
Aspects of Critical Behavior of Two Dimensional
Electron Systems

A dissertation presented

by

Maxim A. Metlitski

to

The Department of Physics

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Physics

Harvard University

Cambridge, Massachusetts

May 2011



c©2011 - Maxim A. Metlitski

All rights reserved.



Thesis advisor Author

Professor Subir Sachdev Maxim A. Metlitski

Aspects of Critical Behavior of Two Dimensional Electron Systems

Abstract

This thesis is devoted to the study of strongly correlated electron systems in two

spatial dimensions. The main perspective used in this work is that of scaling, imple-

mented by the renormalization group formalism. This thesis can be divided into three

main parts. The first part, comprised of chapters 2-5, investigates various aspects of

two dimensional insulating quantum antiferromagnets. In particular, chapters 2-4

deal with the phase transition between an ordered antiferromagnet and a valence

bond solid on a square lattice. This transition falls outside the conventional Landau-

Ginzburg-Wilson paradigm and is described by a so-called “deconfined” quantum

critical point. In chapter 2, we present an elegant calculation of the scaling dimension

of the valence bond solid order parameter at this quantum critical point. Chapters

3 and 4 investigate signatures of deconfined criticality in the response of an antifer-

romagnet to non-magnetic impurities. Chapter 5 describes the edge response of a

conventional ordered square-lattice antiferromagnet.

The second part of this thesis, comprised of chapters 6 and 7, studies the subject

of quantum phase transitions in metallic systems. Such transitions are particularly

interesting as Landau Fermi-liquid theory is expected to break down at the critical

point. Transtitions in metallic systems can be divided into two broad classes based on
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whether the wave-vector carried by the order parameter is zero or finite. Chapter 6

studies the first class of transitions, using as an example the critical point involving the

onset of Ising-nematic order, which spontaneously breaks the point-group symmetry

of the lattice. Chapter 7 studies the second class of transitions, focusing on the critical

point involving the onset of spin-density-wave order.

The final part of this thesis, chapter 8, investigates entanglement in a two dime-

nional system close to a quantum phase transition. Using the O(N) critical point as

an example, we explicitely demonstrate the previously hypothesized presence of sub-

leading universal corrections to the entanglement entropy. This is the first calculation

of the entanglement entropy at a generic, interacting critical point in dimension larger

than one.
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Chapter 1

Introduction

One of the central themes in modern physics is the idea of universality: the

observation that systems, which are very different microscopically, can have identical

long distance, low energy properties. Such behavior is typically observed when the

correlation length of the system becomes much larger than the microscopic length

scale. A system with a divergent correlation length is called “critical.” The classic

example of universality is that of finite temperature second order phase transitions,

where as one lowers the temperature T , the system goes from a disordered to an

ordered phase. The correlation length ξ at such transitions typically diverges as a

power law,

ξ−1 ∼ (T − Tc)ν (1.1)

where Tc is the critical temperature of the transition, and ν is the correlation length

exponent. A number of other quantities, such as the expectation value of the order

parameter, the susceptibility and the specific heat also show power law behavior

close to the transition. Amazingly, the critical exponents governing the power law

1
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behavior are universal. Moreover, the universality class of the transition is determined

exclusively by the symmetry properties of the order parameter. A general theory

of such transitions, the so-called “Landau-Ginzburg-Wilson paradigm,” is very well

developed by now.

Much attention over the recent years has been devoted to the study of critical

behavior at zero temperature. Unlike critical systems at finite temperature, where

on sufficiently large length scales only classical fluctuations play a role, the physics

at zero temperature is inherently quantum-mechanical. Thus, we refer to critical

behavior at zero temperature as “quantum criticality.” Quantum critical behavior

can occur either close to a phase transition, tuned by a non-thermal parameter, such

as pressure, magnetic field or doping, or in a whole stable phase of matter. In the

first case, the correlation length of the system diverges as,

ξ−1 ∼ (g − gc)ν (1.2)

where gc is the critical value of the tuning parameter g. To the divergent correlation

length there corresponds a vanishing energy scale

∆ ∼ ξ−z (1.3)

where z is known as the dynamical critical exponent. At the phase transition itself

g = gc, also known as the “quantum critical point” (QCP), the correlation length is

infinite and the system possesses gapless excitations which disperse as

ω ∼ kz (1.4)

In the second case of a stable critical phase, the correlation length is infinite and the

system possesses gapless excitations throughout the phase.
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Quantum critical

gc
g

T

Figure 1.1: A generic phase diagram of a system close to a quantum critical point.
The region marked “Quantum critical” is controlled by the T = 0 QCP at g = gc. The
green lines may be crossovers or sharp phase transitions depending on the system.

In both cases, temperature serves as an additional probe of the quantum critical

physics. The role of temperature in the physics of quantum criticality is analogous

to that of finite size scaling in the physics of classical criticality. Indeed, temperature

enters the partition function of a quantum system through periodic identification of

the imaginary time direction τ ∼ τ + β, with β = 1/kT . In the case of a quantum

phase transition this gives rise to the appearance of a “quantum critical fan” region

located above the quantum critical point in the phase diagram, Fig. 1.1. The bound-

ary of the critical fan is given roughly by kT ∼ ∆ ∼ |g − gc|νz. Deep inside the fan,

kT � ∆, so the length of the temporal direction 1/kT is much smaller than the time

scale 1/∆ associated with the gap formation. Hence, the system is unaware of the

presence of the energy scale ∆ and behaves as if it was directly at the critical point.

This leads to a surprising conclusion that as one raises the temperature of the system,
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an increasingly larger region of the phase diagram is controlled by the QCP.

It is believed that the universe of quantum critical phenomena is far richer than its

classical counterpart. Indeed, we now know that for a quantum phase transition, it is

not enough to specify the symmetry properties of the order parameter to determine

the universality class. For instance, a quantum phase transition involving the onset of

some order in a metal is drastically different from the corresponding transition in an

an insulator. The reason for this is the presence of additional low energy excitations

in a metal, which are absent in an insulator. Even in insulating systems, symmetry

considerations do not determine the universality class of the transition. For example,

the transition involving the destruction of magnetic order is different in systems with

an odd and even number of electrons per unit cell. Finally, some quantum phase

transitions, such as the Mott transition between a metal and an insulating spin-liquid,

do not involve spontaneous symmetry breaking at all.

As with classical phase transitions the spatial dimensionality of the system plays

an important role in the study of quantum criticality. Quantum fluctuations tend

to increase as the dimension is lowered. As a result, one dimensional systems often

exhibit truly exotic physics, such as spin-charge separation and fractional excitations.

Luckily, in one dimension a number of techniques are available, such as bosonization

and exact solutions through the so-called “Bethe-ansatz,” which allow one to harness

the exotic physics. Moreover, critical one dimensional systems with a dynamical ex-

ponent z = 1, i.e. with linearly dispersing excitations, possess an infinite dimensional

conformal symmetry, which gives one a complete classification of such systems. On

the other hand, in higher dimensions exact solutions are largely absent and the con-
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formal group is only finite dimensional, making the study of critical behavior much

more challenging.

In this thesis, we will explore some aspects of quantum criticality in two dimen-

sional electron systems. Unlike in one dimension, where quantum fluctuations typ-

ically prevent the system from spontaneously breaking continuous symmetries, thus

excluding phases with true magnetic long range order, in two dimensions quantum

fluctuations are weaker making such phases stable at zero temperature. Moreover,

Fermi-liquids, which are unstable in the presence of arbitrarily weak interactions in

one dimension become stable in two dimensions. The question that will preoccupy

us through most of this thesis is how do these conventional phases get destroyed at

quantum phase transitions.

The thesis can be divided into three parts. The first part, comprised of chapters

2-5 is devoted to insulating magnetic systems. Chapters 2-4 deal with the subject of

the phase transition between an insulating S = 1/2 antiferromagnet and a valence-

bond-solid on a square lattice. The antiferromagnetic state breaks the SU(2) spin

rotation symmetry, while the valence-bond-solid breaks the rotational symmetry of

the latice. Within the classical Landau-Ginzburg-Wilson (LGW) paradigm, a direct

second order transition between these phases is prohibited, as the symmetries spon-

taneously broken on the two sides of the critical point appear unrelated. However, as

realized in Refs. [1, 2], in the quantum world, the defects of the order parameter in a

phase where one symmetry is broken carry non-trivial quantum numbers under the

other symmetry. Namely, skyrmions of the antiferromagnet transform non-trivially

under lattice rotations and vortices of the valence-bond-solid carry spin 1/2. At the
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transition, condensation of defects of one order occurs, which leads to the appear-

ance of the other order. In the literature, this transition is known as a “deconfined”

quantum critical point, due to its description in terms of strongly interacting S = 1/2

excitations.

Chapter 2 presents an elegant calculation of the scaling dimension of the valence-

bond-solid order parameter at the deconfined QCP. This caculation utilizes the state-

operator correspondence of conformal field theory and confirms the results of a previ-

ous direct, but rather cumbersome, calculation in Ref. [3]. It also explicitely demon-

strates that skyrmions do, indeed, become massless at the transition.

Chapters 3 and 4 study the response of an antiferromagnet in the vicinity of

a deconfined QCP to a non-magnetic, missing spin impurity. Such impurities can

be introduced in the cuprate superconductors by substituting a magnetic Cu2+ ion,

with a non-magnetic Zn2+ ion. The impurity is expected to localize the missing spin

S = 1/2 around it; in chapter 3 we study the associated spin texture. The signature

of deconfined criticality is even more dramatic in the response of the local bond order

to the missing spin impurity: in chapter 4 we find that such an impurity nucleates a

vortex of the local bond order.

Chapter 5 studies the response of a conventional ordered antiferromagnet on a

square lattice to the presence of a straight edge boundary. This work was done in

parallel with the Monte-Carlo simulations of Ref. [4] and was initially motivated by

the observation of an unusual bond pattern close to the edge. We have provided an in-

terpretation for the appearance of this pattern in terms of the proximity of the system

to a deconfined critical point. We have also predicted that the magnetic susceptibility
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of the system acquires a negative boundary contribution that diverges logarithmically

as the temperature T → 0. This prediction was verified by the simulations in Ref. [4].

The second part of this thesis, consisting of chapters 6 and 7 studies quantum

phase transitions associated with ordering in two dimensional metallic systems. This

problem is believed to be of great importance for the physics of a variety of correlated

electron systems, such as the cuprate and pnictide superconductors, heavy-fermion

compounds and some organic materials. The experimental motivation will be briefly

reviewed in Sec. 1.1. On the theoretical side, this problem introduces new technical

as well as conceptual challenges compared to the study of corresponding transitions

in insulators. The reason for this is the presence of low energy critical excitations on

the whole Fermi-surface rather than at isolated points.

Phase transitions in metallic systems can be divided into two classes, based on

whether the order parameter carries a zero or finite momentum. The fluctuations of

the order parameter couple differently to the Fermi-surface for the two classes. In

chapter 6, we develop a critical theory of the phase transitions in the first class, using

as an example the Ising-nematic transition on a square lattice. Such a transition

is associated with the onset of correlations that spontaneously break the four-fold

rotational symmetry of the lattice to a two-fold subgroup. In chapter 7, we study the

onset of antiferromagnetic, spin-density-wave (SDW) order in a metal, which is an

important example of a transition in the second class. For both types of transitions,

we show that the previously accepted treatment, known as Hertz theory,[5] fails in

two spatial dimensions.

The third part of this thesis, chapter 8, studies the quantum entanglement of the
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system close to a QCP. Given a system consisting of two subsystems A and B, a

convenient measure of entanglement between A and B is the so-called “entanglement

entropy,” defined as the von-Neumann entropy associated with the reduced density

matrix of one of the subsystems. The entanglement entropy serves as an inherently

quantum mechanical non-local observable. This observable is expected to capture

the long-range correlations present in a critical quantum system. In particular, for

a conformally invariant one dimensional system, it is known that the entanglement

entropy diverges as

S =
c

3
log `/a (1.5)

where ` is the subsystem size, a is the lattice spacing and c is a universal number

characterizing the critical system, known as the central charge.[6] The logarithmic

divergence in Eq. (1.5) is a signature of the long-range entanglement present at a

quantum critical point. On the other hand, in dimensions larger than one, the leading

contribution to the entanglement entropy at a QCP scales as the area (length) of the

boundary of the subsystem,

S = C
|∂A|
a2

(1.6)

This contribution is dominated by the short-range entanglement close to the boundary

between A and B and, therefore, has a non-universal coefficient C. However, it has

been hypothesized that there exist universal subleading corrections to Eq. (1.6). In

chapter 8, we confirm this hypothesis by an explicit calculation of the entanglement

entropy at a transition in two dimensions in the O(N) universality class. This is the

first calculation of entanglement entropy at a generic, interacting two dimensional

critical point.
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In the rest of this chapter we review introductory material, which will be used

through the rest of this thesis. In Sec. 1.1 we give a brief overview of experiments

on cuprate superconductors and other strongly correlated materials, which have mo-

tivated the theoretical work in the first two parts of this thesis. Sec. 1.2 reviews the

physics of insulating antiferromagnets in two dimensions and serves as an introduc-

tion to the first part of this thesis. Sec. 1.3 reviews Landau Fermi-liquid theory and

introduces the subject of quantum phase transitions in metals, which will be further

discussed in the second part of this thesis.

1.1 Experimental motivation: cuprates and beyond

Much of the work contained in this thesis has been motivated by the enigmatic

cuprate superconductors. These materials, discovered in 1986, continue to present a

challenge to theoretical understanding. Cuprates are a family of layered compounds

with a common structural element of copper-oxygen planes, which are believed to be

responsible for the exotic physical properties.

All cuprates possess a similar phase diagram, schematically shown in Fig. 1.2.

At stoicheometric doping, these materials are insulators with a gap of order 2 eV.

The insulating behavior is not a trivial consequence of band structure. Indeed, each

copper-oxygen plane consists of a square lattice of coppers with oxygens situated on

the bonds of this lattice, so that each unit cell contains one copper atom and two

oxygens, see Fig. 1.3. In the undoped materials, the chemical valence of copper and

oxygen is Cu2+ and O2− respectively. Hence, the oxygen shell is completely filled,

while Cu is in the 3d9 configuration. The crystal field lifts the orbital degeneracy,
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Figure 1.2: A schematic phase diagram of cuprate superconductors as a function of
hole-doping x and temperature T . AF denotes the Néel ordered antiferromagnetic
state, SC - the d-wave superconducting phase and PG - the pseudogap region.

leaving a half-filled Cu dx2−y2 orbital. Since the number of electrons per unit cell

is odd, band structure would predict that the system is a metal. The exeperimen-

tally observed insulating behavior is attributed to electron correlations, specifically,

a strong Coulomb repulsion on the Cu sites, which quenches the charge motion.

The insulator displays long range antiferromagnetic Néel order shown in Fig. 1.3

with an ordering temperature of TN ≈ 300 K. The magnetism is a consequence of the

super-exchange interaction mediated by virtual tunneling. The exchange constant

between the neighbouring copper sites is of order J ∼ 1500 K. The large difference

between J and TN is due to the fact that strictly two dimensional systems with SU(2)

spin-rotation symmetry don’t display long range order at any finite temperature. The
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Figure 1.3: Left: crystal structure of the cuprate superconductor La2−xSrxCuO4. Cu
atoms are shown in orange, O in green and La/Sr in purple. Right: the copper-oxygen
plane (same color-coding as in the left figure). Here, we also display the staggered
pattern of Cu spins in the antiferromagnetic Néel state.

presence of long range magnetic order in cuprates below TN is, thus, a consequence

of weak interlayer coupling. In the range TN . T . J the system displays the

hallmarks of two dimensional antiferromagnetism, such as a correlation length that

exponentially diverges as the temperature is lowered.[7] The reader is referred to

Sec. 1.2 for a brief review of magnetic insulators.

The stoichiometric material can be doped with either holes or electrons. On the

hole doped side, the long-range commensurate antiferromagnetic order disappears

at about 3 − 5% doping, and a superconducting phase appears roughly in the 6 −

27% doping range. The pairing symmetry of the superconductor is dx2−y2 and the

maximum critical temperature varies from 35 to 135 K depending on the compound.

Upon further doping, the material becomes a fairly conventional metal. The phase

diagram is rather similar on the electron doped side, the main difference being that

commensurate antiferromagnetism here is more robust and survives up to 14 − 15%
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doping. The maximum value of Tc of about 25 K is also lower on the electron doped

side. Below, we will focus our attention mainly on the hole doped cuprates.

Perhaps, even more fundamental than the question of the numerically large value

of the critical temperature Tc for the onset of superconductivity is the origin of var-

ious phenomena observed in the “normal” metallic state of cuprates at temperature

above Tc. Here two puzzles are present. The first is the so-called “pseudogap” regime

observed on the underdoped side of the phase diagram. Pseudogap refers to a number

of anomalies detected by various experimental probes such as specific heat, magnetic

susceptibility, optical and dc transport, STM (scanning-tunneling microscopy) and

ARPES (angle-resolved photoemission). Note that for many probes the onset of the

pseudogap appears as a fairly smooth crossover rather than a sharp transition, so the

value of T ∗ may vary depending on the probe. When the system is strongly under-

doped, T ∗ is as high as 300 K - much higher than the superconducting Tc. Many of the

probes suggest a disappearance of low energy quasiparticles near the Fermi-surface in

the pseudogap regime. This is in contrast to the behavior in conventional supercon-

ductors, where the Fermi-surface becomes gapped only below the superconducting

transition temperature.

A number of different orders are detected in the underdoped region of the phase

diagram where the pseudogap is realized. First, many cuprate materials display an

incommensurate magnetic order. For instance, in YBa2Cu3O6+x (YBCO) this order

is detected by muon spin-rotation and neutron scattering[8, 9] below about 10%

doping, see Fig. 1.4. The order is static below a very low temperature of about 2

K. At higher temperature, the magnetic order is fluctuating, however, there appears
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Figure 1.4: Phase diagram of YBa2Cu3O6+x as revealed by neutron scattering (from
Ref. [8]). Blue triangles mark a crossover associated with the onset of two dimen-
sional incommensurate magnetic (spin-density-wave) order. Red squares mark the
onset of Ising-nematic (electron liquid-crystal) order. Phases with commensurate
antiferromagnetic order (AF) and superconducting order (SC) are also marked.

a static Ising-nematic order, corresponding to spontaneous breaking of the four-fold

rotation symmetry of the square lattice to a two-fold subgroup. The nematic order is

also detected by electric transport[10] and Nernst-effect measurements[11] on YBCO,

as well as by STM measurements on Bi2Sr2CaCu2O8+x (Bi-2212).[12, 13] In particular,

Nernst effect measurements demonstrate that the nematic order survives all the way

to optimal doping and onsets at a temperature which roughly coincides with the

pseudogap T ∗, see Fig. 1.5.

Besides the incommensurate magnetic and Ising-nematic symmetry breaking, a

number of other orders have been detected in the underdoped cuprates. These in-

clude incommensurate charge order observed by neutron and X-ray scattering that

accompanies the incommensurate magnetic order in La2−xBaxCuO4 (LBCO)[14, 15]
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Figure 1.5: Phase diagram of YBa2Cu3O6+x from electrical resistivity and Nernst
effect measurements (from Ref. [11]). The shaded grey region denotes the supercon-
ducting phase. Blue and red dots mark the onset temperature of a strong anisotropic
Nernst signal measured along the two crystal axes. Green squares mark the pseudogap
temperature as determined from electrical resistivity.

and La1.6−xNd0.4SrxCuO4 (LNSCO),[16] as well as at least local tendency to charge

ordering detected by STM in Bi-2212[12] and Bi2−yPbySr2−zLazCuO6+x (Bi-2201)[17].

We also mention the observation of time reversal symmetry breaking seen by polar-

ized neutron scattering in YBCO [18] and HgBa2CuO4+x [19] and by Kerr rotation

in YBCO.[20]

Many theoretical ideas have been proposed to explain the behavior of under-

doped cuprates. One approach is to start with the antiferromagnetically ordered

Mott insulator at zero doping and ask how does this state evolves as one adds charge
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carriers to the system. This is the philosophy that has partly motivated the work

in Chapters 2-4 of this thesis. We must note that in this thesis we have not con-

sidered doped Mott insulators, but rather focused on an even simpler question of

how does the antiferromagnetic Néel state get destroyed by quantum fluctuations

in the undoped system. Even this simplified problem turns out to be highly non-

trivial. In particular, as has been realized in Refs. [21, 22, 1, 2] and will be reviewed

in Sec. 1.2.5, disordering the antiferromagnet naturally leads to the appearance of

valence-bond-solid order, see Fig. 1.13, somewhat akin to the spatial modulations

observed by STM in the pseudogap regime of Bi-2212 [12], see Fig. 1.6. Neverthe-

less, it is clear that to fully explain various orders and phase-transitions appearing

at lowest temperatures in the superconducting state of underdoped cuprates and at

higher temperature in the metallic pseudogap regime it is crucial to include doping.

Extensions of the ideas in Refs. [21, 22, 1, 2] to finite doping have been presented in

Refs. [23, 24, 25, 26, 27, 28, 29] and will not be discussed in this thesis.

