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Universal non-local observables at interacting quantum critical
points

ABSTRACT

This dissertation is devoted to the study of universal observables in quantum critical
systems, most of which have a non-local character. The overarching goal of this work is
to compute new universal observables of critical points to aid theoretical understanding of
these systems.

We first consider the finite-size energy spectrum of quantum critical points on the torus.
We compute the spectrum for the Wilson-Fisher conformal field theory in the e = 3 — d
expansion, where the energy spectrum maps onto a strongly-coupled problem in quantum
mechanics. We also compute the energy spectrum to leading order in 1/N, and we compare
the two expansions. We then study the torus spectra associated with a class of confinement
transitions in states with Zs topological order. After introducing these universality classes,
we show that the critical torus spectrum can be used to detect nontrivial effects like sponta-
neous symmetry breaking and emergent gauge degrees of freedom. We compare our analytic
results with numerical simulations where available, demonstrating the utility of the torus
spectrum as a useful characterization of the universality class of a quantum critical point.

We then present a computation of the von Neumann entanglement entropy of the Wilson-
Fisher and Gross-Neveu conformal field theories in the large N limit. We obtain an exact
mapping to the von Neumann entanglement entropy of a free quantum field theory, allowing
an exact determination of the entanglement entropy in a number of cases.

We also study a critical point displaying impurity-driven critical behavior in a boson
superfluid-insulator phase transition. The presence of an impurity drives the system to a
new interacting universality class, which has critical exponents associated with the scaling
dimensions of the impurity degree of freedom. We present the universal quantum field theory

of this transition and compute the critical exponents and finite-temperature compressibility
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at the critical point using the e expansion.
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CHAPTER 1

INTRODUCTION

1.1 PHASE TRANSITIONS AND UNIVERSALITY

In statistical physics, the goal is to describe the macroscopic properties of a many-body
system using only a few external parameters. For example, one may be interested in how the
average density or magnetization varies as a function of temperature. These quantities will
usually be analytic functions of the temperature, but occasionally there might be a phase
transition where the dependence is non-analytic.

There are two possibilities for the nature of the phase transition. In the first case, the
two phases on either side of the transition may coexist at the transition point, where the
properties of the system change discontinuously as one moves from one phase to the other.
These are termed discontinuous or first-order transitions. In contrast, at continuous or criti-
cal phase transitions, the two phases become identical as they reach the transition, and exist
as a single homogeneous state at the critical point. The difference in certain thermodynamic
quantities in the two phases (such as the magnetization) goes to zero smoothly, and the

correlation length of the system diverges.
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As an explicit example, consider the Ising model
H = —JZafaj (1.1)
(ig)

Here, the Pauli matrices are defined on the sites of a lattice and can take the values o7 = £1.
The Hamiltonian is invariant under taking all the o7 — —o7 simultaneously.
In two or more spatial dimensions, this system exhibits a continuous phase transition at

some finite temperature T.. For T > T, the system is a paramagnet with no net magneti-

zation, while for T < T,, the system acquires a net magnetization M = )_.(o7) which goes
to zero smoothly as T increases to T..
It is interesting to note that the magnetization, along with other thermodynamic quan-

tities, behave as power laws near the critical point. Defining ¢ = (7' — T.)/T., one finds

M ~ (—t)ﬁ (1.2)

where 5 ~ .33 in three dimensions. As another example, the specific heat C' behaves as
C~ |t (1.3)

where o = .11 in three dimensions. One may also define a characteristic length for corre-
lations in the system by considering the length scale £ over which the two-point correlation
function decays exponentially in the 7" > T.. phase, (¢70%) ~ exp(—|i — j|/€), and one finds
that this length scale diverges as

E~t™” (1.4)

for v =~ .63 in three dimensions.
The emergence of power laws at the critical point is a manifestation of scale invariance.
As the correlation length diverges, the microscopic length scales of the system no longer

determine the dependence of thermodynamic quantities on temperature. This leads to the
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phenomenon of universality: if we alter the Ising Hamiltonian (1.1) to include more com-
plicated interactions, it will not change the values of the critical exponents as long as the
added interactions respect the same symmetries as the original model and are sufficiently
short-ranged.

Universality is a powerful because the independence of the critical exponents on the mi-
croscopic details of the interactions means that these critical exponents should apply to real
experimental systems, justifying the use of a simplified lattice model to describe the tran-
sition. Experiments many different systems, from uniaxial magnetics to the liquid-vapor
transition in fluids such as water, display critical exponents consistent with the above values
[1]. From these considerations, a theoretical framework was developed which explains the

emergence of scale invariance and allows a computation of critical exponents.

1.2 FIELD THEORY AND THE RENORMALIZATION GROUP

In the field-theoretic Landau-Ginzburg-Wilson (LGW) approach to critical phenomena [2, 3],
one describes the system of interest using a local coarse-grained order-parameter field ¢(z) in
the vicinity of the critical point. The order parameter is assumed to be zero in the disordered
phase but non-zero in the ordered phase, so in the Ising model we would imagine the field
¢(z) to be a scalar describing the local magnetization. We imagine we could obtain this by

summing the spins around some local region:

We then write the partition function as

Z = / Dp(z)e @) (1.6)
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where the Hamiltonian SH[¢(x)] is determined by writing down the most general possi-
ble functional of the order parameter ¢(z) which is consistent with the symmetries of the
problem. For the Ising model, we would require that the Hamiltonian must be local and

symmetric under ¢(z) - —¢(x) and  — —z, so
BHIO() = [ s |5 (V) + 362+ ot + 5+ (1.7
S e b 27 T n? Tl '

We have chosen the units of ¢(x) to set the coefficient of 3 (V$)” to 1. The ellipses will also
contain higher order gradients in the field. We have also represented the partition sum in
the schematic notation | De(x), where a signifies some small length scale parametrizing the
choice of regularization needed to make the continuum field theory finite.

At first sight, since the couplings and regularization of this theory are almost completely
arbitrary, this theory appears to lack any quantifiable predictability. However, when we
study the low-energy behavior of this theory under the renormalization group we find that
if we consider the nonlinear terms to initially be small (so we are perturbing around the
Gaussian theory), almost all of the interactions are irrelevant. In particular, if we apply
a scale transformation © — 2/ = x/b to the theory (1.6-1.7), we find that the couplings

renormalize as

(1.8)

to leading order, and the higher-order interactions decay with an even stronger b dependence
for d < 3.

These results spell some difficulty for the field theoretic approach, as the quartic non-
linearity grows for any fixed spatial dimension less than 4, invalidating perturbation theory.

However, if one works directly at d = 4, the first effect of interactions is to cause u to be

4
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irrelevant, scaling to zero logarithmically:

, u

= 1+ aulnb (d=4) (1.9)

where o > 0. This led Wilson and Fisher [4] to consider a simultaneous expansion in both

u and € = 4 — d, where a scale transformation becomes

/ € 1 ~
U =u [b + 1+aulnb} ~u(elnb— aulnb) (1.10)

One finds that there is an interacting fixed point at u* = €/« which can be perturbatively
controlled. This allows a computation of the scaling dimensions of operators, which are sim-
ply related to the critical exponents considered above. Extrapolating results for this theory
to € = 1 gives good agreement with experiments and numerics on the three-dimensional Ising
model [1]. The e expansion forms the basis for many computations in this thesis, as it is one
of the few interacting critical points which can be accessed perturbatively using field theory
methods.

As an aside, we note that nearly every field theory with both scale invariance and rotational
invariance possesses an even larger conformal symmetry, and are thus conformal field theories
(CFTs). In two dimensions, conformal symmetry is powerful enough to exactly solve many
CFTs [5]. Less is understood in higher dimensions, but recent work exploiting conformal
symmetry has led to interesting new results in some interesting interacting CFTs such as the

3D Ising model [6, 7].

1.3 QUANTUM PHASE TRANSITIONS

We now consider phase transitions where quantum physics plays a crucial role in the crit-
ical fluctuations. We note that while many phase transitions involve phases which require

quantum mechanics for their description, the critical theory describing these transitions at
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finite temperature is often described using classical statistical mechanics, as the length scale
associated with thermal fluctuations dominates close enough to the critical point.

As the critical temperature decreases, however, quantum mechanics begins to be important
in describing the critical fluctuations. One way to heuristically see the effect of quantum

mechanics is to note that when i # 0, we can define a new characteristic time scale

_h
B kBTc

T (1.11)

For time scales much longer than 7, we can ignore quantum effects and use the classical
theory of dynamic critical phenomena [8]. However, as T, goes to zero this new time scale
diverges, and we enter the regime of quantum critical phenomena where dynamic and static
fluctuations both diverge.

Many of the new properties inherent to quantum critical points derive from the interplay of
dynamics and statics implied by the above argument. In particular, recall that the partition
function of a many-body quantum system Z = Tr e B may be written in terms of an

imaginary-time Feynman path integral

Z= /qu(T,JI) exp {—% /Ow drd’x £[¢(T,$)]} (1.12)

with L[¢(7, z)] an appropriately chosen Lagrangian density. This takes the form of a classical
Ginzburg-Landau theory in d + 1 spatial dimensions, showing again that quantum phase
transitions have similar properties to classical phase transitions in one extra dimension due
dynamic fluctuations. The relation between quantum phase transitions in d dimensions
and classical phase transitions in d 4+ 1 dimensions is quite general, and in many cases of
interest one can directly use results from the higher-dimensional classical phase transition
[9]. In particular, if a quantum phase transition is Lorentz invariant at low energies, its path

integral will resemble a rotationally invariant classical system in one extra space dimension.
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Figure 1.3.1: A possible phase diagram for a system with a quantum critical point. The parameter g
drives quantum fluctuations while the temperature T drives thermal fluctuations. There is a crossover

from quantum critical behavior to classical critical behavior as one approaches the dotted line at finite
temperature.

The prototypical example of a quantum critical system is the transverse field Ising (TFI)

model, given by the Hamiltonian

H=-J]) oioci—h) of (1.13)
(i) i

The first term is identical to the classical Ising model of Eq. (1.1), while the second term is
a transverse magnetic field which keeps the symmetry ¢ — —o*, but acts to destroy the
ferromagnetically polarized ground state. This drives a quantum phase transition at some
critical h., and a renormalization group analysis of the resulting quantum field theory leads
one to show that the critical exponents are in the same universality class as the classical

Ising model in d 4+ 1 dimensions [9]. The phase diagram of this system in d > 2 takes the

form shown in Figure 1.3.1.
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1.4 STATIC OBSERVABLES UNIQUE TO QUANTUM CRITICAL
POINTS

Given the mapping from quantum to classical critical phenomena, many universal observables
may be immediately obtained from the theory of classical critical phenomena. However, the
special role of the time axis in the path integral leads to some new observables in the quantum
theory which have no meaningful analogue in a classical context. Much of the new physics at
quantum critical points is related to the real-time dynamics, especially at finite temperature,
which requires an analytic continuation of the imaginary-time theory back to real time [9].

In this thesis we will only be studying static observables, and we will almost always work
at T' = 0. However, the splitting of spacetime into spatial and temporal pieces will still be
important to us, as we will be studying the global properties of the low-lying states in the

Hilbert space. Below we give a brief outline of the static observables of interest.

1.4.1 FINITE-SIZE ENERGY SPECTRUM

One of the most striking predictions of quantum mechanics is the quantization of energy
levels in bound systems. When we place a quantum critical system in a finite volume, we
similarly obtain a quantized energy spectrum, but the resulting spectrum will now take a

universal form. For a Lorentz invariant quantum critical point,
hc
E,=—=¢&, 1.14
e (119

where c is the non-universal characteristic velocity scale, L is some length scale associated
with the volume of the system, and the &, are a set of universal numbers which depend on
the critical theory and the shape of the finite volume of interest.

One case which has been studied previously is the finite-size spectrum of a conformal field

theory on a sphere with radius R. Then Eq. (1.14) holds with L = R, and the numbers &,
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are in one-to-one correspondence with the scaling dimensions of the operators of the CFT
[10].

We will be interested in the finite-size energy spectrum on the torus. Our interest is
two-fold. First, the torus is by far the easiest translation-invariant geometry to work with in
numerical simulations of lattice models, so computations on the torus are ideal for identifying
critical behavior seen in numerics. Second, the nontrivial topology of the torus will allow
the spectrum to probe the presence of exotic phases with topological order. Such phases
are described by emergent gauge degrees of freedom, and configurations where a gauge flux

winds around the cycles of the torus will dramatically alter the low-energy spectrum.

1.4.2 (GROUND STATE ENTANGLEMENT ENTROPY

Two regions of a quantum system are said to be entangled if there are correlations between
them, or equivalently if the wave function for both regions cannot be written as a product
of independent wave functions. For the ground state of a many-body quantum system with
local interactions, one generically expects that nearby points are entangled with each other,
but regions which are far from each other compared to a microscopic scale are independent.
However, in a critical system where the correlation length diverges, we may expect long-range
entanglement.

We make this more quantitative by introducing the entanglement entropy. We consider
dividing the total system into two regions A and B (see Figure 1.4.1), and then calculate

the reduced density matrix associated with one of the regions,

pa="Trpp (1.15)

where p = |0)(0] is the density matrix for the ground state. Then the entanglement entropy
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Figure 1.4.1: The division of a system into two parts for computing the entanglement entropy.

is the von Neumann entropy of the reduced density matrix,

Sa=—Trpalnps (1.16)

The local interactions across the boundary results in a term proportional to the perimeter

of the boundary, |0A[, but in a CFT we generically find an extra term

_194] _
N a

Sa (1.17)

The contribution v depends on the CFT, and is only a function of the shape of the region.
This universal term has applications in constraining renormalization group flows [11], and
can also be computed in numerics on lattice models. However, few analytic results exist
for interacting CF'Ts, so understanding more about CFT entanglement could lead to more

interesting applications and results.

10
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1.4.3 IMPURITIES IN QUANTUM CRITICAL SYSTEMS

A localized impurity interacting strongly with a quantum critical system will have nontrivial
dynamic correlations controlled by its interactions with the bulk. In terms of the imaginary
time path integral (1.12), the impurity exists on a 0+1 dimensional line interacting with
the d + 1 dimensional bulk. In this case, the system may also be interpreted classically in
terms of a critical system interacting with a localized line defect. However, the quantum
interpretation is more amenable to potential experimental applications, as the bulk critical
theory is realized well-controlled cold-atom experiments which may be able to realize a local
impurity potential [12]. We also calculate the universal finite-temperature compressibility
of the system, which does not have a simple interpretation in terms of the corresponding

classical theory.

1.5 ORGANIZATION OF THESIS

The rest of this thesis details the explicit field-theoretic computation of many new universal
quantities associated with quantum critical points. We summarize our findings here.
Chapters 2, 3, and 4 are all concerned with the computation of the finite-size spectrum of
interacting quantum critical points on the torus. In Chapter 2 we detail the torus spectrum
for the Wilson-Fisher conformal field theory (CFT) using the € expansion. We show that
this problem maps to finding the spectra of a series of strongly-coupled quantum mechanical
Hamiltonians which must be solved numerically. Chapter 3 derives the Wilson-Fisher torus
spectrum in the large N limit, which may be obtained more easily and thus allows some
exact checks on certain behavior such the crossover of the spectrum into nearby phases.
Chapter 4 is concerned with the torus spectrum for a class of deconfined quantum critical
points which describe confinement transitions in Z, spin liquids. After reviewing these
transitions, we give results using both the e and large N expansions, and we give details

on the case where the transition is between a Zs spin liquid and antiferromagnetic order.

11
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Particular focus is placed on the ability to detect nearby topological order and symmetry
breaking from the structure of the low-energy spectrum. In all three chapters we discuss
connections between our calculations and numerical simulations on lattice models, and in
many cases we compare explicitly with results obtained with exact diagonalization.

In Chapter 5 we discuss the entanglement entropy of the Wilson-Fisher CF'T in the large N
limit. We obtain a general mapping between the Wilson-Fisher entropy and the entanglement
entropy of free scalar fields with a mass gap determined by the properties of the interacting
CFT. We use this mapping to give the Wisher-Fisher entanglement entropy for several cases
of interest, showing in some cases that the entanglement entropy can undergo a large decrease
under a renormalization group flow. Our results can also be used to map the entanglement
entropy of the Gross-Neveu CF'T to that of free Dirac fermions.

Chapter 6 studies the critical behavior of a localized impurity at the 2+1 dimensional
superfluid-Mott insulator transition. Motivated by results seen in numerical simulations,
we develop a critical quantum field theory describing the coupling between bulk critical
modes and the impurity degree of freedom. We study this field theory using the e expansion
and find an interacting fixed point associated with the impurity. We calculate multiple
critical exponents at this new universality class as well as the universal contribution to the

compressibility at finite temperature. Comparison is made with numerics.

12



CHAPTER 2

SPECTRUM OF THE WILSON-FISHER CON-
FORMAL FIELD THEORY ON THE TORUS: e-

EXPANSION

2.1 INTRODUCTION

The identification of quantum critical behavior is an interesting problem in condensed matter
and statistical mechanics. A major aspect of this is the emergence of universal low-energy
behavior in the vicinity of a continuous quantum critical point, which is controlled by a
conformal field theory (CFT) in the scaling limit.

In this chapter we explore the finite-size energy spectrum of the Wilson-Fisher CFT, also
known as the critical O(N) model, in (d+1) spacetime dimensions. One case where the struc-
ture of the spectrum is well-understood is when the system is on the d-dimensional sphere
S?. In this case, conformal invariance implies the state-operator correspondence, which states
that the energy spectrum takes the form E, = cA,, /R where c is the model-dependent speed
of light, R is the radius of the sphere, and the A,, are the scaling dimensions of the operators

of the CFT in an infinite volume [10, 13]. These scaling dimensions are extremely con-

13



Chapter 2. Spectrum of the Wilson-Fisher conformal field theory on the torus: e-expansion

strained by conformal invariance, and the operator spectrum of many interesting CFTs has
been mapped out using methods such as exact results available in two spacetime dimensions
[5] and the conformal bootstrap [6, 7, 14-16].

The state-operator correspondence has proven to be very useful in studying (1 + 1)-
dimensional critical points, where numerically computing the spectrum on the circle is rou-
tinely done to accurately identify critical points [17, 18]. However, in higher dimensions
the curved geometry has proven to be difficult to implement accurately [19-23]. In light of
these difficulties, it seems natural to instead study the universal energy spectrum on flat
geometries such as the torus, where the energy spectrum still takes the form E, = ¢&,/L
for some universal set of constants &, dependent on the shape of the torus. However, the
structure of the torus spectrum is not simply related to the operator content, so one must
use perturbative field theory.

In the present chapter we will use the e-expansion, where ¢ = 3 —d, to compute the critical
energy spectrum in quantum field theory. We will also compare with exact diagonalization
(ED) of explicit lattice models with critical points in the O(1), O(2), and O(3) universality
classes. We will show that the numerical computations show excellent agreement with the
e-expansion results. Beyond that, we will demonstrate that the critical low-energy torus
spectra are intrinsically different among the distinct CF'Ts considered in this paper, charac-
terizing the interpretation of the low-energy critical torus spectrum as a universal fingerprint
of the underlying CFT and as a useful tool for investigating quantum critical points with
diverse methods.

In Section 2.2 we will introduce our model and method, discussing how to treat fluctuations
of the zero mode non-perturbatively using an effective Hamiltonian method. Section 2.3 de-
tails the structure of the effective Hamiltonians and how to compute them using perturbative
quantum field theory, giving examples for several important special cases to demonstrate
how the method works in general. In Section 2.4 we discuss how to numerically obtain the

spectrum of the effective Hamiltonians in a few special cases, and give some explicit results

14
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for the low-energy spectrum. In Section 2.5 we compare our analytic results to numerical

results in several explicit lattice models, and we give conclusions in Section 2.6.

2.2 THE METHOD

The Wilson-Fisher CFT is described by the bare real-time Hamiltonian
d (12 1 2 S 2 U 4
H= | d% §Ha + 5 (qua) + Eﬁba + ﬁq%[ +A (2.1)

where the index a ranges from 1,..., N. We are using the notation ¢? = ¢, - ¢, and ¢} =
(gbi)g, so the model has full O(N) symmetry. We suppress time-dependence, set the speed
of light to unity, and note that fields satisfy the equal-time commutator [¢,(x), Ig(2’)] =
10a0%(x — x'). We have included a bare ground state energy density A, which is needed to
renormalize the ground state energy. The critical point is obtained by tuning sy = s., while
u approaches a fixed value u*. This is a strongly-coupled theory for any finite d < 3 and N,
but its universal properties can be computed as a power series in either ¢ =3 — d or 1/N.

We are interested in the finite-size spectrum of the above model on a spatial torus in
d = 2, which is parametrized by complex coordinates x = x1 + ixs. We use the standard
parametrization of the torus in terms of two complex periods, w; and ws, and define the
complex modular parameter 7 = wy/w; with real and imaginary parts denoted by 7 = 7 +i7.
Below, we will often give results in terms of the length scale L = |w;|. The area of the torus
is given by A = Im (wyw?}) = 7 L?. This geometry is pictured in Fig. 2.2.1.

In the following we calculate the spectrum in the e-expansion, which forces us to introduce
extra dimensions [4]. To this end, we consider d/2 copies of the desired two-dimensional
spatial geometry, which retains the point-group and modular symmetries of the system while
avoiding the introduction of any additional unphysical parameters. We then expand in e,

and set € = 1 to obtain predictions for the d = 2 system.
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T2 A

[
Lol

T

Figure 2.2.1: The geometry of the torus on which our theory is defined. Here we have defined com-
plex coordinates x = x1 + ix9, and we define the two complex periods wy and wy. Then our geometry
is the one pictured where the point x and the point x + nwy + mws are associated with each other for
any n,m € Z.

As usual, we will need to eliminate the bare couplings in favor of finite renormalized
couplings. Because renormalization is entirely due to short-distance divergences, the finite-
volume theory on a manifold with no curvature must have identical renormalization constants
to the infinite volume theory, since the only new length scale is large compared to the cutoff.

Here we use a modified minimal subtraction scheme [24], where divergent poles in € are

subtracted with extra factors of

2
Spf=—" 2.2
" r(d/2) ()" .
attached. We introduce the renormalized coupling g by
u= 7,19 (2.3)
Sa+1

In our calculations, we will always set ¢ to its fixed point value immediately after poles in €
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have been subtracted. We also write
S0 = S¢ + Z9s (2.4)

where s is a renormalized tuning parameter describing relevant perturbations across the
critical point at s = 0.
We are also interested in the dependence of the ground state energy as a function of the

geometry of the torus and the tuning s. This requires introducing the counterterm

2r72

N=17,
/uLe

(2.5)

which renders the energy density finite. In the above expressions, the Z factors contain poles
in €, and p is an arbitrary energy scale. In principle one also needs to renormalize the fields
®q, but these will not contribute to the leading order expressions so we ignore this here. For
a review of these definitions and their relation to L = co observables, see Appendix A.1.

The main technical feature of the e-expansion in a finite volume is the importance of the
zero-momentum mode. Since the fields are gapless at the fixed point for € — 0, the zero mode
generates incurable infrared divergences in perturbation theory. These can be related to the
failure of expanding around mean field theory, where the zero mode can have arbitrarily
large fluctuations in the absence of interactions. This results in a continuum of zero mode
excitations for the free field theory, whereas the interacting theory must have a gap and a
discrete set of states, since the quartic term in the Hamiltonian will suppress fluctuations of
the zero mode. Therefore, the free field theory with a zero mode is not the correct starting
point in perturbation theory.

As was first realized by Liischer [25], and further developed by others studying finite size
effects in classical critical phenomena [26, 27|, the solution is to separate the zero mode and
treat it non-perturbatively. Since the finite momentum modes have an effective gap, they

can be safely integrated out in a path integral approach, leading to an effective action for
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the zero momentum modes which must be treated exactly. Here we pursue a Hamiltonian
approach rather than a path integral approach, but our method is the same in principle. We
note that a similar real-time approach was used to study low-energy spectrum of Yang-Mills
theory on the torus in Ref. [28].

We expand the fields and their conjugate momenta as

¢a($) = A QOOZ Ad/42m (k)+bTa(_k>>

k0

M(z) = A%, — Ad/4z\/“7klkw k) — bl (—k)) (2.6)

where wy = \/|k|? + 5o and k- x = Re(kz*). The values of momentum summed over are
determined by the shape of the torus, see Appendix A.3. Our expansion has been chosen
such that the operators ¢,, ma, and b,(k) are dimensionless and have the commutation

relations

[pas 6] = 100, [balk), BE(K')] = Bagbu (2.7)

We now insert this expression into (2.1) and separate the Hamiltonian into a “free” and
“interaction” part, where we insist that all zero-mode contributions are included in the

interaction part:

H = Hy+V,
HO = SO‘FZwkbL(k)ba(k)v (28)
k40

We are defining the bare ground state energy

Eo = AYPN + — Zwk, (2.9)
k#0
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and an interaction Hamiltonian,

g
- ﬁuﬁ/? (i“; Pt o GPa® >kzﬂxa2,41/2wk
. LuAE/Q .Y Xa(k)xs(K)xs(—k — k')
VA 6 o (8A32wpwprwp i )2
L1 A 3 Xl (W (R sk = k= ) (2.10)

V A 4! k k! k0 4(A2wkwk’wk"wk+k’+k”)1/2

where xo = bo(k) + bl,(—k), and repeated latin indices are summed. We can now develop
perturbation theory in V. The ground state energy (2.9) will be renormalized along with
interactions in our final expressions and expanded to the appropriate order in e.

Since the zero mode does not appear in the unperturbed Hamiltonian, the unperturbed

eigenstates are given by
HoUlpo||k, o k', 85+ ) = (Eo + wi +wiw + -+ ) U] |k, as k', B+ ) (2.11)

Here, the energies are determined by the Fock states created by the b], operators, but states
can be multiplied by arbitrary normalizable functionals of the zero mode V[p,|. So the
unperturbed states are infinitely degenerate, but this degeneracy is broken in perturbation
theory.

We use a perturbation expansion developed by Bloch [29] which is well-suited to dealing
with degeneracy. The method involves deriving an effective Hamiltonian within each degen-
erate subspace whose spectrum gives the splitting of that subspace. So we find an operator
H.g such that

Haoglow) = Balao) (2.12)
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where |ag) are the set of unperturbed degenerate states, and

Ey=e+0O(V) (2.13)

are the exact energies under the full interacting Hamiltonian, where ¢q is the unperturbed
energy of the states |ap).
We review the derivation of Bloch’s effective Hamiltonian in Appendix A.2. The main

result needed is that the effective Hamiltonian at leading order is given by

Heg = 0Py + PV Py + POV; — ];;0 VP + O3 (2.14)
where Py is the projection operator onto the degenerate subspace |ap). The calculation of
the effective Hamiltonian will result in UV divergences due to summations over infinitely
large momenta implicitly contained in Eq. (2.14), so this is the step where the theory is
renormalized.

