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Abstract

A significant portion of this dissertation is devoted to the study of the effects of im-

purities in substances whose low energy modes can be described by fermions obeying

the gapless Dirac equation in 2+1 dimensions.

First, we examine the case of a spin vacancy in the staggered flux spin liquid whose

excitations are Dirac fermions coupled to a U(1) gauge field. This vacancy leads

to an anomalous Curie susceptibility and does not induce any local orders. Next, a

Coulomb charge impurity placed on clean graphene is considered. We find that the

Dirac quasiparticles in graphene do not screen the impurity charge, to all orders in

perturbation theory. However, electronic correlations are found to induce a cloud

of charge having the same sign as the impurity charge. We also analyze the case

of a local impurity in graphene in the presence of a magnetic field and derive the

spatial fourier transform of tunneling spectroscopy data obtained on an almost-clean

graphene sheet in a magnetic field.

We then move on to Strong Topological Insulators (STI) whose surfaces are inhabited

by an odd number of Dirac fermion species. Local impurities on the STI surface are

found to induce resonance(s) in the local density of states (LDOS) in their vicinity.
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Abstract iv

In the case of magnetic impurities that may be approximated by classical spins,

we show the existence of RKKY interactions that favor ferromagnetic aligning of

randomly placed impurity spins perpendicular to the STI surface when the doping is

insignificant. Finally we also consider the effects of a step edge on the STI surface

and calculate the spatial decay of LDOS perturbations away from it.

The last chapter of this dissertation contains the theory for a new kind of spin liquid

in a system of spin halves arranged in a triangular lattice, whose excitations are spin

one Majorana fermions. This gapless spin liquid is found to possess certain properties

that are exhibited by the recently discovered spin liquid state in the organic charge

transfer salt EtMe3Sb(Pd(dmit)2)2.
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Chapter 1

Introduction

1.1 Dirac Fermions

The Dirac Equation

In 1926, Erwin Schrödinger wrote down a wave equation[125] which described the time

evolution of the quantum mechanical wave function of a non-relativistic particle:

i~
∂

∂t
ψ(x, t) =

(
−~2∇2

2m
+ V (x)

)
ψ(x, t) (1.1)

Using the correspondence E → i~∂/∂t and p→ −i~∇, this is equivalent to the non-

relativistic equation for the energy E = p2/(2m) + V . The discovery of this equation

led to the question of whether a similar equation could be written to describe the

motion of a relativistic particle, whose energy and momentum are treated on the

1
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same footing according the following equation from special relativity:

E2 = p2c2 +m2c4 (1.2)

Here c is the speed of light and m is the rest mass of the particle. This question

was answered in 1928 by Paul Dirac[29]. He discovered that one could write down

a relativistic wave equation which was linear both in energy and momentum, and

which squared to Eq. (1.2). However, this was possible only if the wave function was

assumed to be a multicomponent object with at least 4 components. Thus came to

be the Dirac equation for the electron, in which the concept of spin arose naturally

from the aforementioned multiple components of the wave function. It is reproduced

below in modern notation:

(−i~γµ∂µ +mc)ψ(x) = 0 (1.3)

where the ‘gamma matrices’ are required to obey the relation:

{γµ, γν} = 2gµν (1.4)

Here, gµν is a constant (Minkowski) metric and {A,B} = AB + BA is the anti -

commutator. This construction of the gamma matrices and the Dirac equation can

be generalized to any number of dimensions. In particular, for (2+1) dimensions, we

can construct the 2× 2 gamma matricesa

γ0 = σz, γx = iσy, γy = −iσx (1.5)

aThis convention is one of many related by unitary transformations.
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in terms of the Pauli sigma matrices σx,y,z. These lead to the following Hamiltonianb

HD = cσ · p̂+ ∆σz, ∆ = mc2 (1.6)

There are two kinds of particles described by this Hamiltonian, with dispersions

E±(p) = ±
√
p2c2 + ∆2. The spectrum has a gap of size 2|∆| around zero energy. In

the sections below we will deal with the special case of ∆ = 0, when the dispersions

become photon-like E±(p) = ±pc, i.e, vary linearly with the momentum (see Fig-

ure 1.1). c is now identified with the propagation speed of these gapless excitations.

1.1.1 Graphene

In 1947, Wallace made a remarkable discovery[151] while calculating the band struc-

ture of graphite. Graphite is composed of layers of carbon atoms, with the interlayer

bonds being much weaker than the intralayer bonds. Each layer is composed of car-

bon atoms arranged in a hexagonal lattice. Wallace found that a nearest neighbor

tight-binding model on a hexagonal lattice of carbon atoms yields a semi-metallic

dispersion, with the valence and conduction bands well-separated at all points of mo-

mentum space except at the high symmetry K and K ′ points of the planar Brillouin

zone, as shown in Figure 1.1. Since there is only one free mobile electron on each car-

bon atom, the chemical potential in a clean monoatomic sheet of these carbon atoms,

called ‘graphene’, should lie exactly at the K and K ′ points where the conduction

and valence bands touch. Wallace further showed that the band structure near these

bIn deriving the Hamiltonian Eq. (1.6) from Eq. (1.3), one needs to recall that x0 ≡ ct. Also,
note that in Eq. (1.6), p̂ = (p̂x, p̂y).
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points is the same as that obtained for the Dirac equation in 2+1 dimensions (i.e,

Eq. (1.6)).

Half a century later, Wallace’s calculation was tested directly by an experiment when

Andre Geim’s group at the University of Manchester was able to isolate single-atom-

thick sheets of graphene[99]. For this remarkable discovery, Andre Geim and Kon-

stantin Novoselov were awarded the Nobel prize in Physics in 2010. After this dis-

covery, many experiments have been performed on this material and it is clear that

graphene indeed hosts four species of Dirac fermions – the multiplicity coming from

the two spin states in combination with the location of the Dirac point (at the K or

K ′ point of the Brillouin zone).

Some of the first experiments to be performed on graphene were studies of its trans-

port properties as a function of doping. Since the density of states at the Dirac point

is very low (vanishing linearly as the energy shift from the Dirac point), it is very easy

to tune the chemical potential through the Dirac point by modulating a back gate. It

was found that near the Dirac point, the conductance became saturated at some low

but nonzero value[180, 98]. Many theories explaining this behavior have been written

down and there is a consensus that this phenomenon is controlled by scattering from

charged impurities in the vicinity of the graphene sheet, possibly embedded in the

substrate[3]. Understanding the effects of charged impurities in graphene near the

neutrality point is thus a very important step towards understanding its transport

properties in the lightly-doped regime.
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Graphene band structure

HDirac = �cσ · k

Γ

K’

K
M

K’ K

Graphene Brillouin Zonekx

ky

Interlayer Interaction and Electronic Screening in Multilayer Graphene Investigated
with Angle-Resolved Photoemission Spectroscopy

Taisuke Ohta,1,2 Aaron Bostwick,1 J. L. McChesney,1,3 Thomas Seyller,4 Karsten Horn,2 and Eli Rotenberg1

1Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany

3Montana State University, Bozeman, Montana 59717, USA
4Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, Erlangen, Germany

(Received 5 December 2006; published 16 May 2007)

The unusual transport properties of graphene are the direct consequence of a peculiar band structure
near the Dirac point. We determine the shape of the ! bands and their characteristic splitting, and find the
transition from two-dimensional to bulk character for 1 to 4 layers of graphene by angle-resolved
photoemission. By detailed measurements of the ! bands we derive the stacking order, layer-dependent
electron potential, screening length, and strength of interlayer interaction by comparison with tight
binding calculations, yielding a comprehensive description of multilayer graphene’s electronic structure.

DOI: 10.1103/PhysRevLett.98.206802 PACS numbers: 73.21.!b, 73.22.!f, 73.90.+f, 79.60.!i

Much recent attention has been given to the electronic
structure of multilayer films of graphene, the honeycomb
carbon sheet which is the building block of graphite, car-
bon nanotubes, C60, and other mesoscopic forms of carbon
[1]. Recent progress in synthesizing or isolating multilayer
graphene films [2–4] has provided access to their physical
properties, and revealed many interesting transport pheno-
mena, including an anomalous quantum Hall effect [5,6],
ballistic electron transport at room temperature [7], micron-
scale coherence length [7,8], and novel many-body cou-
plings [9].Theseeffectsoriginate from the effectively mass-
less Dirac fermion character of the carriers derived from
graphene’s valence bands, which exhibit a linear dispersion
degenerate near the so-called Dirac point energy ED [10].

These unconventional properties of graphene offer a new
route to room temperature, molecular-scale electronics
capable of quantum computing [6,7]. For example, a pos-
sible switching function in bilayer graphene has been
suggested by reversibly lifting the band degeneracy at the
Fermi level (EF) upon application of an electric field
[11,12]. This effect is due to a unique sensitivity of the
band structure to the charge distribution brought about by
the interplay between strong interlayer hopping and weak
interlayer screening, neither of which is currently well
understood [13,14].

In order to evaluate the interlayer screening, stacking or-
der,andinterlayer coupling, we have systematically studied
the evolution of the band structure of one to four layers of
graphene using angle-resolved photoemission spectros-
copy (ARPES). We demonstrate experimentally that the
interaction between layers and the stacking sequence affect
the topology of the ! bands, the former inducing an elec-
tronic transition from 2D to 3D (bulk) character when
going from one layer to multilayer graphene. The inter-
layer hopping integral and screening length are determined
as a function of the number of graphene layers by exploit-
ing the sensitivity of ! states to the Coulomb potential, and
the layer-dependent carrier concentration is estimated.

The films were synthesized on n-type (nitrogen, 1"
1018 cm!3) 6H-SiC(0001) substrates (SiCrystal AG) that
were etched in hydrogen at 1550 #C. Annealing in a vac-
uum first removes the resulting silicate adlayer and then
causes the growth of the graphene layers between 1250 #C
to 1400 #C [15]. Beyond the first layer, the samples have a
$0:5 monolayer thickness variation; the band structures of
different thicknesses were extracted using the method of
Ref. [11]. ARPES measurements were conducted at the
Electronic Structure Factory end station at beam line 7.01
of the Advanced Light Source (ALS), equipped with a
Scienta R4000 electron energy analyzer. The samples
were cooled to %30 K by liquid He. The photon energy
was 94 eV with the overall energy resolution of %30 meV
for Figs. 1 and 2(a)–2(d).

The band structures of a single [Fig. 1(a)] and a bilayer
[1(b)] of graphene are reflected in their photoemission
intensity patterns as a function of kk. The data are com-
pared with the scaled density functional theory (DFT) band
structures (see below) of free standing graphene layers

 

FIG. 1 (color online). Photoemission images revealing the
band structure of (a) single and (b) bilayer graphene along
high symmetry directions !-K-M-!. The dashed (blue) lines
are scaled DFT band structure of freestanding films [16]. Inset
in (a) shows the 2D Brillouin zone of graphene.

PRL 98, 206802 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
18 MAY 2007

0031-9007=07=98(20)=206802(4) 206802-1  2007 The American Physical Society

Graphene ARPES data

Figure 1.1: The band structure of graphene – there are two species of Dirac particles
at the K and K ′ points. Due to the method of construction of the highly symmetric
hexagonal Brillouin zone (the Wigner-Seitz cell), each of these points appears thrice
on the boundary, contributing one-third of the Dirac quasiparticles in each case. The
ARPES data on the right showing the measured Dirac dispersion at the K point is
reproduced from [102], while the three-dimensional band structure is reproduced from
the review [163].

Coulomb Impurity

To understand the response to charged impurities in metals, one takes into account

two main aspects of the response of the electron gas. First, since the bare Coulomb

field is long-ranged, a screening cloud supplied by the metal’s copious charge carriers

shields the impurity. This effect can be treated semiclassically using the Thomas-

Fermi approximation[61], yielding an exponential screening of the bare Coulomb field.

The strength of this screening is given by the inverse Debye screening length λ−1
D and
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is proportional to the density of states at the Fermi surface. The second effect arises

due to the wave nature of the electrons and leads to an oscillatory component of the

response. This phenomenon was discovered by and is named after Friedel [37]. These

oscillations occur at the Fermi wave vector kF .

In graphene, at the neutrality point, both kF and the density of states at the Fermi

level ∝ λ−1
D are zero. As a result, there is no conventional screening of a Coulomb

charge in graphene. However, the peculiar structure of particle-hole excitations of the

Dirac gas encourages us to look more closely at this scenario.

From the purely dimensional point of view, any long-wavelength response of the

induced charge density in graphene around a Coulomb impurity charge Q at r = 0

should have the form

δρ(r) = F (Q)δ(r) +
G(Q)

r2
(1.7)

Since the Dirac equation Eq. (1.6) with ∆ = 0 gives only one physical scale – the

velocity c – we cannot form any natural length scale for use in the function above.

In 1984, DiVincenzo and Mele[30] concluded that there is a finite value for G(Q). In

Chapter 3 it is shown that if exchange corrections coming from electronic interactions

are neglected, G(Q) = 0 to all orders in perturbation theory. In other words, for small

enough values ofQ, an impurity Coulomb charge induces only some local charge F (Q),

which turns out to be of the physically reasonable opposite sign. However, inclusion

of exchange contributions leads us to conclude that G(Q) is nonzero and has the same

sign as Q – a remarkably peculiar effect. A schematic expaining the full scenario is

shown in Figure 1.2.



Chapter 1: Introduction 7

Figure 1.2: Graphene’s response to a negative Coulomb charge placed on it: red/black
= -/+ve charge . The intrinsic response of the Dirac quasiparticles is to create a local
shell of positive charge around the impurity. Further electronic correlations create a
distributed sheet of negative charge surrounding the impurity. The total amount of
charge induced is found to be zero.

Impurity in a magnetic field

Nearly a decade after Wallace’s discovery of the Dirac quasiparticles in graphene, in

1956 McClure pointed out[86] a remarkable feature of the Dirac spectrum when the

orbital effect of a magnetic field perpendicular to the graphene sheet is considered.

In such a scenario, the energy spectrum of electrons with quadratic dispersions gets

quantized into evenly spaced discrete Landau levels with the inter-level gap being

proportional to the magnetic field. However, the Landau levels for the Dirac quasi-
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particles in graphene are not evenly spaced. The energy difference En between the

nth Landau level from the zeroth Landau level at the Dirac point is found to be

proportional to En ∝
√
|nB|. This Landau level structure been verified in many

experiments[79]. It will also be interesting to study the unconventional structure of

the Landau level wavefunctions Eq. (4.3). One way to probe these wavefunctions is

to find their response to local impurities. It is now possible to analyze large areasc of

almost clean graphene using scanning tunneling microscopes[88]. The only impurities

present are local defects in the graphene lattice that may be modeled as local potential

impurities. In Chapter 4 an analysis is presented where the spatial fourier transform

of the scanning tunneling spectra (FT-STS) is calculated for such a scenario. The

expected result is summarized in Figure 4.2.

1.1.2 Strong Topological Insulators

Over the last decade (2000-2010), a remarkable sequence of developments have oc-

curred in our understanding of a particular aspect of the topology of electronic bands

in materials with strong spin-orbit interaction. These developments relied on an in-

teresting property of electronic states – the Kramers degeneracy[72] in the presence

of time reversal symmetry (TRS). Since an electron has spin half, the time reversal

operator Θ satisfies the special property

Θ2 = −1 (1.8)

cComparable to the magnetic length under typical experimental conditions ∼ 50Å
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The consequence of this is that if the Hamiltonian possesses TRS, then the time-

reversed partner of any eigenstate is another orthogonal state with the same energy –

hence the forcing of a degeneracy. This remarkable fact can be proved by calculating

the overlap between an eigenstate |ψ〉 and it’s time-reversed partner
∣∣∣ψ̃〉 = Θ |ψ〉.

Using the anti-unitary property[160] of Θ which tells us that 〈α|β〉 =
〈
β̃|α̃
〉

, along

with the property Eq. (1.8), we find that〈
ψ̃|ψ

〉
=
〈
ψ̃| ˜̃ψ

〉
=
〈
ψ̃|Θ2|ψ

〉
= −

〈
ψ̃|ψ

〉
= 0 (1.9)

which is the statement of Kramers degeneracy mentioned above. In materials with-

out spin-orbit interaction this devolves into a simpler statement that the two spin

states for any orbital eigenstate have to be degenerate. For materials with spin-orbit

coupling, however, there are richer possibilities.

Much of the work that will be described here was initially motivated by attempts to

find materials which are useful for spintronics – that allowed control and transport of

the electron spin. For this reason, materials were sought which contained extended

electronic states that are forced to be spin-polarized because of spin-orbit coupling.

One such possibility was shown in 2005 by Kane and Mele[63] – they argued that

there existed a nontrivial phase in graphene with strong enough spin-orbit coupling

where extended edge modes had to exist that were spin-polarized. For the edge

states to exist, graphene had to become gapped in the bulk. Inside this energy

gap, peculiar edge modes had to exist in the nontrivial phase. In this phase, at a

given edge and energy, there was only one pair of eigenstates that were also Kramers

degenerate. These states had opposite momenta (because they were time-reversed

partners) but any back-scattering was forbidden by TRS-preserving disorder! This
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is easily seen by showing that the action of a TRS-preserving unitary time evolution

operator U(t) = ΘU(t)†Θ−1 can never convert |ψ〉 to
∣∣∣ψ̃〉:〈

ψ̃ |U(t)|ψ
〉

=
〈
ψ̃
∣∣ΘU(t)†Θ−1

∣∣ ˜̃ψ
〉

=
〈
ψ̃|U(t)Θ2|ψ

〉
= −

〈
ψ̃ |U(t)|ψ

〉
= 0 (1.10)

As a result, these states circumvent the mandatory localization transition in one

dimension[2] for the spin-orbit-free case and need not get localized due to weak po-

tential disorder – making them ideal for carrying some form of spin-polarized current.

In 2006, Bernevig and Zhang [14] predicted that CdTe/HgTe/CdTe quantum wells

would also exhibit such a nontrivial phase with extended (spin-polarized) edge modes

if the well depth was tuned above a critical value. This prediction was realized just

a year later by Konig and others [70].

In a later paper [64], Kane and Mele gave the first argument that the special phase

of graphene discussed above is one of two ‘topologically-classified’ states that are

possible for an electronic band-structure – the ‘normal’ insulator and a ‘topological’

insulator, the latter possessing an extended set of edge modes. The mathematical

definition of the associated Z2 topological invariant is involved, but the core physics

is as follows. Let us consider a semi-infinite sheet of a two dimensional insulator

with spin-orbit interaction. Suppose that the edge is along the x-direction and so

the momentum kx is a good quantum number because of translational invariance

along the edge. Let us plot the spectrum as a function of kx as shown in Figure 1.3.

Inside the bulk energy gap, there may exist states that are confined to the edge of

the material. We shall show that there are two ‘topological’ ways to classify these

edge states, using Kramers degeneracy. For this, we need to introduce the concept

of time-reversal-invariant-momenta (TRIM): these are points k on the Brillouin zone
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such that they are same as their time-reversed partner −k. Along the kx axis, there

are two such points kx = 0 (call it Λ1) and kx = π (call it Λ2). Because of Kramers

degeneracy, each surface band has a degenerate pair related by time reversal (the

‘Kramers pair’) and these bands need to cross each other at the TRIM. As we follow

a surface band from one TRIM Λ1 to the other, Λ2, it can either be degenerate with

the same other band at both points or may ‘switch’ its Kramers partner – the two

scenarios being sketched in Figure 1.3. Now, it is clear that no analytic perturbation

to the Hamiltonian (which does not ‘tear’ the bands) can transform one case to the

other, without closing the bulk gap. This is thus the basis of defining the two classes

of ‘normal’ and ‘topological spin hall’ insulators.

kx
0  π-π kx

0  π-π

Θ

Θ

Conduction band
(bulk)

Conduction band
(bulk)

Valence band
(bulk)

Valence band
(bulk)

Λ1 Λ2 Λ1 Λ2

Figure 1.3: The two possibilities for the topology of edge states in two dimensional
band insulators that preserve time reversal symmetry. The red and blue bands form
the Kramers pair – applying the time reversal operator Θ on one state with momentum
kx will produce a state in the Kramers partner with momentum −kx. The TRIM
Λ1,2 are kx = 0, π because reversing them brings one back to the same point in the
(periodic) Brillouin zone.
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In three dimensional band insulators an analogous classification exists[42, 40, 89, 116]

which is similar in spirit in that it relies upon the concepts of Kramers degeneracy and

the switching/retaining of Kramers pairs as one moves between the four TRIMd of the

surface Brillouin zone. We shall not explore this classification in detail here because it

is far outside the main focus of this dissertation. Suffice it to say that it can be shown

that a class of three dimensional band insulators exists such that their surfaces host

gapless surface bands with an odd number of gapless Dirac points located at some

of the four TRIM points. These are known as ‘strong’ topological insulators, since

in the presence of TRS-preserving perturbations and disorder their surface states

are predicted to remain gapless (and extended[117]). In 2007, Fu and Kane[42, 40]

predicted a number of materials that are strong topological insulators, aided in part

by a very simple prescription that they discovered for finding topological insulators

in materials with inversion symmetry[40]. Following that, numerous materials have

been experimentally discovered both preceding (like Bi2Se3[166]) and following (like

Bi-Sb alloys[53] and Bi2Te3[21]) their theoretical prediction.

The surfaces of Bi2Se3 and Bi2Te3 host single Dirac cones at the Brillouin zone center

(k = 0, the Γ point). The equation for the effective Hamiltonian near those Dirac

points can be written down as

HD = cσ × p̂ (1.11)

where the Pauli matrices σ = (σx, σy) are proportional to the surface projection of

the actual electron spin operator Si = (~/2)σi. This can be shown to be equivalent to

dThe four TRIM are given by the four combinations for (kx, ky) with values kx,y = 0, π.
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the ∆ = 0 case of the standard form Eq. (1.6) of the 2+1 dimensional Dirac equation

by applying a unitary transformation on the spin states which rotates the x and y

spin axes by 90 degrees. In any case, the equation describes electronic states whose

spins lie in the plane of motion and are locked to a set orientation with respect to the

direction of their momentum, and whose energies vary linearly with their momenta.