The second puzzle of the normal state of the cuprate superconductors is the so-

called “strange metal” regime realized in a fan-like region around optimal doping

above the superconducting dome, see Fig. 1.2. The main characteristic of the strange

metal is a resistivity, which grows linearly with temperature, see Fig. 1.8. This linear

behavior persists in a very wide temperature window from Tc to 600 K in YBCO and

to 1100 K in La2−xSrxCuO4 (LSCO). This is in contrast to T 2 Fermi-liquid behavior

of resistivity expected in an ordinary metal, which is observed on the overdoped

side of the phase diagram. Very naively, a linear in T resistivity corresponds to a

linear in T scattering rate, which is in some sense the largest allowed by quantum
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Figure 1.6: STM images of Bi-2212 (from [12]). Crosses denote the copper atoms. A
distinct bond-centered pattern is observed.

mechanics.[30] A number of other anomalies appear in the strange metal regime, such

as a power law behavior of the optical conductivity σ(ω) ∼ ω−α with α ≈ 2/3 in the

regime T � ω . 0.7 eV.[31] Moreover, ARPES measurements observe very broad

excitations in the strange metal region, especially close to the (π, 0), (0, π) points

in the Brilloin zone. On the overdoped side of the phase diagram, as one raises the

temperature, the disappearance of coherent quasiparticles in ARPES measurements

coincides with the onset of T -linear behavior of the resistivity.[32]

A funnel-like region of the phase diagram with a T -linear resistivity is observed in a

number of other strongly correlated electron systems besides the cuprates. Examples

include the recently discovered pnictide superconductors, heavy-fermion compounds

and some organics. In almost all of these materials, the strange metal region is realized

close to the boundary between a metallic antiferromagnetic phase and a conventional

metal and is cut-off at low temperature by the presence of a superconducting dome,
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Figure 1.7: Left (from [33]): phase diagram of the organic Bechgaard salt
(TMTSF)2PF6 as a function of pressure P ; Right (from [34]): phase diagram of
the pnictide Ba(Fe1−xCox)2As2 as a function of Co doping x. In both figures, orange
dots mark the phase boundary of a SDW phase and blue dots of a superconducting
phase.

see Figs. 1.7, 1.8.

One attractive theoretical idea to explain the strange metal is that there exists

a quantum critical point hidden underneath the superconducting dome, see Fig. 1.9.
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Figure 1.8: Behavior of the resistivity as a function of temperature in various strongly
correlated quasi-two dimensional materials (from [35]). Left: data on hole-doped
cuprates Nd-LSCO at hole doping p = 0.20 and p = 0.24 (from [36]) and LSCO
at p = 0.33 (from [37]); Middle (from [33]): data on the organic Bechgaard salt
(TMTSF)2PF6 at various values of pressure; Right (from [34]): data on the pnictide
Ba(Fe1−xCox)2As2 at various values of Co doping x. In all three cases, at large
values of the tuning parameter (blue curves) the system is a conventional Fermi-liquid
with a T 2 resistivity. On the other hand, at small values of the tuning parameter
(green curves) the system displays SDW order and an upturn of the resistivity at low
temperature. Finally, at a critical intermediate value of the tuning parameter (red
curves), strange metal behavior with a T -linear resistivity is observed.

This QCP may be associated with a quantum phase transition involving the onset of

some order in the underlying metallic state. The strange metal is then the quantum

critical fan associated with the QCP. The strong fluctuations of the order parameter

present at this QCP decohere the electronic excitations and naturally lead to non-

Fermi-liquid behavior. Note that to access the zero-temperature QCP one must

suppress the superconducting order, which is masking it, by e.g. an application of a

magnetic field. This has been done in recent experiments on LSCO [38] and LNSCO

[36], which show a T -linear resistivity at optimal doping persisting to 1 K temperature.

There are several candidates for the order appearing at the QCP, the most natural

being the antiferromagnetic order. When occuring in a metal, antiferromagnetic order
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Figure 1.9: A schematic phase diagram of cuprates with a quantum critical point
controlling the strange metal regime hidden underneath the superconducting dome.

is also referred to as spin-density-wave (SDW) order. Other candidates for the order

appearing at the phase transition include the Ising-nematic order discussed above[39]

and the “circulating current” order proposed by Simon and Varma.[40]

In most cuprate superconductors, no static magnetic order is observed close to

optimal doping, casting doubt on the idea of a SDW QCP. However, this may be

the result of a competition between the superconducting and SDW orders.[42, 41]

The appearance of superconductivity then supresses SDW order and shifts the actual

critical point associated with its onset to smaller doping of 10 − 13%, see Fig. 1.10.

Support for this scenario is provided by experiments on underdoped LSCO [43] and

YBCO,[8] which demonstrate that by partly supressing superconductivity with a

magnetic field, one can enhance and even induce the SDW order. Further support
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Figure 1.10: Spin-density-wave critical points in the cuprates. The quantum critical
point at doping x = xc is associated with the onset of SDW order in the underlying
metallic state and controls the strange metal region. This QCP is masked by the
presence of the superconducting dome, but can be revealed by suppressing the super-
conductor with a large magnetic field. The true QCP for the onset of SDW order in
a superconductor is then shifted to smaller doping x = xs. Adapted from Ref. [41].

comes from the observation of small Fermi-surface pockets by quantum oscillation ex-

periments performed on underdoped YBCO in high magnetic fields.[44] Such pockets

would naturally appear due to the reconstruction of the Fermi-surface by the SDW

order parameter.

Motivated by the above scenario for the strange metal regime, in the third part

of this thesis we will study quantum phase transitions in two dimensional metals,

focusing on the Ising-nematic transition in chapter 6 and on the SDW transition in

chapter 7. Note that a SDW QCP holds the promise to explain not only the strange

metal region of the cuprate phase diagram, but also the mechanism for appearance
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of superconductivity itself. Indeed, it is known that antiferromagnetic fluctuations

mediate an attractive interaction between the electrons in the d-wave channel.[45, 46]

Whether, as suggested by experiments, a SDW critical point in a metal is always at

lowest temperatures unstable to superconductivity is an important open theoretical

problem.

1.2 Magnetic insulators in two dimensions

1.2.1 Mott insulators and magnetic exchange

In this section we review the physics of two dimensional magnetic Mott insulators.

As a starting point for our discussion we use the Hubbard model,

H = −
∑
(i,j)

tij(c
†
iαcjα + h.c.)− µ

∑
i

c†iαcjα +
U

2

∑
i

ni(ni − 1) (1.7)

Here i, j labels the sites of the lattice, c†iα, ciα are creation and destruction operators

for an electron on site i with spin α =↑, ↓ and ni = c†iαciα is the electron density on

site i. The parameters t, µ and U are respectively the electron hopping, the electron

chemical potential and the strength of onsite repulsion. Below, we assume that the

system is at half-filling, i.e. there is on average one electron per lattice site.

When the hopping t is strictly zero, the ground state of the Hamiltonian in

Eq. (1.7) has exactly one electron per site, so that the charge excitations are gapped.

Thus, the system is referred to as a Mott insulator. The spin on each site, however,

can still take any value, leading to a macroscopic degeneracy. This degeneracy is

lifted once a finite hopping t is turned on. Indeed, in the limit t� U , in second order
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Figure 1.11: The antiferromagnetically ordered Néel state on the square lattice.

perturbation theory one generates a super-exchange interaction,

H =
∑
(i,j)

Jij ~Si · ~Sj (1.8)

where ~Si = 1
2
c†iα~σαβciβ is the electron spin on site i and the exchange constant Jij =

4t2ij
U

. Observe that the interaction (1.8) is antiferromagnetic, tending to antialign

the spins. Note that by proceeding to higher order in the t/U expansion, one also

generates interaction terms in the effective Hamiltonian involving spins on three and

more sites. Such terms become progressively important as one increases t/U .

Let us now specialize to a square lattice and begin by considering just the nearest

neighbour exchange interaction. This leads to a Heisenberg Hamiltonian,

H = J
∑
〈ij〉

~Si · ~Sj (1.9)

The square lattice is bipartite: i.e., it can be divided into two sublattices such that

the nearest neigbhors of any site on one of the sublattices, lie on the other sublattice.
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If the spins in Eq. (1.9) were classical vectors, the ground state would be a Néel

state, in which all the spins on one sublattice point in one direction and all the spins

on the other sublattice point in the opposite direction, see Fig. 1.11. Monte-Carlo

simulations indicate that this simple picture remains qualitatively correct in the deep

quantum limit when the spin S = 1/2. In particular, the ground state carries a finite

staggered magnetization,

〈~Si〉 = (−1)ix+iy ~N (1.10)

The direction of ~N is arbitrary, thus, the system breaks the spin-rotation symmetry

SU(2) down to a U(1) subgroup, and so from Goldstone’s theorem we expects two

gapless modes to be present. The magnitude of the staggered magnetization | ~N |

is reduced by quantum fluctuations from its ideal value | ~N | = 1/2. Monte-Carlo

simulations give,[47]

| ~N | ≈ 0.30743(1) (1.11)

In the following sections we will introduce an effective low energy theory that

describes the Néel state. We will then discuss how to generalize this theory to treat

the phase transition involving the destruction of magnetic order.

1.2.2 Effective theory of a quantum antiferromagnet

In this section, we introduce an effective theory that describes the fluctuations in

a quantum antiferromagnet. In our theory, we will only assume a tendency towards

local antiferromagnetic ordering. Thus, the theory will be able not only to describe

the long-range ordered Néel state, but also the transition out of this state. Our

discussion largely follows Ref. [30].
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We begin with a path integral representation of the partition function of the

system (1.9),

Z =

∫ ∏
i

D ~Ni(τ)e−S[ ~Ni(τ)] (1.12)

where the action S is given by

S =
∑
i

SB[ ~Ni(τ)] +

∫ β

0

dτH[S ~Ni(τ)] (1.13)

Here ~Ni(τ) is a unit vector representing the orientation of the spin on site i at imagi-

nary time τ . For now, we will take the magnitude of the spin S to be arbitrary. The

term SB is the spin Berry phase,

SB[ ~N(τ)] = iSA[ ~N(τ)] (1.14)

with A[ ~N(τ)] - the area on the unit sphere swept out by ~N(τ) during its evolution.

If we introduce a function ~N(u, τ) such that ~N(u = 0, τ) = ~N(τ = 0) and ~N(u =

1, τ) = ~N(τ), we may express

A[ ~N(τ)] =

∫ 1

0

du

∫ β

0

dτ ~N · (∂u ~N × ∂τ ~N) (1.15)

Let us introduce the local fluctuating antiferromagnetic order parameter ~n(~x, τ),

which is assumed to vary slowly on scale of the lattice spacing. Then, we may write,

~N(~xi, τ) = (−1)ix+iy~n(~xi, τ)

√
1− ~L2(~xi, τ) + ~L(~xi, τ) (1.16)

Here, in addition to the local fluctuations of the staggered magnetization ~n(~x, τ), we

have also included fluctuations of the uniform component of the magnetization ~L.

The fields ~n and ~L satisfy,

~n2 = 1, ~n · ~L = 0 (1.17)
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The uniform fluctuations of the magnetization are assumed to be small, ~L2 � 1.

Now, expanding the action (1.13) to leading order in ~L and in derivatives of ~n we

obtain,

S = iS
∑
i

(−1)ix+iyA[~n(~xi, τ)]+

∫
dτd2x

(
JS2

2
(∇~n)2 +

4JS2

a2
~L2 − iS

a2
~L · (~n× ∂τ~n)

)
(1.18)

Next, perfroming the integral over the uniform part of the magnetization ~L,

S = iS
∑
i

(−1)ix+iyA[~n(~xi, τ)] + Sn (1.19)

with

Sn =
1

2g

∫
dτd2x

(
1

c2
(∂τ~n)2 + (∇~n)2

)
(1.20)

and the parameters

g = (JS2)−1, c = 2
√

2JSa (1.21)

We note that the above derivation of the effective action (1.19) is strictly valid only in

the limit S →∞. When the value of S is finite one must take into account corrections

to (1.19) comming from short distance fluctuations of the magnetization. We expect

that such fluctuations renormalize the parameters (1.21), but do not qualitatively

alter the form of the effective action.

The second term in Eq. (1.19) is the 2 + 1 dimensional O(3) non-linear σ-model,

familiar from the study of classical critical phenomena. We will discuss this model

in more detail in the next section. The first term in Eq. (1.19) is the Berry phase

contribution of the staggered spin texture. It appears that this term does not survive

in the continuum limit due to the rapidly oscillating prefactor (−1)ix+iy . It is, indeed,

true that the Berry phase contribution vanishes when the field ~n(~x, τ) is smooth.
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However, we will see in Sec. 1.2.5 that the Berry phase term becomes finite when the

order parameter ~n forms a topological defect. This fact will play a crucial role in the

theory of destruction of magnetic order on a square lattice.

1.2.3 Long-range ordered state: spin-wave theory

In this section we use the effective action (1.19) to discuss the low energy properties

of the long-range ordered state. As will be discussed in more detail in Sec. 1.2.5,

topological defects are confined in the long-range ordered state and the Berry phase

term in Eq. (1.19) can be ignored. The theory, thus, reduces to the O(3) nonlinear

σ-model in Eq. (1.20). We may write the action of the theory (1.20) more concisely

as,

Sn =
1

2g

∫
d3x(∂µ~n)2 (1.22)

Here, d3x = dτd2~x, the index µ runs over both the spatial and temporal directions

and we have set the spin-wave velocity c = 1. Note that space and time enter on an

equal footing in Eq. (1.22), so the quantum theory in d dimensions is equivalent to a

classical theory in D = d+ 1 dimensions.

In two spatial dimensions, the theory (1.22) possesses a stable fixed point at

g = 0 corresponding to a magnetically ordered state. Indeed, let us expand the order

parameter ~n about ~n = (0, 0, 1). Writing, ~n = (
√
g~π,
√

1− g~π2), we can express

(1.22) as,1

Sn = S0
n + Sintn (1.23)

1In principle, there is also a Jacobian of the transformation from ~n to ~π that has to be added
to the action (1.23). This Jacobian does not modify the power-counting argument given below.
Moreover, the Jacobian formally vanishes if one uses dimensional regularization.
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S0
n =

1

2

∫
d3x(∂µ~π)2 (1.24)

Sintn =
1

2

∫
d3x

g

1− g~π2
(~π · ∂µ~π)2 (1.25)

The action S0
n describes two free bosonic modes with a linear dispersion,

ω = c|~q| (1.26)

These are the antiferromagntic spin-waves. The action Sintn represents the interactions

between the spin-waves. To generate a perturbative expansion about the free spin-

wave theory S0
n, we may expand the prefactor (1 − g~π2)−1 in Sintn in powers of g,

generating terms of the form Sm+1
n ∼ gm+1

∫
d3x(~π2)m(~π ·∂µ~π)2. We would like to see

if Sm+1
n is a relevant perturbation in the RG sense to the free spin-wave theory S0

n.

Note that S0
n is invariant under the scaling,

~π(x)→ s1/2~π(sx) (1.27)

Under this scaling Sm+1
n transforms as Sm+1

n → sm+1Sm+1
n . Hence, each power

of the coupling constant g in the perturbative expansion brings in a power of fre-

quency/momentum. Therefore, g flows under RG as,

dg

d`
= −g (1.28)

Hence, interactions are irrelevant at the g = 0 fixed point and do not destroy the

antiferromagnetically ordered state. However, the effects of interactions on the cor-

relation functions of the theory can be systematically calculated in an expansion in

the energy/momentum q, with the perturbation Sm+1
n entering at order qm+1 in the

expansion. Note that there exist an infinite number of additional perturbations to the
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aL bL

Figure 1.12: A cartoon representation of the two phases of a bilayer antiferromag-
net: a) a Néel ordered phase. b) a paramagnetic phase (red tubes represent singlet
configurations).

action (1.22) such as e.g. (∂µ~n)4. At each order in the expansion, one must consider

all such perturbations which are consistent with symmetry and of the same order in

q.

1.2.4 Landau-Ginzburg-Wilson criticality

In this section we discuss phase transitions of S = 1/2 antiferromagnets with an

even number of electrons per unit cell .We will see that such transitions belong to the

conventional Landau-Ginzburg-Wilson paradigm.

As a concrete example, consider a system consisting of two coupled antiferromag-

netic layers,

H = J
∑
〈ij〉

(~Si1 · ~Sj1 + ~Si2 · ~Sj2) + J⊥
∑
i

~Si1 · ~Si2 (1.29)

Here ~Si1 and ~Si2 are the spin operators in the two layers. We take the spin S = 1/2.

J and J⊥ are the intralayer and interlayer exchange couplings respectively. In the

limit, J⊥ = 0, each layer forms an independent ordered Heisenberg antiferromagnet.

Turning on a finite J⊥ � J locks the order parameters in the two layers to point
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in opposite directions - this results in a stable antiferromagnetically ordered phase,

see Fig. 1.12 a). In the opposite limit, J‖ = 0, the vertical rungs of the bilayer are

decoupled. In the ground state, each rung forms a spin singlet, see Fig. 1.12 b). The

energy cost to break a singlet and create an excitation with spin S = 1 is J⊥. This

gap remains robust once a small finite J‖ � J⊥ is turned on. Hence, for J‖ � J⊥ the

system is in a disordered paramagnetic phase with fully gapped S = 1 excitations.

The two states at J‖ � J⊥ and J‖ � J⊥ are not continuously connected to each

other and must, therefore, be separated by a quantum phase transition. Monte-Carlo

simulations show that this phase transition is second order and occurs at a value

J⊥/J‖ = 2.52181(3)[48].

To develop an effective theory of the phase transition, we repeat the procedure

in Sec. 1.2.2. It is crucial to note that for the present problem, the Berry phase

contribution in Eq. (1.19) cancels between the two layers, as the local spin orientation

is opposite in the two layers. Thus, the effective action for the transition is given just

by the O(3) non-linear σ-model in Eq. (1.20). Note that the effective theory (1.20)

could have been constructed exclusively based on symmetry properties of the order

parameter and hence belongs to the LGW paradigm.

It is well known from classical statistical mechanics that the O(3) nonlinear σ-

model has a phase transition in 2 + 1 dimensions at a finite value of g, separating

the ordered phase, described in Sec. 1.2.3, and a disordered phase with fully gapped

S = 1 excitations. This is precisely the kind of transition we are trying to describe! In

the statistical mechanics literature the universality class of this transition is known as

“3D Heisenberg.” A wealth of information has been accumulated on this universality
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class, from both analytical calculations using ε and large-N expansions, as well as from

classical Monte-Carlo simulations. We refer the reader to Ref. [49] for a contemporary

review. The results of quantum Monte-Carlo simulations on the microscopic model

(1.29) are in good agrement with the predictions of the 3D Heisenberg universality

class.

1.2.5 Deconfined criticality

In this section we discuss the quantum phase transition involving the disappear-

ance of magnetic order in a S = 1/2 antiferromagnet on a square lattice. Now the

number of electrons per unit cell is odd. As a result, unlike in Sec. 1.2.4, here we will

find a phase transition that does not belong to the LGW paradigm. Our discussion

below will be based on the original papers [1],[2].

The valence-bond-solid state

Let us imagine starting with the Heisenberg Hamiltonian (1.9) on a square lattice

and adding interaction terms that tend to disorder the antiferromagnet. These can

come in the form of further neighbour exchange couplings and multisite ring exchange.

For now, we will not specify a particular Hamiltonian. Rather, let us picture a

carricature magnetically disordered state that such additional terms may induce. We

quickly come to the realization that no analogue of the “trivial” paramagnetic state

that we encountered in Sec. 1.2.4 exists in the present case. One possible non-magnetic

competitor to the Néel state is a valence-bond-solid (VBS), where the spins form local

singlets, which crystalize into a regular arrangement, see Fig. 1.13. However, unlike
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Figure 1.13: A valence-bond-solid state. The red lines denote bonds with a larger
value of −〈~Si · ~Sj〉. In a cartoon picture, the spins form singlets on these bonds.

the paramagnetic state in Sec. 1.2.4, a VBS state breaks the symmetry of the square

lattice, so that the ground state is four-fold degenerate, see Fig. 1.14. Note that in

addition to the columnar state in Fig. 1.13 one may also imagine a plaquette ground

state shown in Fig. 1.15, which is similarly four-fold degenerate.

We may introduce a local VBS order parameter V ,

V (~xi) = (−1)ix(~Si · ~Si+x̂ − ~Si · ~Si−x̂) + i(−1)iy(~Si · ~Si+ŷ − ~Si · ~Si−ŷ) (1.30)

The order parameter V is a complex number transforming under the 90◦ lattice

rotation symmetry as,

V (~x)→ iV (R−1
π/2~x) (1.31)

where Rπ/2 is the 90◦ rotation matrix.

In the conventional LGW framework, a generic direct second-order transition be-

tween an antiferromagnetic state and a valence-bond-solid state is prohibited. Indeed,
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aL bL

cL

dL

Figure 1.14: Four degenerate valence-bond-solid ground states related by 90◦ degree
rotations.

clasically, the Néel and VBS order parameters ~n and V are completely unrelated. Let

us write down the Landau-Ginzburg free energy as a function of the two order pa-

rameters

L = rφ~φ
2 + rV |V |2 + uφ(~φ2)2 + uV |V |4 + v~φ2|V |2 + λ4(V 4 + (V †)4) (1.32)

Here, we have chosen to relax the hard constraint ~n2 = 1 on the Néel order parameter

~n and use an unconstrained “easy-spin” field ~φ instead. The quartic term with the

coupling λ4 in Eq. (1.32) is allowed by the four-fold lattice rotation symmetry (1.31).

Depending on the sign of λ4 it selects between the columnar state in Fig. 1.13 and

the plaquette state in Fig. 1.15. This term will eventually play an important role in
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Figure 1.15: A plaquette valence-bond-solid state. The red lines denote bonds with
a larger value of −〈~Si · ~Sj〉. As with the columnar state in Fig. 1.13, there are four
degenerate ground states obtained by 90◦ rotations of the plaquette state.

our discussion below.

In mean-field theory, to have a direct second order transition from a Néel state

to the VBS state, we must simultaneously tune both rφ and rV to zero in Eq. (1.32).

Instead, if we tune only one parameter, we generically obtain either a direct first

order transition between the two phases, Fig. 1.16 a), a sequence of two second order

transitions with a coexistence region in between, Fig. 1.16 b), or a sequence of two

second order transitions with a fully disordered state in between, Fig. 1.16 c). In

principle, in a given microscopic model the scenarious a) and b) may be realized.

