequency. Since the

Luttinger Hamiltonian Eq. (5.5) is just a collection of harmonic oscillators, this situation

can be mapped to a collection of parametrically driven simple harmonic oscillators via P̂q =

−
√
uKq2/πϕ̂q and Q̂q =

√
π/uKq2Π̂q. We note that this mapping is time-independent

for both the bosonic and the fermionic case, as uK remains constant. Each pair of modes

(q,−q) is then described by

Ĥq(t) =
1
2
P̂qP̂−q +

ω2
q

2
[1− δ cos(Ωt)] Q̂qQ̂−q (5.18)

with

ωq = ūq, (5.19)

and ū2 = ḡρ0, δ = δ′ for bosons and ū2
ν = v2

F (1 ± ḡ
πvF

), δ = ±δ′ ḡ
πvF±ḡ for fermions. It is

well know that a parametrically driven quantum harmonic oscillator can be mapped to a

static reference system [75]. If initially in the ground state, the final state after a driving

time T is, up to an overall phase factor, given by Ŝ (ξq(T )) |0〉 where

Ŝ(ξq(T )) = exp
[
ξ∗q (T )âqâ−q − ξq(T )â†qâ

†
−q

]
(5.20)

is the squeezing operator, and âq (â†q) is the annihilation (creation) operator of one excitation

in the static reference system,

âq =

√
ωref(q)

2

(
Q̂q +

i

ωref(q)
P̂q

)
. (5.21)

We choose our reference system to have the eigenfrequency of the system at t = 0, ωref(q) =

ωq

√
1− δ. The squeezing parameter ξq(T ) can be expressed in terms of solutions of the

classical parametrically driven harmonic oscillator, namely solutions to the following second

order differential equation

z′′(τ) +
(

2ωq

Ω

)2

[1− δ cos(2τ)] z(τ) = 0, (5.22)
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a)

�

δ

stable regions
ξ (quasi)periodic

unstable regions
ξ growing in time

q (units of Ω/2u)

b)

T (units of 2π/Ω)

η=1

η=1.2

η=0.8

η=0.5

Figure 5.2: a) Stability diagram of Eq. (5.22), as a function of momentum q (in units of
Ω
2ū) and relative driving amplitude δ. Gray shaded regions are resonant, where the number
of excitations in that mode grows exponentially in time. White regions are off-resonant
and the number of excitations is a (quasi-) periodic function in time and thus bounded
from above. b) Absolute value of squeezing parameter |ξ| as a function of time for different
values of η = 2ωq

Ω , at fixed δ = .1. In the unstable region, ξ grows linearly in time. The
first resonance occurs at 2uq = Ω, when the driving frequency is twice the frequency of an
excitation in that mode, since excitations are created in pairs (−q, q).
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0
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Figure 5.3: Driven one-dimensional Bose gas: (a) Observable quantity 〈|A(q, T )|2〉, divided
by its ground state value, as a function of wavevector q and number of oscillations complete
during driving time T . At T = 0 the system is in the ground state. As driving continues a
resonance peak corresponding to the drive frequency and sound velocity emerges and grows
in time. The relative driving amplitude here is δ = .1. (b) Correlation function after driving
time T = 202π

Ω .

which we have expressed in dimensionless variables, and τ = Ωt
2 . We define η = 2ωq

Ω , and

ηref = η
√

1− δ. Let X (τ) and Y(τ) be solutions of this equation with X (0) = Y ′(0) = 1

and X ′(0) = Y(0) = 0, and define z(τ) = X (τ) + iηrefY(τ), then ξq is defined through

4 cosh2(|ξq|) = |z|2 +
∣∣z′∣∣2 /η2

ref + 2 (5.23)

and an expression for its phase, ξ = |ξ| eiϑ , can be found through ϑ = ϑu + ϑv, where

|u| = cosh |ξ|, and [75]

u = |u| eiϑu =
e−iωrt

2

[
z(t)− iż(t)

ωr

]
, (5.24)

v = |v| eiϑv =
eiωrt

2

[
z(t) +

iż(t)
ωr

]
. (5.25)

Physically relevant quantities can be expressed in terms of the above, e.g. average number

of excitations 〈â†â〉 = sinh2 |ξ|, and uncertainties in position and momentum variables:

ηref
Ω
2 ∆x̂2 = |z| /2 and ηref

2
Ω∆p2 = |z′| /2.