From Eq. (2.11), we can infer the action of Heg on our degenerate subspaces. An arbitrary

state in a given degenerate manifold takes the form

M

> Vale] k), (2.15)

a=1

where M is the number of Fock states with the same energy. This degeneracy between
inequivalent Fock states will be due to O(/N) symmetry or discrete rotation symmetry. The

effective Hamiltonian will take the form of an M x M matrix which acts as

> Hura Wolil[{ki})o = B Wal]{ki}a (2.16)

b=1

This effective Hamiltonian will be a function of 7w and ¢. Due to the commutation relations,

2]

Foms SO this will be a set of M coupled differential

the action of m on W, [p] is 71, = —1i
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equations. In practice, symmetries of the interaction will allow us to consider smaller block-
diagonal subspaces separately. For our model, the interaction conserves momentum and

O(N) rotations, which further constrains the form of Heg and its eigenvectors.

2.3 (CALCULATION OF THE EFFECTIVE HAMILTONIANS

2.3.1 STRUCTURE OF THE EFFECTIVE HAMILTONIANS

Before proceeding with explicit calculations, we first describe the general structure of the
effective Hamiltonian and its dependence on ¢, and discuss the perturbative spectrum of the
Hamiltonian for small e. We give this discussion prior to explicit calculations because we
will see that the perturbation theory is reordered in the scaling limit, leading to a modified
expansion in fractional powers of e. We will find that the terms in V' do not contribute
to the e-dependence of the spectrum that would be naively inferred by Eq. (2.10), so our
analysis will aid us in correctly finding the leading contributions when we turn to explicit
calculations. We will also highlight how the behavior of the spectrum changes depending on
the magnitude of the tuning parameter s.

Here we will consider the effective Hamiltonian when the Fock state is non-degenerate
(M =1in Eq. (2.16)), since the analysis is similar in the general case. From Eq. (2.14), the
effective Hamiltonian at leading order takes the form

Hi = &+ Kﬂ—2+lR<,02+g<,04 +o-
VA 2 2 4!
K = 1+0(&)
R = As+rie+ O(€)
4872

U = N 1s + O(€?) (2.17)

where the ellipses will include additional operators which will not appear until O(¢?). The

coefficient of each term will be a regular series in e. Here we write r; as the O(e) coefficient
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of the operator . We have used the relations in Appendix A.1 to set the quartic coupling
to its fixed point.

Since we are interested in the critical regime, we first consider the theory for s = 0. In this
case, the coefficients of the quadratic and quartic terms are both O(e), but the structure of

the spectrum can be made more clear by making the canonical transformation

o — e Yo, T — /o (2.18)

after which the Hamiltonian is given by

B a1 Ule
Hpg =&+ —= |K— + R 2o + -t 4 -+ 2.19
We see that when s = 0, the Hamiltonian takes the form
(1/3
Hos =& + —=h(e) (2.20)

VA

where

2
1
h(e) = k% + =r¢® + up

2
k= 14+0()
o= B3 (r +0))
4872
= 2.21
o 221)

We see that h(0) is a pure quartic anharmonic oscillator whose spectrum gives the spectrum
of Heg to order €'/3. Furthermore, the leading corrections are given by obtaining the spectrum

/3 Thus, the spectrum of the Wilson-Fisher fixed point at

of h(€) in a perturbation series in €
small € has mapped to the spectrum of a quartic anharmonic oscillator in a strong-coupling

expansion.
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If we repeat the above analysis for s # 0, we find that the quadratic coefficient of the

reduced Hamiltonian h(e) is modified to

r= Gt 0(0) (2:22)

For As > €*/3, our previous analysis no longer holds. The spectrum will be given by a weak-
coupling expansion around a simple harmonic oscillator Hamiltonian provided As > e. This
is sensible because our entire approach has been based on the gaplessness of the zero mode,
whereas a nonzero s contributes a gap. For large enough values of As, we do not need
to separate the zero mode, and we could have done a normal expansion around Gaussian
field theory, which is equivalent to the weak coupling expansion in the current effective
Hamiltonian approach. The crossover from a weakly-coupled oscillator with a particle-like
spectrum to a strongly-coupled oscillator signals the breakdown of particle-like excitations
at the quantum critical point. It is interesting that this occurs already for arbitrarily small
values of ¢, reflecting the importance of interactions in confining the zero mode.

In the following we will always assume

As = O(e) (2.23)

or smaller, so that we may use the same strong-coupling expansion of h(e) at s = 0 and
s # 0.

The reordering of the perturbative expansion requires a modified analysis of our pertur-
bation theory. This can be most easily visualized by representing terms in the effective
Hamiltonian diagrammatically, associating extra factors of e 1/¢ with factors of ¢ anticipat-
ing the utility of the transformation in Eq. (2.18). With this in mind, we can schematically

rewrite the interaction Hamiltonian Eq. (2.10) after the canonical transformation to identify
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—1/3 2/3
et/? Ase 1P < ¢l w13

Figure 2.3.1: (Left) Lines representing the insertion of the operators 7y, ©q, and xq(k) = ba(k) +
bl(—k). (Right) The vertices of the interaction Hamiltonian coupling the zero modes to the finite
momentum modes. The top three vertices represent the three terms on the first line of Eq. (2.10),
and appear in every effective Hamiltonian. The bottom three vertices represent the last three lines
of Eq. (2.10) respectively. As argued in Section 2.3.1, the labelled powers of ¢ refer to the order at
which each vertex contributes to the spectrum.

the individual terms with the correct powers of e:

V:

/3 {7T2 1 Asy 5  uA? 4} e¥/3 <5a5 5

1 @)
VAL?2 toan? Tapg? (t JAa\12? * 6%05) Mo
(5/6

+ ﬁ(pQMo(él) + EM(O) (224)

Here, the M ™ coefficients involve n factors of finite-momentum modes. With this form of the
interaction, we write down the vertices associated with V' in Fig. 2.3.1. Then in calculating
the effective Hamiltonian from Eq. (2.14) we organize the e-expansion diagrammatically
using these vertices. In practice it is easier to work directly with Eq. (2.10) to compute
the effective Hamiltonian, but the correct order of each term’s contribution to the energy

spectrum will be given by the € coeflicient pictured in Fig. 2.3.1.
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2.3.2 EFFECTIVE HAMILTONIANS FOR LOW-LYING STATES

In this section we will give the explicit derivation of the effective Hamiltonians for the lowest-
lying states in the Fock spectrum. We will perform the calculation for increasingly complex
cases, with each example having an added subtlety compared to the previous case, after
which the general structure for the effective Hamiltonian splitting an arbitrary Fock state

should follow.

Fock vAcuum

We begin by considering the splitting of the Fock vacuum. This will give us the lowest-lying

zero-momentum states, including the energy gap. The unperturbed eigenstate is
Wle]|0). (2.25)
Since Py = |0)(0|, the effective Hamiltonian will be of the form
Hett k=0 = hr=0/0)(0]. (2.26)
From Eq. (2.16), the Schrodinger equation acting on the unperturbed subspace reduces to
hi—o W] = EV[¢] (2.27)
where, using Eq. (2.14), the reduced Hamiltonian hj—_q at one-loop is given by

T = Eo + (0]V[0) = (O] (%%2') V(0). (2.28)

At this point we note that every term appearing in hi—¢ can be associated with a diagram.
The three terms in this equation correspond to diagrams with zero, one, and two vertices

respectively. Because the interaction V' conserves momentum, each vertex must also enforce
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Figure 2.3.2: (Left) The diagrams which contribute to the effective Hamiltonian at leading order.
Each row is associated with a term written in Eq. (2.29). (Right) The leading two-loop contribution
to the effective Hamiltonian, which we do not calculate.

momentum conservation. The expectation values and sums over £ implies one must contract
all x(k) propagators. Finally, the presence of the projector in the last term means we must
contract the two vertices, preventing any disconnected diagrams from appearing.

Writing the effective Hamiltonian as

2
1 =

hip = — & h(O) h(2) 2 h(4) 4 2.99
k=0 \/Z 9 + k:0+ k:ogpa_‘_ k:ogpaa ( )

we collect the one-loop terms which contribute to the effective Hamiltonian in Fig. 2.3.2.
At O(e®) we encounter a nontrivial two-loop diagram, also pictured in Fig. 2.3.2, so we

truncate the spectrum to order e*/3.
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Using Eq. (2.10), we obtain

2
N uwA“? N(N
WYy = ASPAL N VTRE 4 s+ —s Z
2R A4 K20 V |k/‘|2 T 50
2 Ae/
IR . Y/ dag » . 2.30
P 7 2t 573 (199 90905 ;O \k|2+s (230)

/2, 4 /2)2
it = S (59 ) (B9 o) P e
At this point, we need to evaluate these infinite sums in 3 — € dimensions, and we need
to renormalize the theory. These technical details are treated at length in the Appendices.
In Appendix A.3 it is shown how to evaluate infinite sums in arbitrary dimension, and in
Appendix A.4 these three expressions are explicitly evaluated, and the cancellation of all

divergences is demonstrated. We obtain the following effective Hamiltonian:

hi=o = Ex= ! (WQ + RS% + g@i)
/2L 4]
Eio= TLA ) + o D S
R =1L%s + 2me (%—iz) 721/2f1(2(77 S, 14)
_ ;‘;,812; {1 Tije ®) (7 5) + %e} (2.31)

Thus, the lowest states in the spectrum of the O(N) Wilson-Fisher fixed point are given
by solving the quantum mechanics problem of an isotropic, N-dimensional anharmonic os-
cillator. Here, the special functions flgd)(T, s, ) are given explicitly in Eqns. (A.54-A.56),
and the function f 1 /2 (7' s, i) should be expanded to first order in e.

The functions f 1/2 and f] /) depend on the renormalization scale p, which can be elim-
inated by applying renormalization conditions on the s # 0 ground state energy and the
energy gap. In this paper we will not eliminate pu, since the infinite volume quantities are

non-analytic around the critical point. However, our assumption that s ~ O(e) allows us to
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set s to zero in many of the terms. We furthermore note that at the critical point, s = 0,
the p-dependence drops out and the spectrum is a universal function of 7, N, and e. The
coefficients of the Hamiltonian are modular invariant at s = 0, which follows from Eq. (A.44)
and the modular invariance of A = 7 L2.

After performing a canonical transformation similar to Eq. (2.18), this Hamiltonian takes

1 (U\Y? (2  RU?
hi—o = Ep - o 2 4 2.32
k=0 k=0 + \/772L (4') ( 92 + 9 9004 + Spoc> ( )

We will primarily work with this form of the Hamiltonian in Section 2.4.

the form

SINGLE PARTICLE FOCK STATES

We now consider the splitting of the single particle state
Valellk, ) (2.33)

where we assume there are no multi-particle Fock states with the same momentum and
energy, so we only need to consider an N-fold degenerate manifold. This assumption should
hold for the smallest values of |k|. The effective Hamiltonian can be written as a matrix

equation acting on the vector of functions W,:

Z hiasWsle] = B¢ (2.34)
5=1

where the effective Hamiltonian hy o can be represented by an N x N matrix whose com-

ponents are

1_2 “C,Oé)<]€,0é|
Ri.ag = k2+2+8>6a+k, Vlik,B) — (k,a|V « Vk,
rao = (R34 &) b + (. alV I8, 5) = (ko <H0— TN R

(2.35)
and |k, a) = b} |0).
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Figure 2.3.3: Diagrams which contribute new terms to the effective Hamiltonian for the splitting of
a single Fock state.

The terms in this equation can also be given a diagrammatic representation: one can con-
sider all diagrams with two external finite-momentum lines carrying momentum k. However,
the external momenta do not need to be contracted with the vertices in any of the terms.

As a consequence, we obtain a term
hk.ap D Ni=00ap (2.36)

simply by taking the diagrams in Fig. 2.3.2 and drawing a disconnected solid line in them.
In addition to these, we will get new contributions due to the extra diagrams pictured in
Figure 2.3.3. Only one of these diagrams contains a loop, so there will only be a single new
divergence which is cancelled by the mass renormalization of sq in the first term of Eq. (2.35).

An explicit calculation similar to the one done for the Fock vacuum results in

1 Rk Uk
hiap = (Ekx + hi=o) ap + ——+ NG < ( 5043 + 29%905) + ar (5a,8§0;17 + 807278%9013))

1 (N+2 e
& = |k|2+s+—( ) ff?%( \ 14)

L\N+8) /i +
no= 1 8m2e 1
YT mL2 (N +8) [k + 5
1 19274 1
U, = — J2m ¢ (2.37)

T3 L (N +8) (k|2 + 5)*?

For N > 1, this is an anisotropic anharmonic oscillator.
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TWO-PARTICLE FOCK STATES

We now consider mixing between states of the form

Vaslellki, as ko, B) (2.38)

We have |k, o; ko, B) = SlgbL(k:l)bg(kgﬂO) where we require a Bose symmetry factor: Sio =
\/Li if ki = ky and o = 3, and S1» = 1 otherwise. We will assume that there are no one-
particle or > 3-particle states with overlap with this state. However, we will consider the

case where there exists inequivalent states |k1, a; ks, ), |ks, a; kg, 5), such that

VIELZ + s+ k> + s = k2 + 5+ V]ka> + 5 (2.39)

Because the interaction V' conserves momentum, these states will only mix if

ki + ko = ks + ky. (2.40)

Such states can contribute to the low-energy spectrum on the torus. For example, on the
square (7 = i) torus the states |27 /L, ; —27/L, 8) and |27i/ L, o; —27i/ L, ) are inequiva-
lent but can mix.

The effective Hamiltonian is now calculated in a similar manner to the previous two cases,
and there is an obvious diagrammatic generalization of the previous rules. We now draw
diagrams with four external lines with momenta k;, i = 1, ...,4. We then consider all possible
contractions with either zero, one, or two vertices. We once again find a piece proportional
to hg—o, which involves the diagrams in Fig. 2.3.2 but with the four external lines contracted
and disconnected to the vertices. In addition, we get contributions which are simply the
diagrams in Fig. 2.3.3 but with a single additional finite-momentum line disconnected from

the rest. Finally, we obtain the additional diagram pictured in Fig. 2.3.4, which can connect
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Figure 2.3.4: The additional diagram which contributes to the splitting of the two-particle Fock
states.

the inequivalent states considered above. This does not contain a loop, so it is finite.

An explicit calculation gives

00u081 0k ky Okiaks + 00810k iy Okakes L

h aBiuy  — =
2k,aB;p 1 +5uu5k3k4 k=0
OOty ke Ol kg 00Ok, ks Okioke
—— 2 hk. gy — Oy hp— A LT — dg,hp— 241
+ T GOt (ks 5 — Opuhr=o] + T GOt [Aka, 1 — Oppuhr=o] (2.41)
1 dme (50455MV + 5<XM55V + 606V55M) 5k1+k2,k3+1€4

23 (N +8) [(|ky|2 4 8)(|kal? + 8)(|ks]? + ) (ka2 + 8)]"/% (1 + Ok Okhs OapOpm)

The first two lines of Eq. (2.42) can be given in terms of the the zero-particle and single-
particle Hamiltonians, while the last term is new and contributes a constant shift in the
energy. It is the last term which can mix two states unrelated by O(NN) symmetry, leading

to a multidimensional Hamiltonian even when N = 1.

MIXING BETWEEN ONE- AND TWO-PARTICLE FOCK STATES

We now consider the effective Hamiltonian which couples the states |k, a) and |k, v; ks, d).

In order for these states to mix, we need

VIR +s+ k2 +s=]k2+s |

kl + kg == kg. (242)
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Figure 2.3.5: The diagram which contributes to the effective Hamiltonian mixing single-particle and
two-particle Fock states.

While this set of equations is very restrictive, when s = 0 it can be satisfied by choosing

ki and ky to be collinear, so in our expressions where As < ¢, we always have s < |k|?

and these states will mix. We will assume here that the only other mixing is due to O(N)
symmetry.

We can write the Hamiltonian mixing these two states as

R o R k, k, o
k,af Ho74) | /B> _ En | > (243)

(hfﬁ;/,w)T th,,uI/;’yJ ‘klv Y k27 6> ‘kla 1 k27 V)

where the diagonal Hamiltonians are given by the one-particle and two-particle cases above,

and the off-diagonal elements are

1—- P

k
HO—\/“{Q‘FS—EO

ha;’Y5 = <k’,0z‘V‘k‘1,’y, k2>5> - <k>a‘v < ) V‘k1777 k275> (2'44)

where P, is the projector onto the degenerate subspace. We want all diagrams with three
external lines with momenta k, k1, and k3. This leads to the diagram in Figure 2.3.5, which

is finite, giving

]_ 4\/§7T2€ (504"/(;05 + 501590’7/ + 657(10(1)
VL (N +8) (|E|2 + s)(Jk1[2 + ) ([ka]2 + 5)) "

Dass = (2.45)
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This coupling between Fock states with different particle number is another manifestation
of the breakdown of well-defined quasiparticles at a quantum critical point.

At this point we hope it is clear how to generalize these results to more complicated cases.
As one moves higher in the spectrum, more degeneracies between Fock states are possible

and more complicated effective Hamiltonians will be needed.

2.4 NUMERICAL SOLUTION OF THE EFFECTIVE HAMILTONI-
ANS

It remains to find the spectrum of the effective Hamiltonians perturbatively in €. This must
be done numerically, since the quartic anharmonic oscillator has no analytic solution. Given
that there are many effective Hamiltonians, and each needs to be solved to at least third
order in perturbation theory to obtain the €*/3 contribution, this is one of the biggest barriers
to obtaining the spectrum.

Here we show how to obtain the spectrum for most of the low-lying effective Hamiltonians
in the N = 1 case, where the Hamiltonians are often one-dimensional quartic oscillators. For
N > 1, we will confine ourselves to solving the effective Hamiltonian which splits the Fock
vacuum, where rotational invariance allows us to map it to a one-dimensional differential
equation in “radial” coordinates.

In Appendix A.7 we discuss of the N = oo limit of the € expansion, where we can solve
the spectrum of the Fock vacuum effective Hamiltonian exactly. We show agreement with

the results of the large-N expansion of Chapter 3 wherever possible.
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241 N=1

We exploit the fact that most of the effective Hamiltonians for the low-lying states can be

written in the form (see e.g. Eq. (2.32))

Heg = € + uhlr] (2.46)
where
rd r,
__- % 2.4
Here, £ is a known function of €, and
u = upe? uge + O(e7?)
ro= e+ 0>V (2.48)

for some constants r1, u; 2 which depend on the specific effective Hamiltonian in question.

Then we need the spectrum of A[r] in a power series in r. After writing
hr]¥ ] = A () (], (2.49)
expansion of the spectrum in e can be written
An(r) = i CrmT™ (2.50)
m=0

Assuming we know the coefficients ¢, ,, which appear in this expansion, we can simply write

down the spectrum to the desired order:

En(E) =& + U10n7061/3 + U1T16n71€2/3 + UlT%CmQE + (Uﬁ"%cnﬁ + UQCn,O) 64/3 + 0(65/3) (251)
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rT=i|lk=0 k=1 |Kk=V2|r=2
-0.12
1.70
5.04
6.28
8.76
LE 8.90
8.90
11.23
12.29
12.55

Table 2.4.1: Low-lying spectrum of the critical Ising model on the square torus from e-expansion,
including the ground state energy. The states shaded gray are odd under the global Zs symmetry,
while the unshaded states are Zg even. Here we parametrize the momentum by x = L|k|/(27).

Fortunately, the numerical calculation of the coefficients ¢, ,, has been extensively studied in
the literature. In Ref. [30], Tables 7 and 10, the coefficients ¢, ,, form = 1,..,10,n = 1,..., 10
are given with at least five digit accuracy. Thus, for one-dimensional effective Hamiltonians,

the spectrum can be obtained.

However, there can still be multi-dimensional effective Hamiltonians for N = 1 due to mix-
ing between different Fock states. Fortunately, the form of the mixing is often very simple.
In computing the low-lying spectrum, the first mixing one comes across is between two in-
equivalent two-particle states, as described in Section 2.3.2. There, the effective Hamiltonian

acting on these two states takes the form

har, = hog 11+ hoy 20 (2.52)

where hgy, 2 is of order € and is independent of the zero mode. In this case, we can diagonalize

the Hamiltonian by inspection, obtaining the energy splitting

Fop— = Eop1 — hoip

Eory = FEopi+ hopo (2.53)
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where Eyy 1 are the energies of hoy 1.
Finally, we do encounter the states described in Section 2.3.2 which mix the single-particle
and two-particle Fock states. In this case, we must numerically calculate the contribution.

5/6 term arises in first-order pertur-

However, this is made easier by the fact that the order €
bation theory, so we only need the zeroth order wave functions. That is, we first numerically
calculate the zeroth order wave functions which diagonalize hy and hgy, and then we compute

the overlap

/ N dpW i [] War ] hiks (2.54)

We calculate the unperturbed wave function numerically using the same shooting method
described in Appendix A.5 for the N > 1 case.
The low-lying spectrum of the critical Ising model on the square torus is given in Table

24.1.

242 N>1

Here we will focus on the splitting of the Fock vacuum, where the Hamiltonian is an isotropic

N-dimensional oscillator. We begin with Eq. (2.32):

1 (UNY? (2  RUP
hig—o = Ex=o + JRL (Z) (7 + 5 (,Oi + goi) (2.55)
Then defining
1
hnls] = =5 V5 + gwi + @8 (2.56)

and the reduced couplings

1 AN 1/3 4/3 7/3
— = we’” +uxe’” + O(e"?)
JmL (4')

RU™Y3 = /3 4 O3, (2.57)

we obtain Eq. (2.51) except the coefficients ¢, ,, will depend on N.
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To make further progress, we take advantage of the fact that hy|[r] can be written in
spherical coordinates, after which it separates into a known angular equation and a one-

dimensional radial equation. We go to hyperspherical coordinates

p1 = pcos
w1 = psinf;cosb,
w1 = psinf;sin by cos b
YN_1 = psinf;---sinfy_ocosOy_;
oy = psinfy---sinfy_osinfy_q (2.58)

Then the Laplacian can be written in the separable form

0? 1 0 5,0 1
V2 — - N 1a_p X FV%N_I (2.59)

where Vg ~_1 18 the Laplacian on the (N —1)-sphere. We will not use the coordinate represen-
tation of this operator, but instead use what is known of its spectrum [31]. The eigenvectors

and eigenvalues are given by

_V%N—1}/£7£17427_,_7£N_2 (02) =1 (6 + N — 2) n7£1,€27---7fN_2 (01) (260)

where the eigenfunctions can be given in terms of Gegenbauer polynomials of the cos 6;, and
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the indices can range from

(= 0,1,2, ...
gl = —82,—624-1,—524—2,...,52
182 - 0,1,2,...,63

£3 - 0, 1, 2, ...,£4

Iyoo = 0,1,2,....0 (2.61)

The spectrum does not depend on the the ¢;. This gives a degeneracy for a given eigenvalue

¢ of
(204+ N —-2)({+ N —3)!
(N —2)!

N, N) = (2.62)

for N > 3. For N = 2, there is only one eigenfunction for each ¢, but the states Y, and Y_,

are degenerate (these are simply the states e” and e=#?), so the degeneracy is

N(£,2) = (2.63)

Finally, we note that the eigenfunctions are in the symmetric traceless tensor representation
of O(N), and we can label these representations using the eigenvalue /.

With these eigenfunctions, we can express our functionals as

Ul = Rue(p)Yeer 00,00 5 (0:) (2.64)

and the eigenvalue equation becomes

1 1 0 y,0 [({+N-=2) 9 4
2 (_pzvl o 5y v TP 20 | Radp) = BueBuilp)  (265)
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T=1| =0 |{l=1|(=2|(=3|(=4
-0.986
0.96
3.66
4.74
6.79
LE 8.31
10.32
12.12
16.19
20.52

Table 2.4.2: Low-lying spectrum of the critical O(2) model on the square torus from e-expansion,
including the ground state energy. These states are obtained from the effective Hamiltonian which
gives the splitting of the & = 0 Fock vacuum. The ¢ = 0 states are non-degenerate while the ¢/ > 0
states are two-fold degenerate.

Here we have introduced a radial quantum number n, which corresponds to the number of
zeros in R. We have reduced our problem to a one-dimensional eigenvalue equation, and we
wish to find the spectrum perturbatively in r. In analogy with the N = 1 case, we write this

expansion as
oo

En,f - Z Cn,(,mrm (266)

m=0

We have obtained the coefficients of the perturbative expansion in r for N = 2,3,4,
¢ =0,...,4 and n = 0,1 numerically. We obtained these by first solving the » = 0 equation
numerically for the wave function and energy. We then used logarithmic perturbation theory
[32, 33], which is well-suited to this problem because it allows one to find the coefficients
of the expansion directly from the unperturbed energy and wave function without needing
excited states. We detail this approach and give the relevant numerical results in Appendix

A.5. Using these results, the energy to leading order is

Eno(e) =&+ ulcn,Z,OEI/?) + U1T1Cn,e,1€2/3 + Uﬂ“an,e,QE + (Uﬂ”:fcn,e,?, + U2Cn,£,0) /3 + 0(65/3)
(2.67)

We give the lowest-lying states for N = 2 and N = 3 at the critical point in Tables 2.4.2
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T=1 || L=0l=1|(=2|(=3|(=4
-2.28
-0.66
1.74
2.95
4.59
LE 6.20
7.81
9.69
13.45
17.47

Table 2.4.3: Low-lying spectrum of the critical O(3) model on the square torus from e-expansion,
including the ground state energy. These states are obtained from the effective Hamiltonian which
gives the splitting of the £k = 0 Fock vacuum. The states have degeneracy 2¢ + 1.

and 2.4.3.

2.5 COMPARISON WITH NUMERICAL CALCULATION OF CRIT-
ICAL TORUS SPECTRA FROM LATTICE MODELS

In this section we compare our analytic results with the numerical spectra obtained using

exact diagonalization (ED) on explicit lattice models.

251 N=1

We first consider the O(1) = Z, critical point, also known as the critical Ising model. These
results were presented in Reference [34], which contains further technical details about the
numerical computation. Numerical computations were performed for the ferromagnetic two-

dimensional transverse field Ising (TFI) model,

HTFI = —JZO’;O’; - hZO'f (268)
(:4) g
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Square Square-Octagon

)

Triangular Honeycomb

Figure 2.5.1: The different lattice geometries used for the TFI model. The red boxes indicate the
lattice basis cells and the arrows mark the Bravais-vectors. The square and square-octagon lattices
obey a Cj rotational symmetry; the triangular, honeycomb and kagome lattices a Cg rotational sym-
metry.

For large h/.J, the spins are polarized along with the field & in the x direction, and the system
has a unique paramagnetic ground state. In the small h/J limit, the system spontaneously
breaks the Z, symmetry o7 — —o7, and the system is in a ferromagnetic state with a two-
fold degenerate ground state in an infinite volume. At some intermediate non-universal value
(h/J)e, there is a quantum phase transition between these two states which is described by
the N = 1 Wilson-Fisher CFT [9].

This model was simulated on five different lattices, see Figure 2.5.1. The lattices considered
have either square (Cy) or hexagonal (Cg) discrete rotational symmetry microscopically, but
in the vicinity of the critical point we expect these to flow to the same rotationally-invariant
CFT in the IR. The lattices are then studied with periodic (toroidal) boundary conditions,
where for simplicity they are given boundary conditions with the same point-group symme-
tries as the microscopic lattices. In particular, the lattices with square symmetry are placed
on a torus with modular parameter 7 = 4, which the lattices with hexagonal symmetry are
on a torus with modular parameter 7 = 27i/3.