Effects of local impurities

From the preceding discussion it is clear that the surface states on strong topological

insulators (STI) are remarkable because of their predicted resilience to disorder. It

is thus a very useful exercise to investigate the possible effects of impurities on these

states. Using the T matrix formulation, we have provided a non-perturbative evalua-

tion of the effects on these states due to isolated short-ranged potential or (classical)

magnetic impurities in Chapter 5. We find that such impurities create resonances or

enhancements in the density of states close to the Dirac pointe, which decay slowly

as the inverse square of the distance from the impurity as shown in Figure 5.2. These

resonances sharpen and move closer to the Dirac point as the impurity strength be-

comes large. Spin textures are induced near a magnetic impurity due to the strong

spin-orbit coupling. These in turn mediate nontrivial RKKY interactions between

magnetic impurities

URKKY = a1S1 · S2 + a2r̂21 · (S1 × S2) + a3(S1 · r̂21)(S2 · r̂21) (1.12)

eSuch features have already been observed, as seen in unpublished data from the talk D2.00002
on “STM and STS studies of electronic states near macroscopic defects in topological insulators”
given by Z. Alpichshev at the APS March Meeting, 2011.
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composed respectively of the Heisenberg, Dzyaloshinskii-Moriya and dipole-dipole

termsf. A simplification occurs when the chemical potential is close to the Dirac

point (the undoped case) – only the Heisenberg and dipolar interactions remain and

because the Fermi wavelength is zero, these interactions do not oscillate in space and

the interaction energy decays as the cube of the distance between the impurity spins.

A consequence of the form of this interaction is that two spins prefer to align parallel

to each other but perpendicular to the line joining them, as shown in Figure 1.4.

As a result, if magnetic impurities are randomly placed on an undoped STI surface,

all impurity interactions are simultaneously satisfied only if they ferromagnetically

align perpendicular to the surface. We thus predict a transition to this phase at

low temperatures (see Figure 1.4). Such a transition has an important consequence

– the value of ∆, the gap parameter in Eq. (1.6), is proportional to the collective

magnetic moment perpendicular to the STI surface and so this transition will also

open a gap in the surface state spectrum. Such a process has recently been observed

when the Bi2Se3 surface is doped with iron atoms[164] and currently there exists no

alternate explanation for this phenomenon. Such a gap opening may be utilized to

observe phenomena related to the quantization of the magnetoelectric effect in these

materials, which is a direct consequence of the Z2 classification[77].

f In Eq. (1.12), r21 is the vector joining the two impurity spins S1,2 while a1−3 are functions of
r21 and the impurity-2DEG interaction strengths.
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Figure 1.4: Consequences of the RKKY interaction between impurity spins on an
undoped strong topological insulator.

Step edges

Aside from point-like local impurities, step edges on the STI surface have been ob-

served and their effects measured in recent experiments[179, 114, 5]. In Chapter 6,

we take a look at the effects of a step edge on the LDOS of the STI surface. Using a

scattering matrix formulation and time reversal symmetry, we can show that a suit-

ably defined reflection amplitude is antisymmetric in the angle of incidence, which

is zero at normal incidence. This, coupled with the spin-momentum locking of the

TI surface states, enables us to deduce the power laws that should appear in the
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distance-dependent decay of the induced LDOS oscillations, far from the step edge.

Many of these simple conclusions, which do not require a detailed modeling of the

step edge, been vindicated in recent experimentsg.

1.2 Spin Liquids

The traditional introduction to interacting spin systems is usually through classic ex-

amples broken-symmetry states: the ferromagnet and then the Néel antiferromagnet.

However, quantum fluctuations can also favor orderless but strongly correlated ‘spin

liquid’ states at low temperatures. One such example is that of the one dimensional

anti-ferromagnetic Heisenberg spin half chainh, which has no long range order and

power law correlations[27] in its ground state. The 1-D spin 1 antiferromagnetic chain

was also shown by Haldane[48] to possess an orderless ground state with a gap to ex-

citations. Another reason why magnetic long range order might be suppressed is the

inclusion of frustration, for e.g., arising due to the geometry of the triangular lattice.

Increasing the lattice dimension typically favors mean field effects and ordered states.

However, there is speculation that quantum systems exist in two dimensions that

exhibit no long range order – we will look at some such theoretical spin liquid states

in the next two sections.

gRef: unpublished data from the talk V35.00006 on “Power laws and STM image of standing
wave of the topological surface states” given by the group of Qi-Kun Xue at the APS March Meeting,
2011.

hThe one dimensional anti-ferromagnetic Heisenberg spin-s is defined by the Hamiltonian H1D =
J
∑
i Si ·Si+1, where J > 0 and Si are spin s operators on the sites {i} of a one dimensional lattice.
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1.2.1 The staggered flux spin liquid

A paradigm in the treatment of strongly correlated materials is the Hubbard model

on the square lattice. In this model, usually considered near half filling, spin half

electrons hop on a square lattice with a nearest neighbor hopping amplitude t. There

is also a short range interaction between the electrons – there is an energy cost U

when two electrons occupy the same site. The Hamiltonian is thus

HHubb =
∑
x

[ ∑
i=x,y,s=↑,↓

t (ψ†s(x+ bi)cs(x) + h.c) + Un↑(x)n↓(x)

]
(1.13)

where cs(x) (s =↑, ↓) denote the electron annihilation operator at site x, etc. It has

been argued[6] that the half-filled (exactly one electron per site) Hubbard model is a

good model for the undoped phase of the cuprate high Tc superconductor compounds.

Following Anderson’s influential paper in 1987[6], it is believed that the ground state

of the model at some small hole doping consists of fluctuating singlet pairs with various

ranges of entanglement, in addition to charge vacancies (holons). Spin excitations of

this system occur when the singlets are disrupted. In certain scenarios, the two spin

halves created by this process may be able to move apart, i.e become deconfined, in

which case this spin liquid state will have uncharged spin half excitations – called

spinons.

In its hole-doped regime, the Hubbard model can be simplified to the t− J model:

HtJ = J
∑
〈xy〉

(
S(x) · S(y)− n(x)n(y)

4

)
+ t

∑
x,i=x,y,s=↑,↓

ψ†s(x+ bi)cs(x) + h.c)

(1.14)

with the constraint of no double occupation per site, and J = 4t2/U . Here S are
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the spin operators. One method to try and solve this model is to use the following

representation of the electron annihilation operator[4, 159]. We begin by introducing

auxiliary fermionic fields fs(x) and bosonic fields bs(x), with s = 1, 2. These can be

combined as follows

Ψ1 =

 f1

f †2

 , Ψ2 =

 f2

−f †1

 , b =

 b1

b2

 (1.15)

and used to represent the actual electron operators c via the relation

cs =
b†Ψs√

2
, s = (1 or ↑), (2 or ↓) (1.16)

The Hilbert space for the t-J model is recovered through the constraints (per site)

1

2
Ψ†sτΨs + b†τ b = 0 (1.17)

where τ are Pauli matrices that act in the index space of Eq. (1.15). This represen-

tation can now be substituted into Eq. (1.14) and a mean field analysis performed to

find the spectrum for the spinons fs. The constraints Eq. (1.17) along with a local

SU(2) gauge symmetry of the mean field Hamiltonian defined by the transformations

Ψ1,2(x)→ W (x)Ψ1,2(x), b(x)→ W (x)b(x), W ∈ SU(2) (1.18)

also lead to the appearance of an SU(2) gauge field A`µ, where ` runs over the three

SU(2) generator indices and µ are the space-time indices. The mean field ansatz

consists of appropriately condensing the bosons b, finding the requisite mean field

values for the SU(2) gauge fields and ascribing a mean field value to the spinon
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hopping amplitudes

Ux,y =

 −χ∗xy ∆x,y

∆x,y χxy


χxy =

〈
f †s (x)fs(y)

〉
,∆xy = 〈f1(x)f2(y)− f2(x)f1(y)〉 (1.19)

Wen and Lee found[159] found that there exists a parameter regime where the fol-

lowing ansatz (which does not break any lattice symmetry and is by construction

invariant under spin rotations) has the lowest ground state energy:

Ur,r+bx = −τ 3χ− i(−1)rx+ry∆τ 1

Ur,r+by = −τ 3χ+ i(−1)rx+ry∆τ 1

A`0 = 〈b〉 = 0 (1.20)

This is the staggered flux (sF) spin liquid, thus named due to the staggered config-

uration of the winding fluxes given by the hopping ansatz. The spinon dispersion

in this phase has gapless Dirac nodes at the points (±π/2,±π/2) in the Brillouin

zone. Wen showed[156] that this state partly breaks the SU(2) symmetry down to

a U(1) symmetry group. Rantner and Wen[111] showed that these U(1) gauge fluc-

tuations strongly modify the properties of the Dirac quasiparticles. The excitation

spectrum, however, still remains gapless and spin correlations obey power laws – thus

this strongly interacting phase was named the ‘algebraic spin liquid’.

In Chapter 2 we will consider the effects of a spin vacancy in such a staggered flux

spin liquid. Following earlier arguments[122] we show that the relevant coupling

to the impurity occurs through via an impurity electric charge for the U(1) gauge

field. We show that the impurity spin contributes a Curie-like spin susceptibility
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with an anomalous coefficient. We also find that no staggered magnetization (or

other predicted competing orders[49]) is induced near the impurity.

1.2.2 The Majorana Spin Liquid on the triangular lattice

At the beginning of this chapter, we have seen how Dirac formulated his quantum

theory of a relativistic particle. It turns out that the spectrum of the Dirac equation

is unbounded from below. While that is not a physical enigma for solid state physics,

where there is a physical filled valence band, it produces a paradox in elementary

particle physics where the concept of a vacuum needs to exist such that one could

add to it particles which require additional energy to create. Dirac postulated the

concept of a vacuum where the lower branch of eigenstates E− = −
√
m2c4 + p2c2

was completely filled by fermionic particles. Excitations would arise in the form of

particle-hole pairs when a particle from the lower branch was promoted to the upper

energy branch.

Such a concept of ‘material’ vacuum was discomfiting for many physicists and another

argument for an alternate quantum theory of elementary relativistic particle was put

forth by the Italian physicist Ettore Majorana[80]. He considered ‘real’ fermions

that had no classical analog. The particles – dubbed the Majorana fermions – that

arose from this formulation had no charge and no distinct ‘antiparticles’. In particle

physics, Majorana fermions have been considered as candidates for the neutrino and

the ‘photino’, the supersymmetric partner of the photon, while in condensed matter

physics they are candidates for bound vortex states in certain kinds of superconduc-
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torsi.

The self-adjoint nature of a Majorana fermion γ = γ† has an interesting consequence

– it is possible to write down Majorana theories without a U(1) gauge freedom. This

can be very useful as we shall see below.

Recently, a couple of organic charge-transfer salts have been shown to possess interest-

ing spin liquid-like ground states – [κ-(BEDT-TTF)2Cu2(CN)3][134] and EtMe3Sb[Pd-

(dmit)2]2[58]. Both of these feature triangular lattices with spin 1/2s with strong an-

tiferromagnetic Heisenberg interactions. In the latter case, which we shall henceforth

refer to as dmit-131, the spin liquid is found to be gapless with a low temperature

thermal conductance that is proportional to the temperature[168], presumably arising

from the spin degrees of freedom. While a linear in temperature thermal conductivity

is expected for a theory of free fermionic spinons with a finite Fermi surfacej, it was

shown that gauge fluctuations should modify[76] the temperature dependence. Also,

Katsura and others argued[66] that the flux of the spinon U(1) gauge field should

couple to a perpendicular magnetic field and this should lead to the observation of a

finite thermal Hall conductance if indeed deconfined fermionic spinons were respon-

sible for the observed thermal current. A measurement of the thermal Hall effect,

however, gave a null result[168].

In keeping with the experimental observation of a zero thermal Hall effect, we have

iFor a discussion, see [161].

jIgnoring charge fluctuations, fermionic spinons f1,2 are defined for spin 1/2-s through the relation
S = (f†ασαβfβ)/2 along with a per-site single occupancy constraint

∑
s f
†
s fs = 1 imposed using a

U(1) gauge field, corresponding to the gauge freedom fs → eiφfs.
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proposed in Chapter 7 a spin liquid theory composed of deconfined spin 1 Majorana

fermion spinons. The analysis is based on the following parton representation of spin

half[85, 146, 24, 133, 126]

Sµ =
i

4
εµαβγαγβ, (1.21)

where the various indices run over x, y, z and the γα is a Majorana fermion

(γα)† = γα,
{
γα, γβ

}
= 2δαβ (1.22)

There is a Z2 gauge redundancy in this formulation and the Majorana fermion is

found to transform under spin rotations like a three-dimensional vector, i.e, it is a

spin 1 particle. We write down a spin liquid state on the triangular lattice that is

formed out of Majorana bilinears – requiring spin rotation invariance and adherence

to all lattice symmetries, modulo a gauge transformation. This procedure is the same

as that of using the projective symmetric group (PSG – see [157]). It turns out that

any quadratic Majorana Hamiltonian breaks time reversal and inversion symmetries,

and our theory is restricted to have the symmetry of combined time reversal and an

elementary lattice rotation.

The Majorana spin liquid derived in Chapter 7 is found to have a characteristic Fermi

surface that consists of three curves intersecting at k = 0. The quasiparticles at this

intersection point have a dispersion that goes as the cube of their momenta. This leads

to a divergent density of states (DOS) at low energies which controls the low tem-

perature thermodynamics of the spin liquid. We also study the effects of a magnetic

field on this system. The Zeeman term gaps out two-thirds of these quasiparticles

and this leads to a drop in the quasiparticle specific heat and magnetic susceptibili-
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ties. We argue, however, that the longitudinal thermal transport is unaffected by the

Zeeman coupling – an observation that is consistent with experiments on the gapless

spin liquid in dmit-131[168]. The presence of dilute impurities is found to soften

the DOS divergence at low energies, leading to a constant low temperature magnetic

susceptibility and a specific heat that is proportional to the temperature. Finally,

we show the thermal conductivity to also be proportional to the temperature, at low

temperatures. There is no thermal ‘Hall’ effect due to the application of a magnetic

field, since the usual mechanism of orbital coupling of the magnetic field to the spinon

U(1) gauge field does not arise here. This was our original motivation for using Ma-

jorana fermions. The last couple of observations regarding thermal transport are also

consistent with measurements in dmit-131[168].



Chapter 2

Theory of quantum impurities in

the staggered flux spin liquid

2.1 Synopsis

We describe spin correlations in the vicinity of a generalized impurity in a class of

fractionalized spin liquid states. We argue that the primary characterization of the

impurity is its electric charge under the gauge field describing singlet excitations in the

spin liquid. We focus on a gapless U(1) spin liquid described by a 2+1 dimensional

conformal field theory (CFT): the staggered flux (sF) spin liquid. In ref. [69], the

more extended body of work containing the results of this chapter, we also considered

the case of the deconfined critical point between the Néel and valence bond solid

(VBS) states. For such spin liquids, the electric charge is argued to be an exactly

24
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marginal perturbation of the CFT. Consequently, the impurity susceptibility has a

1/T temperature dependence, with an anomalous Curie constant which is a universal

number associated with the CFT. One unexpected feature of the CFT of the sF state

is that an applied magnetic field does not induce any staggered spin polarization in

the vicinity of the impurity (while such a staggered magnetization is present for the

Néel-VBS case). These results differ significantly from earlier theories of vacancies

in the sF state, and we explicitly demonstrate how our gauge theory corrects these

works. We discuss implications of our results for the cuprate superconductors, organic

Mott insulators, and graphene.

2.2 Introduction

The response of a strongly interacting electronic system to impurities has long been

a fruitful way of experimentally and theoretically elucidating the subtle correlations

in its many-body ground state wavefunction. The most prominent example is the

Kondo effect, which describes the interplay between a variety of impurities with a

spin and/or ‘flavor’ degree of freedom and a system of free fermions with either a

finite [51, 100, 60] or vanishing [38, 149] density of states at the Fermi energy.

More recently, the impurity responses of a variety of ‘non-Fermi-liquid’ bulk states

have been studied. [62, 32, 33, 120, 127, 148, 121, 118, 182, 177, 138, 145, 122, 52, 35]

The S = 1/2 antiferromagnetic spin chain generically has a critical ground state, and

displays interesting universal characteristics in its response to impurities or boundaries

[32, 33]. Universality was also found in the general theory [120, 148, 122] of impurities
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in ‘dimerized’ quantum antiferromagnets in spatial dimensions d ≥ 2 near a quantum

critical point between a Néel state and a confining spin gap state. Such ‘dimerized’ an-

tiferromagnets have an even number of S = 1/2 spins per unit cell, and consequently

their bulk quantum criticality is described within the conventional Landau-Ginzburg-

Wilson (LGW) framework of a fluctuating Néel order parameter.[130, 128, 131] Away

from the impurity, such systems only have excitations which carry integer spin.

It is the purpose of this chapter to extend the above theory [120, 148, 122] to frac-

tionalized ‘spin liquid’ states in spatial dimensions d ≥ 2 with neutral S = 1/2

excitations (‘spinons’) in the bulk. Such spinon excitations carry gauge charges as-

sociated with an ‘emergent’ gauge force (distinct from the electromagnetic forces),

typically with the gauge group [113, 156] Z2 or U(1), and we will argue shortly that

such gauge forces play a key role in the response of spin liquid states to impurities.

Earlier analyses[73, 67, 93, 92, 106, 107, 154] of the influence of impurities in the U(1)

‘staggered-flux’ spin liquid ignored the crucial gauge forces; we will comment in detail

on the relationship of our results to these works in Section 2.3.2.

There are a number of experimental motivations for our work. A large number of

experiments have studied Zn and Ni impurities in the cuprates,[18, 104, 173, 105, 55]

and much useful information has been obtained on the spatial and temperature de-

pendence of the induced moments around the impurity. It would clearly be useful

to compare these results with the corresponding predictions for different spin liq-

uid states, and for states proximate to quantum critical points. In [69] we showed

that there are significant differences in the experimental signatures of the different

candidates, and this should eventually allow clear discrimination by a comparison
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to experimental results. A second motivation comes from a recent nuclear magnetic

resonance (NMR) study [135] of the S = 1/2 triangular lattice organic Mott insulator

κ-(ET)2Cu2(CN)3, which possibly has a non-magnetic, spin singlet ground state. The

NMR signal shows significant inhomogeneous broadening, indicative of local fields nu-

cleated around impurities. Our theoretical predictions here for the sF spin liquid (and

for some other states, in [69]) for Knight shift around impurities should also assist

here in selecting among the candidate ground states.

An important observations is that in situations with deconfinement in the bulk, the

bulk spinons are readily available to screen any moments associated with an impurity

atom (as has also been noted by Florens et al. [35]). Moreover, for a non-magnetic

impurity (such as Zn on a Cu site), there is no a priori reason for the impurity to

acquire a strongly localized moment. Consequently, it is very useful to consider the

case where the impurity has local net spin S = 0. Naively, such a situation might seem

quite uninteresting, as there is then no local spin degree of freedom which can interact

non-trivially with the excitations of the spin liquid. Indeed, in a Fermi liquid, a non-

magnetic impurity has little effect, apart from a local renormalization of Fermi liquid

parameters, and there is no Kondo physics. However, in spin liquids the impurity can

carry an electric gauge charge Q, and the primary purpose of the work presented in

this chapter will be to demonstrate that a Q 6= 0, S = 0 impurity displays rich and

universal physics.

We will primarily consider U(1) spin liquids here: then an important dynamical

degree of freedom is a U(1) gauge field Aµ, where µ extends over the d+ 1 spacetime

directions, including the imaginary time direction, τ . Our considerations here can
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also be easily extended to Z2 spin liquids, and this was done in [69]. We normalize

the Aµ gauge field such that the spinons have electric charges ±1. In the popular U(1)

gauge theories of antiferromagnets on the square lattice (which we will describe more

specifically below), a vacancy will carry a gauge charge Q = ±1. Thus, a Zn impurity

on the Cu square lattice site has Q = ±1. This can be understood by thinking of the

impurity as a localized ‘holon’ in the doped antiferromagnet, which also carries such

gauge charges [92].

We will consider theories here with actions of the structure

S = Sb + Simp, (2.1)

where Sb is the bulk action of the spin liquid in the absence of any impurity, and Simp

represents the perturbation due to an impurity which we assume is localized near the

origin of spatial coordinates, x = 0. We will argue that the dominant term in Simp is

the coupling of the impurity to the U(1) gauge field:

Simp = iQ

∫
dτAτ (x = 0, τ). (2.2)

We will demonstrate that additional terms in the impurity action are unimportant or

‘irrelevant’. The Simp above can be regarded as the remnant of the spin Berry phase

that characterized the impurity in the previous theory [120, 148, 122] of dimerized

antiferromagnets; the latter Berry phase for a spin S impurity was iS times the area

enclosed by the path mapped on the unit sphere by the time history of the impurity

spin. An explicit reduction in the spinon formulation of the spin Berry phase to

Eq. (2.2) was presented in Ref. [119].
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Our primary results will be for U(1) algebraic spin liquids, [111, 112] which are

described by 2+1 dimensional conformal field theories (CFT) and we specialize our

presentation to these CFT cases in the remainder of this section. An algebraic spin

liquid has gapless spinon excitations which interact strongly with the Aµ gauge field.

An explicit realization appears in the deconfined quantum critical point [130, 128, 131]

between Néel and valence bond solid (VBS) states, in which the spinons are relativistic

bosons described by the CPN−1 field theory. Another is found in the ‘staggered

flux’ (sF) phase of SU(N) antiferromagnets, where the spinons are Dirac fermions

[111, 112, 50, 49, 96]. In all these cases, the algebraic spin liquid is described by a

2+1 dimensional conformal field theory, and our primary purpose here is to describe

the boundary conformal field theory that appears in the presence of Simp.

Our central observation, forming the basis of our results, is that Simp in Eq. (2.2)

is an exactly marginal perturbation to the bulk conformal field theory. This non-

renormalization is a consequence of U(1) gauge invariance, which holds both in the

bulk and on the impurity. We will verify this non-renormalization claim in a variety

of perturbative analyses of the conformal field theory. The claim can also be viewed

as a descendant of the non-renormalization of the spin Berry phase term, found in

Ref. [122].

The exact marginality of Simp has immediate consequences for the response of the

system to a uniform applied magnetic field H. The impurity susceptibility, χimp,

defined as the change in the total bulk susceptibility due to the presence of the
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impurity, obeys

χimp =
C
T

(2.3)

at finite temperature T above a conformal ground state; this can be extended by

standard scaling forms (as in Ref. [148]) to proximate gapped or ordered phases, as

we will describe in the next few sections. We set ~ = kB = 1 and absorb a factor of the

magneton, gµB, in the definition of the Zeeman field. With this, C is a dimensionless

universal number, dependent only upon the value of Q, and the universality class of

the bulk conformal field theory.

It is remarkable that the response of the impurity has a Curie-like T dependence,

albeit with an anomalous Curie constant C (which is likely an irrational number).