We note that Eq. (5.22) is Mathieu’s equation and its odd and even solutions X (τ)

and Y(τ) are referred to as Mathieu S and Matheiu C functions, because of their resemblance

to sinusoidal functions in certain parameter regimes. Depending on parameters η and δ, this
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equation has stable, i.e. (quasi-)periodic solutions or unstable i.e. exponentially growing

and decaying solutions, see Fig. 5.2. On resonance η ≈ 1 the squeezing parameter grows as

|ξ| ≈ δ
8TΩ.

To summarize the above, the final state of a parametrically driven 1d system is

fully described by the set of squeezing parameters ξq, which in turn is given by solutions of

Eq. (5.22).

5.3 Detecting excitations via interference

We now show how the excitations of the driven condensate change the correlation

function and the interference pattern. While the parameter K can be extracted from the

ground state interference pattern, interference of driven systems could be used to measure

the sound velocity u. Given a set of squeezing parameters ξq we calculate the correlation

function for bosons and fermions and obtain 〈|Aq|2〉, a quantity that can be extracted from

the interference pattern in experiments.

5.3.1 Bosons: one and two component systems

The correlation function can be written in terms of the quadratures 〈ϕ̂qϕ̂−q〉t as

〈ψ̂†(z)ψ̂(0)〉 = ρ0

(
z

ξh

)− 1
2K

e−
1
K

R
d(η) sin2( ηz̃

2 )dη (5.26)

where z̃ = Ω
2uz is the normalized dimensionless position variable. The function d(η) is

defined as the change in quadrature 〈ϕ̂qϕ̂−q〉t due to the excitations,

d

(
2ū
Ω
q

)
:=

KΩ
2ū

(〈ϕ̂qϕ̂−q〉t − 〈ϕ̂qϕ̂−q〉0) (5.27)

and can be expressed in terms of the squeezing parameters ξη = rηe
iϑη

d

(
2ū
Ω
q

)
=

1
q

(cosh(2 |ξq|)− cosϑq sinh(2 |ξq|)− 1) .

We calculate the correlation function and 〈|Aq|2〉 of a 1D bose gas after it has been paramet-

rically driven. The integral in the exponent of Eq. (5.26) is evaluated numerically. Fig. 5.3

shows a result, as expected there is a peak in |Aq|2 at a momentum corresponding to the

driving frequency.
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a) b)
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Figure 5.4: Observable quantity 〈|Aq|2〉 and correlations function for parametrically driven
two component one-dimensional Bose gas. The parameters here chosen are δ = .1 and
number of oscillations in driving n =

(
TΩ
2π

)
= 20.

There are two modes in a two component bose system with different sound veloc-

ities. The parametric driving excited each of the modes independently. This creates beats

in the correlation function, which can be seen as peaks in Aq: there are then two peaks, one

corresponding to each mode, see Fig. 5.4. This setup can be used to probe spin-charge sep-

aration in continuous bosonic systems. It has previously been proposed to use continuous

bosonic one-dimensional systems to probe spin-charge separation [64] .

5.3.2 Two component Fermi systems

We first calculate the correlation function for the driven fermi gas. Note that both

fields appear in the exponent of single particle operators, see Eq. (5.2.1). We find for each

mode

〈ψ̂†R(z)ψ̂R(0)〉 = ρ0e
−ikF z

(
z

ξh

)− 1
2(K+ 1

K )
e−I(z) (5.28)

I(z) =
∫
dη sin2

(
ηz̃

2

)[(
K +

1
K

)
sinh2(rη)−∣∣∣∣K − 1

K

∣∣∣∣ cosϑη sinh(2rη)
]
. (5.29)

The above formula is valid for spin-polarized fermions, and also for spin and charge part of

a two component system of fermions. In that case, we just have to replace the constants

(e.g. interaction strength g and what follows from it) by the corresponding value for the

spin- or charge part.