However, as has already been mentioned, there does not exist a “trivial” disordered

state on a square lattice, so the scenario c) is unphysical. Instead, we will argue below

that another scenario of a direct second order transition between the Néel and the

VBS states may be realized, once quantum effects are taken into account.
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Figure 1.16: A generic phase diagram of the Néel to VBS transition as a function of
a tuning parameter g as predicted by the LGW paradigm. The blue and red curves
mark the expectation values of the Néel and VBS order parameters.

Skyrmions, Hedgehogs and Berry Phases

Let us return from the phenomenological LGW theory (1.32) to the effective the-

ory of a quantum antiferromagnet in Eq. (1.19). How do the valence-bond-solid
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Figure 1.17: A skyrmion configuration of the Néel order parameter ~n(~x) with topo-
logical charge Q = 1.

correlations emerge out of this theory involving the staggered magnetization ~n alone?

To answer this question, let us take a step back and discuss what configurations

play a role in disordering the antiferromagnet. Natural candidates for this role are

skyrmions. Skyrmions are static configurations where the spatial plane is non-trivially

mapped into the order parameter manifold S2. For the skyrmion to have a finite en-

ergy, we require the order parameter to tend to a constant far away from the skyrmion

core. Thus, the spatial plane is effectively compactified to a sphere S2 and skyrmions

can be classified as mappings from the spatial manifold S2 into the order parameter

manifold S2. Such mappings are described by the second homotopy group π2(S2) = Z
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and characterized by an integer topological charge,

Q =
1

4π

∫
d2x~n · (∂x~n× ∂y~n) (1.33)

A picture of a skyrmion withQ = 1 is shown in Fig. 1.17. As long as one considers only

smooth evolutions of the order parameter ~n(~x, τ), one cannot deform configurations

with different values of the topological charge Q into each other and Q is conserved.

Moreover, to the global topological charge Q one can associate a local topological

current,

Jµ =
1

8π
εµνλ~n · (∂ν~n× ∂λ~n) (1.34)

such that

Q =

∫
d2xJτ (1.35)

For smooth evolutions of the order parameter, the current Jµ is conserved,

∂µJµ = 0 (1.36)

However, in the microscopic theory, singular configurations of the order parameter

~n(~x, τ) are allowed. Such singularities come in the form of space-time defects, known

as hedgehogs, see Fig. 1.18. Hedgehogs are characterized by a topological number n,

n =

∫
JµdSµ (1.37)

where the integral in Eq. (1.37) is over a surface in space-time enclosing the singularity.

A hedgehog can be regarded as a tunneling event between sectors with topological

charge Q and topological charge Q+ n. Thus, topological charge is not conserved in

the presence of hedgehogs. In a quantum theory, we can think of a hedgehog with
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Figure 1.18: A hedgehog configuration of the Néel order parameter ~n(~x, τ) with topo-
logical number n = 1.

charge n = 1 at a time τ and position ~x as a skyrmion creation operator. We will

denote this operator as V (~x, τ) for a reason that will become clear below.

A crucial observation is that the Berry phase term in Eq. (1.19) takes on a non-

trivial value in the presence of hedgehog events. As shown in Ref. [50], if the field

~n(~x, τ) has hedgehogs with charge na localized on plaquettes of the square lattice xa,

the Berry phase term evaluates to

e−SB =
∏
a

(e−iϕa)na (1.38)

The phase factors e−iϕa can be chosen to take on values 1, i, −1, −i, depending on

whether the two coordinates of the plaquette xa are (even, even), (odd, even), (odd,

odd), (even, odd).
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The Berry phase term, Eq. (1.38), implies that single hedgehog events occuring on

nearby sites interfere destructively and do not survive in the continuum limit of the

theory. Only the hedgehog events with n ≡ 0 (mod 4) carry a trivial Berry phase and

survive in the continuum. More formally, Berry phases endow the hedgehog operator

V with non-trivial transformation properties under the lattice rotation symmetry,

V (~x)→ iV (R−1
π/2~x) (1.39)

This symmetry implies that if we start with a hedgehog free theory, a perturbation

to the action involving a single hedgehog operator

δL = λ1(V + V †) (1.40)

is prohibited. On the other hand, a perturbation with a “quadrupled” hedgehog

operator

δL = λ4(V 4 + (V †)4) (1.41)

is allowed. Moreover, we see that the transformation laws (1.39), (1.31) are identical.

This leads to the identification of the hedgehog operator V (~x, τ) with a valence-bond-

solid order parameter!

We conclude that the critical theory of an S = 1/2 antiferromagnet on a square

lattice is given by the O(3) non-linear σ-model (1.20) which is regularized at short

distances so that only quadrupled hedgehog events are admitted. On the other hand,

for the LGW transition of an antiferromagnet with an even number of electrons per

unit cell, discussed in Sec. 1.2.4, all hedgehog configurations are allowed in the non-

linear σ-model. The two different short distance regularizations of the non-linear

σ-model need not lie in the same universality class. Indeed, Monte-Carlo simulations
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in which one explicitely suppresses hedgehogs in the σ-model give a transition with

critical properties different from the usual 3D Heisenberg class where hedgehogs are

allowed.[51]

U(1) gauge theory formulation

To obtain some insight into the transition it will be convenient to use an equivalent

representation of the O(3) non-linear σ-model, given by the so-called CP 1 model,

L =
1

g
|(∂µ − iAµ)z|2, z†αzα = 1 (1.42)

Here, zα is a two component complex field and Aµ is a U(1) gauge field. The theory

(1.42) possesses a local U(1) gauge symmetry,

zα → eiβ(x)zα, Aµ → Aµ + ∂µβ (1.43)

By integrating over Aµ in Eq. (1.42), we recover the O(3) non-linear σ-model, with

the identification,

~n = z†α~σαβzβ (1.44)

Note that the field z carries spin-1/2 under the SU(2) spin-rotation symmetry.

In the gauge-theory formulation the topological current in Eq. (1.34) corresponds

to the magnetic field,

Jµ =
1

2π
εµνλ∂νAλ (1.45)

and the topological charge in Eq. (1.35) corresponds to the magnetic flux in units

of 2π. The hedgehog events (1.37) correspond to the Dirac magnetic monopoles. A

U(1) gauge theory in which monopoles are present (absent) is known as “compact”

(“non-compact”). The non-compact theory has an additional global U(1)-symmetry



Chapter 1: Introduction 40

associated with the conservation of the topological current (1.45). We will refer to

this symmetry as the U(1)Φ flux symmetry. The monopole operator transforms under

this symmetry as,

V (x)→ eiαV (x) (1.46)

with α - the phase parameter of the U(1)Φ transformation. If we turn on the “quadru-

pled” monopole operators (1.41), the U(1)Φ symmetry is explicitely broken to a Z4

subgroup, which can be identified with the physical lattice rotation symmetry.

We begin by considering the non-compact theory. We will then come back to

include the effects of the “quadrupled” monopole operator (1.41). In 2+1 dimensions

the non-compact theory has two phases, separated by a phase transition at a finite

value gc of the coupling constant g. For g < gc, the theory is in the “Higgs” phase.

Here, the field zα acquires an expectation value, 〈zα〉 6= 0. As a result, both the

local U(1) gauge symmetry, (1.43), and the global SU(2) spin-rotation symmetry

are spontaneously broken. The later is reflected in the non-zero expectation value

〈~n〉 6= 0 of the Néel order parameter. Hence, we may identify the Higgs phase as

the antiferromagnetically ordered state. Note that the gauge field Aµ acquires a

mass in this phase via the Anderson-Higgs mechanism and so disappears from the

low energy spectrum, which consists of two Goldstone modes, as expected in an

ordered antiferromagnet. Also note that excitations carrying a finite magnetic flux

are gapped in this phase. Indeed, here magnetic flux is confined into flux tubes,

similar to Abrikosov vortices in a superconductor. A monopole-antimonopole pair in

a Higgs phase is separated by a flux-tube, which carries a finite tension. Therefore,

the correlation function 〈V (x)V †(0)〉 decays exponentially, the U(1)Φ symmetry is
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unbroken, and so the Higgs phase carries no valence-bond-solid order.

For g > gc the theory is in the “Coulomb” phase. Here, 〈zα〉 = 0 and the field

zα creates massive spin-1/2 excitations. Thus, the Néel magnetization 〈~n〉 = 0 and

this phase is magnetically disordered. The gauge field Aµ remains gapless and at the

lowest energies can be described by a Maxwell action,

L =
1

2e2
(εµνλ∂νAλ)

2 (1.47)

with e2 - an effective g-dependent coupling constant. The low energy spectrum,

therefore, consists of a gapless photon mode! Note, moreover, that excitations with

a finite flux Φ now have the flux smeared uniformly over the entire spatial manifold

and carry an energy,

E(Φ) =
Φ2

2e2L2
(1.48)

where L2 is the system area. Therefore, the gap to flux excitations vanishes in the

thermodynamic limit. In fact, we can interpret Eq. (1.48) as the tower of states associ-

ated with a spontaneously broken U(1)Φ symmetry. This interpretation is supported

by noting that the monopole action is infra-red finite in the Coulomb phase, so that

the monopole operator acquires a finite expectation value 〈V 〉 6= 0. Recalling that

the U(1)Φ symmetry is physically associated with lattice rotations and the monopole

operator with the valence-bond-solid order parameter, we identify the Coulomb phase

with a valence-bond-solid ordered phase!

Note that in the Coulomb phase the gapless photon is created out of the vacuum

by the topological current Jµ,

〈p|Jµ(0)|0〉 = −iepµ (1.49)
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Here Jµ(0) is the current operator at x = 0 and |p〉 - the photon state with momentum

~p and energy p0 = |~p|. The relation (1.49) is of the same form as Goldstone’s theorem.

Therefore, we can think of the photon as a Goldstone’s boson associated with the

spontaneously broken U(1)Φ symmetry.

Let us now discuss the critical point g = gc between the Coulomb and the Higgs

phases. Critical properties can be extracted using a large-N expansion, whereby the

field zα is promoted to have N complex components. Such a theory is believed to

describe the Néel to VBS transition in certain SU(N) quantum antiferromagnets.[21,

22] In the large N limit, the phase transition is of second order and the critical

exponents can be systematically calculated as a power series in 1/N . One should note

that in the opposite limit N = 1 the theory becomes dual to the 2+1 dimensional XY

model,[52, 53] which also has a second order transition. Therefore, it is reasonable to

guess that in the physical case N = 2 the transition is likewise second order. Classical

Monte-Carlo simulations on the CP 1 model have been interpreted in terms of both a

second order transition[51, 54] and a weakly first order transition.[55]

Let us now complete the discussion by adding the effects of the quadrupled

monopole perturbation (1.41). We have already observed that in the Higgs phase

monopoles are confined into pairs by flux-tubes. Hence, the perturbation (1.41) will

not affect the low energy properties of the antiferromagnetically ordered state. On the

other hand, monopoles drastically change the nature of the Coulomb phase. Indeed,

monopoles are not confined in the Coulomb phase and form a plasma once a finite

density of them is introduced. In such a plasma, a previously gapless photon field

acquires a mass.[56] This effect can be understood in the following way. In the ab-
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Figure 1.19: Lifting of the U(1) degeneracy of the vacuum manifold in the Coulomb
phase by the quadrupled monopole perturbation.

sence of monopoles, the theory has a U(1)Φ continuous symmetry. This symmetry is

spontaneously broken in the Coulomb phase and the vacuum manifold is a degenerate

circle characterized by the phase of the monopole operator condensate 〈V 〉, Fig. 1.19

a). Once the symmetry is explicitely broken from U(1)Φ to the discreet subgroup

Z4 by the perturbation (1.41), the degeneracy of the vacuum manifold is lifted and

the ground state is only four-fold degenerate, Fig. 1.19 b). As a result, the photon,

which was previously a Goldstone mode of the U(1)Φ symmetry, becomes massive.

Moreover, previously deconfined S = 1/2 excitations created by the zα field are now

confined, and the spinfull excitations are expected to carry S = 1.[56] This is in full

agreement with what we expect of a physical VBS phase, where all excitations are

gapped, the ground state is only four-fold degenerate and magnetic excitations carry

S = 1.

Finally, let us discuss the fate of the critical point in the presence of quadrupled

monopoles. Here the physics depends on the scaling dimension of the quadrupled
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monopole operator V 4 at the critical point of the non-compact theory. If dim[V 4] > 3,

the perturbation (1.41) is irrelevant at the critical point and the transition can be

described by the non-compact theory. Thus, at the transition point, the physical Z4

symmetry of the system is dynamically enlarged to a U(1)Φ symmetry. This is the

scenario of “deconfined” criticality - the transition is described in terms of strongly

interacting S = 1/2 excitations zα. Note that in this scenario, the perturbation (1.41)

is still relevant in the Coulomb phase. However, the length-scale at which the effects

of this perturbation, such as confinement, become important diverges as

ξconf ∼ ξ1+(dim[V 4]−3)/2 (1.50)

where ξ is the correlation length associated with the non-compact transition, control-

ling e.g. the mass of the zα excitations. For dim[V 4] > 3, ξconf � ξ, so confinement

sets in on a length-scale, which is parameterically larger than the correlation length

ξ.

In the opposite scenario, if dim[V 4] < 3, the perturbation (1.41) is relevant at the

critical point. In this case, the runaway flow of the coupling λ4 may drive the system

to a first order phase transition or a new infra-red fixed point with yet undetermined

properties.

We note that as has been originally shown in Ref. [3] and will be derived more ele-

gantly in chapter 2, in the large-N limit the scaling dimension of monopole operators

V n is of order N for all values of the topological number n. Hence, in this limit the

quadrupled monopole operator is irrelevant and the deconfined criticality scenario is

expected to be realized.
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Numerics

We conclude this section by noting that a transition between an antiferromagnet

and a VBS is seen in quantum Monte Carlo simulations [57, 58, 59] of a particular

model Hamiltonian

H = J
∑
<ij>

~Si · ~Sj +Q
∑
〈ijkl〉

(~Si · ~Sj − 1/4)(~Sk · ~Sl − 1/4) (1.51)

Here the sum in the second term of Eq. (1.51) is over the plaquettes of the square

lattice. Each plaquette contributes two terms to the sum: one where the four sites

i, j, k, l of the plaquette are divided into pairs (i, j), (k, l) on horizontal bonds and one

with the pairs on vertical bonds. The form (1.51) is dictated by the absence of a sign

problem for this Hamiltonian. Monte-Carlo simulations find an antiferromagnetically

ordered state for large J/Q and a valence-bond-solid for small J/Q. Latest simulations

[59] pin the transition at J/Q ≈ 0.044. No signature of a first order transition is

observed in the simulations[59], however, logarithmic corrections to scaling appear at

the critical point. Such corrections can be finite-size manifestations of a numerically

small corrections to scaling exponent ω or indicate some yet undiscovered physics.

Irrespective of such corrections, an emergent U(1)Φ symmetry is seen at the transition,

consistent with the irrelevancy of the quadrupled monopole operators at the critical

point.[57]

In summary, we have seen in this section that a valence-bond-ordered state nat-

urally emerges when a square lattice quantum antiferromagnet is disordered. The

correct framework for describing the phase transition between these two states is

different from the conventional LGW formalism. We have discussed the exotic de-

confined criticality proposal in this new framework. This scenario almost certainly
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occurs for some SU(N) antiferromagnets on a square lattice with N - large.[21, 22]

Whether this scenario is ultimately realized for a physical SU(2) antiferromagnet or if

the transition in this case is fluctuation induced first order is still a matter of debate.

1.3 Phase transitions in metals

In this section, we will give a brief introduction to phase transitions in metals.

We will mainly concentrate on the case of two spatial dimensions. We begin in

Sec. 1.3.1 by reviewing Landau Fermi-liquid theory, which is the standard theory of

metals. Then in Sec. 1.3.2 we describe how the onset of order affects the metal. In

Sec. 1.3.3, we introduce an effective low energy theory to describe the phase transition

and present Hertz’s analysis of this theory. Finally, in Sec. 1.3.4 we discuss the

shortcommings of Hertz theory.

1.3.1 Fermi-liquid theory

To introduce a description of metals, we start with the Hubbard model, Eq. (1.7).

Let us begin by switching off the electron interactions U . By going to momentum

space, the Hamiltonian may then be written as,

H =
∑
~k

ε(~k)c†α(~k)cα(~k) (1.52)

where c†α(~k), cα(~k) are electron creation/destruction operators with momentum ~k and

spin α. The physics is determined by the electron band-stucture ε(~k). The electronic

states in momentum space with ε(~k) < 0 are filled and the states with ε(~k) > 0 are

empty. These regions are separated by a surface ε(~k) = 0, known as the Fermi-surface,
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Figure 1.20: Fermi-surface of a two dimensional metal. The shaded states are filled
and the unshaded states - empty.

see Fig. 1.20. The low energy excitations take the form of particles and holes in the

vicinity of the Fermi-surface, carrying fermion number +1 and −1 respectively, and

spin 1/2. The dispersion of the exciations is linear,

ω = v(k̂)k (1.53)

where v(k̂) = |∇ε(~k)| is the Fermi-velocity and k is the distance to the Fermi-surface.

Note that the Fermi-velocity is generally dependent on the location on the Fermi-

surface. Defining the imaginary time electron Green’s function,

G(~k, ω)δαβ = −
∫
dτ〈cα(~k, τ)c†β(~k, 0)〉eiωτ (1.54)

for momentum ~k close to the Fermi-surface we have

G(~k, ω) =
1

iω − v(k̂)k
(1.55)

Next, let us ask to what extent is the free electron picture preserved once electron

interactions are turned on. In 1956, L. D. Landau hypothesized that as long as the
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interactions are not too strong, the low energy excitations in an interacting electron

liquid are continuously connected to those in a non-interacting electron gas. The

resulting state of matter is known as a Fermi-liquid. In particular, in a Fermi-liquid,

a sharp notion of the Fermi-surface is retained and the particle and hole excitations

on this Fermi-surface remain gapless. Note that the shape of the Fermi-surface as

well as the Fermi-velocity of the excitations are generally renormalized by the inter-

actions. The “dressed” excitations of the interacting system are known as Landau

quasiparticles. The electron Green’s function at low energy and momentum close to

the Fermi-surface takes the form

G(~k, ω) =
Z(k̂)

iω − v∗(k̂)k
(1.56)

Here v∗ denotes the interaction renormalized Fermi-velocity. The factor Z is the so-

called quasiparticle residue - it measures the overlap between a free electron and a

Landau quasiparticle state |~k〉,

Z(k̂) = |〈~k|c†α(~k)|0〉|2 (1.57)

(Here, we’ve assumed that ~k lies outside the Fermi-surface). Note that the analytic

pole structure of the interacting fermion Green’s function (1.56) is the same as of the

free Green’s function (1.55).

The presence of gapless excitations makes the Fermi-liquid a critical phase of mat-

ter. The modern renormalization group treatment of this phase has been developed

in Refs. [60, 61, 62]. Here, the RG set-up is slightly different from that encountered

in classical statistical mechanics due to the fact that gapless excitations are not lo-

cated at isolated points in momentum space, but on a whole surface. The low energy
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Figure 1.21: Low energy theory of a Fermi-liquid. A thin shell of states of thickness
Λ is kept around the Fermi-surface.

theory is written in terms of electron states within a thin momentum shell of width Λ

around the Fermi-surface, see Fig. 1.21. All the high-energy states outside this shell

are assumed to have been integrated out. In the process of integration, the action

of the theory is generally renormalized from its original form, Eq. (1.7). The most

general quadratic part of the action consistent with symmetries is,

S2 =

∫
d2~kdω

(2π)3
ψ†α(~k, ω)(−iω + v∗(k̂)k)ψα(~k, ω) (1.58)

Here, we have labeled the electron operator ψ(~k) ∝ c(~k) to remind ourself that a

finite quasiparticle residue will be induced in the process of integrating out electron

modes away from the Fermi-surface.

At each step of the RG procedure, one decreases the cut-off Λ by integrating out

the electron modes within the momentum shell sΛ < k < Λ. One then rescales

coordinates and fields in a way to restore the momentum cut-off back to Λ and
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preserve the quadratic action (1.58),

ψ(k, ω, k̂)→ s−3/2ψ′(k/s, ω/s, k̂) (1.59)

Note that only the component of momentum k perpendicular to the Fermi-surface is

scaled, while the coordinate along the Fermi-surface k̂ is not affected by the RG.

Next, consider perturbations to the quadratic action (1.58). The most general

four-fermi interaction takes the form,

S4 = −1

4

∫ 4∏
i=1

d3ki
(2π)3

Uαβ;γδ(k̂1, k̂2; k̂3, k̂4)ψ†α(k1)ψ†β(k2)ψγ(k3)ψδ(k4)

× (2π)3δ3(k1 + k2 − k3 − k4) (1.60)

The tensor U , which parameterizes the four-fermi interactions, is fully antisymmetric

in spin and momentum variables, and to leading order in energy only depends on the

coordinate along the Fermi-surface. Higher order interactions between the fermions

will also be generated in the integration process, but are irrelevant under RG.

There are only two types of four-fermi interactions U , which preserve the momen-

tum and keep all the fermions in the vicinity of the Fermi-surface: forward-scattering

and BCS scattering,2 see Fig. 1.22. (The name BCS stems from the fact that such

processes lead to the famous Bardeen-Cooper-Schriefer superconducting instability,

as we will discuss shortly). Thus,

U = UFS + UBCS (1.61)

UFS
αβ;γδ(k̂, k̂

′; k̂, k̂′) = δαγδβδF
c(k̂, k̂′) + (2δαδδβγ − δαγδβδ)F s(k̂, k̂′) (1.62)

2In principle, for a general Fermi-surface additional “umklapp” processes may be allowed. These,
however, are irrelevant under RG.
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Figure 1.22: Four-fermi interactions in a Fermi-liquid.