This anomalous Curie response appears even though there is no spin moment localized

on the impurity. In contrast, the earlier results for the LGW quantum critical point

presented in Ref. [148] had an unscreened moment present and so a Curie response

did not appear as remarkable. Here, it is due to the deformation of a continuum

of bulk excitations by the impurity, and the 1/T power-law is a simple consequence

of the fact that H and T both scale as an energy. Indeed any other external field,

coupling to a total conserved charge, will also have a corresponding universal 1/T

susceptibility.

A Curie-like response of an impurity in the staggered flux phase was also noted early

on by Khalliulin and collaborators, [73, 67] and others.[93, 106, 107] However, in

their mean-field analysis, they associated this response with a zero energy ‘bound

state’, and hence argued that C = 1/4. As noted above, the actual interpretation
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is different: there is a critical continuum of excitations, and its collective boundary

critical response has a Curie temperature dependence as a consequence of hyperscaling

properties. Consequently, C does not equal the Curie constant of a single spin, and is

a non-trivial number which is almost certainly irrational. We will discuss the earlier

work more explicitly in Section 2.3.2.

We will also consider the spatial dependence of the response to a uniform applied

field, H, in the presence of an impurity, as that determines the Knight shift in NMR

experiments. The uniform magnetization density induced by the applied field leads to

a Knight shift HKu(x); at T above a conformal ground state this obeys (the scaling

form is also as in Ref. [148]):

Ku(x) =
(T/c)d

T
Φu(xT/c) (2.4)

where c is the spinon velocity in the bulk (we assume the bulk theory has dynamic

critical exponent z = 1, and henceforth set c = 1), Φu is a universal function, and the

Knight shift is normalized so that∫
ddxKu(x) = χimp. (2.5)

The function Φu(y) has a power-law singularity as y → 0, with the exponent deter-

mined by a ‘boundary scaling dimension’: we shall come back to this in the sections

below.

In addition to the locally uniform Knight shift, an impurity in the presence of a

uniform applied field also induces a ‘staggered’ moment which typically oscillates

at the wavevector associated with a proximate magnetically ordered state. This
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leads to a staggered Knight shift, HKs(x), which we will also consider here. Such a

staggered Knight shift does appear for the deconfined critical theory describing the

Néel-VBS transition, and it has a spatial distribution associated with that of the

Néel state (for more details, see [69]). However, the response for the U(1) sF spin

liquid is dramatically different. One of our primary results is that for the scaling

limit theory of the U(1) sF spin liquid, an applied magnetic field in the presence

of an impurity induces none of the many competing orders [49] associated with the

spin liquid. Thus there is no analog of the ‘staggered’ Knight shift. A subdominant

induction of competing orders can arise upon including irrelevant operators associated

with corrections to scaling; the primary response, however, is just the induction of a

ferromagnetic moment, which has a slowly-varying, space-dependent envelope in the

vicinity of the impurity specified by Ku(x).

Our conclusions above for the impurity response of the U(1) sF spin liquid differ from

the earlier mean-field theories.[73, 67, 93, 92, 106, 107, 154] They found an induced

moment which had a strong oscillation between the two sublattices of the square

lattice. We demonstrate here that this oscillation disappears in the continuum field

theory which accounts for the gauge fluctuations. We are not aware of any reason

why fluctuation corrections to the mean-field predictions should be considered small.

2.3 Theory and Results

This section will examine the response of a second algebraic spin liquid to impurities:

the staggered flux spin liquid with fermionic spinon excitations. [111, 112, 50, 49,
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96]. The low energy excitations of the spin liquid are described by Nf flavors of

2-component Dirac fermions, Ψ, coupled to the U(1) gauge field Aµ with the action

Sb =

∫
d3yΨ [−iγµ(∂µ + iAµ)] Ψ. (2.6)

As before, y = (τ, ~x) is the spacetime coordinate, and µ extends over the D = 3

spacetime indices. The Dirac matrices γµ = (τ 3, τ 2,−τ 1), where τµ are the Pauli

matrices, and the field Ψ = iΨ†τ 3 — we follow the notation of Hermele et al.[49]

The number of flavors is Nf = 4 for the staggered flux state, and our results are also

extended to the so-called π-flux state, which has Nf = 8. Our analysis will be carried

out, as in the previous works, in a 1/Nf expansion. We have not included a bare

Maxwell term for the gauge field in Sb because it turns out to be irrelevant at all

orders in the 1/Nf expansion.

2.3.1 Bulk theory

The structure of the bulk theory has been described in some detail in Refs. [111, 112,

49], and we will not repeat the results here. In the large Nf limit, the propagator of

the gauge field in the Lorentz gauge is

Dµν(p) =

(
δµν −

pµpν
p2

)
16

Nfp
(2.7)

This propagator arises from the vacuum polarization of the fermions. Notice that it is

suppressed by a power of 1/Nf , so the 1/Nf expansion can be setup as a perturbation

theory in the fermion-gauge field interaction.
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A large number of order parameters can be constructed out of fermion bilinears, and a

detailed catalog has been presented. [49] Among these are the SU(Nf ) flavor currents

Jaµ = −iΨγµT aΨ, (2.8)

certain components of which are the magnetization density and current. Conservation

of this current implies the scaling dimension

dim[Jaµ ] = 2, (2.9)

Also considered were the following quantities:

Na = −iΨT aΨ, M = −iΨΨ, (2.10)

which relate to additional order parameters including the Néel order (note that M

does not correspond to the physical magnetization). Their scaling dimensions have

been computed in the 1/Nf expansion:

dim[Na] = 2− 64

3π2Nf

+O(1/N2
f ) (2.11)

2.3.2 Relationship to earlier work

Before describing the results of our analysis of the impurity in the U(1) sF phase, it

is useful to describe the earlier analyses in Refs. [73, 67, 93, 92, 106, 107, 154]. They

ignored the Aµ fluctuations, but instead considered a theory of fermionic spinons

fiα on the sites, i, of the square lattice; α is a spin index. These spinons obey∑
α〈f †iαfiα〉 = 1 on every lattice site except at the impurity i = 0. Here, they inserted
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a vacancy (representing e.g. a Zn impurity) by including a potential term in the

Hamiltonian

Himp = V
∑
α

f †0αf0α (2.12)

and taking the limit V → ∞ to prohibit any spinons from residing on the vacancy.

The key physical ingredient in these analyses is the difference in the spinon occupation

number between the impurity and the bulk:∑
α

〈f †iαfiα〉 − 1 = −δi0. (2.13)

(a)

(c)

(d)

(e)

(f)

(g)

(h)

(b)

Figure 2.1: Feynman diagrams to order 1/Nf for the lhs of Eq. (2.14). The full line
is the Dirac fermion propagator, the wave line is the photon propagator, the filled
square is the impurity source term in Simp, and the filled circle is Ψ†Ψ vertex. As
noted in the text, the diagram in (b) has an odd number of photon vertices, and so
vanishes by Furry’s theorem.[59] Here, and henceforth, we do not show a number of
other diagrams which vanish because of Furry’s theorem.

In our approach the analog of the V =∞ limit is obtained by the functional integral

over Aτ . In the bulk theory, the continuum field Ψ is defined so that 〈Ψ†Ψ〉 = 0 in
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the absence of the impurity, and the continuum analog of Eq. (2.13) is

〈Ψ†Ψ(r)〉 = −Qδ2(r) (2.14)

where the rhs has a Dirac delta function. The constraint in Eq. (2.14) is imposed not

by adding a potential energy, but by the functional integral over Aτ , which appears

in the Lagrangian density of Sb + Simp (with Sb given in Eq. (2.6)) as iAτ
(
Ψ†Ψ +

Qδ2(r)
)
. Our treatment of gauge fluctuations ensures that the constraint on the

spinon occupations is imposed not just on the average, but dynamically on all states

and on all sites. The equality in Eq. (2.14) holds to all orders in the 1/Nf expansion:

this follows from the ‘equation of motion’ for Aτ〈
δ

δAτ
(Sb + Simp)

〉
= 0. (2.15)

It is instructive to also test Eq. (2.14) by explicitly evaluating the lhs of Eq. (2.14) in

the 1/Nf expansion. The corresponding Feynman diagrams are shown in Fig. 2.1. At

leading order, we have the diagram Fig 2.1(a), which is easily evaluated to yield the

rhs of Eq. (2.14). At order 1/Nf , the diagrams shown in Fig. 2.1(b-g) contribute. Of

these, Fig. 2.1(b) vanishes by Furry’s theorem.[59] Of the remaining, it is easy to show

that they cancel in pairs: this requires only the knowledge that the photon propagator

is the inverse of the fermion vacuum polarization bubble. Thus Figs. 2.1(c) and (d),

(e) and (f), and (g) and (h), all cancel against each other, and Eq. (2.14) is thus

established to this order. It is not difficult to extend these arguments to all orders

in 1/Nf . Note that it is possible to satisfy Eq. (2.14) in a perturbative treatment of

gauge fluctuations, without the need to appeal to bound states: the delta function at

r = 0 arises from a superposition of the contribution of many extended states, rather

than from a bound state claimed earlier.[73, 67, 93, 92]
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It is clear that our approach yields a systematic and controlled treatment of the spinon

deficit at the impurity, in contrast to the earlier ad-hoc mean-field approaches.[73, 67,

93, 92, 106, 107, 154] Our analysis implies that the Curie constant C is a non-trivial

number, with contributions at all orders in 1/Nf , and is not given simply by the Curie

constant of a single spin.

The proper analysis of a potential term like that in Eq. (2.12) requires the scaling

analysis of perturbations to the conformal field theory defined by Sb + Simp. The

action for such a perturbation takes the form

S ′b = V

∫
dτΨ†Ψ(x = 0, τ) (2.16)

A simple analysis of scaling dimensions shows that

dim[V ] = −1 +O(1/Nf ). (2.17)

So, potential scattering is an irrelevant perturbation at all orders in the 1/Nf expan-

sion.

A further distinction between our results and the earlier work[73, 67, 93, 92, 106,

107, 154] appears in the response to a uniform magnetic field. This has significant

experimental consequences, and will be discussed in Section 2.3.4.

2.3.3 Impurity exponents

We now turn to an analysis of spin correlations in the vicinity of the impurity. The

general method is very similar to that followed in Ref. [122].
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(a)

(j)

(d)

(c)(b)

(g) (h)

(f)(e)

(i)

Figure 2.2: Feynman diagrams which contribute to the impurity-dependent renor-
malization of vertices. The full line is the Ψ propagator, the wavy line is the Aµ
propagator, and the filled square is the source term in Simp.

We assume here that monopole tunneling events remain irrelevant at the impurity at

the quantum critical point, as they do in the bulk. [130, 128, 131] Such monopole

tunneling events are defined only in d = 2, and so their scaling dimensions are not

easily estimated in the ε expansion. However, the monopoles are irrelevant at large N

in the bulk because their action is proportional to N , and the same reasoning applies

also in the presence of the impurity.

Here, we will determine the impurity renormalization to the order 1/N2
f . To this

order, we find that all the operators introduced above, the Jaµ and Na acquire a
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common correction, ∆imp, to their bulk scaling dimension. This correction is given

by the single diagram in Fig 2.2(c), which (along with its symmetry related partner)

evaluates to

512Q2

N2
f

∫
d2q

(2π)2

d2k

(2π)2

(−iω + ~q · ~τ)(−iω + (~k + ~q) · ~τ)

kq(q2 + ω2)((q + k)2 + ω2)

=
128Q2

N2
fπ

2
ln(Λ/ω) (2.18)

where ~τ = (τ 1, τ 2) and Λ is an ultraviolet cutoff; here and henceforth we are using

the fermion lines to represent the propagator (iω+~τ · ~q)−1 from Ψ to Ψ† (rather then

the Dirac propagator from Ψ to Ψ). There are a number of other diagrams, like those

shown in Fig. 2.2, which could contribute to the vertex renormalization; however

they do not contribute either because of Furry’s theorem. From this we obtain the

impurity correction to the scaling dimension

∆imp = −128Q2

N2
fπ

2
+O(1/N3

f ) (2.19)

We expect that the higher order corrections will not be the same for the Jaµ and Na.

2.3.4 Linear response to a uniform applied field

We apply a uniform magnetic field Ha, associated with the SU(Nf ) generator T a,

which couples linearly to the conserved total spin density Jaτ . In principle, in the

presence of the impurity, the linear response to this applied field can induce time-

independent, space-dependent average values of not only the spin density, Jaτ , but also

of the other order parameters M , and Na. This would be analogous to the non-zero

averages of the uniform and staggered magnetizations induced by an applied magnetic
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field on the CPN−1 model (which led to the uniform and staggered Knight shifts).

However, here we will find a crucial difference. In the scaling limit of the algebraic spin

liquid represented by Eq. (2.6), Ha induces only a non-zero Jaτ , and average values of

all the Na and M are zero. Thus there is only a uniform Knight shift, Ku(x), and

all the ‘staggered’ Knight shifts, Ks(x), associated with the many competing orders

are zero. The staggered Knight shift can appear only if some corrections to scaling

are included, associated with irrelevant operators which reduce the symmetry of the

conformal theory to that of the lattice model, and so can be expected to be weaker

than the uniform Knight shift.

The vanishing of 〈M(x)〉 and 〈Na(x)〉 in the presence of Ha can be established by a

careful consideration of the symmetries of the Dirac fermion theory. First 〈M〉 = 0,

to linear order in Ha, simply by SU(Nf ) symmetry. Establishing the value of 〈Na〉

requires more complicated considerations. Let us consider the leading contribution

to 〈Na〉, to linear order in Ha, in the 1/Nf expansion, represented by the graph in

Fig 2.3(a). The value of the fermion loop is proportional to

T
∑
ωn

∫
d2k

4π2
Tr
[
(iωn + ~τ · ~k)−1τ 3(iωn + ~τ · ~k)−1

×(iωn + ~τ · (~k + ~q))−1
]

(2.20)

Evaluating the trace over the Dirac matrices, we obtain an identical zero. This can

be understood as a consequence of time-reversal invariance. Both Ha and Na are odd

under the time reversal, [50] as is the charge of the impurity Q. So an expansion of

〈Na〉/Ha can only involve even powers of Q. Proceeding to order 1/N2
f , we obtain

diagrams like those shown in Fig. 2.3(b-d), which have a pre-factor of Q2, and so
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are potentially non-zero. However, these diagrams have a fermion loop with an odd

number of γµ vertices, and so vanish by Furry’s theorem. [59] By a combination of

Furry’s theorem and time-reversal invariance we can now easily see that all terms

vanish and so 〈Na〉 = 0. Because of the T a matrices in the definitions of Na and Jaτ ,

there must be a single fermion loop which connects the external vertices. By Furry’s

theorem, this loop must have an odd number of photon vertices. All other fermion

loops can only have an even number of photon vertices. Consequently, there must

be an odd number of photon vertices remaining to connect to the external impurity

source term. However, by time-reversal, there must be an even number of impurity

terms; hence the result.

Our conclusion that 〈Na〉 = 0 is starkly different from the mean-field prediction

[73, 67, 93, 92, 106, 107, 154] of an induced moment which oscillated strongly between

the two square sublattices. Such oscillations can only appear upon including irrelevant

operators.

It remains only to compute the uniform Knight shift Ku(x), or equivalently, its Fourier

transform χu(q) defined as:

Ku(x) =

∫
ddq

(2π)d
χu(q)e

iqx, (2.21)

The scaling analysis of Section 2.3.3 implies that this Knight shift obeys the scaling

form in Eq. (2.4), with the x→ 0 behavior given by

Ku(x→ 0) ∼ T d−1+∆imp
1

|x|−∆imp
. (2.22)

Here we expect that the ∆imp exponent is that associated with Jaτ , and not (unlike

the situation with the CPN−1 model) that associated with the Na, because there is
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no ‘mixing’ between the staggered and uniform magnetizations near the impurity for

the sF spin liquid.

(a) (b)

(c) (d)

Figure 2.3: Feynman diagrams for the impurity susceptibility and Knight shifts of
the staggered flux spin liquid. The grey circle vertices depend upon the correlator
being evaluated: they equal (i) T aγτ for the ferromagnetic spin density Jaτ , (ii) T a

for the order parameter Na, and (iii) unity for M .

At first order in 1/Nf , χu(q) is given by the diagram in Fig 2.3(a), which vanishes

by Furry’s theorem. The leading non-vanishing contribution is at order 1/N2
f , and

is given by the diagrams in Fig 2.3(b-d) (a number of order 1/N2
f diagrams which

vanish because of Furry’s theorem are not shown). The sum of these diagrams can

we written in the following compact form

χu(q) = Q2S̃T
∑
ωn

∫
d2k

4π2

d2p

4π2

∂

∂(iωn)
Tr

[(
iωn + ~τ · ~k

)

×
(
iωn + ~τ · (~k + ~q)

)(
iωn + ~τ · (~k + ~p)

)]−1

×Dττ (p)Dττ (|~q − ~p|). (2.23)
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Here Dττ is the τ component of the photon propagator, representing the external

lines connecting to the impurities, and S̃ is the constant proportional to the SU(N)

Casimir eigenvalue as defined below:

S̃ =
1

N2 − 1
tr

N2−1∑
a=1

(T a)2 ≡ C̃
N2 − 1

, (2.24)

Here, C̃ is the eigenvalue of the Casimir operator of SU(N) which depends on the

specific representation of the group. In the SU(2) case, this factor takes the familiar

form S̃ = S(S + 1)/3.

Notice that the expression (2.23) is a total frequency derivative; this immediately

implies that χu(q) = 0 at T = 0, when the frequency summation can be converted to

an integration. This vanishing is a consequence of the conservation of total spin.

A non-zero χu(q) is obtained at T > 0, and we now compute this. First we need the

photon propagator at T > 0. This is given by a single fermion loop and at this order

we only need the τ, τ component at a spatial momentum ~q:

D−1
ττ (q) = −NfT

∑
ωn

∫
d2k

4π2
Tr

[(
iωn + ~τ · ~k

)

×
(
iωn + ~τ · (~k + ~q)

)]−1

. (2.25)

We first combine the denominators in Eq. (2.25) using the Feynman parameter u,

perform the frequency summation, and finally integrate over k. This yields

D−1
ττ (q) =

NfT

π

∫ 1

0

du ln
[
2 cosh

( q

2T

√
u(1− u)

)]
. (2.26)

Eq. (2.26) interpolates between Nfq/16 for T � q which agrees with the T = 0 result

in Eq. (2.7), to (T/π) ln 2 for q � T .
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Figure 2.4: Numerically calculated scaling function Φ̃u(y) defined by (2.26-2.30). The
inset shows large-y behavior together with the least square fit (dashed line) to a power

law for y > 40: the fit yields Φ̃u(y) ' C ′/yα with C ′ = 24.7(1) and α = 2.070(5).

Inserting Eq. (2.26) into Eq. (2.23), we conclude that χu(q) obeys the scaling form

χu(q) =
1

T
Φ̃u(q/T ) (2.27)

where the scaling function Φ̃u is the Fourier transform of the scaling function Φu in

Eq. (2.4). Further, C, the anomalous Curie constant appearing in Eq. (2.3), equals

Φ̃u(0). To determine the scaling function Φ̃u, we need to evaluate Eq. (2.23). We

combined the Green’s functions using two Feynman parameters u, v, evaluated the

integral over k, differentiated with respect to frequency, and finally evaluated the

summation over ωn. This yields

χu(q) = −Q
2S̃

π

∫ 1

0

du

∫ 1−u

0

dv

∫
d2p

4π2

{
f ′(∆)

+

[
2∆2 − uq2 − vp2 −

(
1− 2(u+ v)

)
~p · ~q

]
×f

′′(∆)

4∆

}
Dττ (p)Dττ (|~q − ~p|) (2.28)

where

∆2 = q2u(1− u) + p2v(1− v)− 2uv~p · ~q (2.29)
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and f is the Fermi function

f(ε) = 1/(eε/T + 1). (2.30)

The remaining integrals have to be evaluated numerically. From such an evaluation

at q = 0 we found

C =
1.0460(5)S̃Q2

N2
f

+O(1/N3
f ) (2.31)

for the universal Curie constant appearing in Eq. (2.3). The calculated shape of the

scaling function Φ̃u(y) is shown in Fig. 2.4. From the numerical analysis of its behavior

for large arguments, we deduce that Φ̃u(y) has a power-law decay Φ̃u(y) ∝ 1/yα at

y � 1, where the exponent α ≈ 2 within the accuracy we were able to achieve

when calculating the four-dimensional integral in (2.28). Therefore, we obtain that

at small distances the uniform Knight shift Ku(x) tends to a (lattice cutoff-dependent)

constant as x→ 0, which is consistent, to the leading order in 1/Nf , with Eq. (2.22)

and the fact that ∆imp vanishes at this order (see Eq. (2.19)).

2.4 Conclusions

Let us summarize the basic physical characteristics of the impurity response of the

Staggered flux spin liquid. This spin liquid is generically critical, and so has an

anomalous Curie response; the Curie constant is given, to the leading order in the

1/Nf expansion, by Eq. (2.31). The Knight shift now has only a uniform component,

but no staggered component in the scaling limit. The absence of any staggered Knight

shift is a defining characteristic of the sF spin liquid, and is a consequence of its large

emergent symmetry.[49] There is a large number of competing order parameters, and
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the leading impurity action Simp has no natural way of choosing among them, leading

to a response which is restricted to the ferromagnetic moment alone. The behavior

of the ferromagnetic Knight shift upon approaching the impurity is specified by the

impurity exponent (2.19) found in Section 2.3.3; to the leading order in 1/Nf , the

Fourier transform of the ferromagnetic Knight shift is computed in Sect. 2.3.4.

Apart from their applications to spin liquids, the results in this chapter also have a

direct application to the physics of charged impurities in two-dimensional graphene.

It is well known that the low energy electronic excitations in graphene are described

by 2 species of Dirac fermions. There is no fluctuating gauge field Aµ as in Eq. (2.6).

However in the presence of charged impurity, the three-dimensional Coulomb poten-

tial the electrons experience has the form C/r, where C is a constant. Interestingly,

this is exactly the form of the static potential found in Section 2.3 in the presence of

an impurity, where 〈Aτ 〉 ∼ 1/r. Thus, as long as we ignore quantum-electrodynamic

loop corrections, the results of Section 2.3 apply also to graphene; specifically, in

Fig. 2.1, (a) and (b) apply to graphene while (c)-(h) do not. One of our important

results for this system was Eq. (2.14): that the induced charge density due to the

Coulomb potential is a delta function, with Q a non-trivial universal function of C.

This results therefore applies also to graphene. It disagrees with the earlier result

of Ref. [30], which found a 1/r2 decay in the induced charge density. We believe

their results suffers from a cavalier treatment of the ultraviolet cutoff, which does not

preserve gauge invariance.