As a first approximation, let us neglect the second part of I(z) with respect to the first
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part. There are two reasons for that: first, for fermions the Luttinger parameter K is close

to one (in fact, for the spin part it renormalizes to Kσ = 1), second, only the second term

contains the phase of the squeezing parameter cosϑq, which will average out if the systems

are left to evolve after driving and before interfering. We then have

I(z) ≈ const−
(
K +

1
K

)∫
dη cos (ηz̃)

1
η

sinh2 rη (5.30)

which contains the Fourier transform of the function d′(η) = 1
η sinh2 rη, which is a function

peaked around η = 1 with height sinh2
(

πnδ
4

)
and width δ/2. Fourier transforming it will

give an oscillating part in the correlation function.

Directly calculating |Aq| in the same way as for bosons does not give any peaks.

In the next section we discuss why and how to resolve this issue. Using parametric driving

and analyzing the momentum distribution of cold fermionic gases to study spin-charge

separation has been proposed in [69, 70]. Here we propose to analyze an interference pattern.

5.4 Observing Spin Charge Separation for Fermions

In Fig. 5.4 we see two peaks in |Aq|2 for the two component bose system, cor-

responding to the sound velocities of two modes. In this section we show how one could

observe spin charge separation for fermions in a similar way, however, for fermions there

are some complications. The fast decay of correlation functions coming from the factor

(1/K + K) in the power law exponent poses a problem when calculating 〈|Aq|2〉, as this

quantity will then be dominated by contributions from close to the origin z = 0, preventing

the Fourier transform from resolving the beats in the correlation function. We can solve

this problem by using a simple trick to avoid the region around the origin (similarly as used

in [76]). We need to extract ∫ zend

zbeg

cos(zq)
∣∣∣〈ψ̂†(z)ψ̂(0〉

∣∣∣2 (5.31)

from the interference pattern, with zend > zbeg > 0.

This can be realized by looking at correlations of Fourier transformations of density

of different regions in the interference pattern. For this purpose we define

ˆ̃ρ1/2(x, q) =
∫

region 1/2
eiqzρ̂(x, z)dz (5.32)
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Figure 5.5: Fermions with spin: (a) 〈|A1,2(q, T )|2〉 shows a peak for the spin mode and one
for the charge mode. To obtain these peaks, one has to integrate over different regions of
the interference patter, see text. (b) Correlation function for driven two component system
of fermions, and integration region.

and choose the two regions so that they have no overlap. Then

〈 ˆ̃ρ1(x, q)ˆ̃ρ2(0,−q)〉 = 2 cos(xQ)〈Areg1(q)A
†
reg2(q)〉 (5.33)

where we defined Areg i(q) =
∫
region i e

iqzψ̂†1(z)ψ̂2(z)dz and we have

〈Areg 1(q)A
†
reg 2(q)〉 ≈ L

∫ zend
2 −zbeg

1

zbeg
2 −zend

1

eizq
∣∣∣〈ψ̂†(z)ψ̂(0〉

∣∣∣2 . (5.34)

Note that because of the different regions the above quantity does not have to be real. We

define

|A1,2(q)|2 =
∣∣∣〈Areg 1(q)A

†
reg 2(q)〉

∣∣∣ . (5.35)

This quanity as well as the correlation function is shown in Fig. 5.5, where the red lines

in the plot of the correlation function in mark zbegin and zend. |A1,2(q)|2 shows two peaks

corresponding to charge and spin velocities. The difference in size of the peaks is simply

due to the different relative change in the sound velocities u, which are given by Eq. (5.11),

where the relative change in g is of course equal for both modes. There are more excitations

in the spin sector.