UBCS
αβ;γδ(k̂,−k̂; k̂′,−k̂′) = (δαγδβδ− δαδδβγ)V s(k̂, k̂′) + (δαγδβδ + δαδδβγ)V

a(k̂, k̂′) (1.63)

The parameters F c and F s are the forward-scattering amplitudes in the charge and

spin channels, while V s and V a are the BCS scattering amplitudes in the spin-singlet

and spin-triplet channels.

At tree level, both the forward-scattering and BCS scattering interactions are

marginal.[62] At one loop order, the forward-scattering interaction remains marginal,

while the BCS interaction acquires a flow. The analysis of the flow equation is simplest

when the system has rotational symmetry, although the results are qualitatively the

same in the general case. In the presence of rotational symmetry, the Fermi-surface

is a circle of radius kF and the scattering amplitudes can be expanded in terms of
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angular harmonics,

F c,s(θ, θ′) =
∑
m

F c,s
m eim(θ−θ′) (1.64)

V c,s(θ, θ′) =
∑
m

V c,s
m eim(θ−θ′) (1.65)

Then, the RG flow equations read,

dFm
d`

= 0

dVm
d`

= −N(0)V 2
m (1.66)

where N(0) = kF
2πv∗

is the density of states at the Fermi-level. Note that the flow is

the same in all angular momentum channels, hence, we drop the subscript m below.

The flow equation in the BCS channel integrates to,

V (`) =
V

1 +N(0)V `
(1.67)

Thus, a repulsive interaction in the BCS channel, V > 0, is marginally irrelevant and

flows logarithmically to zero. On the other hand, an attractive interaction in the BCS

channel, V < 0, is marginally relevant and diverges at the energy scale,

∆ ∼ Λ exp

(
− 1

N(0)V

)
(1.68)

This divergence is interpreted as the Bardeen-Cooper-Schriefer pairing instability that

leads to the appearance of superconductivity.

Thus, we see that a Fermi-liquid is stable, as long as the BCS interaction in all

angular momentum channels is repulsive. Of course, our analysis above was pertur-

bative and additional instabilities are expected once interactions become sufficiently

strong. We would like to note that the flow equations (1.66) are actually exact to
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all loops. In fact, if one switches off all irrelevant interactions that are implicitely

contained in the action (1.60), the theory becomes exactly solvable.[62]. In particu-

lar, even though the forward-scattering interaction is exactly marginal, the fermion

Green’s function takes the same form as in the free theory, Eq. (1.55). The forward-

scattering interactions do, however, affect various susceptibilities of the system. In

particular, working with the rotationally invariant system and letting

Qc
m(x) =

1

kmF
ψ†α(x)(−i∂x + ∂y)

mψα(x) (1.69)

Qs,a
m (x) =

1

kmF
ψ†α(x)(−i∂x + ∂y)

mσaαβψβ (1.70)

and defining,

χcm = lim
~q→0

∫
d2xdτ〈Qc

m(x)Q†cm(0)〉e−i~q·~x (1.71)

χsmδ
ab = lim

~q→0

∫
d2xdτ〈Qsa

m (x)Q†sbm (0)〉e−i~q·~x (1.72)

we have

χc,sm =
2N(0)

1 + 2N(0)F c,s
m

(1.73)

Note that χc0 is the compressibility of the system and χs0 - the spin susceptibility. χ’s

with m > 0 are susceptibilities to deformation of the Fermi-surface in higher angular

momentum channels. Observe that the susceptibility χc,sm diverges when 2N(0)F c,s
m →

−1. This corresponds to the so-called “Pomeranchuk” instability to a deformation of

the Fermi-surface, which will be discussed in more detail in Chapter 6.

We conclude this section by noting that to the order in energy considered above,

Landau-quasiparticle excitations have an infinite lifetime, as can be seen from Eq. (1.56).

To extract the lifetime one has to go to higher order in the energy expansion of the
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theory (i.e. take into account irrelevant scattering processes). This gives a decay rate

Γ(ω) ∼ ω2 log

(
Λ

ω

)
(1.74)

The appearance of the logarithm in Eq. (1.74) is special to two spatial dimensions

and is a consequence of forward and BCS scattering interactions with θ = 0 and

θ = π.[63, 64] In higher dimensions, one obtains simply Γ ∼ ω2. In either case, note

that Γ� ω, so the Landau quasiparticles are well-defined.

1.3.2 Order onset in a metal

In this section we consider what happens when a Fermi-liquid undergoes spon-

taneous symmetry breaking and develops an order. This generally occurs when the

strength of the interactions U becomes comparable to the Fermi-energy t. We can

divide all orders into two classes: those, which carry a zero wave-vector ~Q = 0 and

those that carry a finite wave-vector ~Q 6= 0. Some examples of orders in the first

class are the ferromagnetic order and the nematic order. The latter is associated with

spontaneous breaking of the lattice point group symmetry. Orders in the second class

include the spin-density-wave order and the charge-density-wave order. The reason

for the division into two classes will become apparent shortly.

To be specific, let us focus on two particular examples, which will be further stud-

ied in Chapters 6 and 7. As an example of a transition in the first class, we consider

the onset of Ising-nematic order on the square lattice. This order corresponds to

spontaneous breaking of the 90◦ rotation symmetry of the square lattice to a 180◦ ro-

tation symmetry. The order parameter is a real (Ising) field φ with the transformation
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Figure 1.23: Distortion of the Fermi-surface in an Ising-nematic state. The two figures
correspond to ground states with opposite values of the Ising-nematic order parameter
〈φ〉.

properties under the 90◦ rotation symmetry

Rπ/2 : φ→ −φ (1.75)

One can express φ in terms of electron operators as,

φ ∼
∑
~k

d~kc
†
α(~k)cα(~k) (1.76)

Here d~k is a form-factor with dx2−y2 symmetry, e.g. d~k = cos kx − cos ky. Note that

even when a finite Ising-nematic order 〈φ〉 6= 0 develops in a metal, the system is

expected to remain a Fermi-liquid. The Fermi-surface of the metal will, however,

distort to reflect the spontaneous breaking of rotational symmetry. As shown in

Fig. 1.23, there are then two degenerate ground states corresponding to 〈φ〉 > 0 and

〈φ〉 < 0.

As an example of a transition in the second class, consider the onset of spin-
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Figure 1.24: Fermi-surface evolution due to the onset of SDW order with wave-vector
~Q = (π, π). Left: the Fermi-surface in the disordered state (the shape has been
chosen to be reminiscent of cuprate Fermi-surface at large doping). Middle: folding
of the Brilloin zone by the SDW order. The new Brilloin zone boundary is shown with
dashed lines. Red circles represent hot spots - points on the original Fermi-surface
connected by the ordering wave-vector ~Q. Right: Fermi-surface in the SDW ordered
phase. A gap opens up at the hot spots and the Fermi-surface splits into electron
(pink) and hole pockets (blue).

density-wave order with wave-vector ~Q = (π, π) on the square lattice. In terms of

symmetry, this order is the same as the antiferromagnetic Néel order considered in

Sec. 1.2.1. The order parameter is a real three-component vector ~φ related to the

local electron spin ~S via

~S(~xi) ∼ (−1)ix+iy ~φ(~x) (1.77)

The SDW order spontaneously breaks the lattice translational symmetry. Therefore,

in the ordered phase the Brilloin zone will be folded. The effect of this folding depends

on the geometry of the initial Fermi-surface of the system. If there exist points on the

Fermi-surface, known as hot spots, connected by the ordering wave-vector ~Q then the

onset of the SDW order will produce a gap at these hot spots, leading to a break-up

of the Fermi-surface into electron and hole pockets as shown in Fig. 1.24. This is

the case that we will focus on here. On the other hand, if the initial Fermi-surface is
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small, such that no hot spots are present, the effect of the transition on the metallic

properties are fairly innocous and won’t be considered further in this thesis. In both

cases, the ordered phase remains a Fermi-liquid.

Thus, for both classes of orders, the QCP involving the order onset is a transition

between two Fermi-liquids. There are two elements that are expected to play a role in

the description of the transition: the fluctuations of the order parameter and the low

energy electronic excitations close to the Fermi-surface. The first element is familiar

to us from the study of classical phase transitions, while the second element is entirely

quantum mechanical. At the transition, the fluctuations of the order parameter be-

come soft at a single point in momentum space, which suggests their treatment with

conventional renormalization group techniques, where the momentum ~q of the fluctu-

ations is scaled to zero. On the other hand, the presence of the Fermi-surface dictates

a rather different RG treatment as has been discussed in Sec. 1.3.1, where the fermion

momenta are scaled towards the Fermi-surface. At present, no complete theory which

fully marries these two scalings is available. The original treatment of the problem,

known as Hertz theory,[5] has tried to evade the difficult conceptual questions associ-

ated with the presence of the Fermi-surface, by attempting to integrate the electronic

degrees of freedom out. We will review Hertz’s theory below and point out where it

fails. In Chapters 6 and 7 we will present a more complete approach, which treats

the electrons and order-parameter fluctuations on the same footing.
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1.3.3 Hertz theory

In this section we set-up an effective theory of phase transitions in metals and

review Hertz’s treatment of this theory. We will focus on the two examples of Ising-

nematic and SDW transitions discussed in Sec. 1.3.2. We begin by considering the

following effective action

S = Sf + Sφ + Sint (1.78)

Here Sf is an action describing free electrons with a dispersion ε(~k)

Sf =

∫
d2xdτc†α(∂τ + ε(−i∇))cα (1.79)

The action Sφ describes fluctuations of the order parameter - it takes the same form

for both the Ising-nematic and SDW transitions:

Sφ =

∫
d2xdτ

(
1

2c2
(∂τφ)2 +

1

2
(∇φ)2 +

r

2
φ2 +

u

4
(φ2)2

)
(1.80)

Finally, Sint describes the coupling between the order parameter fluctuations and the

electronic excitations. It has a somewhat different form for the two transitions. For

the Ising-nematic case,

Sint =

∫
d3q

(2π)3

d3k

(2π)3
λ(~k)φ(q)c†α(k + q/2)cα(k − q/2) (1.81)

where the coupling constant λ(~k) has a dx2−y2 symmetry. Similarly, for the case of

the SDW transition

Sint =

∫
d3q

(2π)3

d3k

(2π)3
λ(~k)φa(~q)c†α(k + q/2 + ~Q)σaαβcβ(k − q/2) (1.82)

In this case, λ(~k) has an s-wave symmetry.
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Let us consider how the small momentum fluctuations of the order parameter

couple to the electronic states in the vicinity of the Fermi-surface for the two classes

of transitions. In the class with ~Q = 0, if the electron momentum ~k is initially close

to the Fermi-surface, it remains so after scattering off an order parameter fluctuation,

see Eq. (1.81). Thus, order parameter fluctuations couple to the whole Fermi-surface.

On the other hand, for the class with ~Q 6= 0, if the initial fermion momentum ~k is

close to the Fermi-surface, the final momentum ~k + ~Q after scattering off an order

parameter fluctuation will be close to the Fermi-surface only if ~k lies near one of the

Fermi-surface hot spots, discussed in Sec. 1.3.2. Thus, order parameter fluctuations

couple primarily to the electrons in the hot spot vicinity. This difference between the

two classes of transitions will result in rather different low energy theories in chapters

6 and 7.

Let us now review Hertz’s treatment of the effective theory (1.78). Hertz’s idea

was to integrate out the electronic degrees of freedom and work with an effective

action for the order parameter fluctations alone. In principle, by integrating out the

electrons one will generate terms in the effective action of all orders in φ,

δS[φ] =
∞∑
n=2

1

n!

∫ n∏
i=1

d3qi
(2π)3

Γn(q1, q2, . . . qn)φ(q1)φ(q2) . . . φ(qn)(2π)3δ3(q1 + q2 + . . . qn)

(1.83)

Since the electrons in the vicinity of the Fermi-surface are gapless, one, moreover,

expects the coefficients Γn of these terms to be non-analytic in the low-frequency and

momentum limit, such that the resulting effective action will be non-local. Hertz

has truncated the infinite series in Eq. (1.83) at second order. This is equivalent to

treating the coupling between the electrons and the order parameter in the random-
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phase approximation (RPA) and induces the following term in the action for φ

δSRPA =
1

2

∫
d3q

(2π)3
Π(ω, ~q)|φ(ω, ~q)|2 (1.84)

The polarization function Π(ω, ~q) has the following behavior in the q → 0 limit for

the two classes of transitions,

Π(ω, ~q) = Π(ω = 0, ~q = 0) + γ
|ω|
|~q| + C~q2 + · · · , ~Q = 0 (1.85)

Π(ω, ~q) = Π(ω = 0, ~q = 0) + γ|ω|+ C~q2 + · · · , ~Q 6= 0 (1.86)

Note the non-analytic frequency dependence in Eqs. (1.85), (1.86). This behavior is

known as Landau damping and is due to the decay of order parameter fluctuations

into particle-hole pairs in the vicinity of the Fermi-surface. We point out that in the

~Q = 0 case, the form (1.85) is only valid in the limit ω � v|~q|, however, this will be

the regime of interest to us below. Note that expressions (1.85), (1.86) are actually

correct in any spatial dimension d > 1.

At low energy, the fermion induced dynamics in Eqs. (1.85), (1.86) dominates the

tree level analytic dynamics given by the term (∂τφ)2 in the action (1.80). Hence, we

may drop the tree-level dynamics, obtaining the Hertz action,

SHertz =
1

2

∫
dd~qdω

(2π)3

(
γ|ω|
|~q|z−2

+ ~q2 + r

)
|φ(ω, ~q)|2 +

u

4

∫
d2xdτ(φ2)2 (1.87)

where

z =

 3 ~Q = 0

2 ~Q 6= 0

(1.88)

The quadratic part of Eq. (1.87) dictates that the fluctuations of the order parameter

disperse with

ω ∼ |~q|z (1.89)
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Hence, we recognize z as the dynamical critical exponent of the system.

Let us begin by setting the quartic coupling u = 0 and tuning the system to the

transition point r = 0. The theory is then invariant under scaling with

φ(~x, τ)→ s
d+z−2

2 φ(s~x, szτ) (1.90)

Now, under the scaling (1.90) the quartic coupling u flows as

du

d`
= −(d+ z − 4)u (1.91)

Hence, for transitions with ~Q = 0, the quartic coupling is irrelevant for d > 1 and for

transitions with ~Q 6= 0 for d > 2. In the marginal case of z = 2 and d = 2, one-loop

calculations demonstrate that u is actually marginally irrelevant.[5] Hence, in all cases

Hertz theory predicts that the transition is described by mean field exponents.

1.3.4 Failure of Hertz theory

In this section we discuss various problems with Hertz theory. There are several

physical reasons to suspect that Hertz theory may be incomplete. The first of these

is the feedback of order parameter fluctuations on the eliminated electronic degrees

of freedom. Indeed, as will be further dicussed in chapters 6 and 7, if one calculates

the one-loop fermion self-energy at the phase transition due to electron scattering off

order parameter fluctuations, one obtains,[65, 66]

Σ(ω,~k) ∼ −i|ω|2/3sgn(ω), ~Q = 0, (1.92)

Σ(ω,~k = ~khs) ∼ −i|ω|1/2sgn(ω), ~Q 6= 0 (1.93)

In the case of transitions with ~Q = 0 the form (1.92) holds everywhere on the Fermi-

surface, while for transitions with ~Q 6= 0 the form (1.93) only holds at hot spot
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momenta ~k = ~khs. In either case, the self energy is not of a Fermi-liquid form and

corresponds to a damping rate which is as large as the energy itself. Hence, at the

transition, Landau quasiparticles become ill-defined and the system becomes a non

Fermi-liquid. This can also be seen by calculating the self-energy in the disordered

phase, slightly away from the critical point. Here, at lowest energies the system is a

Fermi-liquid, however, at one loop the quasiparticle residue behaves as

Z ∼ r1/2 (1.94)

where r is the tuning parameter (For the case of a transition with ~Q 6= 0 the behavior

(1.94) is realized only at the hot spots). Hence, as one approaches the transition, the

quasiparticle residue smoothly goes to zero, until the Landau quasiparticle disappears

altogether at the QCP.

The strong modification of the low energy fermionic excitations by the order

parameter fluctuations casts doubt on whether one can successfully integrate the

fermions out. Technically, the most suspicious step in the derivation of Hertz the-

ory is the truncation of the series in Eq. (1.83) at second order. This step would

be justified if the coefficients of higher order terms Γn were analytic in frequency

and momentum, as one can then represent these terms as a polynomial in φ and its

derivatives. The lowest order φ4 term in this polynomial is already accounted for in

the Hertz theory and shown to be irrelevant. The higher order polynomial terms are

even more irrelevant.

However, as was demonstrated for the case of the SDW transition in Ref. [67]

and for the nematic transition in Ref. [68], the higher order vertices Γn are actually

highly singular. This is the technical reason for the breakdown of Hertz theory. A
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more comlete description of the transition, which treats both the order-parameter

fluctuations and the non Fermi-liquid behavior of the low energy fermions will be

presented in chapters 6 and 7.



Chapter 2

Monopoles in CPN−1 model via the
state-operator correspondence

One of the earliest proposed phase transitions beyond the Landau-Ginzburg-

Wilson paradigm is the quantum critical point separating an antiferromagnet and

a valence-bond-solid on a square lattice. The low energy description of this transition

is believed to be given by the 2 + 1 dimensional CP 1 model - a theory of bosonic

spinons coupled to an abelian gauge field. Monopole defects of the gauge field play a

prominent role in the physics of this phase transition. In the present chapter, we use

the state-operator correspondence of conformal field theory in conjunction with the

1/N expansion to study monopole operators at the critical fixed point of the CPN−1

model. This elegant method reproduces the result for monopole scaling dimension

obtained through a direct calculation by Murthy and Sachdev. The technical sim-

plicity of our approach makes it the method of choice when dealing with monopole

operators in a conformal field theory.

64
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2.1 Introduction

Recent theoretical studies have begun to elucidate two remarkable classes of quan-

tum critical phenomena in two-dimensional magnetic insulators. Phase transitions be-

yond the Landau-Ginzburg-Wilson paradigm make up the first such class.[1, 2, 69, 70]

These Landau-forbidden transitions are continuous quantum critical points (QCPs)

between two conventional ordered ground states, where a Landau theory description

in terms of the two order parameters does not predict a direct continuous transition

upon tuning a single parameter. The second class consists of critical spin liquids,

which are disordered ground states with gapless excitations and power law correla-

tions, and which can exist as stable zero-temperature phases that can be accessed with

no fine-tuning of parameters.[71, 72, 73, 74, 75, 76, 77, 78, 79] Aside from the intrin-

sic theoretical interest, there is evidence for a Landau-forbidden phase transition in

a model of S = 1/2 spins, between a Neel antiferromagnet and a valence-bond solid

(VBS).[57, 58] Moreover, several materials have emerged as candidates for critical

spin liquid ground states.[80, 81, 82, 83, 84, 85, 86, 87, 88, 89]

The field-theoretic description of such phenomena can typically be cast in terms

of a gauge field coupled to bosonic and/or fermionic matter fields. In particular, the

Landau-forbidden QCP (quantum critical point) between the Neel and VBS ground

state is described by the CPN−1 model for N = 2,[1, 2] which consists of an N -

component boson field z coupled to a compact U(1) gauge field Aµ. Compactness

means that magnetic monopole defects of the gauge field are present and carry the

quantized flux 2πq; in two dimensions, these are instanton configurations of the gauge

field in space-time. Such topological defects, and the field theory operators (called
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monopole operators) that insert them at a particular point in space-time, play an im-

portant role in Neel-VBS transition, and in other gauge theories of Landau-forbidden

QCPs and critical spin liquids. In the present case, q = 1 monopole operators play a

particularly important role as the order parameter for the VBS state. Furthermore,

q = 4 monopole operators are allowed perturbations to the action. Thus it is impor-

tant to have information about the scaling dimensions of monopole operators, which

determine power-law decay of their two-point functions, and whether those operators

allowed by symmetry are relevant perturbations to the action.

Many of the gauge theories of interest, including the CPN−1 model, are solvable in

a large-N limit, where the number of bosonic or fermionic matter fields is taken large.

Even in this solvable limit, it is challenging to work with monopole operators, because

they cannot be expressed as a polynomial of gauge fields and matter fields. While

electric-magnetic duality gives direct access to monopole operators,[90] it is limited

to purely bosonic theories with only abelian symmetries. Despite these difficulties,

progress has been made: in a technical tour de force, by a direct evaluation of the

free energy of a monopole-antimonopole pair, Murthy and Sachdev calculated the

monopole scaling dimension as a function of q for the CPN−1 model in the large-

N limit.[3] Much more recently, Borokhov, Kapustin and Wu exploited the state-

operator correspondence of conformal field theory to calculate the monopole scaling

dimension for massless Dirac fermions coupled to a U(1) gauge field, often referred to

as QED3.[91] In the large-N limit, calculation of the scaling dimension was reduced

to determining the ground state energy of free Dirac fermions moving on a sphere

with a background quantized flux. Although conceptually more sophisticated, this
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calculation was technically much simpler than that of Murthy and Sachdev.

In this chapter, we follow Ref. [91] and apply the state-operator correspondence

to calculate monopole scaling dimensions in the CPN−1 model, and reproduce the

result of Murthy and Sachdev in a relatively simple calculation. In addition to the

aesthetic advantage of greater simplicity, this result provides a nontrivial check on

the correctness of the Murthy-Sachdev result. Furthermore, it illustrates the power of

the state-operator correspondence in working with monopole operators of conformal

field theories in three space-time dimensions.