Finally, we comment on the experimental implications of our work.
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For the cuprates, NMR experiments[18, 104] show a large Knight shift response at the

Néel wavevector in the vicinity of the impurity, and strong temperature-dependent

enhancement of such correlations. These features are consistent with the Néel-VBS

transition (considered in [69]) and also with the transition in dimerized antiferromag-

nets considered earlier.[120, 148, 122] The absence of a staggered response for the sF

case is potentially a serious deficiency of this model’s applicability to the cuprates. It

remains to be seen if corrections to scaling (such as those in Eq. (2.16)) can remedy

the situation.

For the organic Mott insulator κ-(ET)2Cu2(CN)3, the NMR Knight shift [135] has

an appreciable T independent component at low T . This can potentially be fit either

by the spinon Fermi surface or by a weakly magnetically ordered state (see [69]), but

not by the sF spin liquid phase.



Chapter 3

Coulomb impurity in graphene

3.1 Synopsis

We consider the problem of screening of an electrically charged impurity in a clean

graphene sheet. When electron-electron interactions are neglected, the screening

charge has a sign opposite to that of the impurity, and is localized near the im-

purity. Interactions between electrons smear out the induced charge density to give

a large-distance tail that follows approximately, but not exactly, an r−2 behavior and

with a sign which is the same as that of the impurity.

48
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3.2 Introduction

With the recent explosion of interest in graphene, there are numerous experimental

motivations for understanding the influence of impurities on its electronic and trans-

port properties. For non-interacting electrons, the influence of a dilute concentration

of impurities on transport properties has been investigated in some depth [103]. Here

we shall instead study in some detail the physics associated with a single impurity

carrying electrical charge Z. Nanoscale studies of the electronic properties of a single

graphene sheet have recently become possible [84, 141], and so it should eventually

be possible to observe the variation in the charge density and the local density of

states as a function of distance from the impurity. We shall show here that this

spatial structure is a sensitive probe of the strong correlations between the electrons

in graphene, and of the unusual nature of screening in a two-dimensional semi-metal

with a Dirac dispersion spectrum.

For non-interacting electrons, the influence of a Coulomb impurity exerting a po-

tential Ze2/(4πε0r) (where r is the distance from the impurity) was studied some

time ago [30]. This case is equivalent to the familiar “Friedel problem” but for Dirac

fermions. However, even for this seemingly simple case, there are subtleties which

were overlooked in the initial treatment [30], and corrected in Ref. [69]. A num-

ber of papers appeared [136, 97, 108] while this research was being written up for

publication, presenting additional results on this non-interacting problem. We shall

review and extend the results of Ref. [69] for non-interacting electrons in Section 3.3.

We shall then proceed to the full treatment of the impurity problem, and allow for
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electron-electron Coulomb interactions.

In short, our results are as follows. For noninteracting electrons, the screening charge

is a local delta-function in space to all orders in perturbation theory over the impurity

charge. The sign of this screening charge is opposite to that of the impurity, as

is usually the case. However, once interaction between electrons is turned on, the

screening charge develops a long-range tail, even for small impurity charges. The tail

follows approximately an r−2 law, with a coefficient which varies quite slowly with r.

Notably, the sign of this tail is the same as that of the impurity. The long-range tail of

the screening charge, thus, is a sensitive probe of the interaction between electrons, in

particular to the renormalization of the fermion velocity and the “quantum critical”

aspects [139] of the interacting Dirac fermion problem.

Let us begin with a statement of the problem. After taking the continuum limit to

N = 4 species of two-component Dirac fermions Ψa (a = 1 . . . N) we have the theory

defined by the Euclidean partition function

Z =

∫
DΨαDAτ exp (−S − Simp) ,

S =
N∑
a=1

∫
d2r

∫
dτ Ψ†a(r, τ)

[
∂

∂τ
+ iAτ (r, τ) + ivσx

∂

∂x
+ ivσy

∂

∂y

]
Ψa(r, τ)

+
1

2g2

∫
d2q

4π2

∫
dτ 2q |Aτ (q, τ)|2 ,

Simp = −iZ
∫
dτAτ (r = 0, τ). (3.1)

The functional integral is over fields defined in two spatial dimensions r = (x, y)

and imaginary time τ , σx,y are Pauli matrices acting on the Dirac space, and v is

the Fermi velocity. The scalar potential which mediates the e2/(4πε0|r|) Coulomb
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interaction between the electrons is iAτ (r, τ); after a spatial Fourier transform to

two-dimensional momenta q, this interaction requires the 2q (= 2|q|) co-efficient of

the term quadratic in Aτ , with the coupling g2 = e2/ε0. The screening due to a

substrate of dielectric constant ε can also be included by modifying the coupling to

[139] g2 = 2e2/(ε0(1 + ε)). The action S therefore represents the physics of an ideal

graphene layer. The influence of an impurity of net charge Z at r = 0 is described

by Simp.

Many essential aspects of the theory above follow from its properties under the renor-

malization group (RG) transformation under which r→ r/s and τ → τ/s. A standard

analysis shows that all three couplings in Z, namely v, Z, and g, are invariant under

this transformation at tree level. Indeed, for two of the couplings, this invariance

extends to all orders in perturbation theory: the coupling g does not renormalize

because of the non-analytic q co-efficient, while Z remains invariant because it is

protected by gauge invariance [69]. So we need only examine the RG flow of a single

coupling, the velocity v. Because v is a bulk coupling, its flow cannot be influenced in

the thermodynamic limit by a single impurity, and so can be computed in the absence

of the impurity. Such a RG flow was initially examined in the more general context

of theories with Chern-Simons couplings in Ref. [175], but a complete presentation

was given in the present context in Ref. [139]: we shall use the notation and results of

the latter paper here, with the exception that we use two-component Dirac fermions

with N = 4 while Ref. [139] uses four-component Dirac fermions with N = 2.

It will be useful for our analysis to introduce two combinations of the above couplings
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which also have engineering dimension zero, and hence are pure numbers. These are

λ =
g2N

32~v
; α =

g2Z

4π~v
(3.2)

(we have set ~ = 1 elsewhere in the chapter). As we will see, the coupling λ is

a measure of the strength of the electron-electron Coulomb interactions, while α

measures the strength of the electron-impurity Coulomb interaction.

We shall limit our explicit results here to the spatial form of the charge density

n(r) = −
∑
a

Tr〈Ψ†a(r, τ)Ψa(r, τ)〉, (3.3)

(where Tr acts on the Dirac space) induced by the impurity. However, our RG

strategy can be extended to other observables of experimental interest, such as the

local density of states.

As noted above, we will begin in Section 3.3 by considering only the electron-impurity

Coulomb interaction, while electron-electron Coulomb interactions will be accounted

for in Section 3.4.

3.3 Non-interacting electrons

This section will ignore the electron-electron Coulomb interactions. Formally, we

work in the limit λ→ 0, but α is kept fixed. The problem reduces to that of a single

Dirac electron in the attractive impurity potential

V (r) = −Zg
2

4πr
. (3.4)
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This problem was originally studied in Ref. [30]. However, they introduced an arbi-

trary cutoff at high energy to regulate the problem at short distances, and this leads

to spurious results [69]. As we will demonstrate here, there is no dependence upon

a cutoff energy scale at all orders in perturbation theory, provided the high energy

behavior is regulated in a proper gauge-invariant manner. With no cutoff energy

scale present, a number of results can be deduced by simple dimensional analysis.

The Fourier transform of the charge density n(r) is dimensionless, and therefore we

can write

n(q) = −NF (α), (3.5)

where F (α) is a universal function of the dimensionless coupling α. Note that n(q)

is required by this dimensional argument to be q-independent, and so n(r) ∝ δ2(r).

The arguments so far are perturbative, but non-perturbative effects can be deduced

by solving the full Dirac equation in the potential in Eq. (3.4). This solution has

appeared elsewhere [142, 136, 97, 108], and so we will not reproduce it here. Such an

analysis shows that the perturbative arguments apply for α < 1/2, but new physics

appears for α > 1/2. In particular, Shytov et al. [136] and Terekhov et al [142]

showed that n(r) ∼ −r−2 for α > 1/2 (the sign of this tail is opposite to that of the

impurity).

We shall limit our discussion in this section to the α < 1/2 case. One reason for doing

so is that electron-electron Coulomb interactions act to reduce the effective value of

α. This will become clearer in Section 3.4, but we note here that a standard RPA

screening of the potential V (r) in Eq. (3.4) can be simply accounted for by applying
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Figure 3.1: Feynman diagrams for the charge density without electron-electron in-
teractions to order α3. The filled square is the impurity site, the wavy line is the
Aτ propagator, the line is the fermion propagator, and the filled circle is the charge
density operator.

the mapping

α→ α

1 + λ
(3.6)

to the results of the present section. The value of λ in graphene is not small [139].

We shall now establish the existence of the universal function F (α) in Eq. (3.5) to

all orders in α. The existence of a universal F (α) is a consequence of the non-

renormalization of the impurity charge Z [69]. We compute n(q) diagrammatically,

and the needed diagrams all have one fermion loop and are shown in Fig. 3.1.

To first order in α we have

n(q) = − Z
2q

Π0(q), (3.7)

where Π0(q) is the bare polarization operator

Π0(q) = −g2N

∫
d2k

4π2

∫
dω

2π
Tr
[
(−iω + vk · ~σ)−1 (−iω + v(k + q) · ~σ)−1]

=
g2Nq

16v
, (3.8)

and so we have F (α) = (π/8)α +O(α2).
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The order α2 graph in Fig. 3.1 vanishes by Furry’s theorem, and at order α3 we write

the contribution to n(q) in the form

N(Zg2)3

∫
d2k1

4π2

d2k2

4π2

d2k3

4π2

A(k1,k2,k3)

8k1k2k3

(2π)2δ2(k1 + k2 + k3 + q), (3.9)

where

A(k1,k2,k3) =

∫
d2p

4π2

∫
dω

2π
Tr
[
(−iω + vp · ~σ)−1 (−iω + v(p + q) · ~σ)−1

× (−iω + v(p + q + k1) · ~σ)−1 (−iω + v(p + q + k1 + k2) · ~σ)−1] ,(3.10)

where it is understood here and below that −q = k1 + k2 + k3. We now want to

symmetrize this by placing the external vertex with momentum q at different points

on the loop — this should not change the final result for n(q). In this manner we

obtain

3A(k1,k2,k3) =

∫
d2p

4π2

∫
dω

2π

{
Tr
[
(−iω + vp · ~σ)−1 (−iω + v(p + q) · ~σ)−1

× (−iω + v(p + q + k1) · ~σ)−1 (−iω + v(p + q + k1 + k2) · ~σ)−1]
+ Tr

[
(−iω + vp · ~σ)−1 (−iω + v(p + k1) · ~σ)−1

× (−iω + v(p + q + k1) · ~σ)−1 (−iω + v(p + q + k1 + k2) · ~σ)−1]
+ Tr

[
(−iω + vp · ~σ)−1 (−iω + v(p + k1) · ~σ)−1

× (−iω + v(p + k1 + k2) · ~σ)−1 (−iω + v(p + q + k1 + k2) · ~σ)−1]}.(3.11)

Now this expression has the important property that it vanishes at q = 0, where we

have

3A(k1,k2,k3) =

∫
d2p

4π2

∫
dω

2π

∂

i∂ω
Tr
[
(−iω + vp · ~σ)−1 (−iω + v(p + k1) · ~σ)−1

× (−iω + v(p + k1 + k2) · ~σ)−1] . (3.12)
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This property allows us to establish that the integral in Eq. (3.9) is convergent and

cut-off independent. Let the loop momenta p, k1, k2, and k3 all become much larger

than the external momentum q. The resulting integrand will scale as the power of

momenta associated with a logarithmic dependence on the upper cutoff. However, in

this limit of small q we have just established that the integrand is zero. It is clear

that this argument can be extended to all orders in α. We have thus established

the existence of the cut-off independent function F (α). We computed the integral in

Eq. (3.9) numerically, and so obtained

F (α) =
π

8
α + (0.19± 0.01)α3 +O(α5). (3.13)

This has been verified using an exact solution in [142].

3.4 Interacting electrons

We will now consider the full problem defined in Eq. (3.1), and account for both the

electron-electron and electron-impurity Coulomb interactions.

The problem can be solved in two limits: in the weak coupling limit λ → 0 and the

large N limit, N →∞ with fixed Z = O(1). In both cases α/(1 +λ)� 1, so one can

limit oneself to linear response in which the induced charge is [generalizing Eq. (3.7)]

n(q) = −ZD(q)Π(q), (3.14)

where D(q) is the full propagator of the Coulomb potential Aτ , and Π(q) is the

polarization tensor. The connection between D(q) and Π(q) is

D−1(q) = D−1
0 (q) + Π(q), (3.15)
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where D0(q) is the bare propagator,

D0(q) =
1

2q
. (3.16)

To leading order (either in coupling or 1/N), the polarization operator was given in

Eq. (3.8), and we showed in Section 3.3 that this gives rise to a q-independent n(q),

or a screening charge localized at r = 0.

However, if we compute corrections, we find logarithmically divergent diagrams, where

the logarithms are cut off from above by the inverse lattice size and from below by q.

The leading logarithms are summed by a standard RG procedure. Since the theory is

renormalizable, we can eliminate the dependence on the cutoff by expressing the each

diagram in terms of the renormalized parameters, instead of the bare parameters of

the Lagrangian. Choosing the renormalization point to be q0, and denote v0 as the

fermion velocity at the scale v, the polarization tensor can be schematically written

as

Π(q) = Π(q; q0, v0). (3.17)

In Π there are logarithms of the ratio q/q0. We notice that Π(q; q0, v0) is is invari-

ant under a change of the renormalization q0, given that v0 is changed correspond-

ingly (the particle density has no anomalous dimension). To eliminate the powers of

log(q/q0) we can choose q0 = q, hence

Π(q) = Π(q; q, v(q)), (3.18)

where in the perturbative expansion of the right hand side there is no large logarithms.

Thus to leading order it is given by a single diagram, which was computed previously
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[Eq. (3.8)],

Π(q) =
g2N

16v(q)
q. (3.19)

All the leadings logarithms are contained in the function v(q), which satisfies the

equation

q
δ

δq
v(q) = β(v), (3.20)

with the boundary condition v(q0) = v0. The screening charge is then

n(q) = −Z λ(q)

1 + λ(q)
, λ(q) =

g2N

32v(q)
. (3.21)

The problem is now reduced to the problem of finding v(q) [or, equivalently, λ(q)].

This problem has a long history [44, 45]; most recently it has been revisited in

Ref. [139] (see also below).

To find the spatial charge distribution n(r) one needs to take Fourier transform of

Eq. (3.21). First one notice that if the velocity does not run then n(r) is proportional

to δ(r). Only when v runs with the momentum scale does n(r) differ from 0 away

from the origin. When the running is slow (as at weak coupling or at large N), the

amount of screening charge enclosed inside a circle of radius r (assumed to be much

larger than the lattice spacing), to leading order, is

r∫
dr′ n(r′) ≈ n(q)|q=1/r = −Z λ(q)

1 + λ(q)

∣∣∣∣
q=1/r

. (3.22)

The total screening charge is small if λ at the scale 1/r is small, and close to −1 if λ

is large. Differentiating both sides of Eq. (3.22) with respect to r, one finds

n(r) = − Z

2πr2

λ(q)

[1 + λ(q)]2
β(v(q))

v(q)
. (3.23)
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Note that the beta function for v is negative, therefore we arrive to a counterintuitive

result the screening charge is positive. To see what is happening, let us take the limit

r → ∞ in Eq.(3.22). This limit corresponds to the infrared limit q → 0. We know

that asymptotically v(q) grows to ∞ in this limit (although only logarithmically),

hence
∞∫
dr′ n(r′) = 0. (3.24)

i.e., the total screening charge is zero when integrated over the whole space (although

the integral goes to zero very slowly). The presence of an external ion, therefore,

only leads to charge redistribution: a fraction of the unit charge is pushed from short

distance (of order of lattice spacing) to longer distances, but none of the charge goes

to infinity. Therefore, there is a finite negative screening charge localized near r = 0.

Its value can be found by taking r to be of order of inverse lattice spacing a−1 in

Eq. (3.22). The final result for the screening charge density can be written as

n(r) = −Z λ(a−1)

1 + λ(a−1)
δ(r)− Z

2πr2

λ(q)

[1 + λ(q)]2
β(v(q))

v(q)
. (3.25)

In the rest of the note we will concentrate our attention on the long-distance tail of

n(r), ignoring the delta function at the origin.

At weak coupling (λ� 1), the beta function for v(q) is

β(v) = − g2

16π
. (3.26)

The solution to the RG equation, with the boundary condition v = v0 at q = q0, is

v(q) = v0 +
g2

16π
ln
q0

q
, (3.27)
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and the screening charge density is

n(r) =
Z

Nr2

(
g2N

32π

)2(
v0 +

g2

16π
ln q0r

)−2

. (3.28)

Notice that the result is proportional to the square of the small coupling constant

λ = g2N/32v, although we have performed the calculation to leading order in the

coupling. The reason is that for the charge density n(r) to be nonzero, it is necessary

that the coupling constant runs. The density n(r) therefore contains the beta function

β(v), as seen in Eq. (3.23), and hence is second order in the coupling constant.

In the 1/N expansion the beta function for v(q) was computed in Ref. [139]:

β(v) =


− 8v

π2N

(
ln(λ+

√
λ2 − 1)

λ
√
λ2 − 1

+ 1− π

2λ

)
, λ > 1,

− 8v

π2N

(
arccosλ

λ
√

1− λ2
+ 1− π

2λ

)
, λ < 1.

(3.29)

The two expressions smoothly match each other at λ = 1.

In is instructive to analyze two regimes where the RG equation can be solved analyt-

ically. The first regime is λ � 1 where the result is the same as in Eq. (3.28). The

second regime is the strong-coupling regime λ � 1. This regime corresponds to a

quantum critical point characterized by a dynamic critical exponent z, whose value

at large N is [139]

z = 1− 8

π2N
+O(N−2). (3.30)

In this regime β = (z − 1)v. The solution to the RG equation, with the initial

condition v = v0 at q = q0, is

v(q) = v0

(
q0

q

)1−z

, 1− z ≈ 8

π2N
. (3.31)
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Figure 3.2: The dependence of 2πZ−1r2n(r) on the distance r for suspended graphene.
Note that coordinate r is on a logarithmic scale.

In this regime

n(r) =
Z

2πr2

1− z
λ0

(q0r)
1−z, λ0 =

g2N

32v0

, (3.32)

i.e., the charge density follows a power law behavior n(r) ∼ r−1−z. The power is

slightly different from −2.

In real graphene λ is of order 1, so one has to solve numerically the RG equation.

We chose the scale q0 to be comparable to the inverse lattice spacing, r−1
0 , and v0 to

be 106m/s, a typical value found in experiments. We then run v according to the

leading (in 1/N) RG equation in two cases, in vacuum and when graphene is on a

SiO2 substrate with dielectric constant ε = 4.5. We then plot 2πr2n(r) as a function

of the distance r on Figs. (3.2) and (3.3).

As seen from the figures, the charge density n(r) roughly follows the r−2 law: when

r changes by two orders of magnitude, the product r2n(r) changes by a factor of less

than 1.5 in both cases.
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Figure 3.3: The dependence of 2πZ−1r2n(r) on the distance r for graphene on a
substrate with ε = 4.5. Note that coordinate r is on a logarithmic scale.

3.5 Conclusions

In this chapter we have considered the problem of screening of a Coulomb impurity

in graphene. We show that there is a qualitative difference between screening by

non-interacting and interacting electrons. In the case of non-interacting electrons the

induced charge density is localized at the position of the impurity when the impurity

charge is small. The interaction between electrons lead to a long-distance tail in the

induced charge distribution, with a counterintuitive sign which is the same as that of

the impurity.



Chapter 4

Quasiparticle Interference and

Landau Level Spectroscopy in

Graphene in the presence of a

Strong Magnetic Field

4.1 Synopsis

We present a calculation of the modulation in the Local Density Of electronic States

(LDOS) caused by an impurity in graphene in the presence of an external magnetic

field. We focus on the spatial Fourier Transform (FT) of this modulation around the

impurity. The FT due to the low energy quasiparticles is found to be nonzero over the

63
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reciprocal lattice corresponding to graphene. At these lattice spots the FT exhibits

well-defined features at wavevectors that are multiples of the inverse cyclotron orbit

diameter (see Figure 4.2) and is cut off at the wavevector corresponding to the energy

of observation. Scanning Tunneling Spectroscopy (STS) on graphene and the energy-

resolved FT fingerprint obtained therefrom may be used to observe the quasiparticle

interference of Dirac particles in graphene in the presence of magnetic field.

4.2 Introduction

Graphene is a monatomic layer of carbon atoms arranged in a hexagonal lattice. It

was first isolated by the mechanical exfoliation of graphite in 2004[99]. The electronic

band structure of graphene is characterized by two points K and K∗ (at wavevec-

tors ±K)[83] in the reciprocal space where the valence and conduction bands touch

each other. The gapless low energy excitations that exist at those points can be de-

scribed by theories of massless Dirac quasiparticles with opposite chirality in (2+1)

dimensions [151]. An interesting consequence of such a band structure is the for-

mation of Landau levels (in a perpendicular magnetic field) whose energies vary as

the square root of the Landau level index as well as that of the magnitude of the

perpendicular magnetic field [86, 95]. The unconventional Quantum Hall Effect seen

in transport measurements in graphene is another profound physical consequence of

the Dirac nature of these quasiparticles[180, 98]. Till date, the only evidence of the

Landau quantization of Dirac particles has come from bulk transport measurements.

Alternately, one might look at the evidence from Landau level spectroscopy using
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the Scanning Tunneling Microscope (STM). In addition to the real space imaging of

Landau levels local spectroscopic tools can be a very sensitive probe of QuasiParticle

Interference (QPI) that often reveals details about the underlying band structure and

the quasiparticle wavefunctions[7, 140]. Applications of these ideas to graphene are

natural and promising. Experiments are currently in progress that probe the signa-

tures of QPI in graphene in the presence of a magnetic field. In this chapter we focus

on QPI in magnetic field in graphene. We use the theory of non-interacting Dirac

quasiparticles in a magnetic field and calculate the change in the electronic LDOS in

response to weak impurities. We find that i) the LDOS FT displays characteristic

rings whose size is set by the inverse cyclotron diameter dcyc – indeed, in the limit

of a strong magnetic field when effects of disorder and line broadening are secondary

the main feature of quasiparticle motion will be the cyclotron orbits – and ii) these

rings will form a lattice in Fourier space that is the same as the graphene reciprocal

lattice. Also, depending on the detailed impurity potential structure this FT could

have additional angular dependence in k-space determined by off-diagonal (sublat-

tice mixing terms) in impurity scattering matrix. These ring-like signatures could be

observed in STM experiments.