5.5 Conclusions

We have studied interference of parametrically driven one-dimensional systems of

both bosonic and fermionic ultracold systems, and found that the interference pattern con-

tains information about the excitations driven into the systems. For two component systems
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two kinds of excitations are driven on resonance: those corresponding to charge velocity,

and those corresponding to spin velocity. This can be extracted from the interference pat-

tern. In the case of fermions one needs to use different regions of the interference pattern

to resolve the effect. We argued that such experiments could be used to probe properties

of one-dimensional systems, as measuring the sound velocity, and spin charge separation.

Note added: During the preparation of this manuscript the author became aware of

Refs. [69, 70], who studied similar effects for fermionic systems and obtained similar re-

sults.

5.6 Appendix: Derivation of equation Eq. (5.1)

When we write down the creation operator ψ̂†cloud(x1, z1) for a particle after ex-

pansion at position (x1, z1), this particle can have come from either quasicondensate, and

there is a relative phase between those paths

ψ̂†cloud(x, z) ∝ ψ̂
†
1(z)e

ixQ/2 + ψ̂†2(z)e
−ixQ/2 (5.36)

where ψ̂†j(z), j = 1, 2, is the creation operator for a particle in quasicondensate j before

expansion, and we factored out a common phase. The relative phase comes from the

expansion the particles initially confined in a harmonic potential (particles only occupy

the ground state of the transversal confinement). Consider first a particle in a harmonic

oscillator at position x ± d/2, whose potential is suddenly removed. The wave function

f±(x, t) expands and picks up a phase factor

f±(x, t) =
1

π3/4
√
Rt

exp

−(x± d
2

)2 (
1− i t

mR2
0

)
2R2

t

 (5.37)

where R0 =
√

~
mω⊥

is the initial radius of the Gaussian wave function, m is the particle mass,

and ω⊥ is the harmonic oscillator potential, here the transverse confinement frequency, and

R2
t = R2

0 +
(

~t
mR0

)2

. (5.38)

For large expansion times, so that Rt � R0, Rt → ~t
mR0

, and

f±(x, t) ≈ 1
π3/4
√
Rt

exp

[
i
m

2~t

(
x± d

2

)2
]
. (5.39)
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As the two systems are initially independent, 〈ψ̂†1(z)ψ2(z)〉 = 0, and thus the expectation

value

〈ψ̂†cloud(x, z)ψcloud(x, z)〉 = const. (5.40)

However, each single shot will have interference fringes due to interference of the different

paths, which one can see in the expectation value of the density-density correlation function

〈ρ̂(x1, z1)ρ̂(x2, z2)〉 of the cloud. The operator for finding one particle at r1 = (x1, z1), and

the other one in r2 = (x2, z2), is proportional to

ψ̂cloud(r1)ψ̂cloud(r2) ∝ ψ̂1(z1)ψ̂1(z2)e−i(x1+x2)Q/2 + ψ̂2(z1)ψ̂2(z2)ei(x1+x2)Q/2

+ψ1(z1)ψ̂2(z2)e−i∆xQ/2 + ψ2(z1)ψ̂1(z2)ei∆xQ/2 (5.41)

here ∆x = x1 − x2. The first two terms describe the case when the two particles come

both from the same quasi condensate. The latter two terms describe the case when the

two particles come each from a different quasi condensates: those are the terms giving an

oscillating term in Eq. (5.1) – and the interference pattern. When we multiply the above

with its complex conjugate, and take the expectation value, the following two terms give

non-constant contributions:

〈ψ̂†2(z2)ψ̂
†
1(z1)ψ2(z1)ψ1(z2)〉ei∆xQ + H.c.± 〈ψ̂†2(z2)ψ̂2(z1)〉〈ψ̂†1(z1)ψ̂1(z2)〉ei∆xQ + H.c.

= ±2
∣∣∣〈ψ̂†(z2)ψ̂(z1)〉

∣∣∣2 cos(∆xQ) (5.42)

the upper (lower) sign is for bosons (fermions). In the first step we assumed that systems 1

and 2 are independent, thus the expectation value factorizes, in the second step we assumed

that they are equal, i.e. in the same quantum state, and used ψ to describe that state.
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