The outline of this chapter is as follows. In Sec. 2.2 we begin with a brief review of

the solution of the CPN−1 model in the large-N limit. Next, in Sec. 2.3 we review the

state-operator correspondence in some detail. In Sec. 2.4, we use the state-operator

correspondence to calculate the monopole scaling dimension in the CPN−1 model,

and present the details of the calculation. This is followed by a discussion (Sec. 2.5)

and conclusions (Sec. 2.6). Technical details are contained in two appendices.

2.2 Review of CPN−1 model

The Lagrangian of the CPN−1 model in D = 3 Euclidean space-time dimensions

is

L = |Dµz|2 + iλ(|z|2 − 1

g
), (2.1)

where z is an N -component complex scalar field, and λ is a local Lagrange multiplier

enforcing the constraint z†z = 1/g. The covariant derivative Dµ ≡ ∂µ − iAµ, where

Aµ is a non-compact U(1) gauge field. The non-compactness of Aµ is equivalent to the

fact that the gauge flux is a conserved U(1) current jGµ = εµνλ∂νAλ. Conservation of



Chapter 2: Monopoles in CPN−1 model via the state-operator correspondence 68

jGµ is equivalent to the absence of monopole events in space-time, or, in other words,

to the absence of monopole operators in the Lagrangian. For the purposes of this

chapter, there is no need to consider the more complicated compact CPN−1 model,

which can be easily defined on the lattice. The reason is that monopole operators

are irrelevant (in the renormalization group sense) at the large-N critical point of the

CPN−1 model, and so the critical properties will be the same whether we start with

a compact or non-compact model.

The global symmetry is thus (SU(N)/ZN)×U(1), where the SU(N) rotates among

the N components of z, and the U(1) is the symmetry associated with flux conser-

vation (i.e. conservation of jGµ ). The quantized flux q of a monopole operator is its

charge under the U(1). A useful way to state the difference between the compact

and non-compact CPN−1 models is that non-compact model has U(1) flux conserva-

tion as an exact microscopic symmetry, while in the compact model this symmetry

is not present. However, at least in the large-N limit, this symmetry emerges at long

distances at the critical point, corresponding to the irrelevance of monopole operators.

The critical point of the CPN−1 model is a continuous transition between an

ordered phase where z is condensed (small g), and a disordered phase (large g) where

the only low-energy excitation is the photon of the U(1) gauge field. Upon integrating

out the z-bosons, we obtain the effective action for the fields Aµ and λ,

Seff = N Tr ln(−DµDµ + iλ)− 1

g

∫
dDx iλ. (2.2)

Taking g ∝ 1/N , Seff is exactly solved by the saddle-point approximation in the

large-N limit, and corrections to any desired quantity can be obtained in the 1/N

expansion.
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In the large-N limit, monopoles appear as the solutions to the saddle point equa-

tions where ∂µj
µ
G 6= 0 at a few points in space-time. For example, the lowest action

saddle point with a charge-q monopole at the origin has a gauge field Aqµ, chosen so

that

εµνλ∂νA
q
λ =

q

2

xµ
x3

. (2.3)

One then needs to solve the saddle point equations to find the saddle-point value of

the Lagrange multiplier field, λ̄q(x). The corresponding saddle-point action of the

monopole is then

Sq = N Tr ln(−(∂µ − iAqµ)(∂µ − iAqµ) + iλ̄q)−
1

g

∫
dDx iλ̄q . (2.4)

At the critical point (g = gc), the action Sq is related to the scaling dimension of the

monopole operator m∗q(x), which inserts a charge-q monopole. To see this, we put

the theory in a space-time which is a ball of radius R. Then we consider the object

f(R) = 〈m∗q(0)〉 (2.5)

=

∫
[dz][dAµ][dλ]m∗q(0)e−

∫
|x|<R d

3xL∫
[dz][dAµ][dλ]e−

∫
|x|<R d

3xL (2.6)

= e−(Sq−S0)
. (2.7)

At criticality, the usual scaling considerations applied to this object dictate that

f(R) ∝
(R
a

)−∆q

, (2.8)

where ∆q is the scaling dimension of m∗q and a is a short-distance cutoff (e.g. the

lattice spacing). This implies that

Sq − S0 ∼ ∆q ln
(R
a

)
. (2.9)
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In the disordered phase (g > gc) there is a finite correlation length ξ, and for R� ξ

one has

Sq − S0 ∼ ∆q ln
(ξ
a

)
. (2.10)

Working in the disordered phase, Murthy and Sachdev directly evaluated Sq and

obtained the coefficient of the logarithm in Eq. (2.10), and hence the monopole scaling

dimension. In this chapter we will calculate the same quantity by a somewhat less

direct but technically much simpler method.

As it will be needed later on, we now compute the N → ∞ critical coupling

gc, where the phase transition occurs. On the SU(N)-symmetric side of the phase

diagram, the lowest action saddle point is expected to be given by Aµ = A0
µ = 0 and

iλ = iλ̄0 = m2. Thus, the gap equation δS
δλ

= 0 becomes,∫
d3p

(2π)3

1

p2 +m2
=

1

Ng
(2.11)

The integral on the left hand side is ultraviolet-divergent and needs to be regularized.

We will consistently use throughout this chapter Pauli-Villars regularization, which

is obtained by augmenting the operator trace in Eq. (2.2) by

Tr ln(−DµDµ + iλ)→ Tr ln(−DµDµ + iλ) +
∑
i

siTr ln(−DµDµ + iλ+M2
i ), (2.12)

where M2
i are regulator masses to be taken to infinity, and si are alternatingly −1 for

fermionic regulators and +1 for bosonic regulators. To regularize the trace completely

in the current problem, we actually need three regulator fields (i = 1, 2, 3), satisfying

∑
i

si = −1 and
∑
i

siM
2
i = 0. (2.13)
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Thus, the regularized saddle point equation (2.11) is∫
d3p

(2π)3

(
1

p2 +m2
+
∑
i

si
1

p2 +m2 +M2
i

)
=

1

Ng
. (2.14)

At the critical point, the z-boson mass m vanishes, thus the critical coupling gc is

given by ∫
d3p

(2π)3

(
1

p2
+
∑
i

si
1

p2 +M2
i

)
=

1

Ngc
. (2.15)

Evaluating the integrals, the result is

1

Ngc
= − 1

4π

∑
i

siMi. (2.16)

2.3 State-operator correspondence and monopole

scaling dimensions

While the state-operator correspondence is a standard and well-known feature

of conformal field theory (CFT),[92] it has not been widely applied in condensed

matter physics except in the context D = 2 CFTs.1 For this reason, in this section

we introduce in some detail the state-operator correspondence for a CFT in general

space-time dimension D.

We consider a CFT in Euclidean space-time invariant under the Euclidean Poincaré

group and under scale transformations. (We actually do not need invariance under

special conformal transformations for the following discussion.) We shall work in the

scaling limit (i.e. continuum limit), so that, in particular, we can think of scale trans-

formations as an exact symmetry. By assumption, any local operator can be written

1One exception is Ref. [78], which used the results of Ref. [91] to study the stability of algebraic
spin liquids.
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as a linear combination of scaling operators Oi(x). Scale invariance is the statement

that any correlation function of local operators is unchanged upon replacing Oi(x) by

O′i(x) = λ∆iOi(λx), where ∆i is the scaling dimension of Oi. The Noether current

associated with scale transformations is denoted jDµ .

The goal of the ensuing discussion is twofold. First, we shall show that there

is a quantum Hamiltonian ĤS(R) defined on the (D − 1)-sphere of radius R. The

eigenstates of this Hamiltonian are in one-to-one correspondence with the scaling

operators Oi, and their energies are related to the scaling dimensions by Ei = ∆i/R.

Second, we will give a simple method for constructing ĤS(R).

We shall define the “spherical Hamiltonian” HS(R) on a sphere of radius R cen-

tered at the origin:

HS(R) ≡ 1

R

∫
dDx δ(|x| −R)nµj

D
µ . (2.17)

Note that HS(R) is not quite the same as the quantum Hamiltonian ĤS(R), which has

not yet been defined. In Eq. (2.17), nµ(x) is the outward normal vector of the sphere,

and the initial factor of 1/R has been inserted for later convenience. The spherical

Hamiltonian is useful because it is the generator of infinitesimal scale transformations.

This statement is made precise by the Ward identity, which for the scaling operator

Oi(x) can be written

HS(R)Oi(x) =
1

R
(∆i + xµ∂µ)Oi(x), (2.18)

provided |x| < R. (For a development of Ward identities as they are used here, we

refer the reader to Chapter 2 of Ref. [93].)

We need to construct the Hilbert space in which ĤS(R) acts. Suppose the La-

grangian depends on the set of fields φa. A wavefunction on the (D − 1)-sphere of



Chapter 2: Monopoles in CPN−1 model via the state-operator correspondence 73

radius R is a functional Ψ = Ψ[φa], which depends only on φa(x) for |x| = R. The

operator ĤS(R) is defined by its action on the wavefunction Ψ:

[ĤS(R)Ψ][φa] = lim
ε→0+

∫ ∏
R−ε≤|x|<R+ε

[dφ′a(x)]
[ ∏
|x|=R+ε

δ(φa(x)−φ′a(x))
]
HS(R) Ψ[φ′a;R−ε].

(2.19)

For each scaling operator, we can associate a wavefunction Ψi by inserting Oi at

the origin, and “cutting open” the path integral at |x| = R. This means we integrate

over φa(x) for |x| < R, with a fixed boundary condition at |x| = R. Formally,

Ψi[φa;R] =

∫ ∏
|x|<R

[dφ′a(x)]
[ ∏
|x|=R

δ(φa(x)− φ′a(x))
]
Oi(0)e−S[φ′a]

. (2.20)

The action of ĤS(R) on Ψi can be calculated using the Ward identity:

[ĤS(R)Ψi][φa] = lim
ε→0+

∫ ∏
|x|<R+ε

[dφ′a(x)]
[ ∏
|x|=R+ε

δ(φa(x)− φ′a(x))
]
HS(R)Oi(0)e−S[φ′a]

=
∆i

R

∫ ∏
|x|<R

[dφ′a(x)]
[ ∏
|x|=R

δ(φa(x)− φ′a(x))
]
Oi(0)e−S[φ′a]

=
∆i

R
Ψi[φa]. (2.21)

Thus we have shown that Ψi is an eigenstate of ĤS(R), where the energy Ei is simply

related to the scaling dimension of Oi by Ei = ∆i/R. Furthermore, this result can

be used to argue that for each Oi there is a unique state Ψi. First, if two Oi have

different scaling dimensions, then the corresponding states have different energies

and are clearly distinct (i.e. they are orthogonal). Suppose that a set of Oi have

the same scaling dimension. Generically, this will only occur if these operators form

an irreducible multiplet under the global symmetries of the CFT. The corresponding

states must transform under the same multiplet; therefore, they must be linearly

independent, and can be chosen to be mutually orthogonal.
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To complete this discussion we still need to show that wavefunctions Ψ[φa] and

scaling operators Oi are in one-to-one correspondence. We have already shown that

for each scaling operator there is a unique state Ψi. It remains to be shown that

every eigenstate of ĤS(R) corresponds to a unique scaling operator. First, on general

grounds of scale invariance, there must be a one-to-one linear mapping relating eigen-

states of ĤS(R) to those of ĤS(r). Consider an eigenstate Ψ[φa;R] of ĤS(R) with

energy E, whose image under this mapping is Ψ[φa; r] with energy E ′ = ER/r. (E ′

must have this form because the energies scale with inverse radius of the sphere, as

is apparent, for example, from the form of the Ward identity.) We shall be interested

in r < R, and we may make r as small as we like (as long as it is not so small that we

are no longer in the scaling limit). We consider a functional integral where we insert

this state at radius r, that is

ZΨ =

∫ ∏
r<|x|<∞

[dφa(x)]Ψ[φa; r]e
−S[φa]

. (2.22)

As r becomes small, we can view this as the insertion of some local operator O at the

origin. That is,

lim
r→0

ZΨ =

∫ ∏
x

[dφa(x)]O(0)e−S[φa]
. (2.23)

Now we can apply the Ward identity to an insertion of HS(R) inside ZΨ:∫ ∏
r<|x|<∞

[dφa(x)]Ψ[φa; r]HS(R)e−S[φa] =

=
r

R
lim
ε→0+

∫ ∏
r<|x|<∞

[dφa(x)]Ψ[φa; r]HS(r + ε)e−S[φa]

=
E ′r

R

∫ ∏
r<|x|<∞

[dφa(x)]Ψ[φa; r]e
−S[φa]

= E

∫ ∏
r<|x|<∞

[dφa(x)]Ψ[φa; r]e
−S[φa]

. (2.24)
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Taking the limit r → 0, the above relations imply the operator equation HS(R)O(0) =

EO(0), and O is a scaling operator, as desired.

Now that we have established the basic facts of the state-operator correspondence,

we will outline a simple procedure to actually construct ĤS(R). It is useful to recall

how this can be done for the usual Hamiltonian. Starting from a quantum state

defined on the space-like hypersurface at constant imaginary time τ , the Hamiltonian,

which generates time translations, can be defined in terms of the transfer matrix e−δτĤ

that evolves to the hypersurface at τ + δτ . In principle, the transfer matrix can be

obtained from the functional integral by integrating over the fields between τ and

τ + δτ .

Similarly, in the present case we can start with a quantum state defined on the

(D − 1)-sphere of radius R. It is useful to work in polar coordinates x = (r,Ω),

where Ω includes the D − 1 angular coordinates, and make the change of variables

r = Reτ/R for a fixed value of R. In these variables, scale transformations are realized

as “time” translations τ → τ + δτ . An infinitesimal scale transformation sends

R → Reδτ/R = R + δτ . Therefore the spherical Hamiltonian, which generates scale

transformations, can be obtained from the transfer matrix e−δτĤS(R) that evolves the

state at R to one at radius R + δτ .

Now, as illustrated in Fig. 2.1, for a small patch of the (D−1) sphere of radius R,

the infinitesimal scale transformation is indistinguishable from an infinitesimal time

translation, in the radial direction. On this small patch, then, the scale transformation

will simply be generated by the Hamiltonian density (for appropriately defined local

time and space directions). In order to obtain the generator of scale transformations
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R τ
x

Figure 2.1: Depiction of a scale transformation as an evolution from the sphere at
radius R to an expanded sphere with larger radius. In the magnified region, we
illustrate that this evolution is locally equivalent to a time translation, with the
locally defined time (τ) and space (x) coordinates shown.

for the entire sphere, we simply need to wrap the flat-space Hamiltonian onto the

sphere. In practice, it is often easier to work with the functional integral corresponding

to ĤS(R), which is defined on the space SD−1(R)×R. Here SD−1(R) is the (D− 1)-

sphere of radius R, and R is the imaginary time direction parametrized by τ .

2.4 Calculation

Our objective is to compute the scaling dimension ∆q of the monopole operator

of charge q. Such an operator will create states with flux 2πq out of the vacuum.

Therefore, by the state-operator correspondence, to find ∆q we must tune the theory

to the critical coupling gc, compactify the spatial manifold to a two-sphere S2 of

radius R and find the energy of the state carrying a flux 2πq over the sphere.
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As a first step we need to find the saddle point of the theory on a sphere with flux.

We expect the saddle point for the gauge field Aµ to be given by a uniform distribution

of the flux over the spatial sphere (in particular Aτ = 0). We also expect the Lagrange

multiplier λ to go to a finite constant, iλ = m2
q. Note that even though for an infinite

system iλ = m2 = 0 at the critical point, finite size effects lead to a non-vanishing

m2
q ∼ O(R−2) on a sphere of radius R. In fact, as we will see shortly,

√
m2
q + q/2 is

just the minimal energy to create a spinon above the state with flux q. In particular,

for q = 0, we expect m0R to be the scaling dimension ∆z of the operator z.2 We

know that for N → ∞, this conformal dimension is just the engineering dimension

for the field z – namely ∆z = 1/2. We will verify shortly that m0R = 1/2.

By varying the effective action [i.e. the analog of Eq. (2.2) on the sphere] with

respect to λ we obtain the gap equation on a sphere with flux,

Tr
[ 1

−DµDµ +m2
q

]
+
∑
i

si Tr
[ 1

−DµDµ +m2
q +M2

i

]
=

4πR2β

Ngc
. (2.25)

where β is the length of the temporal direction. Using translational invariance along

the time direction,∫
dω

2π

(
Tr⊥

[ 1

−D2
⊥ + ω2 +m2

q

]
+
∑
i

si Tr⊥

[ 1

−D2
⊥ + ω2 +m2

q +M2
i

])
=

4πR2

Ngc
,

(2.26)

where −D2
⊥ is the square of the covariant derivative along spatial directions, and Tr⊥

is the trace over the space of functions on the sphere of radius R. We may take the

ω-integral, obtaining

1

2

(
Tr⊥

[ 1

(−D2
⊥ +m2

q)
1
2

]
+
∑
i

si Tr⊥

[ 1

(−D2
⊥ +m2

q +M2
i )

1
2

])
=

4πR2

Ngc
. (2.27)

2Because z is not gauge invariant, it only makes sense to talk about its scaling dimension in the
N =∞ limit, where gauge fluctuations are completely suppressed.
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To evaluate the traces in (2.27) we need the spectrum of −D2
⊥. Fortunately,

this problem of a particle moving on a sphere with a monopole of charge q at the

origin was solved a long time ago by Wu and Yang.[94] The eigenfunctions are the

monopole harmonics, Yq/2,l,m with l = q/2, q/2 + 1, ... and m = −l, −l + 1, ..., l. The

corresponding eigenvalue of −D2
⊥R

2 is l(l + 1) − (q/2)2. Note that, for q = 0, we

recover the usual spherical harmonics. Thus, Eq. (2.27) becomes

1

2

∞∑
l=q/2

2l + 1

4πR

(
1

(l(l + 1)− (q/2)2 + (mqR)2)
1
2

+
∑
i

si
1

(l(l + 1)− (q/2)2 + (mqR)2 + (MiR)2)
1
2

)
=

1

Ngc
. (2.28)

We would like to isolate the cutoff dependence of the left-hand side of Eq. (2.28).

For this purpose, we rewrite Eq. (2.28) as

4πR

Ngc
= Gq(a

2
q) +

∑
i

siGq(b
2
qi), (2.29)

where

Gq(b
2) =

∞∑
l=q/2

(
l + 1/2

((l + 1/2)2 + b2)
1
2

− 1

)
(2.30)

a2
q = (mqR)2 − 1

4
(q2 + 1), b2

qi = a2
q + (MiR)2

. (2.31)

Here we have used the fact
∑

i si = −1. The ultraviolet cutoffs Mi now appear only

in the second term on the right hand side of Eq. (2.29). To finish isolating the cutoff

dependence we need to find the behavior of the function Gq(b
2) in the limit b2 →∞.

This is easily accomplished using Poisson resummation (see Appendix A.1), and we

obtain

Gq(b
2) ∼ −b+ q/2, b→∞. (2.32)
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Here, we have dropped terms decaying as b−1 or faster. Substituting this into

Eq. (2.29), we have

4πR

Ngc
= Gq(a

2
q)−

∑
i

sibqi − q/2 (2.33)

Now, eliminating gc using equation Eq. (2.16) , we see that the ultraviolet-divergent

terms cancel, and we obtain

Gq(a
2
q) = q/2. (2.34)

This is precisely Eq. (3.23) of Murthy and Sachdev,[3] with the identification αq =

−a2
q−q2/4 = 1/4−(mqR)2. Also, notice that Gq(0) = 0. So for q = 0, we immediately

obtain a2
0 = 0 as the solution to Eq. (2.34), and m0R = 1/2 as expected.

Now we proceed to the calculation of the energy of a state with flux 2πq. Namely,

let

Tq =
1

β

(
Tr ln(−DµDµ +m2

q) +
∑
i

siTr ln(−DµDµ +m2
q +M2

i )

)
. (2.35)

The saddle-point action of the configuration with flux 2πq is given by

Sq = βNTq −
1

gc

∫
dxm2

q = Nβ(Tq −
4πR2

Ngc
m2
q), (2.36)

and, therefore, the energy Eq is given by

EqR

N
= TqR−

4πR

Ngc
(mqR)2

. (2.37)

The desired scaling dimension of the charge-q monopole operator is ∆q = (Eq−E0)R.

We now evaluate Tq. Going to frequency space, we have

Tq =

∫
dω

2π

(
Tr⊥ ln(−D2

⊥ + ω2 +m2
q) +

∑
i

siTr⊥ ln(−D2
⊥ + ω2 +m2

q +M2
i )

)
= Tr⊥(−D2

⊥ +m2
q)

1
2 +

∑
i

siTr⊥(−D2
⊥ +m2

q +M2
i )

1
2 . (2.38)
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Recalling the form of the spectrum of −D2
⊥,

TqR =
∑
l

(2l + 1)

(
(l(l + 1)− (q/2)2 + (mqR)2)

1
2

+
∑
i

si(l(l + 1)− (q/2)2 + (mqR)2 + (MiR)2)
1
2

)
. (2.39)

We rewrite this in the form

TqR = 2Fq(a
2
q) + 2

∑
i

siFq(b
2
qi), (2.40)

where

Fq(b
2) =

∞∑
l=q/2

(
(l + 1/2)((l + 1/2)2 + b2)

1
2 − (l + 1/2)2 − 1

2
b2

)
. (2.41)

It should be noted that the sum over l in Eq. (2.41) converges. As in the analysis of

the gap equation, only the second term of Eq. (2.40) depends on the ultraviolet cutoff.

Also as before, we consider the b→∞ limit of Fq(b
2). After a short calculation (see

Appendix A.1), we obtain

Fq(b
2) ∼ −1

3
b3 +

q

4
b2 + (

1

24
− q2

8
)b+

1

24
q(q2 − 1), b→∞. (2.42)

Substituting this result into Eq. (2.40) and noting that b3
qi = (MiR)3 + 3

2
a2
q(MiR) +

O[(MiR)−1], we find

TqR = −2

3

∑
i

si(MiR)3 +

(
1

12
− q2

4
− a2

q

)∑
i

siMiR+ 2Fq(a
2
q)−

q

2
a2
q −

1

12
q(q2− 1).