4.3 Theory

In this work we have followed the lattice-related conventions used in [83]. The hamilto-

nian near the K∗-point is related to that near the K-point by a parity transformation

of the lattice: H(−K + k) = σxH(K − k)σx. Since the low energy theory describing
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free excitations near the K/K∗ points obey a (2+1)-dimensional Dirac theory[151, 86],

we can again use the parity operator σz for the dirac fields within a given valley to

relate the stationary eigenstates of and the contributions to the propagator/Green’s

function from the two valleys (modulo the e±iK.r/e±2iK.r factors; these are expressed

as 2×2 matrices in sublattice space below – spin is ignored):

ψ−Kk,s ∝ iσyψ
K
k,s

G−K = σyGKσ†y ≡ −σyGKσy (4.1)

The total low-energy electronic green’s function will finally be given by:

G = GK + G−K (4.2)

When a finite perpendicular magnetic field Bẑ is present, in a convenient gauge choice

the energy eigenstates at the K-point are given by (for B > 0):

χKn,k(r) =
eikxeiK.r

√
γnLx

 −σnφ|n|−1(y − k`2)

φ|n|(y − k`2)

 (4.3)

where σn = sgn(n)(1 − δn0), ` =
√
~/(eB), γn = 2 − δn,0, ωc =

√
2v/`, En,k =

σn
√
|n|~ωc and n ∈ Z. The φn’s are the orthonormal eigenfunctions of the 1D Simple

Harmonic Oscillatora (take φ−1 ≡ 0). The k’s are consistent with periodic boundary

conditions in the x-direction.Since the SHO eigenfunctions need to be confined inside

the sample, we end up with a degeneracy of N = LxLy/(2π`
2) per Landau level.

aφn(x) = 1√
2nn!

√
π`
e−

x2

2`2Hn(x/`) where H are the Hermite polynomials.
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The green’s function may be calculated as:

GK(r′, r, z) =
∑
n,k

χKn,k(r
′)χK †n,k (r)

z − En,k

=
eiK.%

2π`2

∑
n

e−
ρ2

4`2
−iξ(y+y′)/2

γn(z − En)
× σ2

nL|n|−1 iσn
ρ√
2|n|`

e−iθL1
|n|−1

iσn
ρ√
2|n|`

eiθL1
|n|−1 L|n|

 (4.4)

≡ eiK.%

2π`2

∑
n

e−
ρ2

4`2
−iξ(y+y′)/2

γn(z − En)
MK

n (%)

≡ e−iξ(y+y′)/2NK(%, z)

where ρ and θ are the modulus and the argument respectively of the complex number

% = (x′ − x) + i(y′ − y) and % = (x′ − x, y′ − y); the argument of the (associated)

Laguerre polynomials, denoted by L, is ρ2

2`2
and we have defined the matrices M and

N for later reference.

We note here that we haven’t found this convenient elementary result in the literature

till date.

The K∗ point eigenfunctions as well as the Green’s functions are related to those at

the K point by the aforesaid relations (4.1).

It is instructive to compare the zero field and finite field free electronic green’s func-

tions. A comparative plot of the angular average of one of their components is shown

in Figure 4.1, plotted against the spatial separation as a fraction of the cyclotron

diameter dcyc = 2|E|/(evB) = 2
√

2nLL`B.
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Figure 4.1: Comparison of the Green’s functions when B = 0 (dashed gray) and
B 6= 0 (continuous black), at an energy Eobs corresponding to the Landau level index
nLL = 8. The distance propagated is measured in units of the classical cyclotron
orbit diameter dcyc = 2|E|/(evB) = 2

√
2nLL`B. At small distances these oscillate

together at the wavevector Eobs/(~v) but after nLL/2 oscillations the green’s function
for B 6= 0 decays exponentially since the particle ‘turns’ in its cyclotron orbit and
cannot propagate further than dcyc.

We now consider the case when an impurity potential V(r) (whose spatial fourier

transform is given by Ṽ(q)) is present in graphene. We consider the general form of

V(r) in what follows — i.e, V(r) is a general hermitian 2×2 matrix function of r

(V(r) = V†(r)).

4.4 Results

Scanning Tunneling Microscopes (STMs) give a signal corresponding to the local

value of the spectral function [19]. We can use the Green’s function derived above to

obtain the spatial FT of the change in the LDOS (given by the change in the spectral
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function) to the linear order in the impurity potential strength as follows:

δA(r, ω)

= −2ImTr

[∫
dr′G(r, r′, ω + iη)V(r′)G(r′, r, ω + iη)

]
⇒ δÃ(k, ω) = −2ImTr

[
X̃(k, ω + iη)Ṽ(k)

]
(4.5)

In the above, X̃(k, z) is the fourier transform (w.r.t %) of

X(%, z) = N(−%, z)N(%, z)

= NK(−%, z)NK(%, z) + N−K(−%, z)N−K(%, z)

+ NK(−%, z)N−K(%, z) + N−K(−%, z)NK(%, z) (4.6)

From (4.3) and (4.4) we see that N±K(%, z) possess the prefactors e±iK.%. We thus

deduce that scattering by the impurity potential V will yield spatial LDOS oscillations

around the wavevectors 0 (terms in the first row of (4.6)) and ±2K (second row of

(4.6)) as well as those joined to these by reciprocal lattice vectors, due to intra and

intervalley scattering respectively. The resulting lattice is identical to the reciprocal

lattice (see Figure 4.2(C)).

Since scattering around the zero wavevector can also arise from many slowly varying

unknown environmental potentials, we expect that LDOS oscillations around the

wavevectors ±2K near isolated atomically sharp defects will better reproduce the

LDOS profiles that our theory predicts and for this reason we’ll focus on explaining

how to calculate the features around ±2K. To do this we need to isolate in (4.5) the

part due to intervalley scattering, which amounts to using the terms in the last line

of (4.6) that we shall refer to as e∓2iK.%X∓ respectively.
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The Landau levels have been assumed to be sharp in the treatment so far and so

direct evaluation of (4.4) and the subsequent calculations will yield a sum of delta

functions in energy. To be able to resolve the spatial functional forms and to reflect

realistic experimental conditions we can either assume that the Landau levels are

broadened or that the STM has a finite detection window. We have chosen to take a

gaussian detection window with width Γb:

δÃ(k, ω)obs ∝
∫
dω′

e−
(ω′−ω)2

2Γ2

√
2πΓ

δÃ(k, ω′) (4.7)

It is now possible to write down the LDOS as a series expansion in Γ
∆E

, where ∆E

is of the order of the difference between the energy levels that are incorporated into

the calculation. To see this, we note that upon substituting the expression (4.4)

of the green’s function we come across sums of the following structure (g repre-

sents the gaussian in (4.7); fmn is proportional to Fourier transforms of the form∫
d2qTr[M̃±Km (q−k)M̃∓Kn (q)Ṽ(∓2K+k)] that satisfy the condition Imfmn = −Imfnm

when V is invariant under spatial inversion):

Im

∫
dω′g(ω′ − ω)

∑
m,n

fmn
(ω′ − εm + iη)(ω′ − εn + iη)

Imfmn=−Imfnm
= π

∑
m 6=n

Refmn
g(εn − ω)− g(εm − ω)

εm − εn
− 2π

∑
n

fnng
′(εn − ω)

= π
∑
n

g(εn − ω)
∑
m(6=n)

Re(fmn + fnm)

εm − εn
− 2π

∑
n

fnng
′(εn − ω) (4.8)

The ‘diagonal’ term involving fnn above (that corresponds to the particle ejected by

the STM tip remaining in the same Landau level on both legs of its journey before

bIf the Landau levels are sharper than the lock-in AC voltage amplitude applied to the STM,
this approach is more appropriate. It is easy to calculate the case of broadened Landau levels (or
non-gaussian profiles) and does not affect our general conclusions.
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and after scattering off the defect) gives the main contribution and the other members

in the sum are supressed by the aforesaid factors of Γ
∆E

. The numerical calculations

that we subsequently perform are taking only the first few terms of this series into

account and work well for large magnetic fields when ∆E ∝
√
B � Γ.

From (4.5) and subsequent discussions we find that we can write δÃobs in the form

δÃ(±2K + k, ω)obs = Tr[D̃±(k, ω)Ṽ(±2K + k)], where D± = i(X± − X†±). We can

make the following general comments regarding the functional dependance of the

components of D̃±(k, ω) as a function of k. Let nLL(ω) denote the Landau level index

corresponding to the Landau level nearest to the energy of observation Eobs = ~ω —

it is thus the integer closest to sgnω(ω/ωc)
2). The ‘diagonal’ term in (4.8) that is the

most important contribution then corresponds to n = nLL(ω). From the definition

of D and using (4.4) we see that D consists of products of two oscillatory functions

(like those shown in Figure 4.1). We thus expect spatial oscillation scales set by the

wavevectors 2π/(2
√

2 |nLL|`) and twice of |ω|/v to appear in D(r). Our calculation

confirms this expectation — we find that D̃(k) displays a set of about |nLL| oscillatory

peaks starting at k = 0 and separated by a period ∆k (see below); it then decays

rapidly after a maximum wavevector kmax, where

∆k ∼ 2

`

√
2

|nLL|
=

8

dcyc

, kmax =
2|ω|
v
∼ 2
√

2
|nLL|
`

(4.9)

The off-diagonal elements in (4.4) possess an angular dependence and for this reason

D̃(±2K + k) exhibits sinusoidal oscillations in θk and 2θk for a given k, θk being

the orientation angle of k with respect to the direction of K. We find that when

intravalley scattering is considered, only the off-diagonal components of V give rise
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to θk-oscillations while in the case of intervalley scattering, the diagonal components

of V can, in addition, lead to 2θk-oscillations.

The results of our calculations have been summarized in the Figure 4.2. The FT

of the LDOS oscillations is plotted near a short-ranged diagonal impurity potential

Ṽ(k) ∝ I (the 2×2 identity matrix). Given any other nontrivial form of this potential,

the LDOS modulations may be found straightforwardly from the above prescription.

It is worth noting here that we have only quantified the oscillation parameters that

may be observed in the spatial Fourier transform and not the Power Spectrum, ex-

amples of which are however also shown in Figure 4.2 (L1, R1). Upon squaring the

FT modulus to obtain the power spectrum the result could have twice as many os-

cillations – this needs to be kept in mind when comparing the foregoing results with

experimental signatures.

4.5 Conclusion

In conclusion, in this work we have laid out the framework for calculating the LDOS

modifications around an impurity in graphene in the presence of a strong magnetic

field. We use the linearly dispersing chiral quasiparticle theory. To calculate the QPI

we have derived the graphene green’s function in a magnetic field. There are two

distinct regimes – in case of a strong field we have a situation of QHE while in the

opposite case of a weak field the level broadening Γ (due to lock-in modulation of

STM voltage or due to impurity scattering, etc) will be larger then the Landau level
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Figure 4.2: (Color online) Comparison of the angular averages of the spatial FT
and power spectrum of LDOS modulations around a short-ranged impurity potential
Ṽ(k) ∝ I, for the cases when the magnetic field is zero and when it’s nonzero (and
the nearest Landau level has an index nLL = 8). The center figure (C) shows part
of the reciprocal lattice formed by regions in k-space where the Fourier transform
may be nonzero. The green and red ‘spots’ arise from K → K ′ scattering and
vice versa respectively. The grey spots arise from intravalley scattering. One green
region is enlarged to show the angle-averaged Power Spectrum on a scale where the
oscillations are better resolved (the density maps have edges of length 6Eobs/(~v)), for
the B 6= 0 (R1) and B = 0 (L1) cases. Below these are the corresponding variation
of the Fourier transforms with k — the deviation from the K-point, for the B 6= 0
(R2 – see (4.9) for parameters) and B = 0 (L2) cases. All plots were made using
Mathematica[1].
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splitting ∆E ∼ B1/2. We considered the case of a strong magnetic field. To this

end we established a series expansion in Γ/∆E. In this limit our approach can be

used to obtain the LDOS oscillations for any impurity potential. While the exact

form of these oscillations vary by impurity type, we have identified a few important

characteristics that may be observed in the FT of these oscillations — impurity-

induced LDOS modulations in a magnetic field thus offers an alternative avenue for

Landau level spectroscopy using local probes.

(After the submission of our work, we became aware of the preprint [12] where similar

questions have been addressed.)



Chapter 5

Impurity-induced states on the

surface of 3D topological insulators

5.1 Synopsis

We calculate the modification of the local electronic structure caused by a single local

impurity on the surface of a 3D Topological Insulator. We find that the LDOS around

the Dirac point of the electronic spectrum at the surface is significantly disrupted

near the impurity by the creation of low-energy resonance state(s) – however, this is

not sufficient to (locally) destroy the Dirac point. We also calculate the non-trivial

spin textures created near the magnetic impurities and discover anisotropic RKKY

coupling between them.
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Figure 5.1: (Color Online) LDOS plots showing the low energy resonance(s) near (A)
the scalar/potential impurity, (B) the z-polarized and (C,D) the x-polarized magnetic
impurities. (C) and (D) show the x-spin projected LDOS, at a point on the x and
y-axis respectively. Note from (C) that on the x-axis, the negative energy states
have excess states with spins parallel to the x-polarized impurity. In all these cases,
U = 100, r = 20. In the system of units used above, ~, vF and W are unity.

5.2 Introduction

The Dirac spectrum of chiral excitations are realized in a wide range of materials in-

cluding d-wave superconductors[7], graphene[95], semiconductors[36] and superfluid

3He-A[150]. The Dirac spectrum brings in substantial similarities in electronic prop-

erties – like response to defects as well as low energy and low temperature properties.

It is thus natural to combine these materials into a category of ‘Dirac materials’. A

recent exciting realization of the Dirac spectrum is on the surface of 3D Strong Topo-

logical Insulators (STI)[166, 115, 178]. These materials have an ungapped spectrum at
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the surface while being fully gapped in the bulk. In addition, STIs are unique because

the topology of their bulk band structure constrains their surface states to possess

an odd number of Dirac nodes[42, 124]. Suppressed backscattering inside the odd

Dirac cone guarantees that the Dirac dispersion remain essentially unperturbed for

any perturbation to the Hamiltonian that preserves time reversal symmetry. This is a

manifestation of the topological protection enjoyed by this kind of surface band cross-

ing and makes these materials an attractive candidate for spintronics applications[91]

as well as a possible platform for topological quantum computation[41]. In this con-

text an important issue is the stability of the STI surface nodes to the presence of

impurities[124, 94, 46]. We contribute to this discussion by looking at the modifica-

tion of surface states around a single local potential/magnetic impurity and calculate

the change in the Local Density of States (LDOS) as well as the spin density near

the impurity site. These quantities should be accessible by STM measurements. We

find the following.

(i) There is substantial modification of the LDOS near the impurity site for both

the nonmagnetic (time reversal preserving) and magnetic impurities (time reversal

breaking), especially when impurity scattering is strong (unitary). Near the poten-

tial/magnetic impurity, a single/a pair of low energy resonances form near the Dirac

point (Figs. 5.1, 5.2). These become very sharp and their energies Ω → 0 as the

impurity strength (5.3) |U | → ∞ :

|Ω| ≈ 5 sgn|U |
|U | ln |U | (5.1)

The scalar impurity resonance is doubly degenerate due to Kramers’ theorem[155, 7,

13]. The magnetic impurity breaks time reversal symmetry and splits the low energy
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impurity resonance into two spin-polarized resonances on either side of the Dirac

point (Fig. 5.1).

(ii) Modification of the LDOS vanishes quickly for energies less in magnitude than the

resonance energy (approaching the Dirac point) for both magnetic and nonmagnetic

impurities. Thus, modifications to the low energy LDOS does not provide us with

a signature of any incipient gap in the spectrum for both potential and magnetic

impurities. For r >> 1/ω, these decay as 1/r2.

(iii) In addition to LDOS modifications, magnetic scattering produces non-trivial spin

textures near the impurity site (Figure 5.3) that can be imaged with a magnetic force

microscope or spin-resolved STM. These non-trivial spin textures lead to the propa-

gation of unconventional antiferromagnetic (AF) RKKY coupling between magnetic

impurities, when they are polarized along the line joining them and when the chemi-

cal potential is close to the Dirac point. When the spins are perpendicular to the line

joining them, they interact strongly and ferromagnetically (FM). The Dzyaloshinskii-

Moriya (DM) interaction between the spins[174] vanishes at the Dirac point. We thus

conclude that random magnetic impurities will tend to align parallel to the normal

to the STI surface.

5.3 Theory

We will model the STI surface states as a single species of non-interacting 2-D Dirac

quasiparticles[78] with a high energy band cutoff W . We shall work in units of W , ~
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and vF (the Fermi velocity). The Hamiltonian becomes:

H0 = σ · p (5.2)

where σ/2 is the actual spin of the electron (or related by a rotation about ẑ). We

shall consider local impurities of the potential and classical types respectively:

V̂pot = U Iδ(r̂), V̂mag = US · σδ(r̂) (5.3)

For the magnetic case we have assumed a local Heisenberg exchange J between the

band electrons and the impurity spin S, whose direction is given by the unit vector

S. Thus, U = JS/2 in V̂mag.

To address the effect of impurity scattering we use the T-matrix technique [7]. The

T-matrix is defined via:

T̂ (ω) = V̂ + V̂ Ĝret

0 (ω)T̂ (ω) (5.4)

where Gret
0 is the retarded Green’s function for the impurity-free material and ω is

the energy. For ω � 1 and ρ� 1/W (ρ ≡ r − r′), it has the following form:

〈r |Gret

0 (ω)| r′〉 =
|ω|
4

[f0(ω, ρ)I + f1(ω, ρ)(σ · ρ̂)] (5.5)

where

f0(ω, ρ) = s(ω)Y0 − iJ0θ, f1(ω, ρ) = iY1 + s(ω)J1θ (5.6)

and |ω|ρ is the argument of the Bessel functions J0/1 and Y0/1. Also, s(·) ≡ sgn(·)

and θ ≡ Θ(1 − |ω|). We shall also require the unperturbed on-site Green’s function
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valid for short distances . 1:

G0(ω) ≡ 〈0 |Gret

0 (ω)|0〉 = − (g0(ω) + ig1(ω)) I, where

g0(ω) =
ω

4π
ln

∣∣∣∣ 1

ω2
− 1

∣∣∣∣ , g1(ω) =
|ω|
4

Θ(1− |ω|) (5.7)

In (5.3), we have used a local form for the impurity potential 〈r|V̂ |r′〉 = V δ(r)δ(r′),

where V is a 2 × 2 matrix in spin-space. The T-matrix also becomes 〈r|T̂ |r′〉 =

T δ(r)δ(r′), with T satisfying the following equation

T = V + VG0T = (I− VG0)−1 V (5.8)

From the algebraic relations involving (5.3), (5.7) and (5.8), we analytically calculate

the T-matrix, the full Green’s function Ĝret,

Ĝret(ω) = Ĝret

0 (ω) + Ĝret

0 (ω)T̂ (ω)Ĝret

0 (ω) (5.9)

the full (spin-unresolved) LDOS,

ρ(r, ω) = − 1

π
ImTr

〈
r
∣∣∣Ĝret(ω)

∣∣∣ r〉 , (5.10)

the local density of spin up/down states (in direction µ),

ρµ±(r, ω) = − 1

π
ImTr

〈
r

∣∣∣∣Ĝret(ω)

(
1± σµ

2

)∣∣∣∣ r〉 (5.11)

and the energy-resolved spin density averages:

s(r, ω) = − 1

π
ImTr

〈
r
∣∣∣Ĝret(ω)

σ

2

∣∣∣ r〉 (5.12)
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Figure 5.2: (Color Online) Low energy LDOS near the (A) scalar impurity and (B)
the x-polarized magnetic impurity for U = 80. ~, v and W have been set to unity.

5.4 Results

For the scalar and magnetic impurity cases, we find that the additional GTG ≡ δG

pieces in the Green’s function (5.9) evaluate respectively to (using g ≡ g1 + ig2)

δGpot =
Uω2

16

f 2
0 − f 2

1

1 + Ug
(5.13)

and

δGmag =
Uω2

16(1− U2g2)

[
− 2if0f1σ · (S × r̂)+

(f 2
0 + f 2

1 )σ · S − 2f 2
1 (σ · r̂)(S · r̂)− Ug(f 2

0 − f 2
1 )
]

(5.14)

As shown in Figures (5.1) and (5.2), for both the magnetic and non-magnetic cases
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we obtain low energy resonance(s) in the LDOS (arising from the minima of the de-

nominators in (5.13) and (5.14)) that approach the Dirac point for large impurity

strengths according to (5.1) [155, 7]. These resonances become sharper as they ap-

proach the Dirac point with increasing potential strength and while doing so, also

increase in amplitude relative to the unperturbed LDOS. For r � 1/ω and ω � 1,

the strength of LDOS modulations diminish with distance as 1/r2[11].

Topological stability of the surface Dirac spectrum in TIs is often discussed as a

crucial property of these materials. An important question in this context is whether

the appearance of these low-energy resonances is related to the local creation of

a gap at/destruction of the Dirac point. Näıve scaling analysis tells us that the

potential strength U has a dimension of −1 (same as length) near the fixed point

corresponding to (6.10). As we approach the Dirac point, we should thus see the

effects of the impurity become negligible. Indeed, we find that if we move from

the resonances to the Dirac point, the density of states gradually settles down to

the impurity-free value. We cannot, therefore, find signatures of gap-opening at the

Dirac point at the stage of one-impurity scattering. We also note here that the

appearance of these resonances at the Dirac point is a consequence of the band cutoff

being symmetric on the particle and hole sides – in realistic materials[166] the band

structure is asymmetric and depending on the degree of asymmetry, these resonances

may appear at other region(s) of the bands[7].

In addition to the impurity resonances at small energy we find new states that lie

outside the effective band edges – a consequence of using a hard cutoff. These

true bound/anti-bound states are located at the positive/negative side for posi-
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tive/negative sign of a scalar impurity potential U . For a magnetic impurity they

are located on both sides outside the effective band edges. For large |U |, these are

located approximately at a distance U from the Dirac point, while as |U | → 0 they

approach the band edge as e−4/|U |. In real STI SSs, these may well be located at the

same energy as the bulk bands, will hybridize with them and delocalize into the bulk.