In comparing ED with analytic results, we must also take into account that the dispersion
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n [ n T :

In the previous sections of this paper we have used units where ¢ = 1, but in explicit lattice
models the speed of light will depend on the microscopic details. For the TFI model, quantum
Monte Carlo (QMC) computations were performed for each of the lattices to extrapolate the
speed of light. In particular, the energy splitting for the lowest Zy odd states for a range
of momenta [kuyin, kmax] Were computed and extrapolated to the thermodynamic limit, and
fitting these to a linear spectrum E(k) = Ey + ck allowed a computation of ¢c. More details,
including explicit values for ¢/J in the critical TFI model on these five lattices, are given in
Reference [34].

The rest of the low-energy spectrum is computed using ED on lattices of increasing size,
up to a total of 40 sites. The energy levels are extrapolated to the thermodynamic limit by
finding the asymptotic value of LE as a function of 1/L. The numerical and analytic results

are explicitly compared in Figure 2.5.2.

252 N=2

We now consider the O(2) critical point, also known as the quantum XY model. Two
different lattice models will be utilized to study the critical spectrum of this universality

class numerically. The first is a spin-1 model, S = 1, with single-ion anisotropy [35, 36]
HY® = =] (8587 +898Y) — .Y SiS:+ DY (85)? (2.70)
(4,4) (i,4) ¢

We set the energy scale by choosing J = 1. For small D the system orders ferromagnetically
in the z-y spin plane, while for large D the system approaches a product state of single spins

with S* = 0. The phase transition is found to be in the XY /O(2) universality class. The
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Figure 2.5.2: Universal torus spectra for the Ising CFT for the modular parameters 7 = i (left panel)
and 7 = 1/2 + /3/2i (right panel). Full symbols denote numerical results obtained by ED or QMC,

while empty symbols denote the e-expansion results. The dashed line shows a dispersion according to
the speed of light. In this figure, IV is the total number of lattice sites.

parameter .J, can be tuned within a range around zero to check the stability of our results.
The second model we consider is the spin-1/2 XY-bilayer model [36, 37]. It consists of
two usual ferromagnetic XY layers with additional XY couplings between them. We denote

a spin located on site 7 in the first (second) layer as S; 1(2), the model is then described by

2

HY® = Z (87,55, +51.57,) + Ju Z (571572 +57157,) (2.71)

n=1 (i) i

We only consider positive couplings J, J, > 0 here and set our energy scale J = 1. For large
J) the system is described by a product state of singlets on each interlayer bond, whereas
a XY-ferromagnet is formed in each plane for small J,. The two phases are separated by a
XY quantum critical point at J; = J¢ = 5.460(1).J [37]!

To calculate the critical torus energy spectrum, we compute the spectrum of the Hamilto-

!The energy spectrum of this model is conserved under changing the sign of .J — —.J when the momenta
for odd S* levels are shifted as k — k + (7, m). Therefore, the critical coupling J§ is identical for both,
ferromagnetic and antiferromagnetic J = £1.
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nians at criticality on finite-size toric clusters numerically. We multiply the finite-size spectra
with the linear system size L to get rid of the dominant scaling and then extrapolate these
spectra in 1/N to the thermodynamic limit. Further details about the numerical approach
can be found in Reference [38].

In Fig. 2.5.3 we present the numerically obtained critical O(2) torus energy spectrum in
the kK = 0 and xk = 1 sectors. Here and in the following we only show the lowest energy levels
for ¢ < 4 which are in the fully symmetric representation regarding the lattice point-group
symmetry. We also restrict our discussion to square lattices, 7 = i. Results for triangular
geometry 7 = % + */752 are given in Reference [38]. The spectrum is normalized such that the
lowest gap in the £ = 0 sector is set to A., = Ay—o = 1. To demonstrate the stability of the
numerical results and the universality of the spectrum, the different models and parameters
considered for O(2) universality are shown with different symbols and colors in the plot.
For k = 0 we also plot the e-expansion results with empty diamonds to compare them with
the numerics. We find that they agree reasonably well and show a qualitatively identical
structure.

Here we also note that the four relevant fields in the O(2) CFT [1] correspond to the
lowest ¢ = 1, ¢ = 2 and ¢ = 3 levels as well as the first excited ¢/ = 0 level in the critical
torus spectrum (all kK = 0). Interestingly, these are the four lowest states in the spectrum.
A similar matching occurs in the Ising CF'T, where the two relevant fields correspond to the
two lowest levels in the critical spectrum [34]. It may be a general feature that relevant fields

of the CFT have light analogues in the critical torus spectrum.

253 N=3

In this section, we study the critical torus spectrum of the O(3) CFT numerically. To do so,
we again consider two different lattice models with a critical point known to be described

by the O(3) universality class. The first model is the prototypical Heisenberg bilayer model
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Figure 2.5.3: Critical torus energy spectrum for the O(2) CFT on a square geometry 7 = 7 in the

t = 0 (left) and the k = 1 (right) sectors. The results are normalized such that A,—y = 1. Full sym-
bols denote ED results for different models/parameters, empty black diamonds show the e-expansion
results for the critical O(2) CFT (k = 0 only). £ = 0 levels are non-degenerate, while £ > 0 levels are
two-fold degenerate (times the geometrical multiplicity of k > 0 levels). Note that the ED results only
show levels in the fully symmetric representation regarding the lattice point-group symmetry. Levels

in other point-group representations start to appear above A/A;—y = 2 for k = 0.

[39-42]. Tt consists of spin-1/2 on two layers with nearest-neighbour Heisenberg intraplane

couplings and Heisenberg interplane couplings on the rungs:

2

HY? =733 " (Sin Sim) + 2> Sin - Sin (2.72)

n=1 (ij) i
S;n denotes a spin on site ¢ in layer n. We set ferromagnetic intraplane couplings J = —1
and antiferromagnetic rung couplings Jo > 0. For large J, the groundstate is a product
state of singlets on each rung, whereas the groundstate for small J5 is the direct product of
Heisenberg ferromagnets within each plane. The phases are separated by an O(3) critical
point.

The second model we want to investigate here is a Heisenberg model on a 2D square lattice
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with columnar dimerization of bonds [43, 44]. The Hamiltonian for this ladder model is
H=J) S;-S;+.J:)_S;-S, (2.73)
(i) (i)'

Every second horizontal bond on the lattice is chosen to be in the family (i, j)’, such that
these dimerized bonds form ladders and every spin is part of exactly one dimerized bond.
We set all couplings antiferromagnetic and set the energy scale J = 1. For Jy/J =1 a Néel
AFM is stabilized on a square lattice and for large J5/.J a product state of singlets on the
bonds (i, j)" is formed as a groundstate. These phases are separated by an O(3) transition

at the critical coupling (J2/J). = 1.9096(2) [43].

0(3) Square ED — O(3) c-expansion
k=0

T T T
[ ED, bilayer : : : :
4H Q ED,2D v : R

€-exp

Figure 2.5.4: Critical torus energy spectrum for the O(3) CFT on a square lattice in the K = 0 sector
obtained from the models Eq. (2.72) (blue squares) and Eq. (2.73) (yellow circles). The results are
normalized such that A;—g = 1. Empty black diamonds show the e-expansion results for the O(3)
CFT. The levels are 2] 4 1-fold degenerate. Note that the ED results only show levels in the fully
symmetric representation regarding the lattice point-group symmetry. Levels in other point-group
representations start to appear above A/A;—y 2 2 for kK = 0.

We proceed similar to the case of N = 2 to compute the critical torus energy spectrum
for the O(3) CFT numerically. The critical spectrum is shown in Fig. 2.5.4 together with
the e-expansion results. We again observe a decent agreement between the two methods

and qualitatively identical critical torus spectra. Larger deviations for the second level in
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¢ = 4 are probably related to difficulties in the extrapolation to the thermodynamic limit, as
the available system sizes are strongly limited for these models. Although the critical torus
spectra in the k = 0 sector seems to look very similar for the O(2) and O(3) CFTs, their
degeneracy structure is inherently different. For O(3) the levels are (2¢ + 1)-fold degenerate,
whereas they are 2-fold (1-fold) degenerate for £ > 0 (¢ = 0) in the O(2) CFT. Further

numerical results can be found in Reference [38].

2.6 (CONCLUSIONS
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Figure 2.6.1: Critical low-energy torus spectra for the discussed O(/N) CFTs for k = 0 and ¢ < 4
compared to the operator scaling dimensions of the CFTs from Refs. [6, 45]. The spectra and scaling
dimensions are normalized by the gap A to the first excited state with / = 0. Full symbols denote
results from numerics (ED), open symbols show e-expansion results. Half-filled symbols show the
operator scaling dimensions of the corresponding CFTs as a comparison. The different symbols rep-
resent the different values of /. The numbers in parentheses give the degeneracy of the levels. The
level structure including degeneracies is qualitatively different between the distinct CFTs and can be
considered as a universal fingerprint of the CFT. The operator scaling dimensions correspond to the
critical energy spectrum of the Hamiltonians on a sphere. Interestingly, the structure of the operator
dimensions and the torus spectrum are very similar for the low levels with an additional low ¢/ = 1
level in the torus spectrum.

In this chapter, we have demonstrated how to compute the torus energy spectrum of the

Wilson-Fisher CFT from quantum field theory in the e-expansion, showing the expected
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emergence of a spectrum determined entirely by the universality class of the CFT and the
spatial geometry of the torus. We compared this to the spectrum of several explicit lattice
models at their respective quantum critical points using ED, and have shown that the ana-
lytic and numerical calculations agree well with each other, highlighting that the finite-size
spectrum is a useful universal fingerprint for identifying quantum criticality. In Fig. 2.6.1 we
show a comparison of the critical torus low-energy spectra for N = 1,2, 3 in the x = 0 sector
which substantiates this interesting aspect of a universal fingerprint. Additionally, we com-
pare the critical torus spectra with operator scaling dimensions of the corresponding CFTs
from literature [6, 45]. We note a quantitative match between the low-energy critical torus
spectrum at k = 0 and the (rescaled) operator dimensions. This match may be a coincidence,
as there is no known mapping between the torus spectrum and the operator dimension. It
is not known what constitutes the complete data for a three-dimensional CFT, and whether
the torus spectrum is new data or whether is can be related to the set of operator scaling
dimensions.

We hope that our work has shed light on the nature of the finite-size spectrum in CFTs
where conformal invariance does not lead to simple and exact results, and that our calcula-
tions aid in identifying critical behavior in numerical studies of quantum lattice models by
investigation of the critical energy spectrum. The methods used in this work should also
be applicable to computing the finite-size spectra of other CFTs, such as an e-expansion

approach to the Gross-Neveu-Yukawa CFT.
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CHAPTER 3

SPECTRUM OF THE WILSON-FISHER CON-
FORMAL FIELD THEORY ON THE TORUS:

LARGE-/N EXPANSION

3.1 INTRODUCTION

In this chapter, we will develop the finite-size spectrum of the Wilson-Fisher conformal field
theory on the torus using an expansion in 1/N, where N is the number of fields. The structure
of this expansion is dramatically different from the e expansion considered in Chapter 2, as
the zero momentum mode does not play a special role. The 1/N perturbation expansion
proceeds in the standard fashion [24, 46], with the only difference being that the diagrams
are over discrete momenta. The spectrum is then obtained by finding poles in the correlation
functions. We will see that the simplified form of the expansion at leading order will allow
an easy computation of the complete spectrum in the whole critical regime, including for
s # s., allowing us to track how the spectrum evolves between the two phases on either side
of the transition.

Section 3.2 will set up the large N expansion, while Section 3.3 will detail how to obtain
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the torus spectrum, with details on how the spectrum evolves as one tunes between the two
phases. We conclude in Section 3.4, where we also discuss the relative utility of the large N

and € expansions in describing the Wilson-Fisher CFT spectrum.

3.2 GENERAL FORMALISM

In this section, we develop our formalism for the large-N expansion of the critical O(2N)

model. For a review of the large-N expansion, see Ref. [46]. We take the Euclidean action

S = /d7d2:c <|8uza\2 + us|zq|* + % (\za]2)2> : (3.1)

where z, are complex fields with o = 1,2, ..., N. Our choice of complex rather than real fields
is motivated by applications in Chapter 4; all of the results in this chapter which depend on
N are also valid for odd 2N. We will perform the large N expansion at fixed u, and tune the
quadratic coupling to its critical value s = s.. Subsequently we will take the u — oo limit
in each term to obtain the scaling limit. We will also consider deviations from the critical
coupling s — s..

The field theory is defined on a spatial torus parametrized by complex coordinates as in
Chapter 2 and Appendix A.3, see Figure 2.2.1. The torus is defined by two complex periods
wy; and wy, an area A = Im(wow?), and we define the dimensionless modular parameter
T = wy/wy with real and imaginary parts denoted 7 = 7 +i75. We will also define the length
scale L = |wy].

We can rewrite the path integral (up to an unimportant constant) as

U Ns\®
Z = /Dza exp <—/d2xd7' []f)ﬂzof + o <|za\2 + 7) ]) . (3.2)
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We decouple the quartic term by introducing an auxiliary field A

. N N\?
- /DzaD)\eXp (— /d2:cd7' [\8 AR (\za\Q + TS) + W]) : (3.3)

The z, can be integrated out, obtaining an action for A,

) ) 2o
_ /m exp |—N Trln (—03 —v? +z’)\) N /deQ:c (2— + %m)] . (3.4)
u

At N = oo, we should expand around the saddle point value, which we call i\ = A? and is

given by
A2
w AZ/ 21 w? + |k|2+A2 (3:5)

At this point we tune s — s. such that the correlation length diverges when A — oo.

From Eq. (3.3), it is clear that the correlation length at N = oo is just the inverse of A, so

dw d?k 1 k1
o= —2 _ = -2 _ 3.6
° /27r47r2 (w2 + |k[2) /47r2 ok (3:6)

We can add and subtract s. from Eq. (3.5) while taking the limit u — oo, and we find

S 18

(3.7)

d’k 1 1
=5 | or T AL e
" = VT A

This equation is to be solved for A, yielding an answer of the form A = # /L, where # is a
universal function of L(s — s.) independent of the regularization scheme at large momenta.

From the general theory of finite-size scaling [26], the energy levels should take the form

1 1/v
Ey =X, (LY (s — s0)] (3.8)

for some universal set of functions X,,, so our expressions are appropriate forv =1 at N = oo

n (2 + 1)-dimensions.
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Divergent sums are computed using dimensional regularization, which sets s. = 0. The
sums are performed in a similar way to the computations for the € expansion in Appendix A.3,
except we never need to separate out the zero momentum mode. Dimensional regularization
will also renormalize the theory automatically, so we will not need to introduce any counter
terms. In terms of the special functions defined in Appendix A.3.1, we write the gap equation

as

giQ/)Z(A, T) = —27wL(s — s.), (3.9)

which is solved numerically. At the critical point, s = s., the gap A depends only on the
geometry of the torus. We note that A is a monotonically increasing function of (s — s.).
We also find the ground-state energy. This is computed from the path integral by tem-

porarily taking a finite length in the time-direction, 0 < t < T, and then taking the limit
Ey=—1i ! InZ (3.10)
o= TN T '

Directly taking il = A2 and u = oo, this is given by

d N
Ey = N) /%lm(w2+|k|2+A2)+§AA2
k

_ d_w 2 2 2 E 2
- N;/Qﬂln(w)—i—]\/; (k> + A2 4+ = AN (3.11)

We subtract the first term, which is independent of the system size and boundary conditions.

The remaining sum is evaluated using dimensional regularization,

. 27TN (2)

N(s — s.)
oL 971/2

Eo

(A7) + T L?A? (3.12)

where the special function g(fl) /o(A, 7) is defined in Eq. (A.46). Our choice of renormalization

has set Fp = 0 at s = s, and L = oo, where the theory has full conformal invariance.

Now that we have the saddle point value of Aat N = 00, we can read off the Euclidean-time
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propagator of z,

- 5.
G()(k,’iCL)) = /dQJ'dTBmk’LWT<2a(£L’,T)ZIZ;(O,O)> = m (313)

We also expand in the fluctuations of . Writing i\ = A2 + i\ /V' N, the effective action is

Z = /D)\exp (—50—81>,

Sy = i?/g—: (H(k,w) + %) A2 (3.14)

with
(k,iw) = Z/ !
’ A 2m (2 + [q? + A?)((w + Q)2 + [k + ¢|* + A?)
1 V0P + A% + ]k + g[? + A2

- = (315
A% 2\/(|€I|2+A2)(|k’+Q|2+A2)((\/|Q|2+A2+\/|k+Q|2+A2)2+\W2))

and S; contains nonlinear terms. We discuss &; and 1/N corrections in Appendix A.6. We

see that the A propagator at N = oo is

1
(k,iw) + 1/u

Dy(k,iw) = / d*zdre™ T\, (2, 7)A(0,0)) = (3.16)

This is related to the propagator of |z,|*. This is most easily seen directly from the action
(3.3), where A is not a dynamical field. Integrating out the field i\ is equivalent to replacing

it by its equation of motion,

A

+VN <ﬁ - A2) . (3.17)

So the propagator of \ is related to the propagator of |z,|? by

(zal*(@, 7)]2al*(0))e = —%(A(% 7)A0))- (3.18)
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This can also be verified by coupling a source J to |z,]* and taking functional derivatives

[47).

3.3 SPECTRUM

We describe the spectrum in terms of “n-particle states,” which are created by n fields:

bLLL -+ - b |0). (3.19)
N——

n

We define bf, with indices running from o = 1, ...,2N. The single-particle states are created

by a single z field, so by the form of the z propagator, their energy is given by the Hamiltonian

Hy = Eo+ Y \/[k]> + A2} (k)ba k), (3.20)
ka

where o = 1,...,2N. The energy of the state b (k)|0) is given by

Ei(k) = Eo+ /|k|> + A2 (3.21)

This state is in the fundamental representation of O(2N), so it is 2N-fold degenerate in
addition to any degeneracies between values of k.

Two particle states with momentum k take the form
bl (q)bly(k — q)]0) (3.22)

for all choices of momentum ¢q. We decompose this into irreducible representations of O(2NV),

which must separately have definite energy:

1 0o
bLbL = s (ngbg) + <b{abg]> - <b}ab;) - ﬁbibi) = 60pS + Aap+ Top.  (3.23)

o4



Chapter 3. Spectrum of the Wilson-Fisher conformal field theory on the torus: large-NV
expansion

These are the singlet, antisymmetric tensor, and symmetric traceless tensor representations
respectively. Simple counting shows that S creates one state, A,z creates V(2N — 1) states,
and T,p creates (2N — 1)(2N + 2)/2 states. Note that if ¢ = k — ¢, the antisymmetric
representation will not be present.

At this point we can use the analysis above. At N = oo, the z propagator takes the form
of a free boson with dispersion \/m, so one would naively expect all states to have
energy given by the Hamiltonian (3.20). However, this is not the case for the singlet state,
since

([zal*(z, 7)|251*(0,0)) o< (A, T)A(0, 0)). (3.24)

So the fact that that the propagator of A\ takes a nontrivial form at N = oo has the effect of
shifting the energy of singlet states. The energies of the singlet states are given by the poles
in D(k,iw), or equivalently the zeros of II(k,iw). From Eq. (3.15) we see that II is always
convergent in d = 2, so we can sum the series numerically to find the singlet energies, which
are given by

1(k, B (k)) = 0. (3.25)

In contrast the antisymmetric tensor and symmetric traceless tensor remain degenerate at

N = oo, giving 4N? — 1 degenerate states with energy
Es(k) = Ei(q) + Ei(k — q) (3.26)

for all choices of the momentum ¢, where E(q) is the single particle energy, Eq. (3.21). The
choice of ¢ can also induce additional degeneracies for any given total momentum k. In
addition, we saw that if ¢ = k — ¢ there will be no antisymmetric part, so there will only be
a degeneracy of (2N — 1)(2N + 2)/2 from O(2N) symmetry.

Going beyond the two-particle states, we expect that a general state will be given by an
application of

bF, (1 )bl (o )0 (K )b (K - - - |0). (3.27)
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degeneracy K = k=1|r=12
1 0
2N 1.512
(2N +2)(2N —1)/2 3.024
<2N N 2) _oN 4.536
142N 3+ 2N
(5212 | oo
SN 6.463
242N 442N
2<2N—2> — < . ) 7.560
4(4N?% - 1) 7.975
1 8.126
SN 9.013
342N 5+2N
() () | o

Table 3.3.1: Lowest energy splittingss L(E — Ey) and their degeneracy at s = s. for large-N on the
square torus. The ground state energy is given by Fy = —.329N. Here, k = L|k|/27.

Past the two-particle states, the decomposition into irreducible representations becomes more
involved. Generally, the states will decompose into singlets with energies given by the zeros
of II(k, E(k)), and states described by O(2N) traceless tensors with energies given by by Fock
spectrum of Eq. (3.20). Extra degeneracies can occur due to discrete point group symmetries

of the torus, and sometimes degeneracies are reduced if some of the b's are indistinguishable.

3.3.1 EVOLUTION OF THE SPECTRUM OF A FUNCTION OF s — S,

In this section, we discuss the general structure of the finite-size spectrum as a function of
s — 8., which can be worked out on general principles in the limits s = s., s > s., and
s < s.. We show that our model takes the correct form in these limits before giving explicit

results on the evolution of the as s — s, is varied.
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CRITICAL POINT

At criticality, s = s, the system at an infinite volume has full conformal invariance, and
there is no scale in the theory. The excitation spectrum forms a gapless continuum, F = k.
As a result, when the system is placed on a torus, the only possible dependence that the
energy can have on the size of the system is 1/L. Therefore, the quantities LE will be
universal functions of 7 only. This dependence is automatic from our finite-size calculations,
where the solution to the gap equation will give a pure number for LA, and all energies

manifestly have 1/L dependence.

DISORDERED PHASE

In the disordered phase, s > s., the system develops a gap m even at L = oo, and the
low-energy excitations will take the form E = \/W In the scaling limit, m is of
order (s — s.)” and v = 1 at N = oo. This energy gap implies that all correlations decay
exponentially over a length scale 1/m ~ 1/(s — s..), resulting in a very weak dependence on
finite-size effects when the system is placed on a torus of size L, provided Lm ~ L(s—s.) > 1.
Therefore, we expect the finite-size spectrum of the disordered phase to evolve to the form
E = /|k|* + A? at increasing (s — s.), where A = m + O(e™F™) takes the same value as
it does in an infinite volume up to exponentially small corrections in L(s — s.), and the
momenta k are quantized according to the required boundary conditions. We also note that
the threshold for singlet excitations in an infinite volume is 2m, so the absence of large
finite-size corrections suggests that the two-particle singlet spectrum will merge with the
other two-particle states.

The properties of the disordered phase can be verified explicitly. By taking the L — oo

limit of Eq. (3.9), we find the exact gap in an infinite volume,

m = 27(s — s.). (3.28)
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— ground state

..... - k = 0 tower
Goldstone states
singlets

15

Figure 3.3.1: The evolution of the spectrum LE for the large N O(N) model as a function of the
tuning parameter L'/ (s — s.) on the square torus, 7 = i. Note that v = 1 at leading order in 1/N.
The energy levels are defined so that £ = 0 at s = s, and L = oo, and the current plot shows
the energy levels for N = 4. We label the states by their behavior in the ordered region, distinguish-
ing between the tower, the Goldstone modes, and the singlet states. Our choice of states is not not
exhaustive, but they highlight the main features of each region.

This can be compared with the gap in a finite volume when s > s.. In this limit, LA is

large and we can expand gf/)z(A, 7), obtaining

1
A= 27T(S — SC) + O ( )2€—L2(S—sc)2) 7 5> s, (329)

L2(s — s.
The energies of the two-particle singlet states can be numerically verified to merge with the
other two-particle states in this limit.

ORDERED PHASE

In the ordered phase, s < s., the finite-size spectrum differs considerably from the infinite

volume case. In an infinite volume, there is a degenerate ground-state manifold of states at

o8
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zero momentum which are related by the O(2/N) symmetry, and a properly prepared system
will pick a single one of these states, spontaneously breaking the symmetry. The stable
excitations above the ground state consist of 2N —1 Goldstone modes with a linear dispersion,
E = c|k|, corresponding to transverse fluctuations of the order parameter about its ground
state value. In addition, there will be an unstable continuum of excitations associated with
transverse fluctuations of the order parameter and fluctuations of its amplitude ¢?, which
will be mixed by interactions [47].

In contrast, in a finite volume the ground state must be a non-degenerate O(2/N) singlet,
and spontaneous symmetry breaking is impossible. Instead of a ground state manifold, there
will be a “tower of states” above the ground state at k = 0 with energies scaling as E ~ 1/.A4
with the system size [48-53]. In the thermodynamic limit, this tower “collapses” into the
ground state, and a symmetry-broken state can be formed as an extensive superposition of
states in the tower.

One can analyze the general properties of the tower of states by forming an effective
Hamiltonian for their spectrum. This can be derived by integrating out the finite-momentum
modes and finding an effective Hamiltonian for the zero-momentum component of the field
[26]. For a system with O(2N) symmetry, the effective Hamiltonian for the tower takes the

form
L2

Hower:E RN
! 0+fiAN(sc—5)

(3.30)

up to corrections induced by fluctuations of the finite momentum modes. Here, L;, i =
1,2,..,N(2N —1) are the generators of rotations in O(2N), and & is a constant which will be
non-universal away from the scaling limit. The effective Hamiltonian for the tower is simply

an O(2N) rigid rotator, and the energy levels are given by

00+ 2N —2)

Eower:E RN TEAY R
’ 0t KN (s. — s)A

(=0,1,2,.. (3.31)
This constrains the level spacing between states in the tower. In our present calculation,
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we take the N = oo limit, and obtain equally-spaced energy levels. The eigenfunctions

S2N=1" which are

of Eq. (3.30) in the angular basis are the hyperspherical harmonics on
the higher-dimensional generalization of the familiar spherical harmonics on the two-sphere.
These eigenfunctions are in the symmetric traceless tensor representations of O(2N), and
their degeneracy is given by

(+2N —3 {4+2N -3
Deg.-?( ON _ 9 )—i—( ’ ) (3.32)

We can verify the above structure in our model by taking the limit s < s. in the gap

equation (3.9). We find that the gap takes the form

A= m + @ ((A(SC — S))i ) , s K Se. (333)

The states created purely by |k| = 0 will form an equally spaced spectrum above the ground
state with this 1/.A dependence on the system size, and by the analysis in Section 3.3 they
will be in the symmetric traceless tensor representations of O(2N), in agreement with the
above analysis.

The states created by finite-momentum operators will have an energy given by £ =
k| + O(A?/|k|), and transform in either traceless tensor or singlet representations. These
correspond to the Goldstone modes in the infinite-volume system, but there will be no dis-
tinction between the longitudinal and transverse fluctuations since symmetry is unbroken.
We note that even the zero-momentum states created by the singlet operator approach the

expected spectrum for multi-particle Goldstone states.

3.3.2 RESULTS

For an explicit example, we consider the square torus, 7 = 7, where both spatial directions
have length L. Precisely at s = s., the energy levels are a set of universal numbers times

1/L; in Table 3.3.1 we have given the lowest-lying energy levels at the critical point and their
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total degeneracy. We show the evolution of the spectrum LFE as a function of L(s — s.) in

Figure 3.3.1, choosing states which highlight important features of the spectrum.