(2.43)

Now, we can bring everything together. Substituting the critical coupling gc

[Eq. (2.16)] into Eq. (2.37) and recalling that (mqR)2 = a2
q + 1

4
(q2 + 1), we find

EqR

N
= −2

3

∑
i

si(MiR)3 +
1

3

∑
i

si(MiR) + 2Fq(a
2
q)−

q

2
a2
q −

1

12
q(q2 − 1) (2.44)
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The cutoff-dependent (and also ultraviolet-divergent) terms in EqR/N comprise a

q-independent constant. Hence, the energy differences are finite:

(Eq − E0)R

N
= 2(Fq(a

2
q)− F0(a2

0))− q

2
a2
q −

1

12
q(q2 − 1) (2.45)

Recalling that a2
0 = 0 and noting that Fq(0) = 0, we obtain the final result,

∆q

N
=

(Eq − E0)R

N
= 2Fq(a

2
q)−

q

2
a2
q −

1

12
q(q2 − 1). (2.46)

It is easy to show this result is precisely that of Murthy and Sachdev (see Ap-

pendix A.2).

2.5 Discussion

Let us put our calculation into the context of the role of U(1) flux symmetry in

the noncompact CPN−1 model. In the ordered phase of the theory (g < gc) the

flux symmetry is unbroken, as the Meissner effect leads to flux confinement. The

configurations carrying magnetic flux in this phase have a finite energy and, in fact,

are quantum descendants of instantons of the two-dimensional CPN−1 model.[95]

Close to the critical point these instantons are strongly dressed by the interaction:

their size grows and their energy decreases as g → gc. Precisely at the QCP the

instantons become massless. The condition that flux and spin gaps vanish at the

same critical point is at the heart of deconfined criticality. We have verified this

fact explicitly here by showing that the energy of a flux q instanton goes as ∆q/R

on a sphere of radius R. The observation that on a finite sphere the energy scales

as 1/R at the QCP follows from dimensional analysis arguments. However, the fact
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that ∆q coincides with the scaling dimension of the monopole operator is a non-

trivial prediction of the state-operator correspondence of conformal field theory. The

agreement between our result and the more direct computation of ∆q by Murthy and

Sachdev is a strong check that the monopole operator survives in the scaling limit.

Now, to complete our discussion, once the coupling g > gc and we are in the

disordered phase, the instantons, having become massless at the phase transition,

condense. As a result, the U(1) flux symmetry is spontaneously broken; the photon

is a Goldstone boson associated with this symmetry, since it is created out of the

vacuum by the current jGµ . What is the fate of configurations carrying finite flux in

this phase? We can compute their energy directly from the effective action for the

photon field,

S =
1

2e2

∫
d3x(εµνλ∂νAλ)

2 (2.47)

where to leading order in 1/N , e2 = 24πm/N , with m the spinon mass. For simplicity

we work with a flat spatial manifold here (e.g. a torus). Then, smearing the flux 2πq

uniformly over the space,

εij∂iAj =
2πq

V
(2.48)

where V is the spatial volume. The energy becomes,

E =
(2πq)2

2e2V
(2.49)

Indeed, as always occurs when a continuous global symmetry is spontaneously broken,

the states of finite charge (flux) form a tower, with energies scaling as inverse volume.

Thus, in the N = ∞ limit, we have a detailed quantitative understanding of the

flux sector of the CPN−1 model at the critical point and in the disordered phase. It
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would be interesting to extend the quantitative description to the ordered phase. In

particular, it would be interesting to compute the finite instanton mass, mi, which

we expect to govern the long distance decay of monopole-antimonopole correlation

functions. From general scaling arguments, we expect mi ∼ (g − gc)ν , where ν is the

correlation length exponent. Moreover, we expect the ratio mi/ρs, where ρs is the

spin-stiffness, to be a universal number. Unfortunately, it is rather difficult to analyze

the instantons in the ordered phase even at N = ∞, since the saddle point value of

the fields Aµ and zα is no longer dictated by symmetry as it was at the critical point.

2.6 Conclusion

In this chapter we have used the state-operator correspondence of conformal field

theory to compute the monopole scaling dimension in the CPN−1 model at N =∞.

Our result agrees with the more direct calculation by Murthy and Sachdev;[3] however,

our approach has the advantage of technical simplicity. In fact, one can even envision

using this method to compute the 1/N corrections to the monopole scaling dimension.

From the conceptual point of view our result demonstrates the vanishing of the flux

gap at the QCP and confirms the survival of the monopole operator in the scaling

limit.



Chapter 3

Impurity spin textures across
conventional and deconfined
quantum critical points of two
dimensional antiferromagnets

We describe the spin distribution in the vicinity of a non-magnetic impurity in a

two dimensional antiferromagnet undergoing a transition from a magnetically ordered

Néel state to a paramagnet with a spin gap. The quantum critical ground state in

a finite system has total spin S = 1/2 (if the system without the impurity had

an even number of S = 1/2 spins), and recent numerical studies in a double layer

antiferromagnet[96] have shown that the spin has a universal spatial form delocalized

across the entire sample. We present the field theory describing the uniform and

staggered magnetizations in this spin texture for two classes of antiferromagnets: (i)

the transition from a Néel state to a paramagnet with local spin singlets, in models

with an even number of S = 1/2 spins per unit cell, which are described by a O(3)

Landau-Ginzburg-Wilson field theory; and (ii) the transition from a Néel state to

a valence bond solid, in antiferromagnets with a single S = 1/2 spin per unit cell,

84
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which are described by a “deconfined” field theory of spinons.

3.1 Introduction

There have been many experimental studies of non-magnetic Zn impurities sub-

stituting for the spin S = 1/2 Cu ions in spin-gap and superconducting compounds

[97, 98, 99, 100, 101, 102, 103]. These have stimulated many theoretical studies of

the spin dynamics in the vicinity of a vacancy (i.e. a site with no spin) in S = 1/2

square lattice antiferromagnets [104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114,

115, 116, 96, 117].

An important feature of the impurity-response escaped1 theoretical attention until

recently [96]. Consider the regime where the bulk antiferromagnet preserves global

rotational symmetry and has a S = 0 ground state. Such states can be reached by de-

forming the nearest-neighbor antiferromagnet into a coupled-ladder or coupled-dimer

antiferromagnet [118, 119], in a double-layer antiferromagnet [48], or by adding ad-

ditional ring-exchange interactions while preserving full square lattice symmetry[57].

Now remove a single S = 1/2 spin in a system with an even number of spins, leaving

an antiferromagnet with a vacancy and an odd number of S = 1/2 spins. We ex-

pect this antiferromagnet to have a doubly-degenerate ground state with total spin

S = 1/2. Without loss of generality, we can examine the ground state with spin-

projection Sz = 1/2. In such a state, even though there is no broken symmetry and

no applied magnetic field (the Hamiltonian has full SU(2) spin symmetry), the ex-

1Section II.B.3 of Ref. [112] contains results which can be used to extract the spin textures in
zero field.



Chapter 3: Impurity spin textures across conventional and deconfined quantum
critical points of two dimensional antiferromagnets 86

pectation values of the spin projection on the site i, 〈Szi〉, is non-zero on all i for any

finite system of size L. The question of interest in this chapter is the following: What

is the spatial form of 〈Szi〉 ? It is possible that the S = 1/2 magnetization is pushed

out to the boundaries of the system, far from the impurity: in this case, it will not be

relevant to the impurity properties in the limit L→∞. However, we will find this is

not the case for the antiferromagnets examined here. For the spin-gap antiferromag-

nets we consider, the S = 1/2 magnetization is bound to the impurity over a length

scale inversely proportional to the spin gap. At the quantum critical points separating

the spin gap states from the Néel state, which define ‘algebraic spin liquids’, we will

find, as in Ref. [96], that the impurity magnetization is delocalized over the entire

system, forming a spin texture with a universal spatial form determined only by the

system size L.

We will divide our introductory discussion here into two subsections. The first

subsection will consider the models which have been numerically studied in Ref. [96].

These are antiferromagnets which have an even number of S = 1/2 spins per unit

cell (such as the coupled-dimer[118, 119] or double layer[48] models), which exhibit a

transition between a Néel state and a simple spin gap state; the latter state is adia-

batically connected to a state in which the spins in each unit cell are separately locked

into singlets, with negligible resonance between unit cells. This is a ‘conventional’

transition, described by a Landau-Ginzburg-Wilson (LGW) theory.

In the second subsection, we consider the more interesting and much more subtle

case of a “deconfined” critical point [1, 2]. Here we are considering antiferromagnets

with a single S = 1/2 spin per unit cell, and so there is no simple spin-gap state
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with local singlets. For the models studied in Refs. [1, 2, 57], the spin gap state

has singlet valence bonds which crystallize into a regular arrangement, breaking the

space group symmetry of the square lattice, while preserving spin rotation invariance.

Such a state is a valence bond solid (VBS), and we will be interested in the impurity

response across the Néel-VBS transition.

3.1.1 LGW transition

As noted above, we consider a transition in a dimerized antiferromagnet (with

an even number of S = 1/2 spins per unit cell of the Hamiltonian) from a spin gap

state to a Néel state. A convenient description of both phases and the quantum

phase transition is provided by the O(3) non-linear sigma model, expressed in terms

of a unit vector field n(~x, τ) representing the local orientation of the Néel order

parameter. Here ~x is the two dimensional spatial position, τ is imaginary time, and

n2 = 1 everywhere in spacetime. The bulk action in the absence of the impurity is

the O(3) non-linear sigma model

Sn
b =

1

2g

∫
dτ

∫
d2x(∂µn)2 , (3.1)

where g is the coupling constant which tunes the antiferromagnet from the Néel

state (g < gc) to the spin gap state (g > gc), µ is a 3-dimensional spacetime index

and a spin-wave velocity has been set to unity. In this formulation, the influence of

the impurity is represented universally by the following Berry phase term alone[112]

(provided the antiferromagnet is not too far from the critical point)

Sn
imp = iS

∫
dτA[n(0, τ)] · dn(0, τ)

dτ
, (3.2)



Chapter 3: Impurity spin textures across conventional and deconfined quantum
critical points of two dimensional antiferromagnets 88

for a spin S = 1/2 antiferromagnet, where A is the Dirac monopole function in spin

space with ∇n×A = n. Note that Sn
imp does not include any coupling constants, and

it depends upon the value of n only at ~x = 0, which is the position of the impurity.

Now we need to describe the S = 1/2 ground state of Sn
b + Sn

imp for g ≥ gc. First,

we need a proper discussion of the rotationally invariant S = 0 ground state without

the impurity. While it may be possible to do this within the context of a small g

expansion of the O(3) non-linear sigma model, the procedure is quite cumbersome and

delicate, requiring a global average over all possible locally ordered states. We shall

instead follow a simpler procedure which is described in more detail in Section 3.2:

we use an alternative soft-spin, LGW formulation of Sn
b in terms of a vector order

parameter, φ, whose length is unconstrained. The φ = 0 saddle point then is an

appropriate starting point for describing the physics of the S = 0 ground state of the

bulk theory and its excitations. Next, we include the impurity term described by Sn
imp,

and also apply an infinitesimal magnetic field in the z direction. As we will show in

Section 3.2, the Berry phase effectively localizes the order parameter at the impurity

site, n(~x = 0, τ), to a specific orientation on the unit sphere; in particular, for the

Sz = 1/2 state chosen by the applied field, we may perform an expansion about a

saddle point with n(~x = 0, τ) = (1, 0, 0). This expansion quantizes, at each order, the

total spin at Sz = 1/2: this was established in Section II.C.2 of Ref. [107] for g < gc,

and the same result also applies here for g ≥ gc. The infinitesimal magnetic field is

set to zero at the end, but the spin density of the Sz = 1/2 state remains non-zero in

this limit.

The results in Section 3.2 provide an explicit analytic realization for the scaling
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forms presented in Ref. [96] for the spin texture near the impurity. For the magne-

tization density, Q, which is the conserved Noether “charge” density associated with

the O(3) symmetry of the antiferromagnet, we have at g = gc and zero temperature

(T ) and in the Sz = 1/2 state:

〈Qz(~x)〉 =
1

L2
ΦQ

(
~x

L

)
(3.3)

where ΦQ(~r) is a universal function obeying the quantized total spin condition∫
d2rΦQ(~r) = S . (3.4)

Similarly, the staggered magnetization associate with the Néel order parameter obeys

the scaling form

〈nz(~x)〉 =
1

L(1+η)/2
Φn

(
~x

L

)
(3.5)

at g = gc, where Φn(~r) is another universal function, but its overall scale is non-

universal. The exponent η is the anomalous dimension of n at g = gc in the absence

of the impurity.

3.1.2 Deconfined transition

Now let us turn to the more interesting case of a transition in an antiferromagnet

with an odd number of S = 1/2 spins per unit cell, such as the square lattice antifer-

romagnet. In this case, there is no a priori obvious choice for the spin gap state, and

the paramagnetic state exhibits spin liquid behavior over all but the largest length

scales [1, 2]. The spin liquid state has a bosonic spinon excitation represented by

a complex spinor field zα(~x, τ), where α =↑, ↓, and the constraint
∑

α |zα|2 = 1 is

obeyed everywhere in spacetime. There is also a non-compact U(1) gauge field Aµ
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which encodes collective singlet excitations. As argued in Refs. [1, 2] the vicinity of

the quantum critical point to the Néel phase is described by the CP 1 field theory of

these degrees of freedom. The Néel order parameter, n is related to zα by

n = z†α~σαβzβ , (3.6)

where ~σ are the Pauli matrices. Also, in our analysis, we find it useful to generalize

to the CPN−1 model with SU(N) symmetry, where α = 1 . . . N , and then the Pauli

matrices are replaced by the generators of SU(N). The action of the CPN−1 model

also involves a non-compact U(1) gauge field Aµ, and is given by

Szb =

∫
dτ

∫
d2x

[
1

g
|(∂µ − iAµ)zα|2 +

1

2e2
(εµνλ∂νAλ)

2

]
. (3.7)

This theory describes a Néel-ordered phase for g < gc, and a spin-gap state with VBS

order for g ≥ gc (additional Berry phase terms are needed to obtain the four-fold

square-lattice symmetry of the VBS order[21, 22]). It is crucial to note that, unlike

the situation in 1+1 dimensions [95, 120], the models Sn
b (in Eq. (3.1)) and Szb are

not equivalent to each other in 2+1 dimensions. This was established in Ref. [51],

and is a consequence of the proliferation of ‘hedgehog’ or ‘monopole’ defects at the

critical point of Sn
b ; such defects are absent in the Szb theory.

Now let us add an impurity to the field theory in Eq. (3.7). It was argued in

Ref. [121] that the impurity is now represented by a source term for a static charge

Q = 2S at ~x = 0. Thus

Szimp = iQ

∫
dτAτ (~x = 0, τ) (3.8)

As before, we are now interested in describing the ground state of Szb + Szimp, which

we expect carries total spin S = 1/2. However, now the projection onto the state
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with S = 1/2 cannot be done by the method used for the LGW theory. For g ≥ gc,

we begin with a S = 0 ground state of Szb , but now don’t find that the impurity term

in Eq. (3.8) introduces any net spin: the total spin remains at S = 0 to all orders in

perturbation theory. Clearly, we need the impurity charge Q to non-perturbatively

bind a S = 1/2 zα spinon. For g > gc, such binding can be addressed via a non-

relativistic Schrödinger equation [23], the analysis does not appear appropriate at the

main point of interest, g = gc, where we have a conformal field theory (CFT) with

no sharp quasiparticle excitations. Here we expect the spinon to be smeared over the

whole system of size of L. We shall describe this spinon state by explicitly beginning

with a S = 1/2 state of Szb and then perturbatively examining the influence of Szimp:

this is expected to yield correlations in the true S = 1/2 ground state of Szb + Szimp.

Using the language of general SU(N), let the ground states of Szb + Szimp be |α〉;

these transform under the fundamental representation of SU(N). To find the matrix

element of some operator O(~x) between states |α〉 and |β〉 of the SU(N) multiplet,

we compute,

〈α|O(~x)|β〉 = lim
T →∞

〈
zα(0, T /2) exp

(
−i
∫ T /2
−T /2Aτ (0, τ)dτ

)
O(~x, 0)z†β(0,−T /2)

〉
Szb〈

zα(0, T /2) exp
(
−i
∫ T /2
−T /2Aτ (0, τ)dτ

)
z†α(0,−T /2)

〉
Szb

.

(3.9)

Effectively, we start with external charge free vacuum, and then at time τ = −T /2

create a spinon together with the Wilson line, the latter representing the effect of the

external charge Q = 1. We wait for a long time T /2 to single out the lowest energy

state with the quantum numbers of the operator z†α. We then measure the operator

O(~x), again wait time T /2 and annihilate our spinon together with the external

charge. The denominator in Eq. (3.9) serves to cancel out the matrix element for
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creating the spinon - external charge bound state out of the vacuum (no sum over α

is implied in the denominator). Expressions of type (3.9) are common when studying

the properties of heavy-light mesons in quantum chromodynamics.

The time T must be much larger than the gap between states with the quantum

numbers that we are studying. In the spin gap phase, g > gc, this gap is finite in the

infinite volume limit. However, at the critical point the gap will be of order 1/L. So

one has to choose T � L. Although unusual, this condition can always be satisfied

as we work at zero temperature.

To discuss higher charge impurity (Q > 1) one needs to act on the vacuum with

higher U(1) charge composite operators of the z field. The resulting states can form

higher representations of SU(N) symmetry. For simplicity, we limit ourselves to Q = 1

below.

Details of our evaluation of Eq. (3.9) in the 1/N expansion appear in Section 3.3.1.

We will obtain results for the scaling functions appearing in Eq. (3.3) and (3.5)

describing the spin distribution at the deconfined quantum critical point.

In addition, in Section 3.3.2 we compute the uniform and staggered spin distri-

butions in the Néel phase of the CPN−1 model. We find that the short distance

behaviour of spin distributions both at the critical point and in the Neel phase is in

agreement with the impurity scaling theory postulated in Ref. [121]. In particular, we

obtain substantial additional evidence that the uniform and staggered spin operators

flow to the same impurity spin operator upon approaching the impurity site. Results

of the 1/N expansion for the impurity critical exponents of uniform and staggered

magnetization are obtained.
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3.2 LGW criticality

This section will study the field theory Sn
b + Sn

imp describing an impurity in an

antiferromagnet with an even number of S = 1/2 spins per unit cell. As discussed

in Section 3.1, the O(3) non-linear sigma model formulation in Eqs. (3.1) and (3.2)

is not appropriate for our purposes. Instead, we shall use a ‘soft-spin’ approach

which yields a convenient description of the rotationally-invariant state of the bulk

antiferromagnet for g ≥ gc, and of its impurity-induced deformations. The universal

results appear in an expansion in

ε = (3− d), (3.10)

where d is the spatial dimensionality.

This dimensionality expansions allow us to compute, in principle, the universal

scaling functions, appearing in Eqs. (3.3) and (3.5), which were numerically computed

recently in Ref. [96]. The scaling functions clearly depend upon the geometry of the

sample, and the nature of the finite-size boundary conditions. Such features are not

easily captured in a dimensionality expansion. Consequently the results in this section

are more a “proof of principle” that the scaling results apply. Direct comparison of

the results below for scaling functions to the numerical results are not very useful.

As discussed in Ref. [107], the ε expansion is obtained by replacing the fixed length

field n by a field φ whose amplitude is allowed to vary freely. However, we do not

have the freedom to relax the length constraint on the impurity site because the

Berry phase term is only defined for a unit length field. Consequently, we retain an

independent field n(τ) representing the impurity spin, which is now linearly coupled
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to φ. So we consider the theory

Zφ =

∫
Dφ(~x, τ)Dn(τ)δ

(
n2 − 1

)
exp

(
−Sφb − Sφimp

)
Sφb =

∫
ddxdτ

[
1

2

(
(∂µφ)2 + sφ2

)
+
g0

4!

(
φ2
)2
]

Sφimp = iS

∫
dτA[n(τ)] · dn(τ)

dτ
− γ0Sn(τ) · φ(0, τ) (3.11)

Here s ∼ g is the coupling that tunes the system across the bulk quantum phase

transition, and g0 and γ0 are the couplings which were shown in Ref. [107] to approach

fixed point values in the vicinity of the quantum critical point. In the (3−d) expansion,

these fixed point values are small with g0 ∼ γ2
0 ∼ ε. It was argued in Ref. [112] that

this fixed point is identical to that obtained from the O(3) non-linear sigma model

theory appearing in Eqs. (3.1,3.2).

We will be interested here in the s ≥ sc regime of Zφ here, where 〈φ〉 = 0 and

full rotational symmetry is preserved in the absence of the impurity. As discussed in

Section 3.1, we need to project on to the state with total Sz = 1/2 in the presence of

the impurity. This is easily done here by choosing the following parameterization for

the impurity degree of freedom n(τ) in terms of a complex scalar ψ(τ):

n =

(
ψ + ψ∗

2

√
2− |ψ|2, ψ − ψ

∗

2i

√
2− |ψ|2, 1− |ψ|2

)
. (3.12)

The advantage of the representation (3.12) is that with the gauge choice

A(n) =
1

1 + nz
(−ny, nx, 0) , (3.13)

the Berry phase takes the following form

iA(n) · dn
dτ

=
1

2

(
ψ∗
∂ψ

∂τ
− ψ∂ψ

∗

∂τ

)
, (3.14)
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Furthermore, the measure term in the functional integral also has the simple form∫
Dnδ

(
n2 − 1

)
=

∫
DψDψ∗ (3.15)

Now, an expansion of the correlators of Zφ, in a functional integral over φ and

ψ about the saddle point with φ = 0 and ψ = 0, in powers of the couplings γ0

and g0, automatically projects onto the state with total spin projection Sz = 1/2.