Near a magnetic impurity, entanglement of the electron spin and momentum lead

to the creation of spin textures, as shown in Figure 5.3. The energy-resolved spin

average is found to be:

s(r, ω) (5.15)

= Uω2Im

(
2if0f1S × r̂ − (f 2

0 + f 2
1 )S + 2f 2

1 r̂(S · r̂)

16π(1− U2g2)

)
The first term in (5.15) gives rise to a DM interaction between two impurity spins.

When the chemical potential µ is at the Dirac point, considering only the perturbative

result (obtained cheaply by putting g → 0 in the above expression), the strength of

this interaction becomes zero∫ 0

−∞
Re(f0f1)ω2dω

∼ − 1

r3

∫ ∞
0

d

dx
(J0Y0)Θ(r − x)x2dx

r�1≈ 0 (5.16)

For a finite chemical potential |µ| � 1, the amplitude of the DM interaction becomes

U

8π

∫ µ

−∞
Re(f0f1)ω2dω =

Usgnµ

8π

∫ |µ|
0

Re(f0f1)ω2dω

=
Uµ|µ|J1(|µ|r)Y1(|µ|r)

8πr
(5.17)

At large distances, the amplitude of this interaction decays as ∼ Uµ/r2.
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The second term in (5.15) leads to FM RKKY interactions when µ = 0, in the

perturbative approximation. The corresponding spin component is

−US
16π

∫ 0

−∞
Im(f 2

0 + f 2
1 )ω2dω = − U

32πr3
S (5.18)

Finally, the third term in (5.15) leads to AF RKKY interaction between impurity

spin components pointing along the line joining the impurities, when µ = 0. In the

perturbative limit, the corresponding induced spin component is:

U r̂(S · r̂)

8π

∫ 0

−∞
Im(f 2

1 )ω2dω =
3U

64πr3
r̂(S · r̂) (5.19)

From these two expressions we calculate that at µ = 0 the interaction energy between

two impurity spins S1,2:

∆E12(r21)µ=0 = 〈US1 · s1 + US2 · s2〉cross terms (5.20)

=
U2

16r3

(
−S1 · S2 +

3

2
(S1 · r̂21)(S2 · r̂21)

)
+O(U4)

is minimized when they are aligned parallel to each other and perpendicular to the

line joining them. Thus, when many impurities are present (and µ = 0), they will tend

to point in the common direction where all gain the FM interaction energy – along

the z-direction, normal to the surface. This kind of FM ordering will be conducive

to opening a gap in the STI surface state spectrum – an example of which has been

observed in a recent experiment [164]. Also, we note here that this state does not

arise due to the spontaneous breaking of a continuous symmetry and hence is not

forbidden by the Mermin-Wagner theorem[87].

We would like to note here that the foregoing results are not obvious when observing

the energy-resolved spin densities at low energies ω → 0−, because of the low density
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of states there. Näıvely, one would have expected the low energy long wavelength fea-

tures to determine the r →∞ spin textures, but the low energy spin textures predict,

incorrectly, antiferromagnetic RKKY interactions with short distance ferromagnetic

contributions arising from non-perturbative effects. We would also like to note here

that we assumed a smooth cutoff when adding up the spin textures at different ener-

gies to eliminate cutoff-dependence[123]. We have used multiplicative functions like

e−η|ω| and (1 − e−ηω2
)/(ηω2) (having different characters as |ω| → ∞) in the energy

integrals and then taken the limit η → 0+ — both these procedures gave the same

limita.

When we consider the full nonperturbative spin average obtained by integrating (5.15)

numerically, the aforementioned behaviors seems to hold qualitatively if we look be-

yond the ‘ringing’ introduced by a sharp cutoff.

5.5 Conclusion

In summary, we find that local impurities can strongly disrupt the structure near

the Dirac node of 2-D surface states in 3-D topological insulators by forming low

energy resonance(s). However, in the asymptotic approach to the Dirac point, the

linear DOS is preserved, consistent with the negative scaling dimension of the im-

purity strength. Thus, the gap-opening mechanism for magnetic impurities is not

evident at this stage of analysis. We also find that the induction of non-trivial spin

aCalculations by the authors, on the lines of [137], have confirmed these results. These calculations
will be presented in a later work.
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Figure 5.3: (Color Online) Spin textures near spin impurities (U = 80, E = Ω =
−0.014) when the impurity is (A) z-polarized and when it is (B) x-polarized (solid
green arrows). The component in the xy plane is denoted by a vector while the back-
ground shade gives the sign of sz(r, E) (clear ≡ positive). The arrows are normalized
to the longest field-of-view total spin length in (A) and xy spin length in (B), indi-
cating respectively the sign of the z polarization and the anisotropic x polarization
around the impurities in accordance with (5.15) (these mediate anisotropic RKKY
interactions between two impurity spins).

textures near magnetic impurities leads to the mediation of antiferromagnetic RKKY

coupling between impurity spin components parallel to the lines joining them, espe-

cially if the chemical potential is at the Dirac point (in which case the interaction

does not oscillate in sign). The spin components perpendicular to the line joining

the impurities, however, exhibit strong FM interaction. While there is, in general, a

DM component in the spin interactions, it vanishes at the Dirac point. We predict

that when many impurities are present (and µ ≈ 0), they will tend to point in the

common direction where all gain the FM interaction energy – along the z-direction,

normal to the surface. This kind of ordering will be conducive to opening a gap in

the STI surface state spectrum – an example of which has been observed in a recent

experiment [164] where iron atoms were deposited on the surface of Bi2Se3.



Chapter 6

Scattering from Surface Step Edges

in Strong Topological Insulators

6.1 Synopsis

We study the characteristics of scattering processes at step edges on the surfaces

of Strong Topological Insulators (STI), arising from restrictions imposed on the S-

matrix solely by time reversal symmetry and translational invariance along the step

edge. We show that the ‘perfectly reflecting’ step edge that may be defined with these

restrictions allow modulations in the Local Density of States (LDOS) near the step

edge to decay no slower than 1/x, where x is the distance from the step edge. This is

faster than in 2D Electron Gases (2DEG) — where the LDOS decays as 1/
√
x — and

shares the same cause as the suppression of backscattering in STI surface states. We

87
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also calculate the scattering at a delta function scattering potential and argue that

generic step edges will produce a x−3/2 decay of LDOS oscillations. Experimental

implications are also discussed.

6.2 Introduction

Strong topological Insulators (STI) are three-dimensional band insulators that have

an odd number of gapless chiral modes on their surfaces[42, 89, 178]. These have re-

cently been realized experimentally[166, 115, 54, 43] and are an active area of current

research. The chiral states on the STI surfaces consist of time-reversed pairs of states

propagating in opposite directions, between which backscattering by time-reversal in-

variant impurities and perturbations[115] is forbidden. Because of this, we can expect

scattering at impurities or step edges on the STI surface to lead to outcomes that

are substantially different from the case of the 2D Electron Gas (2DEG). This sup-

pression of backscattering is also often quoted as a major reason for the topological

protection of the STI surface states against surface impurities. While this suppression

is precise for the case of exact backscattering, it does not forbid scattering processes

in which the particle gets reflected ‘almost’ backward – the formation of localized

resonances/states near surface defects[176, 16] are still allowed. It is therefore in-

structive to test the response of these STI surface states to various surface defects

and precisely quantify the restrictions imposed by the robust Time Reversal Sym-

metry (TRS). This knowledge will be an important ingredient in future attempts to

design electronic devices based on these materials. We also discuss the relation of the
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calculations in this chapter with a growing body of literature on the use of Scanning

Tunneling Spectroscopy (STS) to investigate the role of isolated impurities and step

edges on STI surfaces[5, 132].

0 2 Π 4 Π 6 Π 8 Π
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1
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Ω

x

Ρ
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Ω
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,
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LDOS near a perfectly reflecting step edge
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Π kΩ x
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Figure 6.1: (Color Online) Comparison between the LDOS near a ‘perfectly reflecting’
step edge in the STI (6.16) and the 2DEG. Their envelopes, decaying as 1/x and 1/

√
x,

respectively, are shown as dashed curves. kω is the wave vector at energy ω.

We shall address, in this chapter, the scattering physics characteristic of a single

set of chiral states – such as the Dirac states present on the surface of Bi2Te3 or

Bi2Se3[54, 178] — in the context of scattering from a step edge. We find the follow-

ing:

(i) TRS and unitarity impose a set of constraints on the reflection and transmission

amplitudes (equation (6.5)) irrespective of the effective Hamiltonian describing the

step edge. We only require that the step edge does not violate TRS and is transla-

tionally invariant along its length.

(ii) Suppressed backscattering leads to a substantial decrease of LDOS modulation

near the step edge on the surface of the STI — the LDOS is found to decay at least
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as fast as (Figure 6.1)

δρ(ω, x)

ρ(0)(ω)
∼ 1

x
(6.1)

In contrast, in 2DEGs this decay is slower ∼ 1/
√
x [25].

(iii) We predict the existence of the ‘perfectly reflecting’ step edge (6.15) by using the

scattering matrix restrictions. This perfectly reflecting wall produces LDOS modula-

tions of the kind mentioned in (6.1) (shown in Figure 6.1).

(iv) For a sharp step edge, which we approximate using a delta function, we have

evaluated the reflection amplitude explicitly as a function of the potential strength

(6.18) and using this, find that for a ‘strong’ potential there are essentially no oscilla-

tions near the step edge. The LDOS decays monotonically as x−3/2 far from the edge,

after an initial dip (Figure 6.3) – similar to the long wavelength scattering observed

in [5]. The x−3/2 decay law is also true for generic step edges due to TRS.

Modulation in the density of states produced by defects can be imaged using local

spectroscopy like Scanning Tunneling Microscopy (STM) and comparisons between

theoretical calculations and experimental observations would allow one to verify the

topological stability of states on the surface of a STI.

Our results can be viewed in the context of a broader discussion of scattering of

Dirac quasiparticles in graphene. One of the striking features discussed in the past

is the so called Klein paradox where particles can tunnel without backscattering

under barrier[95, 65, 10]. The situation we address here is similar yet different: the

additional symmetry which is present in our analysis but absent in graphene is the

exact suppression of backscattering for any time reversal invariant potential due to
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topological protection. In case of graphene large momentum scattering would allow

inter-valley scattering and thus back-scattering is ultimately permitted. This add-on

effect of the exact suppression of backscattering off the step edge is what we address

in this chapter.

6.3 Theory

We begin by formulating the general scattering matrix framework for the case of

scattering at a surface step edge. We label the STI surface states by their band

index s = ±1 and momentum k = (kx, ky), which together also determine their

energies Es,k. We choose E = 0 at the Dirac point and s = sgnEs,k. The defining

characteristic of these states is that oppositely propagating states at a given energy

are time-reversed partners (Θ is the time reversal operator):

|s,−k〉 ∝ Θ |s,k〉 (6.2)

x

y

V (x)

|r� = |s, kx, ky�R

|i� = |s,−kx, ky�R

|t� = |s,−kx, ky�L

|̃i� = |s, kx, ky�L

skx > 0

Figure 6.2: (Color Online) The scattering problem at a step edge, at an energy Es,k
and a y-momentum ky. The green (incoming) and dashed violet (outgoing) arrows
label the ‘incoming’ and ‘outgoing’ states respectively.

We assume that there is translational invariance in the direction parallel to the step
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edge, say y (See Figure 6.2). Thus, the step edge can be represented by a finite-

range modification to the Hamiltonian that preserves the y-momentum[26, 25]. In

some cases, it may be modeled as an electrostatic potential V (x) that is a function

of only the perpendicular coordinate x. Scattering processes at the step leave ky –

the y-momentum – unchanged. In what follows, we shall first embody the effect of

the step edge in a scattering matrix (the S-matrix). We label the scattering process

as in Figure 6.2 and define the reflection and transmission coefficients to be (r, r′)

and (t, t′) respectively. The energy of the scattering process is Esk. The states are

taken to belong to the sth band – this is not mentioned explicitly, for brevity, in the

following equations. R/L denotes the half-space (right/left) these states belong to.

The S-matrix is

S(kx, ky) =

 r(kx, ky) t′(kx, ky)

t(kx, ky) r′(kx, ky)

 (6.3)

≡

 R〈kx, ky|Ŝ| − kx, ky〉R R〈kx, ky|Ŝ|kx, ky〉L

L〈−kx, ky|Ŝ| − kx, ky〉R L〈−kx, ky|Ŝ|kx, ky〉L


Step-edges don’t usually break time-reversal symmetry unless, for e.g, they have em-

bedded magnetic impurities. We can use this fact to find relations between the reflec-

tion/transmission amplitudes defined above. For simplicity, we fix the phases of the

incoming states by defining them to be the time-reversed versions of the appropriate

outgoing states:

| − kx, ky〉R skx>0
= Θ|kx,−ky〉R (6.4)

|kx, ky〉L skx>0
= Θ| − kx,−ky〉L
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Using this convention and the relation Θ2 = −1, we can prove the following con-

straints that are similar to the Stokes’ relations in Optics:

r(kx, ky) = −r(kx,−ky), r′(kx, ky) = −r′(kx,−ky)

t(kx, ky) = −t′(kx,−ky) (6.5)

As an example, we prove the first relation explicitly:

r(kx, ky) ≡R 〈kx, ky|Ŝ| − kx, ky〉R

=R 〈Θ(−kx,−ky)|Ŝ| − kx, ky〉R

=R 〈Θ(−kx, ky)|Ŝ|Θ2(−kx,−ky)〉R

= −R〈kx,−ky|Ŝ| − kx,−ky〉R = −r(kx,−ky) (6.6)

The antiunitary nature of the time reversal operator was used in the third line and

Θ2 = −1, corresponding to spin-1/2 states, was used in the last step.

The unitary nature of the scattering process requires SS† = I and so:

|r|2 + |t|2 = |r′|2 + |t′|2 = 1

r∗t′ + r′t∗ = 0

(⇒ |r|2 + |t′|2 = |r′|2 + |t|2 = 1 also) (6.7)

If we are able to specify S, the asymptotic forms of the new energy eigenstates, i.e,

the wavefunctions outside the influence of V (x), are given by:

|k〉new
R =

| − kx, ky〉R + r(k) |kx, ky〉R + t(k) |−kx, ky〉L√
2

|k〉new
L =

|kx, ky〉L + r′(k) |−kx, ky〉L + t′(k) |kx, ky〉R√
2

(6.8)
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The normalizations follow from (6.7). Since we have these new eigenstates of the

Hamiltonian, it is straightforward to calculate the modified LDOS away from the

step edge:

ρ(ω, x > 0) =
∑
s=±1

∫ s·∞

0

dkx
π

∫ ∞
−∞

dky
2π

(
|ψnew
s,k,R(x, y)|2 + |ψnew

s,k,L(x, y)|2
)
δ(ω − Es,k)

= ρ(0)(ω) +

∫∫ ∞
0

dkxdky
π2

Re
[
r(s, skx, ky)ψ

(R)
s,−skx,ky(x, y)†ψ

(R)
s,skx,ky

(x, y)
]
δ(ω − Es,k)s=sgnω

(6.9)

Here, ρ(0) is the LDOS in the absence of the step and simplifications have been made

using time reversal symmetry. At this stage we can approximate the band structure

near the Dirac point as that arising from the Dirac hamiltoniana

H = vσ · k (6.10)

Here, σ is the actual spin operator, up to a rotation. The outgoing eigenstates of this

Hamiltonian are given by (skx ≷ 0 for the R/L cases):

ψ
(R/L)
s,k (x, y) =

1√
2

 eiθk

s

 eik·r, Es,k = svk (6.11)

The phases of the incoming eigenstates are set by (6.4):

ψ
(R/L)
s,k (x, y) =

1√
2

 s

e−iθk

 eik·r (6.12)

We have used Θ = iσyK, K being the complex conjugation operator, in the above

equation. Using this setup, (6.9) can be simplified to yield (for x > 0):

δρ(ω, x)

ρ(0)(ω)
= −2sgnω

π

∫ π/2

0

dθ sin θ Im
[
rω(θ)e2ikωx cos θ

]
(6.13)

aThe linear nature of the dispersion is not important – the chiral nature of the Hamiltonian is.
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Here, ρ(0)(ω) = |ω|/(2πv2), kω = ω/v is the momentum at energy ω and the reflection

amplitude rω(θk) ≡ r(sgnω,kω) needs to obey the property (6.6)

rω(−θ) = −rω(θ) (6.14)

6.4 Results

6.4.1 The perfect reflector

We now note that the ‘perfect’ reflector needs to have the form (no transmittance

except at normal incidence)

rperf
ω (θ) = eiδω,|θ|sgn(θ) (6.15)

which tells us that the LDOS becomes (x > 0):

δρ(ω, x)

ρ(0)(ω)
= −2sgnω

π

∫ π/2

0

dθ sin θ sin
(
2kωx+ δω,|θ|

)
= −(cos(2kωx+ δω)− cos δω)

sgnω πkωx
(when δ is θ-indep.) (6.16)

In Figure 6.1, these LDOS modulations are compared with those near a perfectly

reflecting step edge in a 2DEG. We see that even for ‘perfect’ reflection the step edge

is only able to create LDOS oscillations that decay as 1/x, as opposed to the slower

1/
√
x decay in the 2DEG case[25].

The exact shape of the potential that would provide prefect reflection is hard to

calculate based only on the specific form of reflection coefficient. One can easily see

that the abrupt change of the rperf
ω (θ) as a function of angle is not possible in any
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realistic scattering problem. Hence at a moment this can be viewed as an idealized

calculation. We would like to stress here that what we have shown above is that the

concept of perfect reflection (except at normal incidence) is not antithetical to the

existence of suppressed backscattering. Also, we did not have to consider an actual

potential modeling of a step edge that would realize such a case. We guess that if we

consider a potential that is noisy in the x-direction, it may not afford the incident

wave much scope of penetration and reflect most of it. In practice, even if a very

good reflector is realized, near normal incidence the reflection amplitude will become

linear in ky over a small region of size ∆ky. We should then observe a 1/x decay till

a distance of ∼ 1/∆ky and beyond that a x−3/2 decay (see 6.4.3).

6.4.2 Discussion of recent experiments

In a recent paper (Figures 3a-e in [5]) oscillations of the form given by (6.16) have

been observed at energies far from the Dirac point where the wavefunction wavelength

is comparable to or shorter than the width of the step edge. However, in that region

the band surface exhibits hexagonal warping[39] and the dominant scattering signa-

ture comes from the scatterings between the states at the adjacent M -points (the step

edge is oriented perpendicular to the ΓM direction). These do not involve the special

processes near perfect backscattering in the STI that we have considered above. The

1/x behavior arises simply because the bands are not perpendicular to the ΓK di-

rection near the hexagon verticesb[17]. In Figures 3f-h of the above-mentioned paper

bFor scattering between the hexagonal vertices, r and the spin overlaps are finite and ∆kx is a
linear function of ky; a scaling analysis of (6.9) yields the 1/x law
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Figure 6.3: (Color Online) LDOS above the Dirac point near a strong attractive δ-
function step edge potential (6.17) for various values of U (solid curves with different
colors and thicknesses). Notice how the oscillations get damped for large U . The
dashed curve is the envelope for the ‘perfectly reflecting’ step edge on the STI (Figure
6.1), shown here for comparison.

[5] the authors also observed that at lower energies, closer to the Dirac point, the

character of these LDOS modulations change qualitatively. They are much less pro-

nounced exhibit an almost oscillation-less decay. We propose to explain this behavior

by modeling the step edge as a delta-function potential

V (x) = Uδ(x) (6.17)

when considering the scattering of long wavelength states near the Dirac point. Using

this with the original Hamiltonian (6.10), we obtain the reflection amplitude[65]:

rδω(θ) =
4U sin(θ)

(U2 − 4) cos(θ)− 4isgnωU
(6.18)

Note that the reflection amplitude is antisymmetric about θ = 0, and is also linear

around that region. The LDOS obtained for this delta-function potential is shown in

Figure 6.3 and displays minimal oscillations when U is large and negative and E > 0.

There is a dip in the LDOS near the wall followed by an almost oscillation-less decay
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(for large potential strength) away from the wall – similar to what was observed in

[5]. The dip can be explained by the existence of bound states near the wall: for

U < −2 these occur at negative energies but the transferred spectral weight leads to

the dip at positive energies.

6.4.3 Generic step edges

The long-distance decay of the above oscillations is found to be given by x−3/2, which

arises out of the proportionality between r(θ) and θ near θ = 0. Because of the

antisymmetry of r(θ) about θ = 0 (6.14), for generic step edges we will also have

r(θ) ∝ θ near θ = 0 and this will result in the almost coherent scatterings near θ = 0

interfering far away from the edge to yield a spatial decay law of x−3/2[181]. This

power law may be obtained by considering the scaling behavior of the integrand in

(6.13), near θ = 0.

It is possible that for high energies, near a step edge perpendicular to the ΓM direction

in Bi2Te3 (or with any orientation in Bi2Se3 which has no hexagonal warping), one

will observe a 1/x decay of oscillations at the wave-vector equal to the diameter of

the band surface along the K − Γ − K direction if the step edge is perfectly non-

reflecting – a quality that possibly arises due to roughness along its normal direction.

Generically, due to the scaling relation r(θ) ∝ θ near θ = 0, one should be able to

observe a faster x−3/2 decay of the oscillations.
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6.5 Conclusion

In summary, we have used the chiral nature of the STI surface states and time reversal

invariance to impose restrictions on the reflection and transmission amplitudes of the

scattering process at a step edge on the surface of a Strong Topological Insulator.

This allowed us to define the ‘perfect reflecting step edge’ for these chiral surface

states and we found that the amplitude of LDOS ripples caused by such an edge

decay no slower than 1/x — faster than in the analogous case for a 2DEG, where

the decay occurs as 1/
√
x. For a generic smooth step edge, the decay law is x−3/2.

We give possible reasons for the LDOS features seen in experiments[5] — damped

oscillations and a monotonic decay of the LDOS modulation far from the step edge

for small energies and a 1/x decay at higher energies – by arguing that the scattering

of long wavelength states near the Dirac point occurs due to an effective δ-function

local potential (6.17) while the shape of the band surface yields the 1/x decay at

higher energies. To the best of our knowledge, this is the first application of this

general S-matrix formalism (with the imposition of TRS) to the scattering of STI

surface states.



Chapter 7

SU(2)-invariant spin liquids on the

triangular lattice with spinful

Majorana excitations

7.1 Synopsis

We describe a new class of spin liquids with global SU(2) spin rotation symmetry in

spin 1/2 systems on the triangular lattice, which have real Majorana fermion exci-

tations carrying spin S = 1. The simplest translationally-invariant mean-field state

on the triangular lattice breaks time-reversal symmetry and is stable to fluctuations.

It generically possesses gapless excitations along 3 Fermi lines in the Brillouin zone.