3.4 (CONCLUSIONS AND COMPARISON WITH €-EXPANSION

In the large N limit, we can in principle obtain the entire spectrum at criticality, and
even track how specific states evolve between their expected behavior in the disordered and
ordered regimes. The tower of states is known to be a useful tool for determining spontaneous
symmetry breaking in numerical simulations [50, 51|, so a study of the change in its structure
as the system is tuned to a critical point could be a benefit to identifying the critical theories
strongly correlated systems (e.g. frustrated spin systems). For a specific application along
these lines, we will investigate a phase transition into a phase with topological order in
Chapter 4 and see that the presence of proximate topological order alters the torus spectrum
at criticality and even in the non-topological phase.

The ease in obtaining the entire spectrum is a definite benefit of the large N calculation
over the e expansion detailed in Chapter 2. In the € expansion, obtaining the spectrum re-
quires numerically solving coupled differential equations which become increasingly complex
for increasing values of £ and N. The perturbative structure of the e expansion also changes
drastically as one tunes away from the critical point, as the relative magnitudes of L(s — s.)
and e will alter the relative importance of interactions (see Section 2.3.1). In contrast, there
is no trouble with tuning away from criticality in the large N expansion.

However, the simple leading order results of the large N expansion appear to be less
consistent quantitatively with critical spectra obtained numerically for physically relevant
values of N. The spectrum at large N takes the simple form of free relativistic particles
with a dispersion v/k2 + A2, and there are large degeneracies between different irreducible
representations of O(NN). These features are artifacts of the expansion, and corrections in

1/N should split these degeneracies and result in a spectrum which is not particle-like.
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In contrast, the energy spectrum at leading order in the € expansion already took the
form of a strongly-coupled quartic oscillator, resulting in a set of energy levels which are
not equally spaced. The energies of finite momentum states cannot be obtained by simply
boosting zero momentum states, A — k2 + A2, showing a breakdown of Lorentz invariance.
These properties are closer to the qualitative picture of a quantum critical fluid being far from
the free particle limit, and appear to show good agreement with numerics on critical lattice
systems (see Section 2.5). As such, we expect the € expansion to be better for obtaining
quantitative predictions about critical spectra due to its capturing non-perturbative aspects
of the underlying conformal field theory, while the large N expansion is beneficial in obtaining

qualitative predictions such as the evolution of particular states between phases.
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CHAPTER 4

CONFINEMENT TRANSITIONS IN Zs SPIN LIQ-

UIDS: SPECTRUM ON THE TORUS

4.1 INTRODUCTION

In this chapter we will discuss a class of phase transitions which occur proximate to Zs
topological order, and study the finite-size torus spectrum of these transitions. This is a
particularly interesting application of the results derived in Chapters 2 and 3, because the
nearby topologically ordered phase alters the nature of the spectrum due to the nontrivial
topology of the torus. We show that the torus spectrum is a useful diagnostic for both
the topologically ordered phase and for quantum critical points outside of the standard
symmetry-breaking paradigm.

By definition, a phase with gapped topological order is described by a topological quantum
field theory [54, 55]. This leads to a ground state degeneracy which is sensitive to the
topology of the underlying manifold that the theory is defined on, and the existence of
gapped excitations carrying fractional quantum numbers and fractional statistics. Crucially,
topological order cannot be characterized by any local order parameter, so the critical points

we consider below are necessarily outside of the standard symmetry breaking paradigm. In

63



Chapter 4. Confinement transitions in Z, spin liquids: spectrum on the torus

particular, the phase transitions are described as deconfined quantum critical points, meaning
their explicit description requires degrees of freedom carrying charges under deconfined gauge
fields [56, 57].

This chapter is organized as follows. Section 4.2 gives a review of Zs topological order
and defines the critical O(NN)* class of confinement transitions. Section 4.3 will give the

*

prescription for computing the spectrum of the critical O(N)* model on the torus, and
we give explicit results for a confinement transition between two phases without symmetry
breaking, comparing with numerical simulations. Section 4.4 discusses an explicit realization
of the critical O(4)* model as a model for a phase transition between the Z, spin liquid and
non-collinear antiferromagnetic order. The spectrum of the critical O(4)* model is computed

in the large N expansion, and a discussion of the evolution of the spectrum across different

phases is given in detail. We conclude in Section 4.5.

4.2 75 TOPOLOGICAL ORDER AND THE O(N)* MODELS

General considerations from quantum field theory allow for a rich enumeration of possible
topological orders [54, 55], but in this chapter we will focus on the simple case of Z, topo-
logical order which arises in many models of frustrated spin systems [58-60]. Phases with Zy
topological order can equivalently be described as deconfined phases of a Zy gauge theory
[61]. Such theories can contain two kinds of charged excitations: a particle which is electri-
cally charged under the gauge field called the e particle, and a particle which is a magnetic
monopole of the gauge field called the m particle.

Interestingly, the e and m particles are mutual semions. This means that as one adiabati-
cally transports the e particle around the m particle (or vice-versa), the wave function picks
up an overall minus sign, see Figure 4.2.1. In a phase where these excitations are deconfined,
this implies a ground state degeneracy on the torus. In particular, one can create a pair of e

particles and a pair of m particles, and by winding them along different cycles of the torus
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Figure 4.2.1: Transport of

and then annihilating both pairs, one can reach an orthogonal state with the same energy
(in the large torus limit). By choosing either one or both of the cycles of the torus to wind
one of the particles around, one can reach three other distinct ground states, leading to a
four-fold ground state degeneracy on the torus. The properties of this ground state can be
encoded by a topological field theory [61].

We now consider the condensation of one of the particles. We choose the condense the
e particle, but the same considerations apply for the m. The nontrivial statistics between
the two particles implies that the m particles will confine due to the e condensate. As one
creates two m particles and attempts to separate them by a length L, there will be a linear
energy cost due to the magnetic flux tube separating them (Figure 4.2.2). This is simply the
Zy analogue of the energy cost of an Abrikosov flux tube in a superconductor, which scales
as the linear size of the flux tube.

We now develop the critical field theory for confinement in a Z, spin liquid by considering
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Furarary
O
O
*0-0o

Figure 4.2.2: Visual representation of a pair of m particles being separated in an e condensate.

the condensation of a field ¢(z) ~ e. For now we assume that there are no global symmetries
in our system. Since the m particle remains gapped through the phase transition, we can
take its mass to infinity in the scaling limit. The only remaining principle we can use to
write down a field theory is Zy gauge invariance: ¢ ~ —¢. This leads to the same critical

field theory as the 241D Ising model:
1 S u
_ 3,1+ 2 59 4
S—/de(auqﬁ) —|—2¢ +4!gb (4.1)

However, because ¢ — —¢ is a gauge transformation rather than a symmetry, there is no
notion of symmetry breaking for the s < 0 phase. This is a continuous phase transition
between two distinct phases without any local order parameter, so it lies outside of the
LGW paradigm. This is called the Ising™ universality class. We note that although we have
only sketched a derivation here, the correspondence between this critical point and the Ising
model can be established by precise duality between an explicit Z, lattice gauge theory and
the Ising model [62], and that this critical point is stable under perturbations away from
where the exact duality holds [63].

We now generalize this theory to allow the field ¢ to transform as a vector under a global
O(N) symmetry, ¢,. Because of the gauge equivalence, the physical symmetry of this theory

is O(N)/Zsy. The natural generalization of the above action is then just the Wilson-Fisher
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CFT,
1
S= [ @ |5 @)+ 302+ § (62 (4.2

where ¢? = Zgzl Gada- Since ¢, carries a Z, gauge charge, this is termed the O(N)* model
[64], and it describes a continuous phase transition between a state with Zs topological order
and a state with spontaneous symmetry breaking.

The original realizations of Z, topological order appeared as disordered spin liquid phases
in frustrated magnets [59, 60, 65], where the e and m particles are conventionally labeled a
‘spinon’ and a ‘vison’ respectively. In these systems, the spinon transforms as an SU(2) spinor
under rotations, while the vison transforms under a discrete space group of the underlying
lattice. A theory of a confinement transition of the Zs spin liquid driven by the condensation
of visons was initially presented in Refs. [66, 67], in terms of a frustrated Ising model obtained
from an ‘odd’ dimer model; the same theory appeared later in other models [64, 68, 69], and
in recent work [70-72]. The confined state leads to lattice symmetry breaking, and at the
critical point the discrete symmetry usually enlarges and one obtains O(2)* (also called XY™)
criticality. In Section 4.4 we will discuss a theory [73, 74| for the condensation of spinons in
detail.

For many purposes, the critical behavior of the O(/N)* model resembles that of the O(XN)
model. Gauge invariant operators such as ¢* have the same scaling dimensions as their O(N)
counterparts, so certain critical exponents will be identical to those for the Wilson-Fisher
fixed point. However, the scaling dimension of any gauge invariant operator cannot be given
by ¢, so any local order parameter for a symmetry-broken phase in these models must
be composite in the field ¢, [75]. The O(N)* models have also been shown to have extra
contributions to their entanglement entropy relative to the O(/N) models [76]. Finally, the
finite size spectra for these models is distinct from the conventional Wilson-Fisher case, as

we discuss in detail for the rest of this chapter.
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4.3 SPECTRUM OF THE CRITICAL O(N)* MODEL ON THE
TORUS

We first consider the O(N)* theory on a finite simply-connected space, such as the sphere.
Then the Z, gauge constraint simply means that we must only include states with the correct
global Zs charge. That is, we arrange all of the energy eigenstates of the O(/N) model into

states which are even and odd under the Z, transformation ¢, — —¢,,

U [=@a(r)] = V5 +[¢a(2)] (4.3)

where the ¥, ; are wavefunctionals of the field. Then we have two choices, we either only
keep the states ¥,, ; or we only keep the states ¥, _. In the two cases, we either say that
we are in the ‘even’ or ‘odd’ sector of the Zy gauge theory. Our choice for which sector we
need to describe a given microscopic system will depend on the precise relation between the
microscopic Hamiltonian and the emergent Z, gauge theory. For example, in the systems
considered in Section 4.4 below, the system is in the even (odd) sector of the gauge theory
if the total number of half-odd-integer spins in the system is even (odd).

We now consider the spectrum on the torus. Because of the gauge equivalence ¢, ~ —¢,,

we must now allow the boundary conditions
Go (T + nwy + mws) = £, () (4.4)

where n and m are integers and wy » are the two cycles of the torus (see Figure 2.2.1). We
are allowing a Zy flux to thread through the holes of the torus; such fluxes do not appear in
the simply connected case because they must wind around visons, which we are assuming
have a large gap.

Thus, the full spectrum of the O(V)* model on the torus is obtained by finding the Wilson-
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Fisher spectrum on the torus for all possible boundary conditions (4.4), separating the states
into even and odd sectors according to (4.3), and then choosing the states corresponding to
the sector of interest and discarding the rest. This highly nontrivial matching of states
represents a dramatic difference with the normal Wilson-Fisher spectrum considered in the
previous chapters, and is thus of possible use in distinguishing states nearby topological
order from states nearby trivial phases, whereas certain critical exponents do not distinguish
these transitions.

We now comment on the effect of modular transformations. Modular transformations are
discrete diffeomorphisms on the torus, so we need the spectrum to be invariant under the

modular group. This group is generated by the two transformations [5]

T T = 74+1
1

S: T = ——. (4.5)
T

Under these transformations, the area 7,L? is left unchanged. To see how our spectrum
transforms under these operations, we can look at how the loop sums over the momenta
|kn.m|* in Eq. (A.28) given in Appendix A.3 transform. We find that modular transformations

map between the different topological sectors as follows:

T (n,m2) = (mm2, m2)

S: (m,m2) = (m2,m) (4.6)

where 7, 5 = £1, and the notation (1, 7;) refers to whether the field picks up a plus or minus
sign around the two cycles. These results imply that if we include any of the antiperiodic
sectors, modular invariance forces us to include the other two. In contrast, the fully periodic
sector (+1,41) is modular invariant by itself.

We note that modular invariance will cause extra degeneracies to arise for special values

of 7. For example, the square torus 7 = i satisfies 7 = —1/7. Since the full spectrum must
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be invariant under S, the (—1,0) and (0, —1) sectors are degenerate. Another special case is
the triangular torus 7 = €"™/3, which satisfies 7 = —1/(7 —1). Then the invariance of the full

spectrum under 7 1S means all three nontrivial sectors have exactly degenerate spectra.

4.3.1 COMPARISON WITH NUMERICS: [SING* SPECTRUM

Here we will compare the analytic computation of the Ising* spectrum with numerics per-
formed using exact diagonalization. The microscopic Hamiltonian being considered is the

toric code in a transverse field,

s p 1
A, =1[er. By=]]ef (4.7)
€S 1ED

Here, the Pauli matrices o live on the links of a square lattice, s denotes a star and p a
plaquette on the lattice. For h = 0, this is the exactly solvable toric code Hamiltonian [77]
which describes a Zsy spin liquid in the even sector. As one increases h, the system is driven
through an Ising* confinement transition into a trivial paramagnet [78-81].

Numerical simulations were performed for J, = J, = 1 and h = h,.. These results were first
reported in Reference [34] along with the critical transverse field Ising spectrum described
in Section 2.5. Further details on the numerical methods used to obtain the spectrum may
be found in both Section 2.5 and the original reference.

A comparison of the numerical spectrum with values obtained from the e expansion are
shown in Figure 4.3.1. The agreement is reasonably good, although less so than the critical
Ising spectrum. This is somewhat expected from the perspective of the € expansion detailed
in Chapter 1, where the P/P sector has a completely different perturbative structure from the
antiperiodic sectors. It is only in the fully periodic sector that the torus spectrum requires a

mapping to strongly-coupled oscillators and an expansion in €'/3, while the other sectors have

70



Chapter 4. Confinement transitions in Z, spin liquids: spectrum on the torus

12— 1 !
3 ® 3
1O b D .
|
o 6706 g g
= gle g04 T 7
=, 7[':j' o402 . /,’
. - ’00 (12
(e}
o
K ® e P/PED
qu /| ® AP ED(x2)
= : ® A/AED
oL .20 O P/P eexp
: /// O A/P, ec-exp (x2)
ol O A/A, c-exp
1 V2

K

Figure 4.3.1: Comparison of the low-energy spectrum of the toric code in a transverse field with the
analytic Ising®™ spectrum computed in the € expansion. Full symbols denote values obtained from ED
while open symbols are values obtained from the € expansion. The notation P(A) refers to whether
the boundary conditions around the torus are (anti-)periodic. The inset is a zoom onto the lowest
four levels.

a spectrum given by normal weak-coupling perturbation theory and an ordinary expansion

in €. The unequal footing of the strength of interactions in the different sectors is a natural

source for quantitative disagreement between the different sectors.

4.4 'TRANSITION FROM THE Zs SPIN LIQUID TO ANTIFERRO-
MAGNETIC ORDER

Recent numerical studies [82, 83] of the spin S = 1/2 antiferromagnet on the triangular
lattice have presented convincing evidence for a spin liquid ground state in the presence
of a next-nearest neighbor exchange interaction (J;). They also find an apparently con-
tinuous transition to an antiferromagnetically ordered ground state at smaller Jy, with the
familiar 3-sublattice coplanar order of the triangular lattice. Here we will assume that this
antiferromagnetic state is the same as the conventional state described by the semiclassical

spin-wave theory, and possesses only integer spin excitations. So the transition from the spin
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liquid to the antiferromagnet is a confinement transition, associated with the confinement of
half-integer spin excitations.

An attractive candidate for the observed spin liquid is the Zs spin liquid [59, 60, 65, 66]
described in Section 4.2. In the terminology used there, the confinement transition is driven
by the condensation of spinons, or e particles, carrying nontrivial quantum numbers under
spin rotation. A theory for the condensation of spinons from the Zs; spin liquid on the
triangular lattice was presented in Refs. [73, 74], and this theory will form the basis of
our computations here. The order parameter of the coplanar antiferromagnet is identified
by points on the SO(3) manifold, and so the Landau-Ginzburg-Wilson (LGW) framework
suggests a field theory based on such an order parameter. However, the theory of Refs. [73, 74]
is a ‘deconfined’ critical theory beyond the LGW paradigm, and is instead expressed in terms
of a spinon field which is identified by points on SU(2)= S;.

The connection between coplanar magnetic order and the spinon in the spin liquid phase

can be made explicit. We write the expectation value in the ordered state as
(S;)=S [nl cos (Cj : @-) + ny sin (@ . :Ej)] (4.8)

where the ordering wave vector is Q = 4r (1 /3,1/ \/3) for the semiclassical ground state
of the Heisenberg model on the triangular lattice. The vectors n; o are arbitrary up the

constraints

= N
I
=
NN
I
—_

y n; -1y = 0 (49)

Different orientations of these two vectors are related by a rotation matrix, identifying the
order parameter as an element of SO(3). A conventional LGW description of a transition
from this magnetically ordered state to a paramagnetic state would begin with an effective
action for the fluctuations of the vectors n; ». However, this phase transition would drive the
system into a trivial gapped paramagnetic state with a non-degenerate ground state, which

cannot occur in a system with an odd number of half-integer spins per unit cell such as the
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triangular antiferromagnet [84]. Therefore, we seek a description in terms of fractionalized

degrees of freedom. Following Refs. [73, 74], we write

2
Nig + 1Moy = Z €ay2y0as2p (4.10)
a,By=1
This parametrization explicitly solves the constraints in Eq. (4.9), and it can be checked
that the complex bosonic field z,, with @ =1, ], transforms as an S = 1/2 spinor under
spin rotations. However, this representation is doubled-valued: one can perform a gauge
transformation, z,(x,7) — 1(x,7)z4(X,7), n = £1, at any point in space-time and obtain
an equivalent representation of the physically observable order parameter. This identifies
the order parameter space as SU(2)/Zy, which is equivalent to SO(3). This description is
complementary to the confinement transition described above, where z, is identified with the
SU(2) spinon of the Z, spin liquid. We note that as the spinon condenses, the only remnant
of the gapped vison in the spin liquid is the double-valued nature of the spinon field.

We therefore write a critical theory for the complex boson z,, taking values in SU(2),
consistent with the allowed symmetries. Keeping only terms relevant at the critical point,
the universal Lagrangian of the transition in 241 dimensional spacetime is
2

L = 0uza]* + s|zal” + u (|24]?) (4.11)

The ‘mass’ s has to be tuned to a critical value s = s, to access the critical point, while u
approaches a non-zero value determined by the Wilson-Fisher fixed point [4]. Note that this
spin-1/2 relativistic boson is not in contradiction with the spin-statistics theorem, because
here ‘spin’ refers to a global flavor symmetry, rather than the intrinsic angular momentum
of relativistic particles. In this section we will allow the index « to range over 1... N and
use the 1/N expansion. Due to the gauge constraint, this is the critical O(2N)* detailed
in Section 4.2. Note that Eq. (4.10) implies the physical order parameter has a scaling

dimension given by a composite bilinear in the spinon fields, so the anomalous dimension of
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n, - fields will be much larger than those of the spinons [85].

We now determine whether a given lattice antiferromagnet is in the ‘even’ or ‘odd’ sector
of the Zy gauge theory, determining which of the states we keep after separating the Hilbert
space into sectors as in Eq. (4.3). This is determined by noting that the mapping (4.10)
implies that the spinons carry S = 1/2, so every excitation of the even (odd) sector of
the gauge theory will carry integer (half-odd-integer) spin. Considering the realization of
this model as the low-energy theory of a microscopic spin Hamiltonian, we know that the
excitations of an antiferromagnet with an even (odd) total number of half-odd-integer spins
will also only have physical excitations which carry integer (half-odd-integer) spin. Therefore,
the relevant sector of the gauge theory is given by the total number of half-odd-integer spins
in the underlying lattice antiferromagnet.

In the application to the lattice antiferromagnet, we also have to consider the fact that the
O(2N) symmetry of £ is an emergent symmetry of the critical point, and is not a symmetry
of the underlying Hamiltonian. So we have to consider operators which break the O(2N)
symmetry. All operators which break the O(2/N) symmetry down to SU(N) are irrelevant
at the critical point, and we will consider here only the leading irrelevant operator. This is
given by [73, 74]

L' =7]2EV2,)° (4.12)

Below, we will describe the leading perturbative effect of v on the critical spectrum.

4.4.1 CRITICAL O(2N)* SPECTRUM AT LARGE N

We now consider the large N limit of the O(2N)* model. This is very similar to the compu-
tation in Section 3.3, but the fields can take anti-periodic boundary conditions along either
direction of the torus. We treat the four topological sectors as separate decoupled theories.
The boundary conditions can be taken into account by noticing that momentum quantiza-

tion is shifted by a half-integer in the anti-periodic direction. We parametrize the momentum
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(P,P) (0, 0)
(PA) - (0,3)
(A7P) (%’ O)
(AA) (5.3)

Table 4.4.1: The definitions of a; and ag appearing in (4.13) for different boundary conditions. The
left column denotes whether the boundary conditions are periodic (P) or anti-periodic (A) in the wy
or wy directions respectively, while the right column gives the values of a; and as for these boundary
conditions.

as

knm =27 [(n+ a1)ks + (m + a2)ks], n,m € Z, (4.13)

)

where the k; are defined in Eq. (A.26), and the values of a;, as are determined by the
boundary conditions, see Table 4.4.1.

This redefinition of allowed momenta is all that is needed to reproduce the calculations
in 3.2. We can still use the special functions defined in the appendix (which are defined for

arbitrary boundary conditions), and we solve the same gap equation for A,
gUn(A, ) = =21 L(s — s.), (4.14)

and have the same formula for the ground state energy,

N N(s—s.)

5 T L2 A% (4.15)

— 2)
Ey = Q_Lg’l/Q(A’ 7)

However, we can now find the gap and the ground state energies in all four topological sectors
of the theory, and we will see below that the splitting between the ground-state energies is
important. The ground-state energies are proportional to N, so the energy splittings in the
O(2N)* theory will be N-dependent in the 1/N expansion, unlike the O(2N) case of Chapter
3. This N-dependence is a physical property of a system with 2/NV spinons, since the ground

state configuration of each field with a twist will each contribute equally to shift the energy
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Deg. || k=0 | k=1
1 0
2 1.921
9 3.0239
1 3.0244
25 6.048
66 7111 | 7.111
60 7.975
1 8.126
49 9.072

Table 4.4.2: Energy splittings L(E — Ey) and their degeneracies at s = s, for the O(4)* transition
from the large-N expansion with 7 = i. Here, kK = L|k|/2m. The ground state energy relative to

L =ocis LEy = —1.317. Here, we restrict to states that are even in the fields z,, which corresponds
to an antiferromagnet with an even number of S = 1/2 spins.

above the ground state of the system without a twist.

One consequence of the anti-periodic sectors is that there is no zero mode, so the massless
free particle spectrum |k| already has a gap. As a result, the saddle-point value of iA = A2
determined through Eq. (4.14) can take negative values, provided \/m is real for all
possible values of k.

We now consider the constraint of Eq. (4.3), requiring that the wavefunctional must be
either an even or odd function of the z,. These two cases correspond to an even or odd
number of spins in the underlying lattice antiferromagnet of interest. In terms of the results
in Section 3.3, this means we need to calculate the full spectrum for all of the relevant
boundary conditions, and then separate the spectrum into the states with even particle-

number states and odd particle-number states to describe the two possibilities.

4.4.2 EVOLUTION OF THE SPECTRUM OF A FUNCTION OF s — S,

When considering the deviation from the critical point, the topologically nontrivial sectors
correspond to extra features in the two neighboring phases. In a Z, spin liquid, the ground

state on a torus will exhibit a four-fold degeneracy up to exponential splitting in the sys-
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Deg. | k=0 |r=1/2|k=1/V2 | k=1 |r=V5/2| =12
4 1.512
16 4.516
16 || 4.536
16 6.463
16 6.694
36 7.560
32 8.719
16 9.013

Table 4.4.3: Energy splittings from L(E — Ej) for the O(4)* transition from the large-N expansion
with 7 = i and N = oo. Here, kK = L|k|/2m, and we restrict to states that are odd in the fields z,,
which corresponds to an antiferromagnet with an odd number of S = 1/2 spins. We are measuring
the energies with respect to the lowest energy in the O(4) model, LEy = —1.317, for comparison with
Table 4.4.2.

tem size. In addition, excited states in each topological sector will also contain a four-fold
degeneracy corresponding to excitations in the background of different flux sectors through
the holes of the torus. This topological degeneracy is the only remnant of the vison particle,
which has been integrated out to obtain the O(2/N)* model, so our theory only captures the

spectrum at energies well below the vison mass.

TOPOLOGICAL PHASE

This degeneracy is easily verified in our model; as shown above, the phase with s > s,
will have an energy gap even in an infinite volume, which results in the spectrum showing a
weak dependence on boundary conditions. This will cause the different topological sectors to

mL where m = 27(s — s.).

become degenerate up to an exponential splitting of magnitude e~
From solving Eq. (4.14) for s > s., one find that in all four sectors the gap approaches
A = m up to exponential corrections in the system size, and similarly the ground state

energies in this limit will become exponentially close.
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LE
—(a4,ay) ground states 30r
..... - k = 0 tower
Goldstone states 25/
singlets

1:5 LYV(s — s.)

1.0

Figure 4.4.1: (Color online) The evolution of the spectrum LE for the O(4)* model as a function of
the tuning parameter Ll/”(s — S¢) on the square torus, 7 = i. Note that v = 1 to leading order in
1/N. The energy levels are defined so that E = 0 at s = s. and L = oo. We label the states by their
behavior in the ordered region, distinguishing between the tower, the Goldstone modes, and the sin-
glet states. We also distinguish the four “ground states” of the different sectors (a1, a2) according to
Table 4.4.1, though the (A,P) and (P,A) sectors are degenerate for the square geometry. These states
become degenerate in the topological phase, while they represent Zy vortices in the magnetic phase.
Our choice of states is not exhaustive, but highlights the main features of the proximate phases.
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MAGNETICALLY ORDERED PHASE

In the magnetically ordered phase, s < s., the antiperiodic boundary conditions have an
interpretation as vortices of the order parameter. This can be seen from the parametrization
of the order parameter in terms of the spinon degrees of freedom in Eq. (4.10). As the spinon
field undergoes a smooth non-contractible twist around a cycle of the torus, z, — —z,, the
physical order parameter returns to its original configuration after traversing a topologically
nontrivial path in order parameter space. These correspond to vortices associated with the
first homotopy group, m(SO(3)) = Zy. Note that by only allowing twists in the order
parameter around the torus, we are ignoring local vortex configurations. This simplification
is analogous to ignoring the local vison excitations in the spin liquid phase, since a local
vortex will have some extra energy cost due to its core.