This is easily established by applying a uniform magnetic field, and verifying by

the methods of Ref. [107, 112] that the total magnetization is quantized by a Ward

identity associated with the conservation of spin.

We can now use the above perturbative expansion, using methods explained at

length elsewhere[107, 112], to compute the expectation values of the magnetization

density 〈Qz(~x)〉 and the Néel order parameter 〈φz(~x)〉. We perform this computation

on a sample with periodic boundary conditions and length L in each spatial dimension,

i.e. a torus T d. The main effect of the finite boundary conditions is that the momenta

~p are discrete, and each momentum component is quantized in integer multiples of

2π/L. The results below are easily generalized to other finite size geometries and

boundary conditions. To leading order in ε, the results are

〈Qz(~x)〉 = Sδd(~x)− γ2
0Sδ

d(~x)

∫
dω

2π

1

(iω + ε)2
G(ω, 0) + 2γ2

0S

∫
dω

2π
G(ω, ~x)G(ω,−~x)

〈φz(~x)〉 = γ0SG(0, ~x)

[
1− γ2

0

∫
dω

2π

1

(iω + ε)2
G(ω, 0)

]
(3.16)

where ε is a positive infinitesimal proportional to an applied magnetic field which

selects the Sz = 1/2 state. We may set ε = 0 after the frequency integrals have been

performed. The Green’s function of the φ field is

G(ω, ~x) =
1

Ld

∑
~p

ei~p·~x

ω2 + ~p2 + ∆2
, (3.17)
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where ∆ is the spin gap of the bulk antiferromagnet in the absence of the impurity.

Other boundary conditions will only change the form of G, requiring expressions

involving different normal mode wavefunctions, but the form in Eq. (3.16) will remain

unchanged. It is easy to check that the spatial integral of 〈Qz〉 is quantized at S.

To leading order in ε, it would appear that we can set ∆ equal to the spin gap in

the infinite bulk antiferromagnet, and in particular, set ∆ = 0 at the critical point

s = sc. However, we will see below that for the particular boundary conditions we

are using here, there are infrared divergencies at ∆ = 0 in the expressions for the

impurity-induced spin textures. In such a situation we have to examine the finite L

corrections to the value of ∆ at s = sc, which yield a non-zero ∆ even at the bulk

quantum critical point. The value of ∆ can be computed as described elsewhere[122],

and to leading order in ε, the equation determining ∆ at the quantum critical point

s = sc is

∆2 =
5g0

6

1

Ld

∑
~p

∫
dω

2π

1

ω2 + ~p2 + ∆2
(3.18)

To leading order in ε, only the ~p = 0 term on the right-hand-side has to be included;

setting g0 equal to its fixed point value[122] we find for small ε

∆ =

(
20π2ε

11

)1/3
1

L
. (3.19)

Note that L∆ is a universal number at s = sc, which is the main result we will need

below to establish the universality of the spin texture.

Returning to the expressions in Eq. (3.16), we now want to manipulate them into

the forms of Eq. (3.3) and (3.5). However, the presence of the δd(~x) in Eq. (3.16)

makes the ~x dependence singular. These singularities are in fact an artifact of the

present perturbative expansion in real space, and are not expected to be present once
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the expansion is resummed. This is evident by examining the results in momentum

space, where the results are a smooth function of momentum. In this manner we

obtain after applying Eq. (3.17) to Eq. (3.16)

〈Qz(~p)〉 = S

1− γ2
0

Ld

∑
~q

1

2E~q

(
1

E2
~q

− 2

E~p+~q(E~p+~q + E~q)

)
〈φz(~p)〉 =

γ0S

~p2 + ∆2

1− γ2
0

Ld

∑
~q

1

2E3
~q

 (3.20)

where E~p =
√
~p2 + ∆2. Now Eqs. (3.20) can be evaluated at the fixed point value of

γ0, and to leading order in ε they are seen to yield results consistent with the following

scaling forms which can be deduced from Eqs. (3.3,3.5)

〈Qz(~p)〉 = Φ̃Q(~pL)

〈φz(~p)〉 = L(d+1−η)/2Φ̃n(~pL) (3.21)

The explicit results for the scaling functions to leading order in ε are

Φ̃Q(~y) = S

[
1− 2π2ε

∑
~x

1

2E~x

(
1

E2
~x

− 2

E~y+~x(E~y+~x + E~x)

)]

Φ̃n(~y) =
πS
√

2ε

~y2 + L2∆2

[
1− 2π2ε (a finite number)

]
(3.22)

where now ~x and ~y are three dimensional momenta whose components are quan-

tized in integer multiples of 2π (except in the integral in the second equation), and

E~x =
√
~x2 + L2∆2. It is easily checked that these expressions are free of infrared

and ultraviolet divergencies, and so yield universal results because L∆ is a universal

number.

¿From the above expression, we observe that Φ̃Q(|~y| → ∞) = S(1 − (ε/2) ln |~y|),

which we assume exponentiates to Φ̃Q(|~y| → ∞) ∼ |~y|−ε/2. From the short distance
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behavior of the spin texture discussed in Ref. [96], we expect that Φ̃Q(|~y| → ∞) ∼

|~y|−η′/2, where η′ is the scaling dimension of the boundary spin[107]. So we obtain the

value η′ = ε, which is consistent with earlier results[107]. Similarly, from the short

distance behavior discussed in Ref. [96], we also have Φ̃n(|~y| → ∞) ∼ |~y|−2+(ε+η−η′)/2.

So with η ∼ O(ε2) and η′ = ε, we have Φ̃n(|~y| → ∞) ∼ |~y|−2, which is consistent with

Eq. (3.22).

3.3 Deconfined criticality

This section describes the Néel-VBS transition in square lattice quantum antiferro-

magnets with a single S = 1/2 per unit cell. As discussed in Section 3.1, the response

of a non-magnetic impurity is described by the action Szb + Szimp in Eqs. (3.7,3.8) for

a complex SU(N) spinon field zα and a non-compact U(1) gauge field Aµ. Here we

will describe the 1/N expansion of its universal critical properties. Note that in what

follows we have rescaled the spinon field z, to remove the coupling constant g from

the action (3.7), in favour of a rescaled constraint z†αzα = 1/g. This constraint is

enforced with a local Lagrange multiplier λ, so that the bulk action becomes,

Szb =

∫
dτ

∫
d2x

[
|(∂µ − iAµ)zα|2 + iλ(|zα|2 −

1

g
) +

1

2e2
(εµνλ∂νAλ)

2

]
. (3.23)

It is useful to define SU(N) generalizations of the SU(2) observables introduced

in Section 3.1. The uniform magnetization density Q generalizes to Qa, which is the

temporal component of a current associated with the SU(N) rotation symmetry,

Qa = z†T aDτz − (Dτz)†T az (3.24)
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(where Dµ = ∂µ− iAµ is the covariant derivative) while the Néel order n in Eq. (3.6)

becomes the staggered magnetization operator

na = z†T az (3.25)

where T a are generators of the SU(N) algebra. We will describe the spatial depen-

dence of the expectation values of these operators for two cases: a finite system of

size L at the critical point g = gc in Section 3.3.1, and the infinite system in the Néel

phase with broken SU(N) symmetry in Section 3.3.2.

3.3.1 Critical point in a finite system

We tune the system to the critical point g = gc of the infinite volume zero tem-

perature model, and then consider the system on a spatial torus of length L. We

use periodic boundary conditions for all fields.2 As we discussed in Section 3.1, the

ground state in the absence of an impurity is a spin-singlet, while adding an impu-

rity yields a ground state which transforms under the fundamental representation of

SU(N). This ground state has a single spinon in it, and we argued that the projection

onto this state can be performed by Eq. (3.9). For an additional test of our projection

formalism, see the appendix, where we compute the U(1) (electric) charge density in

the presence of the impurity.

Before we address the explicit computation of (3.9), we discuss scaling forms that

our results should obey.

2In principle, on a spatial torus, we can certainly have a finite magnetic (Fij) flux, which would
correspond to non-periodic boundary conditions. However, finite flux sectors are expected to be
separated from vacuum by an energy gap, and hence are suppressed at T = 0.
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Scaling forms

We are interested in computing the uniform and staggered magnetization densities.

Recall, that since the uniform magnetization is a zeroth component of a conserved

current, it receives no renormalizations. Therefore, utilizing the SU(N) symmetry,

we have the general scaling form,

〈α|Qa(~x)|β〉 =
1

L2
ΦQ

(~x
L

)
T aαβ. (3.26)

The leading 1/L2 prefactor corresponds to the scaling dimension ∆Q = d = 2 of the

magnetization density. Moreover, by conservation of total SU(N) charge,∫
d2rΦQ(~r) = −1 (3.27)

where the integral is over 0 < r1, r2 < 1. Similarly, for the case of the staggered

magnetization,

〈α|na(~x)|β〉 = Ληn

(
1

L

)1−ηn
Φn

(
~x

L

)
T aαβ (3.28)

Here ηn is the anomalous dimension of the staggered magnetization operator na(x),

∆n = dim[na] = 1 − ηn. This exponent is related to the exponent η in Eq. (3.5),

and their values were computed previously [123] in the 1/N expansion for arbitrary

spacetime dimension 2 < D < 4:

ηn =
1

2
(D − 2− η) =

1

N

16Γ(D − 2)

Γ(2−D/2)Γ(D/2− 1)3
+O(1/N2)

D=3
=

16

π2N
+O(1/N2) .

(3.29)

The function ΦQ is completely universal, whereas Φn is universal only up to an overall

scale. In particular, Φn does not have any property analogous to (3.27).

Of particular interest is the behavior of the functions ΦQ(~r), Φn(~r) for ~r → 0. We

make a hypothesis that na(~x, τ) and Qa(~x, τ) flow to the same operator Sa(τ) as ~x
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approaches the Wilson line,

lim
|~x|→0

Qa(~x, τ) =
cQ

|~x|−∆Q
imp

Sa(τ) (3.30)

lim
|~x|→0

na(~x, τ) =
cn

|~x|−∆n
imp
Sa(τ)

Calculations in the ε expansion supporting this hypothesis have been given in Ref. [121].

We have performed analogous calculations in the 1/N expansion again confirming the

OPE (3.30). Technically, this impurity OPE program consists of the following steps.

First one considers the (multiplicative) renormalization of the operator na(~x = 0),

by studying its insertion into the two point function of the z field (this consist of

the usual bulk renormalization, plus an additional renormalization of the logarithmic

divergences that appear as ~x → 0). Once na(~x = 0) operator is renormalized, one

considers the insertion of Qa(~x → 0) into the two point function of the z field. The

highest divergence as |~x| → 0 is power-like, 1/|~x|, modified by logarithms at higher

orders in 1/N . This leading divergence can be cancelled by a na(~x = 0) countert-

erm (with a coefficient that diverges as ~x → 0). This procedure gives one a way to

construct order by order in 1/N , the impurity operator Sa(τ) (which is essentially a

regularized na(~x = 0, τ)), and compute the anomalous dimensions ∆Q
imp, ∆n

imp as well

as coefficients cQ, cn (the later are renormalization scheme dependent). As the com-

putation of the OPE in the 1/N expansion essentially follows that in the ε expansion

presented in Ref. [121], we shall not include it here. We only note that in this way, we

have been able to explicitly check the OPE (3.30) to order 1/N2, obtaining ∆n
imp to

order 1/N2 and ∆Q
imp to order 1/N (this is lower order than the corresponding result

for ∆n
imp as cQ/cn is of order 1/N). Explicit results in this expansion will appear in

Section 3.3.2.
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Calculations of ΦQ and Φn given below provide additional support for the OPE

(3.30). Note that the exponents ∆Q
imp and ∆n

imp are not independent. Indeed, let the

correlator

〈Sa(τ)Sb(0)〉 ∼ 1

τ 2 ∆S
δab . (3.31)

The exponent ∆S is related to the boundary spin exponent η′ used in Refs. [107, 96]

by η′ = 2∆S. Then,

∆S = ∆Q + ∆Q
imp = ∆n + ∆n

imp (3.32)

Recalling, ∆Q = 2, ∆n = 1− ηn,

∆Q
imp = ∆n

imp − 1− ηn . (3.33)

Our explicit results for the profiles ΦQ,Φn confirm the relation (3.33) to leading

(zeroth) order in 1/N , see below. We have also been able to check this relation

to order 1/N using the impurity OPE program summarized above: to this order,

∆Q
imp = −1 − ηn, as ∆n

imp ∼ O(1/N2). The result of our evaluation of ∆n
imp to

O(1/N2) will appear later in Eqs. (3.120),(3.121).

Note that the OPE (3.30) is sensitive only to short distance physics, and, thus,

coefficients cQ, cn should be independent of the system size L as well as the deviation

from the critical point (all this IR information is, however, contained in the impurity

operator Sa). Thus, the ratio,

cQ
cn

= lim
|~x|→0

|~x|∆n
imp−∆Q

imp
〈Qa(~x)〉
〈na(~x)〉 = lim

|~x|→0
|~x|1+ηn

〈Qa(~x)〉
〈na(~x)〉 (3.34)

although non-universal, should be constant throughout the scaling regime (once the

regularization scheme is chosen). We shall check this fact below to leading order in
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1/N by comparing the short distance behaviour (controlled by the OPE) of uniform

and staggered magnetization densities at the critical point and in the Néel phase.

Projection onto the single spinon state

Now we return to the evaluation of the matrix elements (3.9). Although it is pos-

sible to obtain all the results presented below directly from Eq. (3.9) it is technically

somewhat simpler to use instead,

〈α|O(~x)|β〉 = lim
T →∞

〈zα(~k, T /2)O(~x, 0)z†β(~k′,−T /2)〉imp

〈zα(~k, T /2)z†α(~k′,−T /2)〉imp

(3.35)

Here, zα(~k, τ) =
∫
d2xzα(~x, τ)e−i

~k~x and the subscript “imp” indicates that the corre-

lator should be computed in a theory with the action Szb + Szimp which includes the

impurity term. Effectively, we have extended the Wilson line, which in (3.9) stretched

from the point where a spinon was created to the point where it was destroyed, to run

from τ = −∞ to τ =∞. In addition, we have taken our “incoming” and “outgoing”

spinon to be in momenta ~k and ~k′ states. This makes the numerator and denom-

inator of (3.35) non-gauge invariant. Nevertheless, we expect that this non-gauge

invariance comes solely from the matrix element for creating the ground state of the

system by acting on the vacuum with z† and cancels out between the numerator and

denominator of (3.35).

Since the impurity term Eq. (3.8) breaks spatial (but not temporal) translational

invariance, for T → ∞ we expect to obtain the ground state irrespective of which

~k,~k′ we started with. Nevertheless, it will be most convenient in our perturbative

treatment to work with ~k = ~k′ = 0.

Since the external charge does not break SU(N) symmetry and time translation
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symmetry, we have,

〈zα(x)z†β(x′)〉imp = δαβD(~x, ~x′, τ − τ ′) (3.36)

We let,

D(~x, ~x′, τ) =
1

L2

∑
~p,~p′

∫
dω

2π
D(~p, ~p′, ω)ei~p~xe−i~p

′~x′eiωτ (3.37)

We write,

〈zα(y)O(x)z†β(y′)〉imp =

∫
dvdv′D(y, v)Oαβ(v, x, v′)D(v′, y′) (3.38)

Fourier transforming,

Oαβ(v, x, v′) =
1

L2

∑
~p

1

L2

∑
~p′

∫
dω

2π

∫
dω′

2π
Oαβ(~p, ~q, ~p′, ω, ω′)

× ei~p~ve−i~p′~v′ei~q~xeiωvτ e−iω′vτ ′ei(ω′−ω)xτ (3.39)

where we use the notation that the three-vector x has spatial components ~x and

temporal component xτ . So,

〈zα(~k, T /2)O(~x, 0)z†β(~k′,−T /2)〉imp =∑
~p,~p′,~q

∫
dω

2π

dω′

2π
D(~k, ~p, ω)Oαβ(~p, ~q, ~p′, ω, ω′)D(~p′, ~k′, ω′)eiωT /2eiω

′T /2ei~q~x (3.40)

As we perform the integral over ω, ω′, we pick up poles of the propagators D in the

=(ω) > 0, =(ω′) > 0 planes (we expect that Oαβ is analytic in ω). In the limit

T → ∞ only the contribution from the pole with smallest imaginary part survives.

Let this pole be at ω = im and denote by Res(~k, ~p) the residue of D(~k, ~p, ω) at this

pole. Then,

〈zα(~k, T /2)O(~x, 0)z†β(~k′,−T /2)〉imp →
∑
~p,~p′,~q

(iRes(~k, ~p))(iRes(~p′, ~k′))

× Oαβ(~p, ~q, ~p′, im, im)ei~q~xe−mT (3.41)
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Similarly, the denominator of (3.35) is,

〈zα(~k, T /2)z†α(~k′,−T /2)〉imp → L2iRes(k, k′)e−mT (3.42)

Finally,

〈α|O(~x)|β〉 =
1

L2

∑
q

〈α|O(~q)|β〉 ei~q~x (3.43)

with,

〈α|O(~q)|β〉 =
∑
~p,~p′

(iRes(~k, ~p))(iRes(~p′, ~k′))

iRes(k, k′)
Oαβ(~p, ~q, ~p′, im, im) (3.44)

Large N expansion of CPN−1 theory in finite volume

We now compute the expression (3.44) using the large N expansion in finite vol-

ume. First, consider the N =∞ limit. The gap equation reads,

1

L2

∑
~p

∫
dω

2π

1

ω2 + ~p2 +m2
0

=
1

gN
(3.45)

and to this order in N , m2
0 = i〈λ〉. In the infinite volume, the critical coupling g = gc

is obtained when the gap m0 vanishes,

1

gcN
=

∫
d3p

(2π)3

1

p2
(3.46)

However, once we make the spatial volume finite, a non-zero m0 is generated even at

the critical point. Thus, setting g = gc, using Eq. (3.46) and poisson resumming, we

obtain,

∑
~n∈Z2

∫
dω

2π

∫
d2p

(2π)2
ei~p ~nL

1

ω2 + ~p2 +m2
0

=

∫
dω

2π

∫
d2p

(2π)2

1

ω2 + ~p2
(3.47)

On the left-hand side, only the ~n = 0 term diverges in the UV. However, this di-

vergence cancels with the divergence of the right-hand side. Thus, performing all
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integrals, ∑
~n6=0

1

4π|~n|e
−m0|~n|L =

m0L

4π
(3.48)

The solution of the Eq. (3.48) is,

m0 = θ
1

L
(3.49)

where θ is a constant that can be obtained by solving (3.48) numerically to be,

θ ≈ 1.51196.

Thus, at leading order the propagator,

D0(~k,~k′, ω) = δ~k,~k′
1

ω2 + ~k2 +m2
0

(3.50)

and the lowest pole is at ~k = 0, ω = im0 and, iRes(~k, ~p) = δ~k,0δ~p,0
1

2m0
.

To develop the 1/N expansion, we will need to find the Aµ and λ propagators.

The dynamically generated self-energy for Aµ is to leading order,

Kµν(p) = −N 1

L2

∑
~q

∫
dqτ
2π

(
(2q − p)µ(2q − p)ν

((q − p)2 +m2
0)(q2 +m2

0)
− 2δµν

(q2 +m2
0)

)
(3.51)

This self energy is always more singular near the critical point than the bare Maxwell

term in Szb , and so we will work with e2 = ∞ for the rest of this chapter. To

find the photon propagator, Dµν(p), we also need to fix a gauge. Practically, for

the calculations to follow, we will only need the static electromagnetic propagator

Dττ (~p, pτ = 0) = Kττ (~p, pτ = 0)−1, which is a gauge invariant quantity. We also note

that in the infinite volume limit,

Kµν(q) = K(q)(q2δµν − qµqν) (3.52)

K(q) = NAqD−4 (3.53)
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Figure 3.1: The insertion of Qa into the z propagator.

where the constant A is given by,

A =
1

(4π)D/2
(D − 2)Γ(2−D/2)Γ(D/2− 1)2

Γ(D)
(3.54)

Here D is the space-time dimension. In our case, D = 3 and A = 1
16

.

Likewise, the self-energy for λ is to leading order,

Π(p) = N
1

L2

∑
~q

∫
dqτ
2π

1

(q2 +m2
0)((q − p)2 +m2

0)
(3.55)

In the infinite volume limit,

Π(p) = NBpD−4 (3.56)

where the constant B is given by,

B =
1

(4π)D/2
Γ(2−D/2)Γ(D/2− 1)2

Γ(D − 2)
(3.57)

For D = 3, B = 1
8
.

Matrix elements

Now, let us compute the matrix elements of operator Qa(x). The insertion of Qa

into the z propagator, to leading order in 1/N is given by diagram in Fig. 3.1, so

Qa
αβ(~p, ~q, ~p′, ω, ω′) = i(ω + ω′)T aαβδ~q,~p′−~p (3.58)
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So utilizing formula (3.44), with ~k = ~k′ = 0, we obtain,

〈α|Qa(~q)|β〉 = −T aαβδ~q0 (3.59)

i.e.,

〈α|Qa(~x)|β〉 = − 1

L2
T aαβ (3.60)

and the function ΦQ(~r) = −1, satisfies the normalization condition (3.27). So at

leading order in the 1/N expansion the magnetization in the presence of an impurity

is spatially uniform. The system with the impurity simply consists of a free spinon

in the zero momentum state. The effects of the interaction with the impurity appear

only at next order in 1/N .