These intersect at a single point where the excitations scale with a dynamic exponent

100
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z = 3. An external magnetic field has no orbital coupling to the SU(2) spin rotation-

invariant fermion bilinears that can give rise to a transverse thermal conductivity,

thus leading to the absence of a thermal Hall effect. The Zeeman coupling is found to

gap out two-thirds of the z = 3 excitations near the intersection point and this leads

to a suppression of the low temperature specific heat, the spin susceptibility and the

Wilson ratio. We also compute physical properties in the presence of weak disorder

and discuss possible connections to recent experiments on organic insulators.

7.2 Introduction

The recent experimental evidence for spin liquids in the triangular lattice organic

compounds κ-(ET)2Cu2(CN)3 [169, 167, 109] and EtMe3Sb[Pd(dmit)2]2 [58, 168, 57]

has sparked much interest in characterizing the experimental signatures of the many

candidate spin liquid states.

For the compound κ-(ET)2Cu2(CN)3, a theory [110] building upon the proximity of

a magnetic ordering quantum critical point is compatible with the recent observation

of magnetic order induced by a small external field [109].

On the other hand, EtMe3Sb[Pd(dmit)2]2 is characterized[168] by a thermal conduc-

tivity, κ, for which κ/T reaches a non-zero limit as the temperature T → 0, and this

is strong evidence for the presence of gapless excitations across a Fermi surface. A

spin liquid state with a spinon Fermi surface has been proposed [90, 76, 47], and so is

a natural candidate for this material. However, this spinon Fermi surface state is also
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expected to display a thermal Hall effect [66] and this effect has not been detected so

far[168].

Here, we will examine another possibility for a spin liquid state with a Fermi surface

of spin 1 excitations. We will assume that the Fermi surface excitations are real

Majorana fermions and this, as we will see, allows us to retain the longitudinal thermal

conductivity while suppressing the thermal Hall effect.

Our approach relies upon following representation of S = 1/2 spins in terms of S = 1

Majorana fermions [85, 146, 24, 133, 153]

Sµ =
i

4
εµαβγαγβ. (7.1)

Here we have suppressed site indices, and the Majorana fermion operators all anti-

commute with each other, and have a unit square (γα)2 = 1 (no sum over α). As

explained by Shastry and Sen [133], such Majorana fermions provide a redundant

but faithful realization of the Hilbert space of S = 1/2 fermions. The redundancy is

linked to a Z2 gauge invariance γα → −γα, which then also plays a crucial role in the

description of any spin liquid states; some related issues are discussed in Appendix A.

The representation in equation (7.1) has been used extensively in recent work [158, 34,

8, 75, 170, 20, 147, 172, 82, 165, 101, 9, 28, 162, 143, 144, 22, 152, 23, 74, 81, 171, 153],

following the exactly solvable spin model proposed by Kitaev [68]. A rich variety

of solvable models have been found on different types of lattices, some with global

SU(2) symmetry, others with Fermi surfaces. However, none of them are on the

triangular lattice, and none of them have both SU(2) symmetry and a Fermi surface:

these are clearly important requirements for making contact with the experiments on
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EtMe3Sb[Pd(dmit)2]2.

Here, we shall not attempt to find an exact solution to a particular model Hamilto-

nian. Instead, we will build upon the extensive experience that has been gained by

parton constructions of mean-field spin liquid states, and the establishment of their

stability by an effective gauge theory of fluctuations. Previous constructions of Z2

spin liquids relied upon writing the spins either in terms of Schwinger bosons [113] or

fermions [156], and here we will apply an analogous analysis to the Majorana parton

construction in equation (7.1). We will be aided in this analysis by the Projective

Symmetry Group (PSG)[157] which we shall apply to the effective Hamiltonian for

the Majorana excitations.

7.2.1 Low energy theory

We begin by postulating the existence of a SU(2) invariant spin liquid state on the tri-

angular lattice, whose quasiparticles are described by a triplet Majorana field γα(r),

α = x, y or z. Although we are using the same notation as in equation (7.1), the

Majorana field operators used in the low energy field theory create the physical quasi-

particles and so can be strongly renormalized from the underlying Majorana fermion

in equation (7.1). Noting that the Majorana bilinear Hamiltonian has to change sign

both under time reversal (TR) and under a lattice rotation by π, we assume that

the γα transform trivially, i.e., γα → γα (without a possible sign change) under all

the PSG operations associated with a modified triangular lattice space group. In

this modified triangular lattice space group the elementary operation of rotation by
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π/3 is replaced by the same operation compounded with TR. Furthermore, the Ma-

jorana operators transform naturally in the S = 1 representation of spin rotations

and are real operators which are invariant under time reversal. These simple and

general transformation rules are already sufficient to strongly constrain the effective

low energy theory of the γα(r).

Let us begin by writing an effective Hamiltonian for the γα bilinears as an expansion

in spatial gradients.

Demanding invariance under by 2π/3 rotations (a double application of TR + π/3

rotation) and hermicity, we are led to the Hamiltonian

H0 = iw0

∫
d2r γα (D1 +D2 +D3) γα (7.2)

where the Di ≡ δi ·∇ are directional derivatives along the 3 principal directions δ1,

δ2 and δ3 shown in Figure 7.2 and w0 is a real number. We remark here that there is

no term without spatial gradients because the Majorana fermions square to unity and

because of SU(2) spin rotation symmetry. However, we clearly have δ1 + δ2 + δ3 = 0

and so H0 vanishes identically. To obtain a non-zero contribution, we have to expand

all the way to 3 derivativesa, when we obtain two independent terms which can be

written as

H = i

∫
d2r γα

[
w1D1D2D3 − w2

(
D2

1D2 +D2
2D3 +D2

3D1

)]
γα (7.3)

where both w1 and w2 are real parameters. The low energy Hamiltonian in equa-

tion (7.3) underlies all the results derived in this chapter. From this it follows that

aThe Majorana bilinear Hamiltonian cannot have terms with an even number of derivatives as
they are identically zero by integration by parts.
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Figure 7.1: The Fermi surface (shown as black lines) corresponding to the lattice
dispersion in equation (7.9) in Section 7.3 — equation (7.3) is the generic contin-
uum version of the same theory. The BZ is bounded by the green border while the
‘occupied’ states are shaded.

the long wavelength excitations of this theory have the dispersion

Eq
q→0' t q3 cos (3θq + φ) (7.4)

where

 t cosφ = 3
8
(2w1 + w2)

t sinφ = 3
√

3
8
w2

Next, let us describe the structure of the low energy excitations of H. As we shall

demonstrate shortly in Section 7.3 and as is illustrated in Figure 7.1, there are two

classes of excitations. First, there are the excitations with momentum q ≈ 0, which

have energy ∼ |q|3, and so look like those of a quantum-critical theory with dynamic

exponent z = 3. Second, there are the linearly dispersing gapless excitations along

Fermi lines which meet at q = 0.

It is now straightforward to establish the perturbative stability of H. The collective

modes arising from decoupling spin interaction terms like the four Majorana exchange
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interactions in equation (7.5) constitute the gauge fluctuations of a Z2 gauge theory

[113, 129]. These have a finite range of stability without a transition to confinement,

when our theory as described above is valid. Next, we consider the influence of terms

quartic in the Majorana fermions. These quartic couplings will lead to innocuous

Fermi liquid renormalizations of quasiparticles along the Fermi lines, just as in any

Fermi liquid. The influence of quartic couplings on the z = 3 excitations near q = 0

is more subtle, but can be analyzed by a standard scaling argument. The scaling

dimension of γα is d/2, where d = 2 is the spatial dimensionb. Dimensional analysis

now shows that a quartic coupling with p spatial derivatives has scaling dimension

z−d−p. For z = 3 and d = 2, this is irrelevant only if p > 1. With the requirements

of SU(2) invariance, it is easy to show that any quartic term must have at least p = 2

derivatives: the simplest non-vanishing term with SU(2) spin rotation invariance has

the generic structure ∼ (γα∂γα)(γβ∂γβ). We emphasize that SU(2) spin rotation

symmetry is crucial to the stability of the theory: in its absence, marginal quartic

terms arise that could destabilize the postulated liquid.

The outline of the rest of this chapter is as follows. In Section 7.3 we shall derive

the Majorana mean field theory corresponding to the Heisenberg antiferromagnet and

reproduce the general low energy spectrum postulated in equation (7.3). We shall

also demonstrate how any Majorana bilinear Hamiltonian on the triangular lattice

gives rise to equation (7.3) in the low energy long wavelength limit. We will then

describe the experimentally observable properties of this state in Section 7.4. The

bThis is most easily seen in a Lagrangian formulation where the kinetic term is γα∂τγ
α, τ being

the imaginary time.
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influence of weak disorder will be presented in Section 7.5.

7.3 The mean field Majorana Hamiltonian on a

triangular lattice

7.3.1 Majorana mean field theory from a spin Hamiltonian:

an example

In this section we derive a Majorana mean field theory starting from the AF Heisen-

berg model on a triangular lattice, mainly to demonstrate the mechanics of such a

derivationc. We choose a real space coordinate system such that one set of bonds

point along the x-axis, as shown in Figure 7.2. The Hamiltonian has the form:

HAF = J
∑
n.n

S(x) · S(x′)

=
J

8

∑
x,δ,α 6=β

γα(x)γα(x+ δ)γβ(x)γβ(x+ δ) (7.5)

where δ are the three nearest neighbor bonds labeled in Figure 7.2 which are re-

lated by rotations through 2π/3. We perform a mean field analysis for the above

Hamiltonian by assuming the mean field ansatzd

〈
γα(x)γβ(x+ δ)

〉
= ig δαβ (7.6)

cIt is known[56] that the actual ground state of this model breaks spin rotation symmetry.

dThis ansatz implies that the mean field theory breaks time reversal at the level of Majorana dy-
namics. If |Ψ〉 is invariant under time reversal and assuming the fact that the spin 1 γ’s are left invari-
ant or change by a factor of −1 under the action of time reversal,

〈
Ψ
∣∣γαxγαy ∣∣Ψ〉 =

〈
Ψ
∣∣γαyγαx ∣∣Ψ〉 = 0

unless x = y.
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∆1 � a1

∆2 � a2

∆3 � -Ha1 + a2L

Figure 7.2: The triangular lattice showing the lattice vectors and the δ vectors used
in the text. The arrows on the bonds define the mean field ansatz equation (7.6)
that also becomes the scheme for assigning the same phase to hopping parameters.
The amplitudes of hopping processes in the directions opposite to the specified bond
directions pick up an additional factor of -1.

which is also graphically represented by directed bonds in Figure 7.2. Using this

ansatz, equation (7.5) becomes:

HMF =
J

8

∑
x,δ,α

[
2× 2ig γα(x)γα(x+ δ) + 2g2

]
=
iJg

4

∑
x,δ,α

(γα(x)γα(x+ δ)− γα(x+ δ)γα(x)) +
9

4
NJg2 (7.7)

where N is the number of sites, assumed to be an even number. This Hamiltonian

can be diagonalized using the momentum states defined over the Brillouin zone (BZ)

of the triangular lattice:

bαq =
1√
2N

∑
x

γα(x)e−iq·x ⇔ γα(x) =

√
2

N
∑
q

bαqe
iq·x (7.8)

These b operators are complex Fermions with b−q = b†q and
{
bαp, b

β
q

}
= δαβδp,−q, show-

ing that independent b operators cover only half the BZ. Using these in equation (7.7),
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we can diagonalize the Hamiltonian:

HMF =
∑

α,q∈BZ

(
−Jg

∑
q

sin q · δ
)
bα−qb

α
q +

9

4
NJg2

=
∑

α,q∈BZ

Eq
2
bα−qb

α
q +

9

4
NJg2

(
Eq = 8Jg sin

qx
2

sin
(R2π/3q)x

2
sin

(R4π/3q)x
2

)

=
∑

α,q∈BZ′|E>0

(
Eq b

α
−qb

α
q −

Eq
2

)
+

9

4
NJg2 (using E−q = −Eq)

=
∑

α,q∈BZ′
Eq(b

α
q)†bαq +

9NJ
4

g

(
g − 2

π

)
(7.9)

Here we have introduced the notation BZ ′ to denote that half of the BZ where the

quasiparticle energies of the spin rotation-invariant Hamiltonian are positive. The

fermion creation operators in BZ ′ are related to those in the remaining half of the

BZ by the particle-hole relation b−q = b†q. The structure of the Fermi sea obtained

above is shown in Figure 7.1, where BZ ′ consists of the un-shaded regions of the BZ.

It follows that near q = 0, the quasiparticle energy has the same form as derived

earlier in equation (7.4) using a gradient expansion

Eq
q→0'

(
Jg

4

)
q3 cos 3θq (7.10)

The ground state energy 9NJ
4
g
(
g − 2

π

)
is minimized when g = 1

π
e:

E0 = − 9

4π2
JN = −0.22JN (7.11)

As expected, E0 is higher than the numerically calculated ground state energy of

about −0.54J per site[15] for the best candidate spin-ordered ground state[56]. Ad-

ditional interactions should be added to the Heisenberg Hamiltonian in equation (7.5)

to stabilize the spin liquid state described by the non-interacting Majorana ground

state.

eThe same value is obtained from the definition equation (7.6), as a check.
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7.3.2 The general low energy effective theory on the lattice

This subsection will give an alternative presentation of the ideas of Section 7.2.1,

working directly with the lattice Hamiltonian, rather than the continuum theory.

A general spin SU(2) rotation-invariant and translation-invariant low energy effective

Hamiltonian of Majorana bilinears has the form:

HMF = i
∑
x,d,α

t(d)γα(x)γα(x+ d) (7.12)

where Hermicity requires that t(d) is real and antisymmetric in the hopping vector

d:

t(−d) = −t(d), t(d) ∈ R (7.13)

If this Hamiltonian describes a spin liquid, the observable quantities which are the spin

correlation functions should not break any lattice symmetry, in addition to the spin

rotation and lattice translation symmetries discussed above. However, since a lattice

rotation by π and time reversal separately flip the sign of the mean field Hamiltonian

equation (7.12), the theory can be invariant only under a combined application of

the two. This uses the fact that the Majorana operators are hermitian and also that

due to spin rotation symmetry, their bilinears cannot acquire any additional factor

under symmetry operations. We require the maximum possible adherence to the

lattice point group symmetry consistent with these observations — a lattice rotation

by π/3 combined with time reversal must leave the Hamiltonian invariant. This,

along with invariance under lattice translations and reflection about a bond, are the

elementary symmetry operations that define the class of effective Hamiltonians which
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may possess the Majorana spin liquid ground state described in this work. Even with

this reduced set of symmetry operations, all equal time correlation functions with

an even number of spin operators will remain invariant under the full set of lattice

symmetry operations.

These arguments motivate rewriting the Hamiltonian in a manner that makes the

antisymmetry under a rotation by π/3 apparent:

HMF = i
∑
x,{d},α

t(d)
5∑

n=0

(−1)nγα(x)γα(x+Rnπ/3(d)) (7.14)

where {d} denotes the set of hopping vectors, modulo those that are related through

rotations by multiples of π/3. In terms of the momentum state operators equa-

tion (7.8), we have:

HMF = i
∑
k,α

(∑
{d}Ed(q)

)
2

bα−qb
α
q (7.15)

where

Ed(q) = 16 t(d) sin
q · d

2
sin
q · (R2π/3d)

2
sin
q · (R4π/3d)

2
(7.16)

is the contribution to the Majorana dispersion from the hopping processes character-

ized by the hopping vector d. This expression tells us that the dispersion of the long

wavelength low energy modes near q = 0 have the form

Eq
k→0' t q3 cos(3θq + φ) (7.17)

where t and φ are real constants. These parameters are the analog of those in equa-

tion (7.4) obtained from corresponding continuum analysis. Figure 7.3 shows the

Fermi sea and Fermi surface corresponding to a model with a next nearest neighbor
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hopping amplitude that is one-fifth of the nearest neighbor hopping amplitude and

demonstrates the existence of three Fermi curves intersecting at q = 0, in this system.

-Π 0 Π

-Π

0

Π

-Π 0 Π

-Π

0

Π

qx

q y

Figure 7.3: The Fermi surface (black curves) corresponding to equation (7.14) with a
next-nearest-neighbor hopping amplitude that is 20% the nearest neighbor hopping
amplitude. The BZ is bounded by the green border while the ‘occupied’ states are
shaded.

From this calculation it is clear that the low energy mean field theory is composed of

two kinds of excitations which are smoothly connected to each other, as was noted

in Section 7.2.1. Excitations near q = 0 have a dispersion that varies as q3 and

a dynamical exponent z = 3 while those along the Fermi curves behave like the

excitations of a 2D Fermi gas.

7.3.3 The low energy effective theory in the presence of a

perpendicular magnetic field

Let us first consider orbital coupling terms which do not violate the SU(2) spin ro-

tation symmetry. In this case the arguments that lead to the formulation of the
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Hamiltonian will be no different that in the field free case considered in the previ-

ous sections and so the Hamiltonian will be invariant under rotations by 2π/3. The

transverse thermal conductivity, which involves averaging the product vxvy over mo-

mentum space, will be zero since the sum of vxvy over points related by 2π/3 rotations

is zero. Equivalently, it may be noted that the PSG implies that there is no orbital

coupling between the applied magnetic field and a fermion bilinear: it is not possible

to find a fermion bilinear which is invariant under translations and by spatial rota-

tions under π/3. It follows that orbital coupling of the magnetic field will not induce

a thermal Hall effect [66] in our theory. This is in contrast to what happens in the

case of the U(1) spin liquid with a spinon Fermi surface [90], where the B field does

couple to fermion bilinear [66]: the coupling is of the form B · (∇ × J), where J is

the U(1) spinon current.

The other way in which a perpendicular magnetic field Bẑ enters the Hamiltonian is

via terms that break the spin SU(2) symmetry down to a U(1) symmetry of rotations

about the direction of the magnetic field. Such a coupling will not affect the γz

fermions but will couple the γx,y Majoranas into Sz = ±1 excitations. The most

relevant term in that case is the Zeeman term −iBγxγy/2 which does not break the

three-fold rotation symmetry and thus does not lead to a thermal Hall effect.
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7.3.4 The spectrum in the presence of the Zeeman coupling

The Zeeman term −µ0BSz does not affect the spectrum of the γz fermions because

they carry spin Sz = 0. The Hamiltonian of the γx,y fermions, however, is modified:

H =
1

2

∑
k

(
bx−k by−k

)
·

 Ek iµ0B

−iµ0B Ek

 ·
 bxk

byk


=

1

2

∑
k,s=±1

(Ek − sµ0B)c†s(k)cs(k)

≡
∑
k

(Ek + µ0B)c†−(k)c−(k) + c-number (7.18)

where the new fermionic excitations with spins Sz = s/2, s = ±1 are

cs(k) =
bxk + i s byk√

2
; cs,k = c†−s,−k (7.19)

The Fermi surface now consists of arcs in three of the six wedges partitioning the BZ,

as shown in Figure 7.4.

7.4 Properties of the clean Majorana spin liquid

The bilinear Majorana Hamiltonian which will be used in the following sections is

HMF = i
∑
q,α

Eq
2
bα−qb

α
q (7.20)
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Figure 7.4: The Fermi sea of c− fermions (shaded regions) in the presence of a Zeeman
term (assuming µ0B > 0). The hexagon is the BZ for the triangular lattice. The γz

fermions are not affected by a magnetic field in the z direction and will retain their
original excitation structure as shown in Figure 7.1.

where the q → 0 form of Eq is given by equation (7.17). The propagator[146] for the

Majorana excitations is given byf

〈
bαpb

β
q

〉
=
δαβδp,−q
z − Eq

= δαβδp,−q Gq(z) (7.21)

7.4.1 The low energy density of states (DOS)

Because of the k3 dispersion, the contribution to the density of states from the states

near k = 0 diverges as the energy E → 0. The divergence may be calculated from

fThe general analytic form has been provided here and from it the Matsubara, retarded and
advanced Green’s functions can be obtained by the substitutions z → iωn, ω + i0+ and ω − i0+
respectively.
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the effective Hamiltonian in equation (7.17):

ρ(E) = 3
∑
k

δ(E − tk3 cos 3θk)

E→0' 9

∫ Λ

0

dk k

4π2

∫ π/6

−π/6
dθ δ(|E| − |t|k3 cos 3θk)

=
3

2|t|π2

∫ Λ

|E/t|1/3

dk k

k3

1√
1− E2

t2k6

=
3

2|t|π2

∫ Λ

|E/t|1/3

dk k√
k6 − (E/t)2

≈ 0.18 (t2|E|)−1/3 ≡ ρ0|E|−1/3 (7.22)

where Λ ' 1 is the upper cutoff for the momentum integral.

7.4.2 Specific Heat

The specific heat, as T → 0 is given by

C =

∫ ∞
0

dE

(
∂nF (E)

∂T

)
Eρ(E)

T→0' ρ0

∫ ∞
0

dE

(
∂nF (E)

∂T

)
|E|2/3 ' 1.18ρ0 T

2/3 (7.23)

7.4.3 Magnetic susceptibility

Only the SU(2) spin rotation symmetry-breaking Zeeman term − i
2
µ0B

aγxγy will give

rise to a magnetic moment due to the application of a magnetic field Bẑ. The static
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susceptibility may be calculated from the spin correlation function:

χzz = µ0

∫
d2k

4π2

∑
iωn

1

(iωn − Ek)2

= 2µ0

∫ ∞
0

dE
ρ(E)

3

(
−∂nF (E)

∂E

)
T→0' 2µ0ρ0

3

∫ ∞
0

dE E−1/3

(
−∂nF (E)

∂E

)
' 0.38µ0ρ0 T

−1/3 (7.24)

7.4.4 The Wilson ratio – comparison with a 2DEG

For a spin 1/2 free fermion gas, the susceptibility and specific heat are given by

χxx =
%2DEG

4
, cV =

π2

3
%2DEG T (7.25)

Thus, the Wilson ratio of this model is

0.38ρ0T
−1/3

1.18ρ0T 2/3
×

π2

3
%2DEG T
%2DEG

4

' 4.2 (7.26)

times that of the free spin 1/2 electron gas, assuming µ0 = µB, the Bohr magneton.

A spin-1 non-interacting 2DEG has a Wilson ratio that is 8/3 = 2.67 times that of

the spin-1/2 free 2DEG, i.e, smaller than that of our model.
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Figure 7.5: Variation of (πf(r))2 = 4π2 〈Sa(r)Sa(0)〉 on the real space lattice, at
T = 0 with only nearest neighbor hopping. The red circle at the center is r = 0 and
there is no sum over a. We see that 〈Sa(r)Sa(0)〉 decays as an inverse square of the
distance (the strongly directed nature is an artifact of nearest neighbor hopping).