The energy cost of a vortex can be estimated by dimensional analysis. On general grounds,
in the ordered phase we can write the energy functional for the phase 6(z) of the order

parameter as

ps D) 2
£="5 /d z (V0,) (4.16)

where ps is a “spin stiffness” (really the stiffness of the condensed z, fields rather than
the physical spin order parameter), given by ps ~ N(s. — s) close to the large-N critical
point [73, 74]. We consider a smooth configuration of the field from z, — —z, as the order
parameter winds around either cycle, which have lengths |w; |. This contributes a gradient
of order Vz, ~ 1/|w; |, and the energy cost will be
A
5

|w1,2

E ~ N(s.—5) (4.17)

The estimate can be checked against the current model. For s < s., the solution of of gap

equation becomes

oyl | Enin| (4.18)
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LE
30r

— ground states
----- - kK = 0 tower 28]

Goldstone states

singlets s0l

/v
1_5L (s — s¢)

Figure 4.4.2: (Color online) The evolution of the spectrum LE for the O(4)* model as a function of
the tuning parameter Ll/”(s—sc) on the triangular torus, 7 = ¢™/3. Note that v = 1 to leading order
in 1/N. The energy levels are defined so that E = 0 at s = s. and L = oo. We label the states by
their behavior in the ordered region, distinguishing between the tower, the Goldstone modes, and the
singlet states. Note that the three sectors (A,P), (P,A), and (A,A) are degenerate in this geometry.
Our choice of states is not exhaustive, but highlights the main features of the proximate phases.

where |kpyin| is the minimum value of |k| allowed in a given topological sector (so Ky, is
always zero in the (P,P) sector). Solving Eq. (4.15) for the energy of a vortex in this limit

gives
NA(s. —s)

5 min]® 8 < 8¢ (4.19)

Evortex = Eo — EO,(P,P) =

This agrees with the above estimate since |kpyin|? ~ 1/|w;2|* in the different sectors.

RESULTS

We give the results for the low-lying O(4)* spectrum on a square torus at criticality in Tables
4.4.2 and 4.4.3, which contain the even and odd spin results respectively. We also give the
evolution of the spectrum as a function of s—s. in Figure 4.4.1, choosing some representative
states to depict the nature of the two phases.

We also comment on the triangular torus, 7 = ¢”™/3. This is an interesting case because
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numerical simulations on the triangular lattice are more easily performed using this bound-
ary condition, so these results have relevance to future studies on the J;-J; Heisenberg model
where the antiferromagnetic-spin liquid transition has been reported. For this special value
of the modular parameter, it turns out that all three nontrivial topological sectors are ex-
actly degenerate. This is due to the choice 7 = €™/? being invariant under the modular
transformation 7 — —1/(7 — 1), see the discussion below Eq. (4.6). In addition, this torus
has a discrete six-fold rotational symmetry, resulting in a highly degenerate spectrum for
finite-momentum states. The evolution of the spectrum for the triangular torus is shown in

Figure 4.4.2.

4.4.3 ANISOTROPIC CORRECTIONS

We now consider to the leading irrelevant operator in our theory,

L=~z V22 (4.20)

Asymptotically close to the critical point, this term is irrelevant and will not contribute to
universal physics. However, this term is dangerously irrelevant because it breaks the O(2N)
symmetry down to SU(N) for any deviation from the scaling limit. Therefore, the actual
energy levels for the transition will organize into SU(N) multiplets for any lattice model,
with a splitting determined by 7. The coefficient ~ is non-universal and will be determined
by microscopics, so in principle one must fit its value to a given spectrum.

We begin by discussing the nature of the splitting in terms of representation theory. The
real and imaginary parts of z, transform together as an O(2N) vector, but this represen-
tation will transform reducibly under the SU(N) symmetry of Eq. (4.20). Labelling the
irreducible representations by their dimension, the splitting of the O(2/N) vector into SU(N)
representations is

2N — No@ N, (4.21)
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where N and N are the fundamental and anti-fundamental representations of SU(N), which
we will shortly associate with spinons and anti-spinons. We can analyze the breaking of
higher representations of O(2N) by taking tensor products of the fundamental representa-
tion. For example, the splitting of the two-particle states can be obtained by taking the
antisymmetric or symmetric tensor product of the O(2N) vector, and use the known prop-

erties for adding SU(V) representations

N(N-1) NN -1

(NeN)®(NeN)|], = 5 & & (N -1 a1
(WoMeWwoN)], = "D MHD o (e o1 (22)

where the subscripts indicate antisymmetrizing or symmetrizing the direct product with
respect to the ordering of the O(2N) indices. Since the symmetric representation of O(2V)
contains an irreducible singlet, it must coincide with the singlet state in the last line of
Eq. (4.22).

We can make contact with our expressions in Section 3.3 by defining spinon and anti-
spinon operators and relating them to the O(2N) vector operators bl,. We expand the z,

field as

+cl(—k)). (4.23)

S ; W
Here, the dot product is given by k- x = Re(ka*), and E;(k) = \/W is the single-
particle energy at N = oo. Here, we are assuming that the perturbation v does not shift
the saddle-point value of the path integral, so we can perturb around the N = oo spectrum.

Since 2, transforms as an SU(N) vector, the particles created by ¢!, are spinons and the

particles created by al are anti-spinons. We can identify these with the O(2N) bosons
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defined earlier

1
N (YA Y it
cl NG (ba +ib, ., N
1 .
CL:; = E (bL — ZbL+N> . (424)

From these relations it is straight-forward to check that the embedding in Eq. (4.21) holds.

The decomposition of the two-particle states can be written

%)

b[TabL] — c;] + afaa;} + (cLaL — aLcJr —

[a

of dap
b~y (el - CLM)) + 5 (dal —ald])
0,
bt t ot bt bt aB
babpy — CaCh) T aaap) T (CL% +ajch, — (clal + CLM))

bf/bi/ — cLaLjLaLcL (4.25)

where the indices on the left run to 2N while the indices on the right run to N. If the two
states carry the same momentum there is no antisymmetric contribution.

We now apply perturbation theory on the degenerate states, using Eq. (4.25) to diagonalize
the perturbation. We define the dimensionless coupling ¥ = /L as well as the shorthand

Xao(k) = an(k) + ¢l (—k), and obtain the interaction Hamiltonian

(ks - kea) XE (k1 ) Xa (k) X (Rs) X (ky — by + )
k1,ka,k3#0 4\/El(kl)E1<k2)E1(k3)E1(k?1 — ko + kg)

(4.26)

Y
V., =
K TQL

The single particle energies of spinons and anti-spinons are shifted by the same amount, so
there is no splitting to one-particle states to leading order.

We will explicitly compute the shift in energies for the two-particle states in Eq. (4.25),
which are all degenerate at N = oo except for the singlet state in the last line. The per-
turbation will split these states, and can also split any possible degeneracy between states
with the same total momentum. We first ignore the latter possibility, which does not occur

for any of the states listed in the above tables. Recall that the two-particle state energies
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can be written as Eo(k) = E1(q) + E1(k — q) for some value of g. Then the splitting of the

antisymmetric representation is

N(N-1) N(N-1) gl |k — 2g/?
: AFE (k) = —
2 ’ 2 oy ( ) TQL 4E1(q)E1<k’ —q)
N2 1: ABy(k) — -2 k=)

- LAE (q)Bi(k —q)
Y N (lg?+ |k —ql’) —2¢- (k—q)

1: AFE (k) = , (4.27
while for the symmetric representation,
N(N+1) N(N+1 0! 2
(V) NV, g A A
2 2 7oL 4B\ (q)Ev(k — q)
o 2q - (k —
N?—1; ABu (k) = -1 2a-(k=4q) (4.28)

nLAE (Q)E\(k —q)

The subscripts refer to the states being in the symmetric, antisymmetric, singlet, or adjoint
representations of SU(N).

Summarizing the results to first order in v, the degeneracy of the antisymmetric repre-
sentation breaks down from N(2N — 1) to N(N — 1), N> — 1, and 1, while the degeneracy
of the symmetric traceless tensor representation breaks down from (2N — 1)(2N +2)/2 to
N(N +1) and N? — 1.

Note that the first-order correction is zero if the unperturbed particles all have zero mo-
mentum. Therefore, to first order there is no splitting of the “tower of states” in the anti-
ferromagnetic phase. Although we do not compute the magnitude for the splitting of the
states in the tower, we comment on the expected representations which should appear. In
Section 3.3.1 we saw that the tower of states for the O(2/N) model all belong to the symmet-
ric traceless tensor representations. For the case of interest, N = 2, the allowed degeneracies
in the tower becomes (2¢ + 1)? for ¢ = 0,1,2, ... where we use the constraint that only an
even number of particles are allowed. Repeating the above analysis by forming symmetric

products and subtracting out the traces, one finds that each of these states decomposes into
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deg. at y=0 | VAE, | k| ¢ | deg. at O(y) | VAAE
9 3.0239 10| O 9 0
1 1475
12 0
30 711 | 0| 1/2 . 0755
2 1.475
2 ~0.735
36 711 |1 1/2 » .
8 1015
24 0
60 7975 | 1] 0 94 1.015
4 2.027

Table 4.4.4: The two-particle states in the even sector of the critical O(4)* spectrum, taken from
Table 4.4.2, and their splitting due to the perturbation. The energies of these states are written as
Es(k) = Egs + E1(q) + E1(k — q), and we list the scaled momenta, x = L|k|/2m and § = L|q|/2m.
For further details, see the text.

(2¢+1) different SU(2) representations each with spin-¢. We also note that the spacing of the
even-particle spectrum for the O(4)* model should be proportional to 2¢(2¢ + 2) o ¢({ + 1),
which agrees with the spacing for the tower in an SU(2) antiferromagnet [52]. This quali-
tative structure of the spectrum, with (2¢ + 1) inequivalent spin-¢ multiplets in the tower
becoming approximately degenerate close to the critical point, is an interesting feature of
this theory which could give good evidence for the existence of an O(4)* transition and a
neighboring spin liquid phase.

For a definite example, we revisit the results for the even sector of the O(4)* model on the
square torus. In Table 4.4.4, we explicitly show all the two-particle states from Table 4.4.2
which are split by the perturbation, and give the magnitude of the splitting. Note that the
numerical value of all energies will be shifted from their unperturbed values, but here we
only give the energy splitting between states. The states listed in Table 4.4.4 turn out to be
the only states in Table 4.4.2 which are split at first-order in 7.

In principle, one can continue this process to higher-particle states, and to higher order
in 7. For a more complex O(2N) multiplet, one finds how the SU(NN) representations fit

inside the larger group, and use this to diagonalize the perturbation within the degenerate
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multiplet.

4.5 (CONCLUSIONS

In the present chapter, we have presented results on the finite size torus spectrum of a
class of critical points which are beyond the LGW paradigm. We related their spectra to
the Wilson-Fisher spectra considered in Chapters 2 and 3, and we compared analytic and
numerical results for the Ising® transition between a Zs spin liquid and a trivial paramagnet.

We also examined a two-dimensional antiferromagnet, with global SU(2) spin rotation
symmetry, which undergoes a transition between a gapped Z, spin liquid and coplanar
antiferromagnetic order. Such a transition is described by a O(4)* conformal field theory in
2+1 dimensions, which is closely related to the O(4) Wilson-Fisher conformal field theory.
We showed that its spectrum contains features which descend from the phases found on
either side of the critical point. The topological degeneracy on the gapped side evolves
into non-trivial boundary conditions and selection rules on the operators of the conformal
field theory. And the spontaneously broken spin-rotation symmetry on the other side yields
low-lying states with non-zero spin at the critical point.

We hope that our results will aid in analyzing numerical data on lattice models which
undergo transitions to ordered to spin liquid states. With the available data on the manner
in which the “tower of states” evolve into the spin liquid across a quantum critical point,

strong constraints become available on identifying the topological order in the spin liquid.
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CHAPTER 5

ENTANGLEMENT ENTROPY OF THE LARGE
N WILSON-FISHER CONFORMAL FIELD THE-

ORY

5.1 INTRODUCTION

The entanglement entropy (EE) has emerged as an important tool in characterizing strongly
interacting quantum systems [11, 86-94]. In the context of relativistic theories in 2 spatial
dimensions, the so-called F' theorem uses the EE on a circular disk to place constraints on
allowed renormalization group flows [11, 95-100]. For quantum systems with holographic
duals, the EE can be computed via the Ryu-Takayanagi formula [87], and this is a valuable
tool in restricting possible holographic duals of strongly interacting theories [101, 102].
Despite its importance, the list of results for the EE of strongly interacting gapless field
theories in 2+1 dimensions is sparse. The most extensive results are for CF'Ts on a circular
disk geometry in the vector large-N and small-e expansions [98, 99, 103-107]. Some results
have also been obtained [93] in the infinite cylinder geometry in an expansion in € = (3 —d),

where d is the spatial dimension, but the extrapolation of these results to d = 2 is not
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straightforward.

In this chapter we show how the vector large N expansion can be used to obtain the EE
in essentially all entanglement geometries, generalizing results that were only available so
far in the circular disk geometry. The large N expansion was also used in Ref. [93] in the
infinite cylinder geometry, but the results were limited to the universal deviation of the EE
when the CFT is tuned away from the critical point by a relevant operator. For a region

with a smooth boundary, the groundstate of a CF'T has an EE S which obeys
L

where 0 is a short-distance UV length scale, C' is the area law coefficient depending on the
regulator, L is an infrared length scale associated with the entangling geometry, and ~ is
the universal part of the EE we are interested in. We will compute v for the Wilson-Fisher
CFT with O(/N) symmetry on arbitrary smooth regions in the plane, and in the cylinder
and torus geometries. Our methods generalize to other geometries, and also to other CFTs
with a vector large N limit. We also obtain universal entanglement entropies associated with
geometries with sharp corners.

Our analysis relies on a general result which will be established in Section 5.2. We consider
the large NV limit of the Wilson-Fisher CFT on a general geometry using the replica method,
which requires the determination of the partition function on a space which is a n-sheeted
Riemann surface. The large N limit maps the CFT to a Gaussian field theory with a self-
consistent, spatially dependent mass [93]. Determining this mass for general n is a problem
of great complexity, given the singular and non-translationally invariant n-sheeted geometry;
complete results for such a spatially dependent mass are not available. However, we shall
show that a key simplification occurs in the limit n — 1 required for the computation of the
EE: the spatially dependent part of the mass does not influence the value of the EE. This

simplification leads to our main results. We note here that the simplification does not extend
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to the Rényi entropies n # 1, so we shall not obtain any results for the Rényi entropies of
the Wilson-Fisher CFT in the large N limit.

Section 5.2 will compute the EE for the Wilson-Fisher CFT on arbitrary smooth regions
in an infinite plane, and for regions containing a sharp corner, in which case (5.1) is modified.
In both these cases, and for other entangling regions in the infinite plane, the EE is equal to
that of a CF'T of N free scalar fields. Section 5.3.2 will consider the case of an entanglement
cut on an infinite cylinder. A non-zero limit of v/N as N — oo was obtained in Ref. [93]
for the free field case. We will show that a very different result applies to the Wilson-Fisher
CFT, with v/N = O(1/N). Section 5.3.3 considers the case of a torus with two cuts: here
v/N is non-zero for both the free field and Wilson-Fisher cases, but the values are distinct

from each other.

5.2 MAPPING TO A (GAUSSIAN THEORY

In this section we consider the EE of the critical O(N) model at large-N, and show that it

can be mapped to the EE of a Gaussian scalar field.

5.2.1 REPLICA METHOD

We first recall how the EE can be computed in a quantum field theory using the replica

method introduced in Refs. [86, 108]. The EE associated with a region A is given by

S = —=Tr(palogpa) (5.2)

where p4 is the reduced density matrix in A. A closely related measure of the entanglement

is the n-th Rényi entropy, which is defined as

1 n
Sy = - log Trp’} (5.3)
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where n > 1 is an integer. In the replica method, outlined below, the Rényi entropies are
directly computed from a path integral construction. One can then analytically continue n

to non-integer values, and obtain the EE as a limit
}ngi Sp =198 (5.4)
Equivalently, one can consider expanding log Trp"; to leading order in (n — 1), obtaining
log Trp’y = —(n —1)S 4+ O((n — 1)?) (5.5)

Thus, the small (n — 1) behavior of Trp’; is sufficient to compute the entropy S.
The computation of Trp’; proceeds as follows. We first consider the matrix element of the
reduced density matrix between two field configurations on A, ¢/,(x) and ¢’ (x). This can

be computed using the Euclidean path integral

P(x€AtE=0T)=¢} (x)

(@4 paldls () = 27 / Do(x, t)e (5.6)

P(x€AtE=07)=¢/, (x)

where Sg is the Euclidean action of the system. We then write the trace over p’ in terms

of these matrix elements

T = DD+ Doy (Gulpaldi) Ghloaldh) -+ 0L loald) 1)
Combining Eqns. (5.6) and (5.7), we obtain the path integral expression for Trp" as

.-
27
Here, Z, is the partition function over the n-sheeted Riemann surface obtained by performing

the integrations in Eq. (5.7). In particular, we consider n copies of our Euclidean field

theory, but we glue the spatial region (x € A,tg = 07) of the kth copy to the spatial region
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(x € A,tg = 07) of the (k+ 1)th copy, repeating until we glue the nth copy to the first copy.

This construction introduces conical singularities at the boundary of A.

5.2.2 ENTANGLEMENT ENTROPY FOR THE O(N) MODEL AT LARGE N

We now specialize to the critical O(/N) model in (2 + 1)-dimensions. We use a non-linear o

model formulation, writing the n-sheeted action as

S, = /d?’xn L,

! . N
[’n - §¢a <_8n+7'>\)¢a_2

ge

i\ (5.9)

where a runs from 1 to N and is summed over. Here, d®z,, and 92 denote the integration
measure and the Laplacian on the n-sheeted Riemann surface, respectively. The field \(z)
is a Lagrange multiplier enforcing the local constraint ¢(z)?> = N/g.. In the N = oo limit,

the path integral is evaluated using the saddle point method:

Z, = / D¢D e 5n

N
= /D/\ exp [—gTr log (=0 + i) +

N
/ dPx i/\]
29,

—logZ, = —gTrlog(—a,3+<z’A>n)+2]Z /d3:cn (iA), + O(1/N)  (5.10)

In the last equality, the saddle point configuration of the field A is determined by solving the

gap equation
1

G, @3 (IN)n) = 35(0(2))n = " (5.11)
where G, (z,2') is the Green’s function on the n-sheeted surface:
(=02 + (iX(2))n) Gu(m,2; (iN),) = 6°(x — ) (5.12)
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and the critical coupling is determined by demanding that the gap vanishes for the infinite

i:/ dp 1 (5.13)

ge (271')3172

volume theory on the plane:

In the absence of the entangling cut, n = 1, we denote the saddle point value of A as
(i\), = m] (5.14)

We assume that the one-sheeted geometry is translation-invariant, so m; is independent of
position. On the infinite plane we have m; = 0, but we will also consider geometries where
one or both dimensions are finite, in which case m; becomes a universal function of the

geometry of the system determined by

1
Gi(x,z;m3) = 0 (5.15)

On the n-sheeted Riemann surface, (i\(x)), is always a nontrivial function of position,
and the exact form of this function depends on the shape of the entangling surface and the
number of Riemann sheets n. The problem of determining this function can be addressed
numerically for fixed n, but for the purposes of obtaining the EE, we only need its spatial

dependence to first-order in (n — 1). In particular, we assume that we can write
(N2))p = mi+ (n—1)f(x) (5.16)

for some function of space-time f(x). Then to leading order in N and (n — 1), we have

N
/d3xn mi
29,

4 (n—l)ETr<&)—(n—1) N

2 -7 +m? 29

N
—log 2, ~ —Trlog (=02 +m7) —

/d3:z: f(z) (5.17)
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Then using the definition of G; and my,

Tr (ﬂ> _ /d% G, 22 m2) () = l/d%f(a:) (5.18)

_812 + m% e

implying that that last line of Eq. (5.17) vanishes, and f(z) does not contribute to the EE.

After using [ &z, = n [ d*z, we can write

Z, N
—log Eaiy {Tr log (—02 + m}) — nTrlog (—07 + m3}) } (5.19)
1
This final expression is equal to the quantity — log Trp” computed for N free scalars with

mass my and the action

L, = ¢a (=0, +mi) ¢a (5.20)

Therefore, the EE of the critical O(N) model at order N is equal to the EE of N free scalar
fields, where the free fields have the same mass gap as the O(/N) model on the physical, one-
sheeted surface. Similar results will apply to other large-IN vector models. For instance, in
Appendix B.2 we follow very similar steps to show that the EE of the fermionic Gross-Neveu
model maps to that of N free Dirac fermions. The mass of the free fermions is determined

self-consistently by the spatial geometry of the physical single-sheeted spacetime.

5.3 ENTANGLEMENT ENTROPY IN PARTICULAR GEOMETRIES

5.3.1 ENTANGLEMENT ENTROPY ON THE INFINITE PLANE

We first consider the EE when the system is on the infinite plane. In this case, m; = 0, and
the EE associated with a region A is equal to the EE of N massless free scalars in the same
region.

One entangling region for which there are known results is the circular disk. According to
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the F-theorem [11], the universal part of the EE for the disk is given by
Ydisk = = — lOg ’ZSS‘ (521)

Here, Zgs is the finite part of the Euclidean partition function on a three-sphere spacetime.
This quantity was computed in Ref. [98] for massless free scalar fields and for the large-N
O(N) model, and they were found to be equal at order N in agreement with our general

result given above. Explicitly,

N 3
Vdisk = I (2 log2 — 3%) (5.22)

where ((3) &~ 1.202. Our results also apply to regions with sharp corners, in which case we
can make non-trivial checks of our general result, as we now discuss.
ENTANGLEMENT ENTROPY OF REGIONS WITH CORNERS

When region A (embedded in the infinite plane) contains a sharp corner of opening angle 6,

the EE of a CFT (5.1) is modified by a subleading logarithmic correction [109, 110]
L
S = C’g —a(f)log(L/6) + - - - (5.23)

where the dimensionless coefficient a(f) > 0 is universal, and encodes non-trivial information
about the quantum system. Since we work in the infinite plane, according to our analysis

above, the large-N value of a(6) will be the same as for N free scalars, namely
awr(0) = N agee(0) + O(N?) (5.24)

The non-trivial function age(#) for a single free scalar was studied numerically and analyti-
cally by a number of authors for a wide range of angles [109, 111-115]. Interestingly, we can

make an analytical verification of the relation (5.24) in the nearly smooth limit, by virtue of
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the following identity that holds for any CFT [111, 116, 117]

2
a(f ~7) = 7T2ZT

0 —7m)*+0((0—m)" (5.25)

Here, C'r is a non-negative coefficient determining the groundstate two-point function of the

stress tensor T,

(T (2)T505(0)) = 7,

:;; umnﬁ($) <5'26)
where 7, ,.(2) is a dimensionless tensor fixed by conformal symmetry [118]. Eq. (5.25)
was conjectured [111] for general CFTs in two spatial dimensions, and subsequently proved

using non-perturbative CFT methods [117]. Now, Cr is the same at the Wilson-Fisher and

Gaussian fixed points [119] at leading order in N:
CNY = NCI*e + O(N?) (5.27)

which, when combined with Eq. (5.25), leads to a non-trivial confirmation of (5.24) in the

3
3272

nearly smooth limit § ~ 7. (We note that CI*® = using conventional normalization

[118].)

The knowledge of C'r can be used to make a statement about a(f) away from the nearly
smooth limit because the existence of the following lower bound [114]: a(#) > C’T%2 log [1/sin(6/2)],
which follows from the strong subadditivity of the EE, and (5.25). We see that applying this

bound to the large-N Wilson-Fisher fixed point is consistent with our result (5.24).

5.3.2 INFINITE CYLINDER

We now compute the EE of the semi-infinite region obtained by tracing out half of an infinite

cylinder. The relevant geometry is pictured in Fig. 5.3.1. We can take the position of the
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Figure 5.3.1: The geometry considered in calculating the entanglement entropy on the infinite cylin-
der.

cut to be at x = 0 by translation invariance. As for the disk, we can write the EE as

L
S = CS — Veyl (528)

where 7.y is the universal part. The existence of a universal v, in critical theories was
first established [92, 120, 121] for the z = 2 quantum Lifshitz model using the methods
of Ref. [90]. In the context of CFTs, this geometry was considered in Ref. [93], where the
entropy v was computed for massless free fields and for the Wilson-Fisher fixed point in the
¢ = (3 — d) expansion (where the extra dimensions introduced in the e-expansion are made
periodic with circumference L).

We first review the calculation of the entropy for free massive fields, which will allow us
to calculate the EE for the Wilson-Fisher fixed point for large N. We allow for twisted

boundary conditions along the finite direction

Oz, y+ L) = ¥ o(x,y) (5.29)

Here, ¢, € [0,27). We note that unless ¢, = 0,7, the fields ¢ are complex. In this case, we
are considering N/2 complex fields, and the O(N) symmetry of the theory breaks down to
U(1)xSU(N/2).

This geometry allows a direct analytic computation of the n-sheeted partition function for
free fields by mapping to radial coordinates, (tg,z) = (rcos@,rsinf). In these coordinates,

the n-sheeted surface is fully parametrized by giving the angular coordinate a periodicity of
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2mn. In Refs. [86, 93], it was shown that the n-sheeted partition function for free fields can

be written in terms of the one-sheeted Green’s function:

Z N
—log Z—Z = 3 {Tr log (—82 + m2) — n'Trlog (—02 + mQ)
1
- % (n - %) LGy (z,z;m?) (5.30)

Then using Eq. (5.5), the EE is given by

S = %LGl(x,x;mQ) (5.31)

In Appendix B.1, we compute the Green’s function for a massive free field on the cylinder.
Using Eq. (B.5), and making the cutoff dependence explicit, we find the regularized part of
the EE to be (see also Ref. [122])

N
Y = 5 log [2 (coshm L — cos p,)] (5.32)

For m = 0, this reduces to Eq. (5.12) of Ref. [93], and indeed displays a divergence for
a periodic boundary condition ¢, = 0 due to the zero mode. We note that the universal
contribution to the EE of N/2 complex free scalar fields is of order N, as one would expect
from a free field theory with N degrees of freedom.

We now turn to the Wilson-Fisher fixed point. In a finite geometry, the Wilson-Fisher
fixed point will acquire a mass gap m; which is proportional to 1/L and depends only on
¢y This is computed by solving G4 (z,z;m?) = 1/g., which is done in Appendix B.1. The
result is

1 1
my = Earccosh (5 + cos g0y> (5.33)
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Then from the arguments of Section 5.2,

N
Yerl = T3 log [2 (coshm; L — cosp,)] =0 (5.34)

It happens that for the saddle point value of the mass, the universal part of the EE vanishes
for all values of the twist ¢,. The leading contribution to 7. will be of O(NY), a drastic
reduction from Gaussian fixed point which is of order N.

This result can be seen more directly from Eq. (5.31). The gap equation implies that
Gi(x,x;m?) = 1/g., so without even solving for my, the EE can immediately be written

N L
3 ge

(5.35)

However, the critical coupling is completely non-universal and independent of L. Using a

hard UV momentum cutoff 1/4,

1 _/1/5 Bp 1 B 1 (5.:36)
ge (2m)p? 272 '

and the EE is pure area law, S o< L/4.

In fact, this result can be extended to other geometries. The result 7., = 0 for the large-
N Wilson-Fisher fixed point occurred because the entropy is proportional to G1(x,z;m?).
However, the results of Refs. [86, 93] imply that the expression for the free-field entropy given
in Eq. (5.31) holds for any system where the entangling cut is perpendicular to an infinite,
translationally-invariant direction. Thus, if we consider the large-N Wilson-Fisher CFT on
any d-dimensional spatial geometry with at least one infinite dimension, the universal part
of the EE obtained by tracing out over half of that dimension is O(N?). This argument only
holds in dimensions where the Wilson-Fisher CFT exists, so for 1 < d < 3. In particular,
this result agrees with the large-N limit of the e-expansion calculation in Ref. [93], which

considered the Wilson-Fisher CFT on the (3 — ¢)-dimensional spatial region R x T?~¢, where
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b) La

44
AR

Ly 4 A 4
‘\/LA' “

Ly

Figure 5.3.2: a) Two dimensional (flat) torus. b) Its representation in the plane. We analyze the
entanglement entropy of region A.

a)

A\ 4

T? is the d-dimensional torus. This constitutes a non-trivial consistency check on both
calculations.

Finally, we note that similar results apply to other large N models. As shown in Appendix
B.2, the EE for the Gross-Neveu CFT maps to that of N free Dirac fermions, where the
mass of the fermions is determined by the spatial geometry of the one-sheeted spacetime,
Tr G (z,2;m;) = my/g?. Here, the critical coupling 1/¢? is again a non-universal quantity
which cannot depend on the spatial geometry of the system, and is proportional to the UV
cutoff. Then using the results of Ref. [86], it can be shown that S o« G¥ for free fermions
on the spatial geometries discussed in the previous paragraph, and therefore v = O(N?) for

the large-N Gross-Neveu CF'T on the infinite cylinder.

5.3.3 TORUS

We study the EE of the large-N fixed point on a spatial torus, as shown in Fig. 5.3.2. For a

CFT, we expect the following form for S [123, 124]

S = 027?’ — Yior (U T) (5.37)

where we have defined the ratio

w=Lu/L, (5.38)
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and 7 is the modular parameter, 7 = iL,/L,, for the rectangular torus we work with. v, is
a universal term that we shall study at the large-N Wilson-Fisher fixed point.

As discussed in Section 5.2.2, the EE at leading order in N is given by that of N/2 free
complex scalars with a mass m; determined by the geometry. m; is thus the self-consistent
mass on the torus for a single copy of the theory. It obeys the scaling relation m, L, = g(7),
where 7 is the aspect ratio of the torus, and g is a non-trivial dimensionless function given in
Chapter 3. m; depends on both twists along the 2- and y-cycles of the torus, ¢,, ¢,. Since

yfree for a massive free boson is not known, we will numerically study the (u, 7)-dependence

of ,}/WF

tor

by working on the lattice.

However, before doing so, we describe two limits in which we can make statements about
Vtor- First, we consider the so-called thin torus limit for which L, — 0, while Ly, L, remain
finite, i.e. 7 — 700 and wu is fixed. For generic boundary conditions, we have that the torus
EE approaches twice the semi-infinite cylinder value [123, 124] discussed above, Yor — 27¢y1-
This holds in the absence of zero modes, which is the generic case. Our result Eq. (5.34)
implies that v, = O(N°) in that limit. However, this cannot hold at all values of 7.
Indeed, for any fixed 7 let us consider the “thin slice” limit L4 — 0. There, ~, reduces
to the universal contribution of a thin strip of width L, in the infinite plane [123, 124],
Yior = kLy/La, where the universal constant x > 0 can be computed in the infinite plane.
k is thus independent of the boundary conditions along x,y. Applying our mapping to free

fields, this means that at leading order in N

rWVE = Nfree (5.39)

where £ ~ 0.0397 for a free scalar [109]. By continuity, we thus expect that for general u

and 7, YWF will scale linearly with N in the large-N limit. We now verify this statement via

tor

a direct calculation.
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LATTICE NUMERICS

The lattice Hamiltonian for a free boson of mass m; can be taken to be

L,—1

H=3Y D (I, )+ 16, i+ 1) = 0, () + o, () (5.40)
w,zy = 4sin®(k,/2) +m3 (5.41)

where the theory is defined on a square lattice with unit spacing, 7, (i) is the operator
canonically conjugate to ¢y, (i), and |A]> = ATA. The index ¢ runs over the L, lattice sites in
the x-direction. Crystal momentum along the y-direction remains a good quantum number

in the presence of the entanglement cut, and is quantized as follows

2mn
ky=—%+
) Ly

(8

<

, (5.42)

where the integer n, runs from 0 to L, — 1, and ¢, is the twist along the y-direction. We
note that the Hamiltonian (5.40) corresponds to L, decoupled 1d massive boson chains:
H =3, Hia(ky), each with an effective mass wy,. This means that the EE is the sum
over the corresponding 1d EEs: S = -, Sia(ky). For each 1d chain, the EE for the
interval of length L4 < L, is obtained from the correlation functions X;; = (¢'(i)¢(j)) and
Py = (n'(i)m(j)), where we have suppressed the k, label. The prescription for the EE is
then [109]

Sia=Y_ [(ve+3)log(ve+ %) — (ve — 1) log(ve — 3)] (5.43)
¢

where v, are eigenvalues of the matrix /X P4, with the A meaning that X;; and F;; are
restricted to region A. This method was previously used to study the EE of free fields on
the torus [122-125].

To obtain the universal part of the entropy we first need to numerically determine the area
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law coefficient C' (5.37), which we find is C' ~ 0.07745. We can then isolate the universal
part, vior, by subtracting the area law contribution. The result for a square torus, i.e. 7 =1,
is shown in Fig. 5.3.3, where we compare the Wilson-Fisher fixed point with the Gaussian
fixed point. Only 0 < u < 1/2 is shown because the other half is redundant by virtue of the
identity ior(1 — u) = Yor(u), true for pure states. We set ¢, = 0 and ¢, = 7 (since fully
periodic boundary conditions yield a divergent v32%%), which leads to a purely imaginary
mass myL, ~ 11.77078 for the Wilson-Fisher theory, while m; is naturally zero at the

Gaussian fixed point. The imaginary mass does not cause a problem since k; +m? > 0in the

presence of the twist, (5.42). From Fig. 5.3.3, we see that v,

vor Scales linearly with N as was

anticipated above. However, contrary to the case of the infinite plane, the EE of the Wilson-
Fisher fixed point is reduced compared to the Gaussian fixed point, yWF (u) < y&2us(y) for
all values of u. The difference between the EE of the two theories decreases in the thin
slice limit w — 0, where we have the divergence 7o, = x/u, with the same constant x for
both theories, Eq. (5.39). This constant has been calculated in a different context [109],
k = Nk = N 0.0397, and fits our data very well. Another consistency check is that i, (u)

should be convex decreasing [124] for 0 < u < 1/2, which is indeed the case in Fig. 5.3.3.

5.4 (CONCLUSIONS

The large N limit of the Wilson-Fisher theory yields the simplest tractable strongly-interacting
CFT in 2+1 dimensions. In this chapter, we have succeeded in computing the entanglement
entropy of this theory using a method which can be applied to essentially any entanglement
geometry. In particular, for any region in the infinite plane, the EE of the large-N Wilson-
Fisher fixed point is the same as that of N free massless bosons. In contrast, when space is
compactified into a cylinder or a torus, the results will differ in general as we have illustrated
using cylindrical entangling regions. Our results naturally extend to other large-N vector

theories, like the fermionic Gross-Neveu CFT (Appendix B.2).
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Figure 5.3.3: The universal EE ;. of a cylindrical region, L4 x L, cut out of a square torus, L X L.
The red dots correspond to the interacting fixed point of the O(/N) model at large IV, while the blue
squares to the Gaussian fixed point (IV free relativistic scalars). We have normalized ~yior by N. The
data points were obtained numerically on a square lattice of linear size L = 152. The line shows the
expected divergence in the small u limit, the same for both theories.

In the case of the EE of the semi-infinite cylinder, 7.y, Ref. [93] has compared its value

at the UV Gaussian fixed point and the IR Wilson-Fisher one using the € expansion. For

R

y1|, suggestive of the potential of

these two specific fixed points, it was found that [ygY] > [v¢

Yey1 to “count” degrees of freedom. Our results at large IV, however, show that the opposite

R

+i| is possible. Indeed, let us consider

can occur for certain RG flows. Namely, [y5)] < |7
the flow from the Wilson-Fisher critical point to the stable fixed point describing the phase
where the O(N) symmetry is spontaneously broken [9]. In the UV, we see that 2" ~ N°
does not grow with N, while at the IR fixed point 72" ~ N due to the (N — 1) Goldstone
bosons [126]. This holds for generic boundary conditions ¢, # 0.

It is also of interest to obtain the Rényi entropies of such an interacting CFT, notably
for comparison with large-scale quantum Monte Carlo simulations which can usually only

yield the second Rényi entropy [127, 128]|. Unfortunately, this is a much more challenging

problem, because the full z-dependence of the saddle-point (iA(x)), in (5.12) is needed on
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a n-sheeted Riemann surface. Numerical analysis will surely be required, supplemented by

analytic results in the limit of large and small .

104



CHAPTER 6

CRITICAL BEHAVIOR OF AN IMPURITY AT
THE BOSON SUPERFLUID-MOTT INSULATOR

TRANSITION

6.1 INTRODUCTION

The quantum phase transition between a superfluid and a Mott insulator in two dimensions
represents one of the best studied examples of quantum critical matter, both theoretically
and experimentally. The critical properties of this transition are described by a strongly
interacting relativistic quantum field theory in the O(2) Wilson-Fisher universality class
[9, 129]. This phase transition can be realized experimentally using cold atoms trapped in
optical lattices [12, 130, 131].

In this chapter, we study the superfluid-insulator transition in the presence of an impurity
degree of freedom, motivated by recent numerical work by Huang et al. [132] of the lattice
Bose-Hubbard model. Their study models the presence of an impurity in terms of a trapping
potential, representing the attachment of charge to the impurity. With the bulk taken to be at

the superfluid-insulator quantum critical point, they found a remarkable quantum transition
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at the impurity, where the total boson number trapped by the impurity jumped by unity.
Despite the jump in the boson number, the transition is second order because it is associated
with divergence in the size of the screening cloud. They find the emergence of scale-invariant
behavior for a critical value of the trapping potential, suggesting the emergence of a new
universality class associated with the impurity degree of freedom.

Models of impurities coupled to an interacting bulk critical theory were considered in
References [133, 134]. Furthermore, a model of impurities coupled to a bulk interacting
critical theory was investigated in Refs. [135-137]. The latter model describes the effect of
impurities coupled to quantum antiferromagnets close to their critical point. In that work,
the impurities are represented by a localized spin degree of freedom which coupled to the
bulk quantum field theory, and a stable interacting fixed point was found perturbatively in
the € = 3 — d expansion. This novel impurity-driven critical behavior led to new observables
associated with the impurity degree of freedom.

Here we take a similar approach in studying the superfluid-insulator transition coupled to
impurities. We will argue for the particular form of an impurity-bulk interaction to model
the critical behavior, and study the resulting theory in the e expansion. Working with a
slightly generalized model, we will find an interacting fixed point, and calculate the new
critical exponents associated with the theory. Unlike the case with the antiferromagnet, this
impurity fixed point has a single relevant perturbation which does not break any symmetries:
this relevant direction corresponds to the tuning of the magnitude of the trapping potential.
We will also determine the universal dependence of the finite temperature compressibility
on the impurity degree of freedom at the fixed point. The exponents and the compressibility
can be related to those calculated numerically in Refs. [132, 138].

The chapter is arranged as follows. In Section 6.2 we discuss the microscopic model
of Ref. [132], and argue for the form of the universal quantum field theory describing its
universal properties. We set up the form of the e expansion of a generalized form of the

theory. Section 6.3 describes how the diagrammatic expansion of the model is constructed,
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and gives the expansion to two-loop order. We give a summary of the renormalization group
equations in Section 6.4, and give our predictions for the critical exponents of the model. In
Section 6.5, we determine the universal contribution of the impurity to the finite temperature

compressibility of the model, and we conclude in Section 6.6.

6.2 THE MODEL

6.2.1 CONTINUUM FIELD THEORY

We seek the critical theory describing the microscopic model studied numerically in Ref. [132].

This is given by

H1—%bzbj—i—%;ni(ni—l)—u;ni—i—Vno (6.1)
where bzT is a boson creation operator on site i, (- --) denotes nearest-neigbors, and n; = bjbi.
The model is studied at constant density with unit filling fraction, where a bulk critical point
between a superfluid and insulating state is known to exist at the values U, = 16.7424(1)
and p. = 6.21(2) [139, 140]. For V' = 0, it is known that the bulk transition is described
by the relativistically-invariant O(2)-symmetric Wilson-Fisher conformal field theory [129],

given by the Hamiltonian

2
o= { e (Q%)Q} (62)

2 41

where the index runs from o/ = 1, 2. The coupling s, has been fine-tuned to its critical value,
and ug flows to a universal value in the infrared. The fields ¢,/ (z,t) and 7, (z,t) represent
the bulk order parameter and its canonical conjugate respectively, obeying the commutation

relation

[¢a/ (35, t), Uyes (,CE/, t)] = 5a/5/5d(a: — 2?/) (63)
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The velocity scale ¢ depends on microscopic details of the system, and will henceforth be set
to unity.

In Ref. [132], it was found that the addition of the impurity potential V' leads to new
critical behavior. As the potential is turned on, it is found that charge is either depleted or
concentrated at the origin depending on the sign of V. The density profile is characterized
by a half-integer charged core, and a half-integer charged halo located at a radius &, from
the origin. The sign of the halo charge flips across the critical point.

At a critical value of V', the halo size, &, diverges to infinity, indicating the onset of scale
invariance. If the coupling V' continues to increase, the charge of the halo changes sign and
contracts back to the origin; so this is a transition between a system with total charge @

and () = 1. The radius of the halo is observed to have the universal behavior
& o |V =V, |77 (6.4)

with v, = 2.33(5) [132].
In seeking the critical theory, we need to couple the bulk Hamiltonian Eq. (6.2) to a field
describing the impurity degree of freedom. This theory retains the O(2) invariance. We

claim that the correct impurity coupling is given by

~ ~

Hinp = =70 | 01(2 = 0)S, + 63(x = 0)5,| + h.S. (6.5)

where S, represents a spin-1 /2 degree of freedom defined at = = 0; a spin S = 1/2 impurity
model has also been proposed and studied independently by Chen et al. [138]. The impurity
site density nyg, is related to the spin via S, =ng— Q + 1/2 for a transition between @) and
@ — 1. We also note that a scalar-spin interaction of this form was studied in a different
context by Zardnd and Demler [141]. Here, the two couplings 7o and h, are both relevant
in d = 2. The O(2) symmetry of the impurity is generated by S, and at h, = 0, there is

an exact two-fold degeneracy between the S, = +1 /2 states, which reproduces the two-fold
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degeneracy of the microscopic theory at the critical impurity potential V' = V.. between the
different charge sectors. We will argue below that the coupling 7, flows to a universal value
which controls the critical behavior of the impurity degree of freedom.

Our analysis will also consider the case where the impurity S, has a generic spin S. This
corresponds to possible multicritical points where 25 + 1 states become degenerate at the
impurity. In the Bose-Hubbard model, we would have to tune 25 couplings to achieve this. In
the field theory, the 2.5 relevant couplings correspond to the operators S’f , with 1 < p <25,

We will only consider the scaling dimension of the p = 1 operator here.

6.2.2 EXPANSION IN €

We will work with a generalization of the above theory, given by

A

H = H¢ - ’70¢O/(JZ = 0)80/ (66)

Here, the first term is the Hamiltonian for the O(N)-symmetric scalar field theory in d spatial

2
H¢:/dda:{7ri+(v¢;) +Sc ¢i+%(¢i)2} (67)

dimensions,

We use the notation where unprimed indices run from a = 1,2,..., N, while primed in-
dices only take the values o/ = 1,2. Summation is implied over repeated indices, and it is

understood that ¢2 = ¢npa. The operators S,(t) satisfy the SU(2) algebra,

[Saugﬁ] = ieaﬁv‘gv
Tr (S*QS/;) - %(25+1)S(5+1)5a5 (6.8)

where the spin operator only takes the values a = 1,2,3. We continue to label the 1 — 2
directions with primed indices, and refer to the third direction as the z—direction. We

note that the total Hamiltonian in Eq. (6.6) has O(2) x O(N — 2) symmetry. Here we will
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allow arbitrary values of spin, S, and give results for S = 1/2 at the end of the calculation.
Although the operator S, does not appear in this Hamiltonian, it has nontrivial correlations
in the interacting theory due to the commutation relations. Its scaling dimensions will then
determine the critical exponent associated with perturbing this theory by a term h,S,.

We will study this system in the ¢ = 3 — d expansion. We will use the minimal subtraction
renormalization scheme of Ref. [24], where s, = 0 and the bare fields and interaction strength

are replaced by

¢a = \/Equa
12y
= 6.9
Ug Sit Z2g (6.9)
Here, 1 is an arbitrary energy scale, g is a dimensionless coupling constant, and
2
(6.10)

= Ty any

is a convenient phase factor. To leading order in ¢, the renormalization constants are given

by
_ (N +2) ,
SR VPR
(N +8) (N+8)2 (5N +22)\ ,
Zy = 1 — 6.11
1 T 9T Taee 36 )7 (6.11)
The beta function follows immediately from Eqns. (6.9) and (6.11)
dg (N+8) , (BN+14) ,
=pu-2| =- 2t 6.12
Bo=ng . g+ (g9 oY (6.12)

from which we determine the bulk fixed point by finding the value of g where the beta

function vanishes:
. 6e {1 3(3N + 14) }

S |t e

T (6.13)
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The addition of a localized bulk-impurity interaction cannot significantly alter the bulk
correlation functions, so the above results also hold for the full theory H. However, we must
now consider the renormalization of the impurity operators and their interaction with the

bulk order parameter. We define the constants

Sa/ — \/?SRO/

gz = \/ZSRZ

_ p*z,
e
NV

Here, v is another dimensionless renormalized interaction, and we have introduced another

(6.14)

convenient phase factor

~ I'd/2—-1)
Se=— (6.15)
In terms of the above constants, we find that the impurity beta function is given by
€ d /
g $7+ 78,4 1og (2,/VZ7)
R d (6.16)

T - 1472 log (ZW /\/ZZ’>

One major result of this paper is the determination of the beta function to two-loop order,
from which we find an infrared fixed point at a critical value of v* which is perturbative in
€. The major observables associated with this fixed point are the universal decay of the spin

operators. We introduce the anomalous dimensions,

(5.08.0)) ~ (6.17)
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where algebraic decay is forced by scale invariance, and the exponents are given by

n = ﬁv logZ’—l—ﬁg—logZ’
g

n, = 57 log Z, —|—5g—logZ (6.18)

dry

These anomalous dimensions, which are twice the scaling dimension of the spin operators,
are new data associated with the universality class of this phase transition.

Once the anomalous dimension of S, is determined, we can also determine the critical
exponents associated with perturbing the critical theory. The leading relevant perturbations

to Eq. (6.6) are given by

AH, = h.S. (6.19)

for any of the three S,,. This perturbation will introduce a large timescale £ characterizing an
exponential decay of the spin correlation functions, and by scaling arguments, it is straight-

forward to show that

_ |h/|—1/
= K| (6.20)
where
V= b
C1-n)2
1

, = ——— 6.21
14 1 _ nz/z ( )

Here, exponent v, corresponds to the critical exponent defined in the microscopic model

above.
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6.3 RENORMALIZATION

We determine the renormalization parameters above using bare perturbation theory. In
particular, we will work in imaginary time 7, and compute the following correlation functions

to two-loop order:

G'(T)ow = (Sw(r)S(0))
G:(r) = (5.(5.0))

Vi, T)owy = (Gwlz.7)55(0)) (6.22)

All correlation functions are understood to be imaginary time-ordered, we take 7 > 0, and
a trace is taken over the spin indices. This calculation will result in divergences in the form
of poles in €, but we choose the constants Z’, Z3, and Z4 such that these poles cancel when
the correlation functions are expressed in terms of renormalized operators and couplings.

Due to the nontrivial commutator in Eq. (6.8), the perturbative expansion for these cor-
relation functions does not obey Wick’s theorem, nor do disconnected diagrams cancel. We
must expand the numerator and denominator of the correlation functions separately as a
series in ug and vy, and by carefully keeping track of the time-ordering of the spin operators
we can obtain the desired correlation functions. This procedure can be represented by a
form of diagrammatic perturbation theory developed in Ref. [136].

We first write the correlation function of the interacting theory in terms of free correlators,
where the free part of our theory is the quadratic part of H.

_ (O ),

(0) = ), (6.23)

We introduce a finite inverse temperature § as an intermediate step. The Hamiltonian which
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appears on the right-hand side is the interaction Hamiltonian,

Uop

Hr = I/ddx (¢1a($)2)2 — Yob1ar (€ = 0) S (6.24)

The operators ¢, are the familiar interaction representation of our original bosonic fields
(the interaction and Schrodinger representations of S, are equivalent in our model). Then we
expand the exponentials in the numerator and denominator, and the expectation values break
into simple products of bosonic correlators and spin correlators. The bosonic operators obey
Wick’s theorem, so we obtain integrals over products of the free finite-temperature bosonic

Green’s function:

Dr(x,7) = (da(x, 7)d5(0,0))o (6.25)

However, the time-ordering over spin expectation values will result in a corresponding time-
ordering over dummy integration variables.
We represent the imaginary time-ordered expectation value of an arbitrary operator (A)g

with the following diagrammatic rules:

o Every diagram contains a single directed loop along which imaginary time runs peri-

odically from 0 to (3, represented by a full line.

o External factors of S’a(r) contained in A are represented by open circles placed on the

directed loop at the appropriate external value of 7.

» External factors of ¢, (7, z) contained in A are represented by open boxes which are

placed outside of the directed loop.

» Factors of the interaction 7, are represented by closed circles placed on the directed

loop, and a bosonic propagator always emerges from this vertex.

o Factors of the interaction ug are represented by a filled square, which connects to four

bosonic propagators.
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« Internal bosonic propagators connecting vertices placed at (z;,7;) and (x;,7;) give a
factor of Dr(z; —x;,7; —7;), and we integrate over all internal x; and 7,. However, the
ordering of all the 7;’s appearing on the directed loop must be kept in determining the

integration region.

o We trace over the spins along the directed line. If there are no spin operators inserted,

this is interpreted at TrI = (25 + 1).

We obtain the correction to (A) at a given order of uy and vy by writing down all possible
diagrams which obey the above rules and have the correct number of interaction vertices,
and then sum them. We will demonstrate how to apply these rules in detail for the relatively

simple one-loop case, before giving the full two-loop results.

6.3.1 SPIN-SPIN CORRELATION FUNCTION

We show the lowest-order diagrams contributing to the spin-spin correlation functions in
Fig. 6.3.1.(b). Below we will evaluate spin traces using the identities enumerated in Appendix

C.1. We first write out the diagrams in the denominator, obtaining from the above rules

=(2S+1)+ Tr ’Yo/ dﬁ/ droDp(m — T2) + (6.26)

We then rewrite this expression for reasons which will become clear shortly:

Z = (25+1)+ (25+) S+1 {/ dﬁ/ d72+/ dT1/ drs

T B
-+ / d7'1 / dT2:| DT(Tl — TQ) —|— s (627)
0 T

We now consider the numerator of the spin-spin correlator in Eq. (6.22), given by the
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> O > <D

(a)

O

(b)

Figure 6.3.1: The diagrammatic expansion for the spin-spin correlation function at one-loop, us-
ing the Feynman rules specified in the Section 6.3. The diagrams contributing to the numerator and
denominator of the correlation function are pictured in (a) and (b) respectively. As described in the
main text, the integrals contributing to the numerator and denominator can be combined, so that we
only need to keep track of differing spin traces.

diagrams in Fig. 6.3.1.(a).

A ~

2ZG(r) = Tr( .\ 5>+Tr<5' SoS, 3 70/ dT1/ dryDr(11 — 72)
+ Tr

+ Tr

Dl\?

/ dTl/ dTgDT T1 — Tz) (628)

Here, we take the external indices to either be o/, 8’ to define G'(7), or 3 to denote G3(7).
We notice that the three integrals contributing to the numerator are identical to the three
we used to split up the denominator. Thus, to calculate the full correlation function, we only
need to compute these three integrals and keep track of the difference in spin traces which
appear in the numerator and denominator. This simplification is minor for the one-loop

case, but it simplifies the two-loop calculation enormously.
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We now write the one-loop correlation function in terms of the spin traces given in Ap-
pendix C.1. Here, the traces on the right-hand side correspond to either the S/ or §7 in the

appendix depending on whether the left-hand side represents the correlator G'(7) or G*(7)

respectively.
S(S+1 25(5+1 T T
G(r) = %{H {Sl - %} 73/ dﬁ/ dryDr(m — 1)
0 T1
25(S + 1 8 7
i {gl_%] yg/ dﬁ/ dry Dy (11 — 73)
25(S +1 T g
+ [Sz _286+1) 3+ )] Wg/ dﬁ/ dryDr(m — 72) + - } (6.29)
0 T

We now consider the evaluation of these integrals. For the purpose of renormalizing our

theory, we can work in the 7' = 0 limit, where the bosonic propagator takes the form

ddk‘ dw 6—iwr gd-&-l
D B o - .
o(7) / (2m)d 2 k2 4+ w2 |7[d-! (6.30)

Finally, the integrations over imaginary time must be extended with care, since imaginary

time is really compact: 5 ~ 0. Therefore, we need to extend the integration domain as

/OB—>/OOO+/_ZO (6.31)

so that the integration still forms a loop in imaginary time. So the three integrals appearing

in Eq. (6.29) respectively become

T T gd+17'6
Do(ri — 1) = — .32
/(; dT1 /7_1 dTQ 0(7'1 7'2) 6(1 6) (6 3 )

) 00 ) 0 0 0 gd+17—€
|:/ dTl/ d7—2 + / dTl/ dTQ + / dTl/ dT2‘| Do(Tl — 7'2) = —ﬁ (633)
T el T —00 —00 1 el —¢€
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[/ dﬁ/ d72+/ dﬁ/ dTQ] Do(11 — 1) =

QSd-l-lT

) (6.34)

where we have used the dimensional regularization “identity” fooo drt® = 0.

Collecting all of the above results, we find that the leading-order spin-spin correlation

functions are given by

G'(r) = S(S; 1) .
G*(r) = 5(53+ 1)

0 5
G Sq17¢

e(1—e)

_ 27§§d+17'6
€(1—e)

(6.35)

+o ] (6.36)

The procedure at two-loop is done using the same procedure; we fill in the intermediate

steps in Appendix C.2. Our final result is

S(S+1)

(885 (0) = dup="

+ <7§gd+176)2 (

z<0)> _ S(S;l) 1_

23 € (3
+ (%Sd+17'> 2

where we only keep the divergent part of the 5 term.

6.3.2 VERTEX RENORMALIZATION

+_+m)
€

-
_ YoSant

e(1—e¢)

1
_+_+...)

(6.37)

(6.38)

We now consider the renormalization of the vertex function V(x, 1), defined in Eq. (6.22).