7.4.5 Static Structure Factor

The spin static structure factor is given by

〈Sµ(r)Sν(0)〉 = − 1

16
εµabενcd

〈
γa(r)γb(r)γc(0)γd(0)

〉
=

 0 for µ 6= ν

〈γα(r)γα(0)〉2
4

for µ = ν (no sum over α)

(7.27)

This simplification occurs due to the absence of correlation between Majorana fermions

of different flavors arising out of spin rotation invariance;
〈
γα(r)γβ(0)

〉
= f(r)δαβ,

where the function f(r) may be found as follows. Expressing the position vector

r = n1a1 + n2a2 in terms of the lattice displacement vectors a1,2 as well as the wave

vector r = p1K1+p2K2 in terms of the reciprocal lattice vectorsK1,2 defined through
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Ki · aj = δij, we find that

f(r) = 〈γα(r)γα(0)〉 (no sum over α)

=
2

N
∑
p,q

〈
bαpb

α
q

〉
eip·r =

2

N
∑
p

(1− nF (Eq)) e
iq·r

T=0
=

1

2π2

∫∫
BZ′

d2p ei(p1n1+p2n2)

n1,n2,n1−n2 6=0
=

e−iπ(n1+2n2)

2π2n1n2 (−n1 + n2)

[ (
−1 + eiπn1

) (
1 + eiπ(n1+2n2)

)
n2

+
(
1− eiπn2

) (
1 + eiπ(n1+2n2)

(
1− eiπn1 + eiπn2

))
n1

]
(7.28)

From the last expression, which is valid only for the case with nearest-neighbor hop-

ping, we can prove that at T = 0 f(r) is zero when n1, n2, n1 − n2 6= 0. Thus, the

function is non-zero only along 3 lines defined by n1, n2, n1 − n2 = 0. The spatial

variation of the squared value of this function at T = 0, which is proportional to the

static spin correlation function, is shown in the Figure 7.5. We find that static spin

correlations are negative and decay according to the inverse square law along the six

directions (3 lines) discussed above. Inclusion of longer range hopping processes will

modify the highly directional nature of the correlations.

7.4.6 Effect of a perpendicular magnetic field

In the presence of a Zeeman term −µ0BSz which is small in comparison to the

bandwidth, the DOS gets modified to

ρB(E) =
ρ0

3

(
|E|−1/3 + |E − µ0B|−1/3 + |E + µ0B|−1/3

)
(7.29)



Chapter 7: SU(2)-invariant spin liquids on the triangular lattice with spinful
Majorana excitations 120

where the three separate contributions come from the Sz = 0,±1 excitations respec-

tively. The z = 3 excitations for the Sz = ±1 sector are gapped out and this results

in a suppression of the low energy DOS and consequently also the specific heat and

magnetic susceptibilities at low temperatures, as shown in Figures 7.6(a) and 7.6(b)

respectively. As T → 0, only the Sz = 0 excitations contribute to the specific heat

which thus gets reduced to a third of its zero field value. Since no excitations of the

z = 3 kind contribute to the magnetic susceptibility at T = 0, it is reduced to 0 in

comparison to its zero field value. This leads to a suppression of the Wilson ratio at

low temperatures, as shown in Figure 7.6(c). At temperatures much higher than the

Zeeman energy, these quantities recover their zero field values.
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(a)
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0.001 0.1 10
T�HΜ0BL
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4.2

W�W1�2

(c)

Figure 7.6: The suppression of specific heat (a) and the spin susceptibility (b) by a
magnetic field that couples via a Zeeman term and gaps out the Sz = ±1 excitations
with z = 3. This also leads to the suppression of the Wilson ratio at low tempera-
tures, as shown in (c). At temperatures much higher than the Zeeman energy, these
quantities recover their zero field values.



Chapter 7: SU(2)-invariant spin liquids on the triangular lattice with spinful
Majorana excitations 121

7.5 Effects of weak disorder

7.5.1 The bond impurity potential

The Majorana bilinear Hamiltonian does not allow the incorporation of the widely-

used on-site local impurity model, since γ2(x) has to be equal to 1. The simplest kind

of spin-rotation symmetric local impurity allowed in the spin model is a disrupted

bond which has the following mean field form, assuming that the disrupted bond is

oriented along the direction δ, joining r and r + δ:

Vδ(r) = δJ 〈S(r) · S(r + δ)〉 ' iU
∑
p,q

bαpb
α
q e

i(p+q)·r (eip·δ − eiq·δ) (7.30)

Here, U ∝ g δJ is a real number and we have used the (anti)symmetry of the relevant

operators.

7.5.2 The disorder-averaged self energy in the Born approx-

imation

The disorder-averaged self energy in the Born approximation is given by (not including

averaging over different bond directions)

Σret
p (ω) ' −nimpU

2

∫
d2q

4π2
Gq(ω + i0+)

(
eip·δ − e−iq·δ

) (
eiq·δ − e−ip·δ

)
= nimpU

2

∫
d2q

2π2

1− cos ((p+ q) · δ)

ω − Eq + i0+

= nimpU
2

∫
d2q

2π2

1− cosp · δ cos q · δ + sinp · δ sin q · δ
ω − Eq + i0+

(7.31)
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At this point, we take into account the fact that these bond disruptions are randomly

oriented in space by averaging the above expression over the three values of δ related

by rotations through 2π/3, as shown in Figure 7.2. We perform this average by

using the fact that the denominator of the integrand in equation (7.31) is separately

invariant under rotations of q by 2π/3 and also using the following expressions for

averages over 2π/3 rotations over the direction of any arbitrary vector d:

〈cosd · ê〉2nπ/3 ≡ ϕê(d)
d�1
= 1− d2

4
+O(d4) (7.32a)

〈sind · ê〉2nπ/3 ≡ χê(d)
d�1
= −d

3

24
cos[3θ] +O(d5) (7.32b)

In these equations, θ is the angle between d and ê. Using these in equation (7.31),

we find the rotationally averaged self energy to beg

Σret
p (ω) ' nimpU

2

∫
d2q

2π2

1− ϕx(p)ϕx(q) + χx(p)χx(q)

ω − Eq + i0+

≡ nimpU
2 (f0(ω) + f1(ω)ϕx(p) + f2(ω)χx(p)) (7.33)

From this expression we see immediately that as ω → 0, both f0,1(ω) ∼ ρ(ω) ∝ ω−1/3

diverge as ω → 0 and thus the Born approximation cannot be justified. This leads

us to consider the self-consistent Born approximation (SCBA) in the next section.

gThe momenta are in units of 1/a, a being the lattice edge length.
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7.5.3 The disorder-averaged self energy in the self-consistent

Born approximation (SCBA)

The SCBA modifies equation (7.33) to the self-consistent equations:

Σret
p (ω) ' nimpU

2

∫
d2q

2π2

1− ϕx(p)ϕx(q) + χx(p)χx(q)

ω − Eq − Σret
q (ω) + i0+

(7.34)

For small ω and p these equations can be simplified to:

Σret
p (ω) ≈ nimpU

2

4

∫
d2q

2π2

p2 + q2

ω − Eq − Σret
q (ω) + i0+

≡ F0(ω) + F1(ω)p2 (7.35)

Using this approximate rotational invariance of Σret
p (ω) for small p we can simplify

these equations to a form that can be easily solved numerically:

Σret
p (ω) ≈ −i

(
nimpU

2

4π

)∫ Λ'1

0

dq q
p2 + q2√

q6 − (ω − Σret
q (ω))2

(7.36)

At ω = 0, these equations can also be analytically solved to the leading order in the

disorder strength nimpU
2 → 0 and they yield a purely imaginary value for Σret

p (0).

We first deal with F0(0) which depends directly on the momentum cutoff Λ:

F0(0) = −i
(
nimpU

2

4π

)∫ Λ

0

dq q
q2

q3
= −i Λ

4π
(nimpU

2) (7.37)

The value of F1(0) is given by (relabeling F0(0) by −iΓ0 below, with Γ0 > 0)

F1(0) ≈ −i
(
nimpU

2

4π

)∫ Λ

0

dq
q√

q6 + Γ2
0

nimpU
2�Λ2

' −i 0.26
(nimpU

2)2/3

Λ1/3
(7.38)

Numerical solutions to the SCBA equation (7.35) agree with these analytic results

(setting Λ ≈ 1). The variation of the imaginary parts of the self energy with frequency

and impurity strength are shown in Figure 7.7.



Chapter 7: SU(2)-invariant spin liquids on the triangular lattice with spinful
Majorana excitations 124

10-8 10-6 10-4 0.01
E

3.6 ´ 10-6

3.65 ´ 10-6

3.7 ´ 10-6

3.75 ´ 10-6

3.8 ´ 10-6

3.85 ´ 10-6

3.9 ´ 10-6

-ImHF0HELL

(a)

ImHF1HELL µ E-1�3

10-8 10-6 10-4 0.01
E

5 ´ 10-5

1 ´ 10-4

2 ´ 10-4

-ImHF1HELL

(b)

ImHF0HE=0LL µ nimpU2

10-8 10-6 10-4
nimpU2

10-9

10-7

10-5

-ImHF0H0LL

(c)

ImHF1HE=0LL µ HnimpU2L2�3

10-8 10-6 10-4
nimpU2

10-6

10-5

10-4

0.001

-ImHF1H0LL

(d)

Figure 7.7: Figures showing the variation of the imaginary parts of F0,1, as defined in
equation (7.35) and equation (7.36), with frequency as well as the disorder strength.
Wherever possible, power law fits have been made. In (a) and (b), we have used the
disorder strength value nimpU

2 = 5× 10−5.

7.5.4 The disorder-averaged single particle density of states

The single particle density of states (DOS) is given by:

ρ(E) = −
∫

d2p

4π3
Im

(
1

E − Ep − Σret
p (E)

)
=

1

2π2
Re

(∫ Λ'1

0

dp
p√

p6 − (ω − (F0(ω) + F1(ω)p2))2

)
(7.39)

Since Im(Σret
p (E = 0)) is a finite number, we expect the DOS to become constant

at low energies, instead of diverging as E−1/3 like in the clean case (7.22). This

quenching of the low energy divergence in the DOS is shown in Figure 7.8(a). The
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variation with disorder strength of the low energy saturation value of the DOS is also

plotted in 7.8(b).
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Figure 7.8: Figures showing the variation of the DOS equation (7.39) with energy
in (a) in the presence of disorder with strength nimpU

2 = 5 × 10−5, as well as the
variation of the low energy saturation value with the disorder strength in (b).

7.5.5 The specific heat in the presence of impurities

Using the SCBA analysis result that the low energy DOS ρ(0) is finite, the low

temperature specific heat is found to be

C =

∫ Λ'1

0

dE E

(
∂nF (E)

∂T

)
ρ(E)

T→0≈
(
π2ρ(0)

6

)
T (7.40)

Thus, at very low temperatures, the specific heat is linear in temperature and the

coefficient of this linear variation is proportional to ρ(0) and hence to (nimpU
2)−1/3

(see Figure 7.8(b)). The variation of C/T with temperature is shown in Figure 7.9(a)

where the transition, at higher temperatures, to the behavior (7.23) in the clean limit

can be seen.
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Figure 7.9: Figures showing the temperature variations of the specific heat divided
by temperature C/T in (a) as well as the static spin susceptibility χ in (b). At
temperatures larger than a value set by the disorder strength nimpU

2 = 5 × 10−5,
the quantities regain their behaviors equation (7.23) and equation (7.24) in the clean
limit.

7.5.6 The spin susceptibility in the presence of impurities

The spin susceptibility is found to be

χzz = 2µ0

∫ ∞
0

dE
ρ(E)

3

(
−∂nF (E)

∂E

)
T→0' 2µ0ρ(0)

3

∫ ∞
0

dE

(
−∂nF (E)

∂E

)
=
µ0ρ(0)

3
(7.41)

The variation of the spin susceptibility with temperature is shown in Figure 7.9(b)

where we can again see the transition to the behavior (7.24) in the clean limit at

higher temperatures.
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7.5.7 The Wilson ratio in the presence of impurities – com-

parison with a 2DEG

As T → 0, the Wilson ratio for our model is the same as that of a 2DEG of spin 1

fermionsh because of the finite DOS at low energies:

W

W1/2

T→0
=

µ0ρ(0)
3

π2ρ(0)
6

×
π2

3
%2DEG T
%2DEG

4

=
8

3
≡ W1

W1/2

(7.42)

where W1/2 is the Wilson ratio of the free spin 1/2 electron gas. We have, as be-

fore, assumed that the effective magnetic moment of the spins µ0 = µB, the Bohr

magneton.

Figure 7.10 shows the variation of this ratio as a function of temperature, showing

the transition to the clean limit value in equation (7.26) at higher temperatures.

10-8 10-6 10-4
T

2

4.2
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W�W1�2

Figure 7.10: The Wilson ratio W = Tχ/C as a multiple of that of the spin 1/2
2DEG W1/2, calculated as a function of temperature, in the presence of disorder with
strength nimpU

2 = 5 × 10−5. As T → 0, the value becomes that of a spin 1 2DEG
while at larger temperatures it increases to the value derived in equation (7.26) for
the clean system.

hThe Wilson ratio WS of a spin S 2DEG can be shown to be proportional to S(S + 1).
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7.5.8 The thermal conductivity

The thermal current is[71]

Ĵ(q → 0,Ω→ 0) =
∑

k∈BZ′,ω

vk

(
ω +

Ω

2

)
bα−k,−ωb

α
k,ω+Ω (7.43)

The thermal conductivity tensor is given by[31]

κ

T
= − lim

Ω→0
lim
q→0

Im Πret(q,Ω)

ΩT 2
(7.44)

where Π is a tensor whose components are the correlation functions of the thermal

current components. Π is diagonal because averaging over three fold rotations makes

the off-diagonal component JxJy ∝ vxvy vanish.

For the following calculation, it will be useful to mention these formulæ for the

quasiparticle velocities, assuming a low energy long wavelength energy dispersion

Eq = t q3 cos(3θq + φ):

vx =

(
cos θq ∂q −

sin θq
q

∂θ

)
Eq = 3q2t cos(2θq + φ)

vy =

(
sin θq ∂q +

cos θq
q

∂θ

)
Eq = −3q2t sin(2θq + φ) (7.45)

Thus v2
q ' 9q4, using units in which t = 1.

The bare thermal polarization bubble (using the renormalized propagators, though)

yields, after a three-fold rotational averaging that converts v2
x,y → v2/2,

κ

T
= 3

∑
p∈BZ′

v2
p

2π

∫ ∞
−∞

dω
(ω
T

)2
(
−∂n(ω)

∂ω

)
(ImGret(p, ω))2

≈ 27

32π3

∫
BZ′

d2p p4

∫ ∞
0

dω
(ω
T

)2
(
−∂n(ω)

∂ω

)[
(ImGret(p, ω))2 + (ImGret(−p, ω))2]

T→0≈ 9

32π

∫
d2p p4 (ImGret(p, ω = 0))2 (7.46)
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Thus, at low temperatures the thermal conductivity is also linear in temperature

(shown in Figure 7.11(b)). The coefficient of this linear variation is plotted vs the

disorder strength in Figure 7.11(a). We find that the low temperature value of κ/T

varies as (nimpU
2)−2/3 with the disorder strength.

Κ

T
µ HnimpU2L-2�3

10-8 10-6 10-4
nimpU2

100

1000

104

105

106

Κ�T

(a)

Κ

T
µ T1�3

10-9 10-8 10-7 10-6 10-5 10-4
T

1000

500

200

300

150

700

Κ�T

(b)

Figure 7.11: The T = 0 thermal coefficient of the thermal conductivity equation (7.46)
κ is plotted against the disorder strength in (a). (b) shows the variation of this thermal
coefficient with temperature.

The value of κ/T in the dmit-131 compound was found to be 0.2 in SI units[168],

which is equivalent to about 332 per triangular spin lattice sheet in units of k2
B/~,

using the provided value of 3nm as the interlayer distance. From Figure 7.11(a) we

find that we require the disorder strength to be nimpU
2 ≈ 5× 10−5 to reproduce this

value.

The vertex corrections to the thermal current can be achieved by replacing[71] the

quasiparticle energy function Ek in the calculation of the quasiparticle velocities by

Ek + ReΣk(ω). However, ReΣk(ω) is negligible with respect to Ek and so the vertex

corrections are negligible at low disorder strengths[31].
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7.6 Conclusions

Let us summarize the characteristic properties of the Majorana spin liquid state on

the triangular lattice.

• There are low energy spin excitations near q = 0 which disperse as ω ∼ q3. In

addition there are six Fermi lines which intersect at q = 0, with linear dispersion

across the Fermi lines.

• The spin susceptibility, χ, and the specific heat, C are dominated by the z = 3

excitations near q = 0; hence χ ∼ C/T ∼ T−1/3, and the Wilson ratio is found

to be W ' 4.2.

• In the presence of weak disorder, these divergencies saturate at low enough T .

Hence χ ∼ C/T ∼ T 0, and the Wilson ratio W = 8/3, as expected for a Fermi

surface of S = 1 fermions.

• The longitudinal thermal conductivity κ ∼ T as T → 0 with non-zero disorder

scattering. The thermal current is carried mostly by the excitations on the

Fermi lines.

• In the presence of an applied magnetic field, there is no orbital coupling to

transverse thermal current, and so no thermal Hall effect.

• Two-thirds of the ω ∼ q3 excitations are gapped out by an applied magnetic

field by the Zeeman coupling. Consequently, the specific heat and the spin sus-

ceptibility are suppressed by the applied field. On the other hand, the thermal
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conductivity is insensitive to the field because it is dominated by the Fermi line

excitations, and these survive the Zeeman coupling.

We emphasize that the qualitative aspects of the above results rely only on the as-

sumption of a spin liquid ground state on the triangular lattice with SU(2) spin

rotation invariance and spin-ful Majorana excitations obeying a trivial PSG.

Many of these properties make our Majorana state an attractive candidate for EtMe3Sb

[Pd(dmit)2]2: the behavior χ ∼ C/T ∼ κ/T ∼ T 0, and the absence of a thermal Hall

effect. An interesting distinguishing feature of our theory is that χ and C are sup-

pressed by an applied magnetic field, while κ/T is not. It would be interesting to test

this in future experiments.
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Appendix A

The relation between the Majorana

and spin 1/2 Hilbert spaces

There are three Majorana operators γx,y,z per spin. If we consider a collection of an

even number N of spins, this will lead to a Hilbert space of dimension 23N/2. We

will review here how this is equivalent to 2N/2 copies of the 2N -dimensional spin half

Hilbert space.

We assume that the Majorana Hilbert space is composed by randomly picking up

pairs of Majoranas and representing them by a two-state complex fermion Hilbert

space. We can show that this space is independent of which scheme of pairing is

used.

Let us now define the following site and bond operators using the Majorana fermion
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operators:

O(r) = iγx(r)γy(r)γz(r) (A.1a)

T (r1, r2) = O(r1)O(r2) (for r1 6= r2 only) (A.1b)

These commute with the spin operators

[O(r1), Sa(r2)] = 0 (A.2a)

O(r) = 2γa(r)Sa(r) = 2Sa(r)γa(r) (A.2b)

and also satisfy the following algebraic/(anti)commutation relations (in the following,

ri 6= rj as long as i 6= j):

{O(ri),O(rj)} = 2δij (A.3)

[T (r1, r2), T (r3, r4)] = 0 (A.4)

{T (r1, r), T (r2, r)} = 0 (A.5)

T (r1, r2) = −T (r2, r1); T 2 = −1 (A.6)

T (r1, r)T (r, r2) = T (r1, r2) (A.7)

[γα(r1), T (r2, r3)] = {γα(r1), T (r1, r2)} = 0 (A.8)

The consequences of the foregoing relations are as follows. Let us cover the lattice with

a pattern of bonds (assuming an even number N of sites; there are N !/
(
2N/2(N /2)!

)
such coverings). For such a covering, the N /2 number of T operators on the bonds

may be diagonalized simultaneously and each operator assumes one of the values

±i. There are 2N/2 such choices. However, for each such choice, the spin operators

may be diagonalized simultaneously within each subspace – any spin Hamiltonian
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is thus not going to mix equivalent subspaces. Since there were 23N/2 states in the

original Majorana Hilbert space, each subspace contains 23N/2/2N/2 = 2N states

which matches the number of states we require for the N spin 1/2’s.

We can explicitly build up such a subspace from the Majorana Hilbert space and

demonstrate the one-to-one correspondence with the spin states. Let us choose a

particular bond structure. Now, within every bond, let us label the two sites as m

and n. Then, we can form the fermion operator

cαmn =
γαm + iγαn

2
(A.9)

which satisfies the usual complex fermion anti-commutation rule (no sum over α)

[
cαmn, (c

α
mn)†

]
= 1 (A.10)

and allows us to define a minimal Hilbert space defined by eigenstates of the number

operator nαmn ≡ (cαmn)†cαmn = (1 + iγαmγ
α
n )/2. In the following, we shall often drop the

sub/superscripts when there is no ambiguity.

The bond operator is proportional to the fermion parity operator specific to that

bond

Tmn = OmOn = i(iγxmγ
x
n)(iγymγ

y
n)(iγzmγ

z
n)

= i (2nx − 1) (2ny − 1) (2nz − 1) = −i(−1)n
x+ny+nz (A.11)

Using the notation |nxnynz〉 ≡
(
(cx)†

)nx (
(cy)†

)ny (
(cz)†

)nz |000〉, we see that the T =

+i subspace consists of the states |100〉,|010〉, |001〉 and |111〉 having odd number of

fermions. The other case of T = −i involves states with an even number of fermions.
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In this basis the Sz operators can be expressed as:

Szm =
1

2

 σy 0

0 σy

 (A.12)

Szn =
1

2

 σy 0

0 −σy

 (A.13)

which tells us that the spin 1/2 states are related to the Majorana states in the

T = +i subspace as follows:

|Szm = ±1/2, Szm = ±1/2〉 =
|100〉 ± i |010〉√

2
(A.14a)

|Szm = ∓1/2, Szm = ±1/2〉 =
|001〉 ± i |111〉√

2
(A.14b)

We can proceed similarly and build up a correspondence between the spin 1/2 states

and a specified subspace, bond-by-bond through the entire collection of spins. We

note here that the singlet state on a bond is given by the three fermion state |111〉.

We can now comment about the relation between the Z2 gauge equivalence apparent

in equation (7.1) and the explicit construction of equivalent subspaces above. Such

a gauge transformation flips the sign of the T operator on the associated bond and

thus exchanges the subspaces related by flipping that sign.
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