In writing down all possible diagrams up to two-loop order, it becomes apparent that every
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Figure 6.3.2: The diagrams which renormalize the impurity interaction -.

diagram which does not depend on ug is identical to a diagram appearing in Fig. 6.3.1, but
with the insertion of an external boson. Therefore, the only loop diagrams which contribute
to renormalizing the bare interaction 7, are those which involve the bulk interaction; these

are shown in Fig. 6.3.2. This implies the exact relation
Zy=1 at g=0 (6.39)

We now evaluate the diagrams in Fig. 6.3.2 using the Feynman rules specified above.
There is only one loop diagram which corrects the tree-level interaction, but there are three
distinct ways to evaluate the spin traces. We find

S(S+1) ik b
V(x,7) = T%/W 12

3 18 ) Cni k2 ) @0 ) Cod iR+ kt ka)?

where the spin traces S! are specified in Appendix C.1. Evaluating the divergent part of the

integral,

S(SH1) [ dk et
Vi) = —3 /(277)d K2 [70

272

— Yoo (S(S +1) - %) (k) 53, (1—56 + ) ] (6.41)
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6.4 RENORMALIZATION GROUP SUMMARY

The RG equations can be obtained directly from the Eqns. (6.37), (6.38), (6.41), along with

the definitions of the renormalization constants in Section 6.2. After some algebra, we obtain

1

Z/ — 1_")/__’__74

€ 2e

9% 1,
Z, = 1-"—+—

€ €

22 [S(S+1)—1
Z, = 1+ [(156 ) 3}972 (6.42)

The beta function now follows from Eq. (6.16):

€ 1, 1. (N+2), 42 1l 4
= 4= i 1) —= 4
B, ST HSY Y T It s S(S+1) 3|97 (6.43)

Tuning the bulk interactions to their fixed point, ¢ = ¢*, we find a fixed point for the

impurity interactions which is also perturbative in €. To leading order,

N2 1672 1
2= 1— — 1) —=||€ 44
v T TN TR T 5N 43 (S(S+ ) 3)]6 (6.44)

Since our model is symmetric under v — —+, all physical quantities only depend on 2. The
initial flow depends on the sign of the bare value of 7y, after which the theory will flow to
either v* or —~*.

The anomalous dimensions of the spin operators follow from Eq. (6.18):

W == (6.45)

. =29 (6.46)
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where the O(y?) contribution to 7, vanishes. Evaluating these at v = *:

W= (2(%12)2 * 5(]1\5128) {Sw - %D ¢ (6.47)
n. = 2+ (2 - (]]\Y:;)Q - 5(?\?:28) {S(S +1) — ﬂ )62 (6.48)

As an aside, we mention the model with a Gaussian bulk, g = 0. This theory is infrared
unstable to interactions, but the simple relation Z, = 1 allows us to derive an exact result for
the anomalous dimension of the spin operators. Since the beta function for v only depends

on Z' in this theory, and 8, = 0 at the interacting fixed point, Eqns. (6.16)-(6.18) imply

n=e at g=0 (6.49)
to all orders in €. In contrast, n, will generically receive corrections at every order in € at
the Gaussian fixed point.

From Eqn. (6.21), we find the critical exponents

y’:1+§+ (3—4(%12)2 - 5(5722;8) [S(SH)—%D& (6.50)
v,=1+¢e+ (2— 2(%12)2 —5<]1\f7f8> {S(SH)—%DQ (6.51)

We now compare these to numerical results. For N = 2 and S = 1/2, we predict the

critical exponents

v 1.08

Q

v, ~ 2.66 (6.52)
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In Refs [132, 138], both the microscopic model of Eqn. (6.1) and the field theory model
of Eqn. (6.5) were studied in numerical simulations. These authors calculated the above

critical exponents to be

v 1.13(2)

Q

2.33(5) (6.53)

Q

Ve

The numerics show impressive agreement with the e expansion.

6.5 COMPRESSIBILITY

In this section, we consider the finite-temperature response of the critical theory to an
external probe coupled to the conserved O(2) charge associated with particle number in the
superfluid. Physically, this corresponds to the compressibility of the superfluid. We compute

this by altering our Lagrangian,

1 1

3 / Az [(0,¢1)° + (8- 42)"] — 3 / Az [(0,¢1 + iH o)’ + (0,2 — iHp1)?] — HS. (6.54)

and then taking variational derivatives of the free energy

62 (T'log Z)

i (6.55)

X:

H=0

Here, we will continue working with our generalized theory, Eq. (6.6), with O(2) x O(N —2)
symmetry, where the probe field H couples to the O(2) charge. The contribution of the bulk
degrees of freedom to this quantity were computed in Ref. [142], so here we focus only on
terms which depend on v, and we denote this part of the compressibility by Ximp. Because

this is a correlation function of a conserved current, its scaling dimension cannot renormalize,
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so at finite temperature it must take the form

C
Ximp = 7 (6.56)

where C; is a universal number. We can also interpret C; = Se(Ser + 1)/3 as the “effective

spin” in the presence of interactions with the bulk, since for v = 0,

S(S+1)
Xim = (657)
P, T

In our calculations at T' = 0, we found that bulk interactions did not contribute to the
impurity critical exponents until two-loop order. However, the structure of the e-expansion
for the bulk theory is rather different at finite temperature. In the critical regime, physical
quantities become an expansion in /e (with possible extra factors of lne€) [142]. This de-

pendence enters through the finite-temperature bosonic propagator, which is now given by

ddk eikxe—iwnr
(x,7) T;/ Vo2 L (6.58)
with
N + 2\ 2r%T
2
=—— 6.59
" <N n 8) 3 ¢ (6.59)

We will see that this leads to a \/e-expansion for xim, as well.

Performing the functional derivative in Eq. (6.55), the compressibility is given by

Ximpzﬂ/dT/dTS )S.(7 6/d7’/d%<¢ (r,2))

! / dr / ar’ / d' / ([$20: 61 — 310,6] (7, 7) [sBrstos — rBrihs] (7', 2))
2 [N [ (.0 i - oo () (6.60)

These correlation functions can be computed using the same diagrammatic technique used
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in Section 6.3, we simply do not take the zero temperature limit. A straight-forward com-

putation leads to the expression

' _ S(S+1) fy_g/ d%k csch? (5\/ k2 + m2/2) (6.61)
Ximp = 3 oT | (2m)d K2+ m? ‘

Here we see why keeping the temperature-dependent mass in the bosonic propagator was
crucial: for m — 0 this expression in infrared singular, and an evaluation at finite m gives

(at leading order)

R

e
Ximp = — a7 |1+ 72—m} (6.62)

which lowers the order of the leading correction to

CICREN PN (—3<N i 8))1/2 \ﬁ] (6.63)

Ximp = 3T

As has been seen in previous work on the finite temperature e-expansion, the leading correc-
tion is not particularly small, so this may not give a good numerical estimate. For S = 1/2
and N = 2, we find

Cy ~ .734 (6.64)

In Reference [138], the constant C; is computed numerically in a finite volume geometry,
with a result close to the free value. Due to finite size effects, their result cannot be directly

compared to ours.

6.6 CONCLUSIONS

Huang et al. [132] recently found a novel impurity quantum critical point in their study
of the Bose-Hubbard model on the square lattice. They held the bulk square lattice at the
superfluid-insulator quantum critical point, and then varied the strength of the trapping

potential at a single site. They found a quantum phase transition, with a diverging length
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scale, at a critical value of the trapping potential where the impurity site occupation number
jumped by unity.

In an earlier study of quantum antiferromagnets with SU(2) spin rotation symmetry,
Ref. [135] examined impurities in dimerized, two-dimensional antiferromagnets at the bulk
critical point point between a spin-gap state and Néel order described by the O(3) Wilson-
Fisher conformal field theory. They found that impurities were universally characterized by
a single spin quantum number, S, which specified a renormalization group fixed point with
no relevant directions in the impurity field theory.

In this chapter, we proposed that impurity criticality of the Bose-Hubbard model [132] is
described by the S = 1/2 impurity fixed point found in Ref. [135], after the O(3) symmetry
is reduced to O(2) in both the bulk and the impurity. We showed that with only O(2)
symmetry, the impurity fixed point does allow for a single relevant perturbation in the
impurity field theory: this relevant perturbation is associated with a longitudinal field acting
on the S = 1/2 spin on the impurity site. We note that a model of S = 1/2 impurity has
also been recently studied by Chen et al. [138]. With the presence of this relevant impurity
perturbation, we can understand the need for a critical trapping potential in the numerical
study of Huang et al. [132].

We computed critical exponents and universal amplitudes associated with the O(2)-symmetric
impurity fixed point in an expansion in € = 3 — d, where d is the bulk spatial dimensionality.
Associated with two different relevant perturbations, we estimated from a computation to
order €2 that the impurity length scale diverged with the exponents v, ~ 2.66 and v/ ~ 1.08;
this compares well with the numerical results [132, 138] v, ~ 2.33 and v/ ~ 1.13. Additional
tests of the e-expansion results will be possible in further numerical studies.

Finally, we note that this novel impurity quantum criticality should be accessible in cold

atom experiments, and we hope it will be studied in the near future.
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APPENDIX A
APPENDIX TO CHAPTERS 2-4

A.1 INFINITE VOLUME COMPUTATIONS

Here we recall some properties of the Wilson-Fisher fixed point in an infinite volume. We
will need the resulting expressions to renormalize the theory in a finite volume, and we relate
the couplings to universal observables of the infinite-volume theory. The computations are

standard [24], so we will be brief. Here we express the theory as a Fuclidean action,
1 1
S= [arate | 0.0, + 5 (Vou? + 262 + Zot + (A1)

where d = 3 — ¢, but now we integrate over infinite volume. At one-loop, we need to
renormalize the couplings s, u, and the energy density A (there is no field renormalization

until two-loop). To this end, we introduce the renormalized couplings

So = SC+ZQS
u = 7,49 (A.2)
Sa+1

where Sy = 2/(I'(d/2)(47)%?) is a convenient factor, and p is an arbitrary renormalization

scale. The renormalized coupling s has been defined so that s = 0 at criticality by defini-
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tion. We renormalize the theory using a modified minimal subtraction scheme as detailed in

Ref. [24], where the renormalization constants are given by

N+2
Zy = 1+~—24

6€

N +8

and the critical coupling is s. = 0. The Wilson-Fisher fixed point is obtained when the

couplings take the values

. 6e 3(3N + 14)
g = N T 8 (1 + WE) (A4)

We are also interested in the vacuum energy in the vicinity of the Wilson-Fisher fixed
point. To this end, we have included the additive constant A which we choose to make the
ground state energy density finite in an infinite volume. This constant also depends on the

renormalization scale, and is given by

A — 52Z225d+1 7
//[/e
N N(N+2)
Iy = —— —————~ A5
A 4e 24¢2 g (A.5)

Our choice of regularization leads to the vanishing of the ground state energy density at
L = oo and s = s., where the system has full conformal invariance.

We note that computations will involve the arbitrary energy scale p. This dependence
can always be eliminated in favor of physical quantities. As an example, we can consider the
exact energy gap in an infinite volume when s > 0. The inverse propagator can be written

as a function of the Euclidean momentum p = (w, k) as

Gp)' =p*+5—-2(p°) (A.6)
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Then the exact energy gap m is given by
m? = s — X(m?) (A.7)

At one loop this gives
9 e (N+2 9
=s|l+=-(—— )1 A8
wt = s 1§ (g ) o] (A8
where we have taken g = g*. We can then always use this to rewrite dependence on s and

w1 in terms of the physical parameter m by inverting this expression,
N +2
s =m? {1 _ £ (—i) 1n(m2/p2)} (A.9)

In an infinite volume, we can calculate the vacuum energy density. Setting g = ¢*, this is

given by
E, Ns° 9 1 Ns?e 9 1
AP T b {ln(s/u)—ﬁ]%—m[l—ﬁﬁ—l—ln@r] ln(s/,u)—§
Ns?e 72 1]  N(N +2)s% 2
1n? 2\ _ 1 N A CAR) 1 2y o (A
256 [n (s/,u) n(s/,u)—i— 3 +2} + N8 & [n(s/,u)—k(g}())

where E, is the Euler-Mascheroni constant and s > 0.

We note that our finite-volume calculations must be analytic through the critical point
s = 0, and the system remains disordered for s < 0. Therefore, any singularities or branch
cuts present in these expressions must cancel out in final results. Therefore we prefer to give
our expressions in terms of s and p rather than m and FEj, which are both non-analytic for

s = 0, and undefined for s < 0.

A.2 DERIVATION OF THE BLOCH EFFECTIVE HAMILTONIAN

Here, we give a derivation of Eq. (2.14), the effective Hamiltonian from Bloch’s perturba-

tion theory [29]. For the relation between this approach and other effective Hamiltonian

128



Appendix A. Appendix to Chapters 2-4

approaches to perturbation theory, we direct the reader to Ref. [143].
We begin by considering a degenerate subspace of the unperturbed spectrum, )y =

Span{|eg) }, where the states |eq) satisfy

H0|€0> :€0|€0> (All)

These states are split into distinct energies by the exact Hamiltonian H = Hy + V/,

H|oa) = EjJa),  Ey=e+O(V) (A.12)

Here, we have defined the orthonormal basis of states |«) which diagonalize the exact Hamil-
tonian and reduce to the degenerate manifold |¢y) in the V' = 0 limit. We will define the
space spanned by these states by €2 = Span{|«)}. If the perturbation is small, there should
be a one-to-one correspondence between the spaces {0y and 2. We will assume the latter fact
in what follows.

Let Py be the projection operator onto the space )y, and define the states

o) = Fola) (A.13)

The set of states |ag) are a particular basis spanning )y, although this basis is not orthonor-

mal in general. We now claim that we can define a linear operator U such that

Ulao) = |e)

Ulg) =0 Vo) ¢ (A.14)

Once the operator U is found, we can construct an effective Hamiltonian which acts on the
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unperturbed subspace but gives the exact energy spectrum,

Hyg = BbHU

Hegtlowg) = Eolag) (A.15)

This Hamiltonian acts on the unperturbed subspace, but gives the exact spectrum of the
interacting Hamiltonian. We can also obtain the exact eigenstates by |a) = Ul|ayg).

We now make a few clarifying comments on the above operators and states. We note
that g and €2 represent subspaces within the same Hilbert space, and that these subspaces
overlap by assumption. Since the linearly independent basis |ag) defined via (A.13) is not
necessarily orthogonal, the operator U is not unitary, so the standard intuition on changes of

basis does not apply here. For example, since we can decompose any state |¢) in the Hilbert

space as
9) = Polo) + (1 — Bo) |¢) (A.16)
it follows that
Ulg) = UP|o) (A17)
S0
URy=U (A.18)
is an exact operator identity. In particular, this implies Ula) = |a). Furthermore, the

effective Hamiltonian defined in Eq. (A.15) is not necessarily Hermitian. Thus, even though
the vectors |ag) are eigenvectors of Heg, it does not follow that the effective Hamiltonian is
diagonal in the |ag) basis. This can also be inferred from the fact that the |ap) may not be
orthogonal. Below, we will define a similarity transform which does allow the definition of a
Hermitian effective Hamiltonian from Eq. (A.15).

We now find an explicit expression for U for a completely general Hamiltonian. Starting
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from Schrodinger’s equation,

Hla) = Eqla)

= UPH|a) = E.a). (A.19)

Since UPy = U,
(H—-UH)|a)y=0 (A.20)

for all |o) € Q. Furthermore, for any state |a) € €2, we have Ula) = |a) and U Hp|a) = €|a),

from which we have the general operator relation on the entire Hilbert space:

(Hy+V —eg—UV)U =0

= (e — Ho)U = VU —UVU (A.21)

We can invert the left-hand side of this equation by using the fact that the operator (¢y — Hy)
satisfies (g — Hy) Py = 0 and has a well-defined inverse in the space orthogonal to €2y. This
gives the implicit equation

1-F
EO—HO

U=Py+ (VU = UVU) (A.22)

This allows an expansion in powers of V. Up to third order in V, this is given by

1—F
Heﬁ' = 60P0+P0VP0+P0V OVPO
€0 — Ho
1—P0 ]-_PO ]-_PO
PV |4 Py— BV ——F=SVPERVF+ - A2
+ fo €0 — Hy eo—Hov 0 0 (eo—Ho)Qv oV Fo+ (A.23)

For higher order expressions, see Refs. [28, 29]. As seen in Section 2.3.2, the leading non-
trivial two-loop diagram is of order €%/3. We can now check explicitly by putting V' from
Eq. (2.10) that the last term in Eq. (A.23) is of order ¢>/3 or higher, justifying our truncation

of the effective Hamiltonian in the main body of our paper.
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We note that the effective Hamiltonian defined above will not be Hermitian in general
without a redefinition, although we will not encounter this problem at one-loop. In general,

we have

BH!; = HgB, B=PRPP, (A.24)

where P is the projection operator onto the space €). Then the redefined Hermitian Hamil-

tonian

s =B ?HuB'? (A.25)

acts on )y and has the same spectrum as H.g-.

A.3 LooPSs SUMS

In this appendix we give the calculation of the relevant loop diagrams on a torus in fractional
dimensions. The torus is parametrized by complex coordinates, x = x; + 1x9, with two
complex periods wy and wy, see Fig. 2.2.1. We define the modular parameter, 7 = ws/wy =
71 + iT9, and the length scale L = |w;|. The area of the torus is given by A = 7, L%

In this geometry, the basis vectors of the dual lattice are
l{?l = —iWQ/A, k‘g = iwl/A <A26)

We consider the eigenvalues of the Laplacian on the torus. We will allow twisted boundary

conditions along the two cycles of the torus.

Go(T +w1) = M P, ()

Go (T + wo) = ¥2¢, (1) (A.27)

The parameters a; and as take values in the range [0,1). For a;s not equal to either an

1 or 1/2, the fields ¢, are actually complex and our symmetry breaks down from O(N) to
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SU(N) x U(1). In Chapters 1 and 2 we always take a; = ay = 0, while the calculation of
loop sums on the torus with twisted boundary conditions is used in Chapters 3 and 4.

The eigenvalues of the Laplacian are

knm|? = (27)° |(n 4 a1)k1 + (m + ag)k|?, n,m €7 (A.28)

and a general one-loop diagram will take the form

/ 1 L\ 1
E - E A.29
([knm|* 4 5)" (%) (jm+ a2 + (n+ a1)7|? + )" (4.29)

n,me”L nmeZ

where v = 75 L%s/4n?, and the primed summation indicates that the n = m = 0 term is
omitted in the fully periodic case (a1, a2) = (0,0).

We now generalize this sum to an arbitrary number of dimensions. This is done by
promoting the two-vector (n + aj,m + a2) to a d-dimensional vector where the first d/2
components are n + a; and the last d/2 components are m + ag. Then in (A.29) the sums

are taken over n,m € Z%?. We write the sums as

1

505 7) = nm%;/z (jm+as + (n+a)7|> +7)" (4.30)
The summand is rewritten using the identity
1 — - /OO AN\~ Le— ™A (A.31)
Av T(v) ),
giving
S — % /000 dAN"Lem™ ZI exp (—mAlm + as + (n + a1)7]?) . (A.32)
n,meZ/?

We can now write the sum in terms of the two-dimensional Riemann theta function, defined
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as

O\ Qu) = Z exp (—7AnT-Q-n—27m" - u) (A.33)

neZz?

where () is a 2 x 2 matrix and u is a two-dimensional vector. Then

v > dr )\
s@ =7 / DN 1™ lexp (=) © (A, (1), vi)Y? = 64,0000 (A.34)
L(v) J, 2
where
‘T|2 ! T1 (a2—|—a17'1)+a17-2
Q1) = , vi= A\ 2 , n= (a172)2 + (az + a17'1)2.
o1 as + a1

(A.35)
The function S (s, 7) has a divergence for small A\ whenever v < d/2. We evaluate the
sums by dimensional regularization: we separate out the divergent parts and and evaluate
them in the convergent regime v > d/2, and then analytically continue them to the physical
values of v and d of interest, taking care to renormalize any poles in € which arise. For our
purposes, it is also crucial that we obtain final expressions which are regular at s = 0 and
remain finite for s < 0, since the finite-volume theory should be analytic through the critical
point.
We proceed by splitting the integral in Eq (A.34) into two parts, fooo = fol + floo, and

studying the divergent part. Using the mathematical identity

1 T 1 1
ONQ2u)=———c¢ —ul-Qt.u @(—,Q_l,——Q_l-u) , A.36
( )= W Xp()\ ) N\ ) (A.36)
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we write the lower portion of the integral as

v

(0 ! /2 1 42
F(I/) /(; d)‘)‘yileiﬂ-)\’y T; / Aid/Q@ (X? Q<T>17V2) - 5a105a20
2

_ 7_;i/z 4 / D21 {em/A@ ()\,Q(T)’l,VQ)d/Q 14 ? _ <72ng } (A.37)
1

I'(v)
v oo 2 v o}
A ozt (1™ W T AN
HEE r(y)/1 N e ) T T w0 | ¢

where we define the vector vo = —i(ay, az). For d = 3 and v > —1/2, the UV divergences
are entirely contained in the last line of Eq (A.38). The very last term can be integrated in

its convergent regime, obtaining

| s ()
e i R (S N it VA A.38
T(v) /1 ‘ © Ttk t1) (4.38)

This expression was obtained by evaluating the integral for » > 0 and ~ > 0, obtaining an
expression involving incomplete gamma functions, and then expressing these functions as a
power series. The final expression is a single-valued analytic function for all v and v with
no singularities [144], and evaluating this series numerically is trivial.

When v > d/2 we can evaluate

> ’ 1 Ty (m)?
P CCN G P el i - A.39
/1 ( Nt oe ) TuTan T ivv—ap Tirw—a WA

Since we are expanding around d = 3, the three terms will contribute poles for v = 3/2,
v =1/2, and v = —1/2 respectively. We will see that these three poles are related to the
renormalization of u, sg, and &,.

To summarize our results so far, we have written the loop sum as

/ 1 I\
> T F s~ \ 2 S (s 1), (A.40)

nmezZ
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(@ _ i 00 v—1_—mA\y _dﬂ')\n a2
Sy P(V) /1 dA\ e |:eXp < 5 ) C) ()\, Q(T), V1> 5a106a20:|
—d/2 v 0 d/2—v—1 —7my/A _1 dj2 B _fy B (77")/)2
+ 25 /1 A\ [e O () ve) -1+ T TIL | (A

g T 1 B ™y (7.(.,7)2 B k-i-l/,yk:
HRER YD) (y—d/2 T +v—d2 d+ov—d 9ar00a20¢ ™" Zr v+k+1)

where v = 7 L*s/47?, the Riemann theta function © is defined in (A.33), and

T2 7 1 1 —n
Q(r) = I : Q)= (A.42)
1 2\ - |7
T1 (a2+a17'1) +CL17'22 . a 2 )
vi=A\ , Vo = —1 , n = (a172)" + (as + a1m)
(45} -+ ai1T a9

From these expressions we define finite functions. They are given in terms of the Sl(,d), but

with their poles around d = 3 removed.

5/274 .2
(3-9) B, T L’s
P s = S5y + i Sie
/272
(3—¢) . (3—¢) 471'7'2 L*s
f1/2 (7—7 S?/’L) - Sl/2 + 6A6/2€ S476
3 _—3/2
(3—¢) . (3—¢) 32m )
f3 (7', S, ,LL) = 53/2 - m54_6 (A43)

The three functions f,gd) have a regular power series about s = 0 and ¢ = 0, and the extra
factors are defined to simplify expressions in our renormalization scheme. We note that these
functions are all dependent on pu, but the first two functions are independent of u at s = 0,

while the third function will be exchanged for a p-independent function below. We note the
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identities

0 vriL?
af,fd)(r,s,u) = - 42_2 sz—i-)l(Tasmu)

Fr+1,0,0) = f9(7,0,p)
vy

TQZ/fIEd)(T707M) = —féd)(l/T,O,/ﬁ) (A44>

EE

The first identity will be useful for renormalizing the bare mass, while the other two are a

consequence of modular invariance.

A.3.1 LOOP SUMS WITH ZERO MODE

In the large N computation in Chapter 3, we find that we will not need to separate out
the zero-momentum mode in the fully periodic case, (a;,as) = 0. This is because the gap
is always finite, so every sum is IR safe. Our leading order results also do not need to be
renormalized in dimensional regularization. In this subsection, we define variants of the
above functions useful for our large N computations.

If we do not separate out the zero mode in the periodic case, we simply need to omit
the terms proportional to 04,0040 in Eq. (A.41). The resulting expression is finite for all
1 < d < 3 in the cases v = +1/2 which we need. We also do not need to separate out the
same poles we did in Eq. (A.41).

With these comments, we give the relevant expressions needed in the large N computation.

Z (|knm’2+A2)V = 27T gu ( 77—)7 ( 45)

nmeZ
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v o0 dm
gﬁd)(AaT) = F(V)/l AN "LeT ™ exp (— 5 n) @()\,Q<T)7V1)d/2
N d/2—v—1 [ _—my/A -1 /2 _ ™
R A T e R
—az_T" 1 _ __ ™ A4
LRI O (u—d/2 1+y—d/2) (A.46)

where v = 72 [?A? /47? the Riemann theta function © is defined in (A.33), and

T2 7 1 1 —-n
a7 . Q)= 5 (A47)
1 2\ - |7
T1 (a2+a17'1) +CL17'22 . ai 2 2
Vi =2\ , Vo = —1 , n = (a1m2)" + (as + a1m)
Ao + a7 a2

A.4 RENORMALIZATION OF THE EFFECTIVE HAMILTONIAN

Here we consider the renormalization of physical quantities. To this end, we calculate the
effective Hamiltonian for the splitting of the Fock vacuum, hi—_q, which contains most of the
divergences which need to be considered.

We calculate each individual expression in Eq. (2.30). The constant term is

- N uA/? NN+2
Mo = ACIEAG S VIRE + s+ 4(4

; \/|k‘| + So

k0
5/2 4.2
_ 3—¢)/2 N | 3o L’s
= A /A—|— fl/Q(TSZQHU) W 4 ]
/272 2
gus A? N(N +2) 72 (3-0) AmryL2s
T SC P ) 47r2 |8 - e Al i (A.48)

By expanding out all of the terms, including the g-dependent Z; factor using Eq. (A.3), and

using the definition of A from Eq. (A.5), we find that all poles in e cancel, as well as all
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factors of S;_.. Once the poles cancel, we set g = g*, obtaining

© _ TN 3-¢ N(N +2) ¢ 172 (3) 9
hk:O - 7'2_Lf_1/2 (7'7 Sa,u) + WS_L 9 fl/Q(T,S,/L) (A49)

The coefficient of p? is

2 uAe/Q S
n?, = %TzlﬂLSZQ + < —oB 2y 90a905> P

219 L2% \ 12 10 \/‘k|2+8
€ A€/2 4 1/2L2
_ gp 127 (4 N +2 N +2\ gu‘A (3—€) Ty <
2 {TQ ( * 6e 9)+ 12 ToL2S,_. f1/2 (T’S”u) 6A6/2 A-e

The poles in € and factors of Sy_. cancel, and after setting g = g* we obtain

2 1 <P2 N+2\ 12,0
h,i)oz —7 T L?s + 2me Nis 7'2/ fl(/;(TS 0| (A.50)

Finally, the divergence in the quartic term cancels similarly, and after setting g = ¢g* we

find

A2 ot (,Mﬂ) 1 0. 1 O 085 + Oasd
- u Y o <a6902+ g0(%(10)(L9024__9090> ay98 as98y
h=0 VL 482t \ 12 677" )\ 12 677" ;0 (k|2 + 5)*?
1 ¢* [ 487% peAY? 3% ~(3) 3 (3N + 14)
— — —_— A.51
= =T <N+8) {87T2546 i Fan(Ts8, 1) + V187 € (A.51)

We note all of these expressions appear to depend on the arbitrary scale p. This depen-
dence actually drops out of h,(fz)o to this order in €, and it drops out of all quantities at the
critical point s = 0. We can write

AR ey
8n25,_.  Ax ‘82 T H

(7, 5) + O(e) (A.52)

where fg(?%(T,S) is p-independent. The fact that all ;1 dependence vanishes at ¢ = ¢* and

s = 0 is a manifestation of the scale invariance of the critical theory.
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Combining the above results, the effective Hamiltonian takes the form given in Eq. (2.31):

I 1 7'('3 R U

k=0 — = /—L - T _gpa + 4! ((1004)
_ TN (3—¢) 1 N(N + 2)

o= Rl T TN

N+2ZY\ 12,0
N—+8) 7 fipa(Ty 8 1)

7 [T, 5, 10)?

R =1L%s + 27e (

487%¢ € ,.(3) 3 (3N + 14)
= 1— T,8) + —————=—¢€ A.53
N+38 { (7.5) (N 1 8) (A.53)
To the order required, the special functions are
e T[> A2 L2s (3—¢€)mAn .
15y = =5 /1 AN exp (— = ) [exp (‘T) O (A, Q(r),v1)*7% — 5@05&20}

—(3-¢)/2  poo 272 272 4742
T2 1—¢/2 Ty L7s -1 (3—€)/2 Ty L%s 1, L%s

- = dA\ — O (N Q —1 —
2 /1 [eXp< 4T ) (A Q) ve) T 3ame

7‘2_(3_5)/2 N TQ(HE)/QLQS 80100450 . )\7'22L2 > (7‘22[/28/47'(')k
— — X —_—
T 82 NZ3 P 4 —~ [(k+1/2)
5/2L4 2 72122 5/2L4 2 2
L s%e ) i
2 - 1—E, —In(-2 22— 142?24 Indr — —
T T { g n( im )} LT e A A
1 1 L
+ 5B [B =201+ 4m)] + S lnwin 167 - {1 —E, —In (\/T_Q “)} In (v/72Lp)
1. 2
— §ln T ¢ + O(€%) (A.54)

e8] 2 2
fl(i/)’; — / d)\)\_l/Q exp ( )\TQL > |: ( 3'/7)\77) @()\7Q<7_)7V1)3/2 . 5a105a20:|
1

- > 2L2 212 _
+ 7 3/2/ dA [eXp( E ) vo) P o1 22 5] — 5% (A55)
1 AT\
A2L2%5 o= (72L2s/47)" \/FQLZS o L2 u?
1—FE,—1
0a,00a,0V/ T €XP ( ) Z 0k +3/2) ym v
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A2 L2s A
fé% = 27r/ A2 exp < T4 ) [exp (—37; 77) O (), Q(T),V1)3/2 — 5(1105@20}
1

+ 2w‘d/2/ A { < A) (A Q)Y va) Y2 - 1}
1
k
—3/2 _ )\7’22[12 ( 2L2S/47T)
+ 217y P In Ty — 64000901 ( Tk +5/2) (A.56)

The function fg;? should be expanded to first order in e. It is possible to exchange the
parameters s and p for the infinite volume gap and ground state energies, but the latter are

not analytic through the critical point so we keep the p dependence in our final expressions.

A.5 STRONG-COUPLING EXPANSION OF ISOTROPIC QUARTIC
OSCILLATORS

In this appendix we give details of the numerical calculation of the spectrum of the isotropic

quartic oscillator

1/ 1 9 4,0 (({+N-2)
9 pN—lar’O dp pN-1

I 2p4) Rudlp) = EniRuslp) (A7)

in the strong-coupling limit, finding the coefficients

o0

Bog =Y Cotmr™ (A.58)

m=1

We tabulate the values of ¢, ¢,, which we have calculated in Tables A.5.1-A.5.3.
We begin by solving Eq. (A.57) numerically for » = 0. We first fix the asymptotic behavior
by writing
R i(p) = tna(p)e™?"P? (A.59)

The exponential factor takes into account the large-p behavior implied by Eq. (A.57). We

then use a shooting method, using known boundary conditions on the wave function at
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N =2 l
0 1 2 3 4
€0,0,0 1.47715 3.39815 5.65434 8.09067 10.7583
Co,0,1 0.258539 | 0.447039 0.605913 0.747439 | 0.877189
cor2 | -0.012345 | -0.015633 | -0.017109 | -0.017109 | -0.018469
0,03 0.000903 | 0.000806 0.000697 0.000613 | 0.000548
C1,0,0 6.00339 8.70045 11.53475 14.50868 | 17.61616
C1,01 0.554312 | 0.682554 | 0.80824713 | 0.92837 1.04294
cie2 | -0.011291 | -0.012457 | -0.013714 | -0.014705 | -0.015489
C1,03 0.000133 | 0.000236 0.000293 0.000315 | 0.000320
Table A.5.1: The coefficients of the strong-coupling expansion for the two-dimensional quartic oscil-
lator.
N =3 l
0 1 2 3 4
€0,0,0 2.393644 | 4.478039 | 6.830308 | 9.401160 | 12.159017
Co,0,1 0.357801 | 0.529165 | 0.678421 | 0.813557 | 0.938665
coe2 | -0.014371 | -0.016492 | -0.017576 | -0.018230 | -0.018667
Co.0,3 0.000865 | 0.000749 | 0.000651 | 0.000578 | 0.000521
C1,0,0 7.335730 | 10.099944 | 13.004563 | 16.046193 | 19.217579
C1,01 0.618248 | 0.746036 | 0.869032 | 0.986315 1.09832
cie2 | -0.011790 | -0.013117 | -0.014238 | -0.015120 | -0.015816
C1,03 0.000188 | 0.000271 | 0.000307 | 0.000319 | 0.000320
Table A.5.2: The coefficients of the strong-coupling expansion for the three-dimensional quartic os-
cillator.
p =0 (including an arbitrary normalization) to compute v, , in Mathematica using DSolve

for variable

values of the energy until we identify an eigenstate.

Once we find the energy to sufficient accuracy, the function v, , will not change much for

smaller p, but will always blow up after some value of p. However, the actual wave function

R, ¢ is exponentially suppressed, so we only need to obtain 1, accurately for small values

of p to obtain an accurate wave function.

Once we

logarithmic

obtain a numerically accurate energy and wave function for r 0, we use

perturbation theory to compute the expansion in r. This has the benefit of

only needing the unperturbed energy and wave function, whereas the standard Rayleigh-
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N =4 14
0 1 2 3 4

coro | 3-398150 | 5.624339 | 8.090668 | 10.758265 | 13.600878
core1 | 0.447038 | 0.605918 | 0.747451 | 0.877202 | 0.998248
cor2 | -0.015634 | -0.017110 | -0.017939 | -0.018466 | -0.018830
cors | 0.000806 | 0.000697 | 0.000612 | 0.000547 | 0.000497
Cieo | 8.700454 | 11.534729 | 14.508675 | 17.616152 | 20.849517
cien | 0.682554 | 0.808247 | 0.928370 | 1.042942 | 1.152539
cie2 | -0.012457 | -0.013714 | -0.014704 | -0.015489 | -0.016111
cies | 0.000236 | 0.000293 | 0.000315 | 0.000320 | 0.000319

Table A.5.3: The coefficients of the strong-coupling expansion for the four-dimensional quartic oscil-
lator.

Schrodinger expansion requires knowledge of many excited states to get accurate values for

the coefficients. The starting point for logarithmic perturbation theory is to write the wave

function as

n

Rue =[] (0= pi)e®

=1

(A.60)

where p; are the nodes of R, ¢, and then rewrite the eigenvalue equation as an equation for

G. Then we assume an expansion in 7:

Gp) = ZGm(p)Tm
m=0
pi = Zpi,mrm
m=0
En,ﬁ = ch,l,mrm (AG].)
m=0

Inserting these definitions into our eigenvalue equation, the resulting differential equation
is linear order-by-order in perturbation theory, so the energies are given in closed form in
terms of integrals only involving the unperturbed functions Go(p), E,ro, and p;o. For
explicit details, we refer the reader to References [32, 33]. We give the coefficients we have

calculated in Tables A.5.1-A.5.3.
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A.6 1/N CORRECTIONS

Here we mention the form of the leading 1/N corrections, following a similar notation to
Ref. [47]. First we need to calculate the critical coupling s. to order 1/N. This is done by
solving the infinite-volume gap equation (3.5), where we write the infinite volume saddle

point as i\ = r + i\/V/N:
dd+1p 1

.
w2 +/(27r)d“p2+7"

The coupling s. should be tuned so that the the energy gap in an infinite volume vanishes.

(A.62)

We do this by working backwards: we first calculate the energy gap as a function of r, then
tune r such that the energy gap vanishes, and finally define s, through Eq. (A.62). From

the action (3.3), the relevant self-energy diagram corrections to the z, propagator are

G dd+1 1
+r+ =
O e ¥ ki mro e ery
B 1 1 / dd+1q1 dd+1 1 1 (A 63)
N (0,7) ) (2m)™" (2m) " Mo (g1, 7) (65 +7)2((q1 + q2)* + 1) '
where we have the inverse A propagators in an infinite volume:
dd+1q 1
(g, 7) = : A.64
1 = | G T Ao
The critical point is given by G '(0) = 0, so to order 1/N,
/ dd—H 1 N 1 1 / dd+1q1 dd—i—lq2 1 1
o= —
N ) e 0) (p+9?* NI (0,0) J (2m)*" (27)"! Me(q1,0) g5(q1 + g2)?
1 / derl 1 / d™tg, 1 < 1 1 > (A.65)
N Hoo(07 0)) @) w(q,0) ) 2n)" e \(n +@)* &) .
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Note that I1.(0,0) is really infrared divergent, but it can be regulated, and it cancels out of

physical values [47]. In this case, using dimensional regularization, we notice that

l/dwl 1(——L___l)=<ﬁW“W3F@fﬁ@f>$éo (A.66)
@n)™ e \(a+e)?® ¢/ (@2 Td-2) | |

[\

So r is of order 1/N? at the critical point in two spatial dimensions, and from Eq. (A.62),
the critical coupling is of order 1/N? in dimensional regularization. Therefore, there is no
1/N correction to the finite volume gap equation (3.5).

We can now calculate the self-energy corrections to the z, in a finite volume. These are

given by a similar calculation to the one above, but now with loop sums,

B , , D(q,i92)
Gk iw) = w? + K>+ A +—Z/ (w+ Q)2+ (k+q)%+ A?)

_D(0,0)/dgldgg Z D(ql,lgl)
NAZ | Tam? 2 (03 @G+ A+ D+ (0 + @) + A2

(A.67)

The spectrum is then obtained by solving G~!(k, E(k)) = 0.
There are also 1/N corrections to the singlet states. To compute these, we need the

nonlinear terms in the effective action for A, (3.14). To order 1/N these are

S = 6\/._-/43 Z /H (dwl> K3(p1, p2, p3)A(P1)A(p2), A(p3)d(p1 + p2 + p3)

k1,k2,k3

L Z H (dwl) Ku(p1, p2, p3, pa) A1) A(p2) A(p3) A (pa)d (p1 + p2 + ps + 1#4).68)

4
24NA k1,k2,k3,ka =1

using condensed notation where p; represents k; and w;. The functions in the action are
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given by
K; = QZ/dQ :
’ - (2 + g2 + A2)(Q+wi)? + g + k12 + A2)((Q — ws)2 + |q — ko2 + A2)]
1
Ky, = 6 s
! Xq:/ (2 + g2 + A2)((Q +w1)? + g + ka2 + A2)
1
X (A.69)

(0 w1+ w2 + la + ki + ol + AD((2 = ) + g — F? + &)

The propagator for A can then be computed from these interactions terms. One finds that

the order 1/N correction to the inverse propagator is given by

- ) 1 dQ . . .
DM (kyiw) = TI(k,iw) + INA ; / o [Ks(k, q, |k + q!)]2 Do(|k + q|, iw + i) Do(q, i€2)
1 K3(k7 —k',O) ds) .
ONA~ 11(0,0) > [ 5 Kala. —a.0)Do(g i€2)

1 dQ) .
+ m ; / g [K4(ka q, _k7 _Q> + 2K4(k7 _k7 q, _q)] DO(Q? ZQ)? <A7O)

and the spectrum of the singlet states is found by solving D~!(k, E(k)) = 0.

A.7 CORRESPONDENCE BETWEEN € AND LARGE-/N EXPAN-
SIONS

In this Appendix we take the small-e limit of our large-N results (Chapter 3) and compare
them to the large-N limit of the e-expansion (Chapter 2). We find exact agreement where
possible in both methods. Here we limit ourselves to s = s...

In the large-/N expansion, one begins by solving the gap equation on the torus, which can

be written
1 Z 1 _/ dk 1
AR L2 IR TN ) 2n)tk

We can evaluate this using the methods of Appendix A.3, where dimensional regularization

(A.71)
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sets the integral on the right-hand side to zero, obtaining from Eq. (A.43)

1 oL 7oL AnTiP L2 A2
+ £ (A% 7, ) — :
AB=e)/2 A o2r AB—e)/271/2 ) 2w AB—e€)/2 MEAE/%

Sie=0.  (AT2)

As e — 0, the function fl(% is regular, while the last term in Eq. (A.72) diverges. This requires
the first term to diverge in the same way, from which one already sees that to leading order
A ~ €3, Continuing this process, one can explicitly solve Eq (A.72) perturbatively in e,

making use of identities derived in Appendix A.3. The gap at N = oo is given by

3
5 (7650.7) + 27750, 7)
162 (2m)"/?

64/3+O(€5/3)

(A.73)

VAN = (12%) P42 (2m) P 0, 1)

where the functions are identical to those defined in Eqgs. (A.54-A.56), and the p-dependence
has dropped out.

Once the gap equation has been solved, the Hamiltonian of the theory at N = oo is given

by

H= 80+PZZ\/U€|2+A%T (E)P+ (1= P) Y En(k)b}(k)by(k) (1 P). (A.74)

n,k

Here,

& = %Z\/WMA? (A.75)

k

which should be evaluated order-by-order in e using the techniques in Appendix A.3. The
operator P projects onto all states which contain no O(N) singlets. Finally, the energies of

the singlet states E,(k) are the solutions to the equation

(k, E,(k)) = 0 (A.76)
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where

(ko) — 1 > V@ + A2+ /(k+q)? + A2
’ AB=2 L= o [l + A2 (k + q)2 + A2)((V@ + A2+ /(k + q)2 + A2)2 —w?)
(A.77)

q

We now consider a subset of the above spectrum; specifically, the states created by
Hegr o = €+ P Y ABL(0)b4(0) P + (1 — P) Eo(0)b(0)bo(0) (1 — P) (A.78)

This Hamiltonian creates two kinds of zero-momentum “particles,” with masses A and FE; (0)
respectively. The particle with mass F;(0) transforms as an O(N) singlet, while the states
with ¢ mass-A particles are in the ¢th symmetric traceless tensor representation of O(N).
We now argue that Heg p—o is precisely the N = oo limit of the Fock vacuum Hamiltonian
in the e-expansion.

We saw in Section 2.4 that the solutions to the Fock vacuum Hamiltonian satisfy the

equation

1(_ 1 9 v, 0 ((t+N-2)

242t =F A.
Aty o +rp + p)Rn,e(p) it B o (p) (A.79)

Recall that this describes states in the fth symmetric traceless tensor representation of O(N).
We now use the large-N expansion in quantum mechanics. The idea is that the centrifugal
term acts as an effective mass at large- N, resulting in a harmonic well at the stationary point
of the effective radial potential provided it is well-behaved. For a review of this expansion,
see Ref. [145], which gives explicit formulae for the spectrum to leading order in 1/N. At
N = oo we find the spectrum

Emg = 80 + Al + Eon (A80)

where & and A agree exactly with their expressions calculated in the large-N expression

Eq. (A.78) to order ¢/3. Furthermore, while we cannot compare F, directly with the first
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zero of I1(0,w), we have evaluated it numerically for small values of ¢ and found very good
agreement. Finally, the irreducible representations of the states under the O(N) symmetry
agree exactly.

We mention that the 1/N expansion in quantum mechanics is an easy way to obtain
1/N corrections to the Fock vacuum Hamiltonian compared to the field-theoretic methods
in Appendix A.6. One may also attempt to calculate the spectrum for the k& > 0 effective
Hamiltonians using the large-N expansion, which has been successfully applied to non-

isotropic Hamiltonians in atomic and molecular physics [145].
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APPENDIX TO CHAPTER 5

B.1 GREEN’S FUNCTION AND LARGE N MASS GAP ON THE
CYLINDER

In Section 5.3.2, we used the Green’s function for a massive scalar on the infinite cylinder.

This is given by

Gi(x, z;m?) LZ/ 5 —|—k2+m2 (B.1)

where we allow a twist in the finite direction

B 2T, + @y

y = i7 ny € Z (B.2)

We evaluate this expression using Zeta function regularization. We first introduce an extra

parameter v, and consider the expression

Gl(x7x;m2) = ! Z/ (d2p2 ! v (BS)
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This expression is convergent for v > 3/2. We evaluate this expression where it is convergent,

and then analytically continue it to ¥ — 1. After evaluating the integrals, we obtain

1 1
G o 2) — B.4
T = e =) 2 (k2 +m2)"™" ()
Ky Yy
The remaining sum needs to be evaluated as a function of v, which requires the use of
generalized Zeta functions. General formulae for sums of this type can be found in Reference
[146], and after evaluating this sum and taking v — 1, we find

1
Gi(x,z;m?) = Tl log [2 (coshmL — cos ¢,)] (B.5)

We note that the original integral, Eq. (B.1), has a linear UV divergence which has been set
to zero by our cutoff method. In other regularization methods, one generically expects an
extra term proportional to the UV cutoff, Gy (z, z;m?) o< 1/§, which contributes to the area
law in Eq. (5.31).

We also find the mass gap for the Wilson-Fisher fixed point at large-/N. The gap equation

is

1
Gi(z,z;my) = — (B.6)
e
However, in Zeta regularization we have
1 d*p 1
—:/ P =0 (B.7)
ge (271') p

Then using Eq. (B.5), we find the energy gap on the cylinder
1 1
my = Zarccosh (5 + cos gpy> (B.8)

as quoted in the main text.
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B.2 ENTANGLEMENT ENTROPY OF THE (GROSS-NEVEU MODEL
AT LARGE N

We discuss the Gross-Neveu model [24] in the large N limit. The calculation of the entan-
glement entropy is very similar to the critical O(N) model, and we find a mapping to the
free fermion entanglement analogous to the mapping derived in Section 5.2.

The critical model is defined by the Euclidean Lagrangian

Lo = —dha (B + 0) v+ %02 (B.9)

[

where the repeated index « is summed over, running from 1 to N. Here, o(z) is a Hubbard-
Stratonovich field used to decouple the quartic interaction term (¥4, )?. We now follow the

steps in Eq. (5.10) to obtain the partition function using the saddle point method.

log Z, = N Trlog (@, + (o)n) N /d%n ()2 + O(1/N) (B.10)

- 2¢2

The saddle point configuration of o is determined by the Gross-Neveu gap equation

Tr GE(z,2;(0),) = <Zzn

((Z’n + <0’(l’)>n) GE(z, 2" (0),) =0°(z — o) (B.11)

Here, the trace is over spinor indices and we have left the identity matrix in spinor space

implicit. The critical coupling is

I . d3p i
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Following our procedure for the O(/N) model, we write the saddle point configuration as

(o(x))n =my+ (n—1) f(x) (B.13)

to leading order in (n — 1), for an unknown function f(x). Then by a similar reasoning to

the calculations in Section 5.2, we find

—log ;—; = —N|Trlog (@, + m1) — nTrlog (@ +mi) (B.14)
This is the n-sheeted partition function for N free Dirac fermions with mass my, where m is
the mass gap of the Gross-Neveu model on the one-sheeted physical spacetime, Tr G¥ (z, x;m,) =
mi/gz.
Just as for the O(N) Wilson-Fisher fixed point, we can verify our result for the special case
where region A is a disk embedded in the infinite plane. The disk’s universal entanglement

entropy in the Gross-Neveu CF'T was found to be that of N free massless Dirac fermions

98], Yaisk = Ny + O(NP). This is exactly our result since m; = 0 for this geometry.
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APPENDIX TO CHAPTER 6

C.1 SPIN TRACES

Here we tabulate spin traces. We give expressions in terms of the index Cg of the spin-S

representation of SU(2),
1
Cs = 5(25 +1)S(S+1) (C.1)

This is defined as the constant appearing in the bilinear trace
Tr (Sagg> = CS(SQB (02)

Below we give the relevant traces, where we distinguish ¢’ = 1,2 from the z = 3 direction.

These traces give zero if one replaces one of the two ¢’ indices with z.
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At one-loop, we need the following traces:

o 4 1
T (S S S ) = =S(S+1) = 5 | Csduw = S{Cobary
N P 1]
Tr (SZSJ/SU/SZ) = [ZS(S+ 1)+ £| Cs = SiCs
e 4 3] ,
Tr (SQ/SG/SB/SU/> = |Z5(8+1) = 2| Codarpr = SiCsdurs
o 2 4]
Tr( Zsa,szs(,,) = [F5(5+1) - 7| Cs = SiCs (C.3)

At two-loop:

Q

[48 S?(S +1 2_ 65(8 + 1) — 5} 50/5/ = SéCS(Salﬁl
8 S%( > = S(S+1)+5] =85Cs

8 S%(

)

48 S*(S+1)* —485(S 4+ 1) + 9] by = SiCs0up
= 155(S+1) — 2] = SiCs
)

+1

+1
24 S*(S +1)* = 175(S + 1) + 8] dwp = SiCs0wp
8 S*(S+1)*—S(S+1)+5] =8iCs

24 S*(S+1)> = 175(S + 1) + 8] bwp = SiCs0up

)

)

)

)

24 S*(S+1)*> = 385(S + 1) + 15| b = SiCslupr

8 S?(S+1)* —295(S + 1) + 26] = SiCs

48 S*(S +1)* — 485(S +1) + 9] b = SiCsburs

8 S*(S+1)*+6S(S+1)—9] =SiCs

24 S*(S+1)*> = 385(S + 1) + 15| b = SiCsup
)

8 S?(S+1)* —225(5 +1) + 12] = 8;Cs

=
/N
NCQ>
qC\Q>
&
ch)
NO)
N— N T T T T T T T T N T N N
I
BN PR PR PR PR P B B B B ER A F b= FR A FEl=] Y

(
| S
[48 S(
[ S
[24 5%(
[ S
[24 5%(
[8 S*(S +1)* +275(5 +1) — 16] = S;Cs
[24 5%(
[ S
[48 5%(
[ S
[24 5%(
[ S
[24 5%(

24 52 S + 1)2 — 455(5 + 1) + 29} 50/5/ = 8100550/5/

w

5
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Tr (SSS,,SSJS,]> = g—g [8 S2(S +1)* —505(S + 1) + 33] = S;,Cs (C.4)

C.2 DETAILS OF THE TWO-LOOP CALCULATION

In this appendix we detail some of the intermediate steps in the calculation of the two-loop
contribution to the spin-spin correlation function quoted in Eqns. (6.37)-(6.38).

The relevant diagrams are pictured in Figures C.2.1 and C.2.2. Here, we have grouped the
diagrams into three groups (a), (b), and (c¢). This is because, like the one-loop calculation in
the main text, the three diagrams contributing to the denominator can be rewritten so that
they are the sum of the diagrams in the numerator. Then we only need to compute the 15
diagrams which follow from the integrals pictured in Figure C.2.1, while keeping track of the
difference in spin traces between the numerator and denominator. In the O(3) symmetric
case considered in Reference [136], this resulted in large cancellations and only 7 diagrams
need to be computed. In contrast, there are no cancellations here, and all 15 diagrams need
to calculated.

We label the loop integrals which follow from Figure C.2.1 as Z; for i = 1,2, ..., 15, where

we label the integrals from left-to-right and top-to-bottom according to the figure. In terms
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Figure C.2.1: The diagrams contributing to the numerator of the two-point function at two-loop.
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(@) (b)

7/
-’

l 1S

-
.......

Figure C.2.2: The diagrams contributing to the denominator of the two-point function at two-loop.

of these integrals, the two-loop contribution to G is

g(two—loop) w%‘{ [56 _ w‘gi} T, + [54 _ w‘gi} 7,

s - wg{ T+ |8 - wg{ 7,

s zs<53+ 1)55 2 ls - 25(53+ 1>S{ .

s 25(53+ 1>S{ i ls - 25(53+ 1>3{ .

n :84 _ 25+ <53 + 1)3;: 7,4 |5, — 2265+ <53 + 1)3;: Tio

- B g s, B g g

s BE g g s - B 0g) 7

+ {Sm - w‘%} 215} (C.5)

Within each bracket, the first spin sum is either &’ or §* depending on whether one wants
the two point correlator G’ or G*. We note that the denominator Z also contains an order
74 term from expanding the one-loop contribution to second order, but this contribution
vanishes in dimensional regularization.

We now evaluate the 15 integrals above. Below, we will give the 7" > 0 integrals for each

integral which follow from the diagrams in Fig. C.2.1, and then state the evaluation of the
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divergent piece of the T" = 0 limit. We take this limit according to the prescription described

below Eq. 6.29 in the main text.

T B T T
IQ = / d’7‘1/ dTg/ dTg/ d’7'4D(7'1 —Tg)D(Tg —’T4)
0 T 1 T3

LR -

®
ﬂi
8
~—~
Ql
+
=
\]ﬂ\
~——
[\V)
/T\
| o
|
| o

=
ﬂ¢
3
/N
&‘2
_l’_
—
\‘
o
N————
[N}
VR

+§+---) (C.8)

B—ro0 & 2 3 3
€ 2 2. C.9
a (M)(Qez ’ ) (C.9)
B T1 T1 T3
s = / dﬁ/ dTQ/ drs dryD(11 — 79) D (73 — 1)
B—o0 ~ 2 1 3
€ 4= C.10
— < dHT) (252 2e i ) ( )
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/ dTl/ dTQ/ dTg/ dryD(11 — 19)D(13 — T4)
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/ dTl/ dTg/ d7'3 dT4D(7'1 — TQ)D(Tg — T4>
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€ €
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B 1 T1 T2
T = / dTl/ dTQ/ dTg/ dT4D(7’1 - TQ)D(T?) - 74)
T T T2 T
= () (L]
T -
d+1 e 2
T B 2 B
0 T T T2
o /= 2/1 2
/8;> (d+17'E> (—2+—+"')
€ €
T B T1 T
214 = / dTl / dTQ dTg/ d7—4D(7_1 - 7_2)D(7—3 - 7—4)
0 T 0 T1
o /= 2/1 2
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T B T1 2
0 T 0 T
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— 0

—

Plugging these values into Eq. (C.5) and simplifying gives the full two-loop

used in Eq. (6.38) in the main text.
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