Similarly, for the staggered magnetization, the insertion of na(x) into the z prop-

agator, to leading order is given by the same diagram in Fig. 3.1, except the cross

now stands for na.

naαβ(~p, ~q, ~p′, ω, ω′) = δ~q,~p′−~pT
a
αβ (3.61)

so that,

〈α|na(~q)|β〉 =
1

2m0

δ~q0T
a
αβ (3.62)

and,

〈α|na(~x)|β〉 =
1

2θL
T aαβ (3.63)

So the staggered magnetization at leading order in 1/N is also uniform, Φn(~r) = 1
2θ

.

Now, let’s include the 1/N corrections.

We will concentrate on corrections to 〈α|O(~q)|β〉, for O = Qa, na, with ~q 6= 0

(where the leading O(1) term vanishes). These turn out to be much simpler to
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Figure 3.2: 1/N corrections to z self-energy.

compute than corrections for ~q = 0. Moreover, for Qa, we know by SU(N) charge

conservation that the N = ∞ result (3.59) at ~q = 0 receives no further corrections.

Thus, to order 1/N ,

〈α|O(~q)|β〉 ~q 6=0
= iRes(0,−~q)1Oαβ(−~q, ~q, 0, im0, im0)0

+ iRes(~q, 0)1Oαβ(0, ~q, ~q, im0, im0)0

+ iRes(0, 0)0Oαβ(0, ~q, 0, im0, im0)1 (3.64)

where the subscripts 0, 1 indicate the order in 1/N to which the quantity has to be

computed.

The 1/N corrections to the z self-energy are shown in Fig. 3.2 (we drop λ tadpole

diagrams). Of these only the last one couples to the impurity and, therefore, breaks

translational invariance. So, letting,

D(~k,~k′, ω) = D0(~k,~k′, ω)−
∑
~p,~p′

D0(~k, ~p, ω)Σ(~p, ~p′, ω)D(~p′, ~k′, ω) (3.65)

Σ(~k,~k′, ω)
~k 6=~k′
=

1

L2
2iωDττ (~k − ~k′, 0) +O(1/N2) (3.66)

and

D(~k, ~k′, ω)
~k 6=~k′
= − 1

L2
2iωDττ (~k − ~k′, 0)

1

ω2 + ~k2 +m2
0

1

ω2 + ~k′2 +m2
0

+O(1/N2) (3.67)
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So the residue,

iRes(0,−~q) = iRes(~q, 0)
~q 6=0
=

1

L2

1

~q2
Dττ (~q, 0) +O(1/N2) (3.68)

Note that at this order renormalization of the location of the pole ω = im
N=∞

= im0

can be neglected.

The 1/N corrections to the insertion of Qa into the z propagator are shown in

Fig. 3.3.

Figure 3.3: 1/N corrections to the insertion of Qa into the z propagator.

Again, only the last one of these couples to the impurity and breaks translational

invariance, so,

Qa
αβ(~p, ~q, ~p′, ω, ω′)

~q 6=~p′−~p
= −2

1

L2
Dττ (~q + ~p− ~p′, 0)T aαβ +O(1/N2) (3.69)

Combining (3.64),(3.68),(3.69),

〈α|Qa(~q)|β〉 = −
(
δ~q,0 + (1− δ~q,0)

1

θL
(1 +

4m2
0

~q2
)Dττ (~q, 0)

)
T aαβ +O(1/N2) (3.70)

The calculation of 1/N corrections to result (3.62) for impurity induced staggered

magnetization na(x) proceed in the same fashion. The corrections to insertion of
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na(x) into the z propagator are given by the first two diagrams in Fig. 3.3 (except

now the cross stands for na insertion). None of these break translational invariance

(as the last diagram in Fig. 3.3 is present only for Qa, but not for na). Therefore,

〈α|na(~q)|β〉 =
1

2m0

(
δ~q,0(1 +O(1/N)) + (1− δ~q,0)

1

L2

4m0

~q2
Dττ (~q, 0)

)
T aαβ +O(1/N2)

(3.71)

Note again that in the case of 〈α|na(~q)|β〉 we have computed the 1/N corrections

only to ~q 6= 0. Unlike the case of uniform magnetization, here the N = ∞ result for

〈α|na(~q = 0)|β〉 is expected to receive corrections.

Thus, the scaling functions,

ΦQ(~x/L) = −1− 1

θL

∑
~q 6=0

(1 +
4m2

0

~q2
)Dττ (~q, 0)ei~q~x +O(1/N2) (3.72)

Φn(~x/L) =
1

2θ
+ c1 +

1

L3

∑
~q 6=0

2

~q2
Dττ (~q, 0)ei~q~x +O(1/N2) (3.73)

where c1 is an ~x-independent constant of order 1/N (c1 should be also independent

of Λ; we have not verified this fact as we did not compute the 1/N corrections to

〈α|na(~q = 0)|β〉). We may write,

ΦQ(~r) = −(1 +
1

N
fQ(~r)) +O(1/N2) (3.74)

Φn(~r) =
1

2θ
(1 + 2c1θ +

1

N
fn(~r)) +O(1/N2) (3.75)

We have evaluated the functions fQ, fn numerically and plotted them along the

diagonal of our spatial torus in Fig. 3.4.

Now, we would like to find the ~q → ∞, ~x → 0 asymptotes of (3.72), (3.73). For

this purpose, we may replace the finite box propagator Dττ (q) by the infinite box

propagator,

Dττ (~q, 0)
~q→∞→ 1

NA

1

|~q| (3.76)
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Figure 3.4: Uniform (a) and Staggered (b) magnetization distribution functions fQ(~r),
fn(~r) plotted along the torus diagonal.

Writing, ΦQ,n(~x/L) = 1
L2

∑
~q ΦQ,n(~q)ei~q~x,

ΦQ(~q)
~q→∞→ − 1

NAθ

L

|~q| +O(1/N2) (3.77)

Φn(~q)
~q→∞→ 2

NA

1

L|~q|3 +O(1/N2) (3.78)

Fourier transforming,

ΦQ(~r)
|~r|→0→ − 1

2πθNA

1

|~r| +O(1/N2) (3.79)

Φn(~r)
|~r|→0→ 1

2θ
+ c2 +O(1/N2) (3.80)

where c2 is a constant of order 1/N .

Thus, we conclude that,

∆Q
imp = −1 +O(1/N) ∆n

imp = O(1/N2) (3.81)

which is consistent with the relation between impurity exponents (3.33). Note that

the present calculation shows that ∆n
imp is zero to order 1/N . We shall verify this

fact in a different way in Section 3.3.2, and compute ∆n
imp to order 1/N2.

Moreover, the ratio,

cQ
cn

= − 1

πNA
+O(1/N2) (3.82)
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is independent of regularization at this order in N .

3.3.2 Néel phase

In this section, we compute the uniform and staggered magnetization in the pres-

ence of an impurity of charge Q in the symmetry broken phase, g < gc. We work in

infinite volume. We develop the 1/N expansion around the symmetry broken vacuum,

〈z1〉 =
1√
2
v (3.83)

Note that in general v is not a gauge invariant quantity. However, this fact does not

manifest itself at the order at which we are working. To leading order in N ,

1

2
v2 =

1

g
− 1

gc
(3.84)

Note that v2 ∼ O(N). Moreover, we take Q ∼ O(1) in N .

We now must quantize our theory around the symmetry broken state. We write,

z1 =
1√
2

(h+ v + iφ), zα = πα, α = 2 .. N (3.85)

We work in the so-called Rξ gauge, in which the mixing between the goldstone φ

and the photon Aµ is absent, at the expense of introducing a ghost field c. In what

follows, we have eliminated the mixing only to leading order in 1/N . This is achieved

by using the gauge-fixing condition,

∂µAµ = ξvK−1φ+ w (3.86)

where the action for the auxillary field w, which appears in the Fadeev-Poppov for-

malism, is

Sw =
1

2ξ

∫
dxdyw(x)K(x− y)w(y) (3.87)
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Here, K(x− y) is the photon polarization function given by Eq. (3.53). Similarly, in

what follows Π(x− y) is the λ self energy given by Eq. (3.55).

At the end of the day, the action one obtains is,

Sξ =
1

2

∫
dxdy Aµ(x)

(
Kµν(x− y)− 1

ξ
∂µ∂νK(x− y) + δµνv

2

)
Aν

+
1

2

∫
dxdy φ(x)

(
−∂2δ(x− y) + ξv2K−1(x− y)

)
φ(y)

+
1

2

∫
dxdyλ(x)Π(x− y)λ(y)

+

∫
dxdy

(
c̄
(
−∂2δ(x− y) + ξv2K−1(x− y)

)
c(y) + ξvc̄(x)K−1(x− y)h(y)c(y)

)
+

∫
dx

(
|Dµπ|2 +

1

2
(∂µh)2 + ivλh+ (φ∂µh− ∂µφh)Aµ + (vh+

1

2
h2 +

1

2
φ2)A2

µ

)
+

∫
dx

(
iλ|π|2 +

1

2
iλ(φ2 + h2)

)
(3.88)

As usual, we avoid double counting by dropping any diagrams, which are already

included in the dynamically generated N = ∞ self-energies for Aµ, λ etc. The

propogators for our fields are shown in Fig. 3.5. Note that in the Néel phase, we get

mixing between the λ and h fields.

Now, having set up the perturbation theory, we wish to compute, 〈Qa(~x)〉, 〈na(~x)〉.

Utilizing the pattern of spontaneous symmetry breaking, U(N) → U(N − 1) (here

we look only at global symmetry), one can show that,

〈na〉 = T a11〈n0〉 (3.89)

where n0 = z†T 0z and T 0 is any generator of SU(N) with T 0
11 = 1. Similarly for

Qa. For definiteness, we may choose T 0
11 = 1, T 0

1α = T 0
α1 = 0, T 0

αβ = − 1
N−1

δαβ,

α, β = 2 .. N .
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Aµ Aν Dµν(p) = 1
p2K(p)+v2

(
δµν + (ξ−1)K(p)pµpν

p2K(p)+ξv2

)
φ φ Dφ(p) = 1

p2+ξv2K−1(p)

c̄ c Dc(p) = 1
p2+ξv2K−1(p)

π∗β πα Dπαβ(p) =
δαβ
p2

h h Dh(p) = Π(p)
p2Π(p)+v2

λ λ Dλ(p) = p2

p2Π(p)+v2

h λ Dhλ(p) = −iv
p2Π(p)+v2

Figure 3.5: Propagators in the Néel phase.

Let’s start with computing the uniform magnetization.

Q0 =
N

N − 1
j1
τ −

1

N − 1
jτ (3.90)

where

j1
τ = z†1Dτz1 − (Dτz1)†z1 (3.91)

and jτ is the U(1) charge density discussed in the appendix, see Eq. (B.1). By

equation of motion (B.4),

〈jτ (~x)〉 = −Jext
τ (~x) = −Qδ2(~x) (3.92)

So, it remains to compute 〈j1
τ (~x)〉. Expanding j1

τ in terms of φ, h and Aµ,

j1
τ = −iv2Aτ + iv(∂τφ− 2Aτh) + i(h∂τφ− φ∂τh− Aτ (h2 + φ2)) (3.93)
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Figure 3.6: Leading contribution to uniform magnetization in the symmetry broken
phase.

In the 1/N expansion the leading contribution to 〈j1
τ 〉 is of O(1) and comes from the

first term on the r.h.s of (3.93), see Fig. 3.6.

〈j1
τ (~p)〉 = −Qv2Dττ (~p, 0) = −Qv2 1

~p2K(~p) + v2
(3.94)

Thus, 〈Q0(~p)〉 = 〈j1
τ (~p)〉+O(1/N). Fourier transforming,

〈Q0(~x)〉 = − Qv2

2πNA

1

|~x| +
Qv4

4N2A2

(
H0

(
v2|~x|
NA

)
− Y0

(
v2|~x|
NA

))
+O(1/N) , (3.95)

where H0 is the Struve function and Y0 is the Bessel function. Taking the short and

long distance asymptotes,

〈Q0(~x)〉 ~x→0→ − Qv2

2πNA

1

|~x| (3.96)

〈Q0(~x)〉 ~x→∞→ −QNA
2πv2

1

|~x|3 (3.97)

The long distance decay is a consequence of the Goldstone physics of the spin waves,

and the 1/|~x|3 decay is expected to be exact. At short distances, we have the physics

of the critical point, and the exponent will have corrections at higher order. From

the present result we can conclude that the impurity exponent

∆Q
imp = −1 +O(1/N), (3.98)

which is consistent with the result obtained at the critical point (3.81).
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Now, let’s discuss the staggered magnetization,

n0 =
N

N − 1
z†1z1 −

1

N − 1
z†z (3.99)

By equations of motion,

z†z =
1

g
(3.100)

thus,

n0 =
N

N − 1
z†1z1 −

1

(N − 1)g
(3.101)

and

z†1z1 =
1

2
v2 + vh+

1

2
(h2 + φ2) (3.102)

Thus, at leading order, 〈z†1z1(~x)〉 = 1
2
v2, and

〈n0(~x)〉 =
1

2
v2 +O(1) (3.103)

Moreover, the ~x-dependent corrections to 〈n0(~x)〉 come only at O(1/N), with dia-

grams of Fig. 3.7 (the part of n0 which contributes at this order, denoted by ×, is

vh).

We will discuss the diagrams in Fig. 3.7 shortly. For now, we can conclude that,

∆n
imp = O(1/N2) (3.104)

in agreement with the result (3.81) obtained at the critical point. Moreover, we can

now compute the ratio,

cQ
cn

= − Q

πNA
+O(1/N2) (3.105)

which exactly agrees with the result obtained at the critical point (3.82) for Q = 1.

Notice, that this is a highly nontrivial check of the OPE (3.30) as 〈Qa〉, 〈na〉 depend
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a)

b) c)

Figure 3.7: Leading ~x-dependent contribution to staggered magnetization in the sym-
metry broken phase.

on v in the Néel phase and on L at the critical point. Nevertheless, all the dependence

on the IR scale cancels out in the ratio cQ/cn, which is constant throughout the scaling

regime.

Coming back to the diagrams in Fig. 3.7,

〈n0(~q)〉 ~q 6=0
= Q2v2Dh(~q, 0)

∫
dD−1p

(2π)D−1

(
1+

i

2
Π−1(~q, 0)Γττ (~q, 0, ~p, 0, ~q − ~p, 0)

)
×Dττ (~p, 0)Dττ (~q − ~p, 0) (3.106)

We keep the space-time dimension D arbitrary in what follows, as we wish to compare

our result for ∆n
imp obtained in the 1/N expansion, with the result obtained using ε

expansion[121]. Here, Γµν(q, p, q − p) is the lowest order contribution to the Aµ, Aν ,

λ vertex, given by the sum of the loops in Fig. 3.8. The diagram in Fig. 3.8 a) is

given by,

Γµν1 (q, p, q − p) = 2iδµνΠ(q) (3.107)

Thus, diagrams in Fig. 7 a) and b) cancel (by the way, these diagrams are individually

UV divergent for D ≤ 3). So, calling the diagram in Fig. 3.8 b), Γµν2 (q, p, q − p),



Chapter 3: Impurity spin textures across conventional and deconfined quantum
critical points of two dimensional antiferromagnets 119

a)
q − p

pq

b)
q − p

p

q

Figure 3.8: Leading contribution to the three point vertex of Aµ, Aν and λ fields,
Γµν(q, p, q − p).

〈n0(~q)〉 ~q 6=0
= Q2v2Dh(~q, 0)

∫
dD−1p

(2π)D−1

i

2
Π−1(~q, 0)Γττ2 (~q, 0, ~p, 0, ~q − ~p, 0)

×Dττ (~p, 0)Dττ (~q − ~p, 0) (3.108)

Evaluating Γµν2 ,

Γµν2 (q, p, q − p) = −2iN

∫
dDl

(2π)D
(2l − p)µ(2l − p− q)ν
l2(l − p)2(l − q)2

= −4iNΓ(2−D/2)

(4π)D/2

∫
dx1dx2dx3δ(1− x1 − x2 − x3)(∆2)D/2−2

(
δµν +

(4−D)(2x1q + (2x2 − 1)p)µ((2x1 − 1)q + (2x2 − 1)p)ν
4∆2

)
(3.109)

where,

∆2 = x1(1− x1)q2 + x2(1− x2)p2 − 2x1x2 p · q (3.110)

We are interested only in Γττ2 , with p0 = q0 = 0. Thus,

Γττ2 (~q, 0, ~p, 0, ~q − ~p, 0) =

= −4iNΓ(2−D/2)

(4π)D/2

∫
dx1dx2dx3δ(1− x1 − x2 − x3)(∆2)D/2−2

(3.111)
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For |~p| � |~q|, Γττ2 (~q, 0, ~p, 0, ~q − ~p, 0) ∼ |~p|D−4, so for ~p → ∞ the integrand in Eq.

(3.108) behaves as |~p|−D and the integral is UV convergent.

We now attempt to understand the behaviour of (3.108) for ~q →∞, from which we

should be able to extract the impurity anomalous dimension ∆n
imp. For this purpose,

we may set v = 0 in the propagators Dh(~q, 0), Dττ (~p, 0), Dττ (~q − ~p, 0) (this does not

introduce any IR divergences).

〈n0(~q)〉 ~q→∞=
Q2v2

N3A2B
|~q|2−D

∫
dD−1p

(2π)D−1

i

2
Γττ2 (~q, 0, ~p, 0, ~q − ~p, 0)

1

|~p|D−2

1

|~p− ~q|D−2

(3.112)

Let us first discuss the limit D = 4− ε, ε→ 0. In this regime, to leading order in

ε,

Γττ2 (~q, 0, ~p, 0, ~q − ~p, 0) = −2iN
1

(4π)2
Γ(2−D/2) (3.113)

and,

〈n0(~q)〉 ~q→∞=
72π4ε2Q2v2

N2

1

|~q|3 (3.114)

Fourier transforming,

〈n0(~x)〉 ~x→0
=

1

2
v2 + c3 −

36π2ε2Q2

N2
v2 log(v|~x|) + c4 +O(1/N2) (3.115)

where c3, c4 do not depend on ~x and are of order 1 and 1/N respectively. Thus, to

leading order in 1/N , ε,

∆n
imp = −72π2Q2ε2

N2
(3.116)

in agreement with the calculations of Ref. [121], where the impurity exponents were

obtained by performing the impurity operator renormalizations as summarized in

Section 3.3.1.3

3Note that in the ε expansion of Ref. [121] only the analogue of the diagram in Fig. 3.7 a) appears,
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For arbitrary D, ∆n
imp is difficult to calculate analytically, as Γττ is no longer a

constant. However, combining Eqs. (3.108), (3.111) and introducing a new set of

Feynman parameters,

〈n0(~q)〉 ~q→∞=
Q2v2

N2

1

|~q|D−1
f(D) (3.117)

where the numerical constant f(D) is given by,

f(D) =
1

A2B(4π)D−1Γ(D/2− 1)2

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ 1

0

dy1

∫ 1−y1

0

dy2

x
(D−3)/2
2 (1− x2)D/2−1y

1−D/2
1 y

D/2−2
2 (1− y1 − y2)D/2−2

(x2(1− x2)2y2(1− y2) + x1y1((1− x1)(1− x2)− 2y2x2(1− x2)− y1x1x2))−
1
2

(3.118)

Consequently,

〈n0(~x)〉 ~x→0
=

1

2
v2+c3−

2

(4π)(D−1)/2Γ((D − 1)/2)
f(D)

Q2

N2
v2 log(v2/(D−2)|~x|)+c4+O(1/N2)

(3.119)

and

∆n
imp = − 4

(4π)(D−1)/2Γ((D − 1)/2)
f(D)

Q2

N2
+O(1/N3) (3.120)

Evaluating f(D) numerically for D = 3,

∆n
imp ≈ −25.9

Q2

N2
+O(1/N3) (3.121)

while the diagrams in Figs. 3.7 b), c) do not appear at leading order in ε, as they are higher order
in coupling constant. Nevertheless in the 1/N expansion, we saw that the answer comes entirely
from the diagram in Fig. 3.7 c), with diagrams in Fig. 3.7 a) and Fig. 3.7 b) canceling for all D.
The reason is the following: in the 1/N expansion all diagrams in Fig. 3.7 are individually of same

order in ε. Moreover, to leading order in ε, the diagrams b) and c) cancel, so a) = - b)
ε→0
= c). In

the ε expansion, this fact is foreseen in advance: the 1/ε pole must cancel between diagrams b) and
c) (the 4-point diagram with two photons and two scalars is not divergent). Thus, we can obtain
the answer to leading order in ε either from a) alone or from c) alone.
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We note that we have separately verified the result (3.120) by performing the impurity

OPE program as summarized in Section 3.3.1.

3.4 Conclusion

A recent numerical study [96] examined the spin distribution in the vicinity of a

non-magnetic impurity in a double-layer, S = 1/2 square lattice antiferromagnet at

its quantum critical point. The ground state of the system has total spin S = 1/2,

and the spin distribution of this S = 1/2 was found to be extended across the entire

system. Universal scaling forms (Eqs. (3.3) and (3.5)) for the uniform and staggered

spin distributions were postulated[96], and found to be in excellent agreement with

the numerical results.

This chapter has presented the field-theoretic foundation of the above results.

Using the soft-spin O(3) LGW field theory in Eq. (3.11), we found that the universal

scaling forms in Eqs. (3.3) and (3.5) were indeed obeyed in an expansion in (3 − d)

(where d is the spatial dimensionality), and explicit results for the universal scaling

functions appear in Eq. (3.22).

Next, we examined a similar non-magnetic impurity in S = 1/2 antiferromagnets

which have a single S = 1/2 spin per unit cell. Such antiferromagnets can display a

deconfined quantum phase transition[1, 2] between Néel and valence bond solid (VBS)

states. An explicit example of such a transition was found recently in Ref. [57]. The

field theory for this situation in Szb +Szimp in Eqs. (3.7,3.8). It describes the dynamics

of a SU(N) spinor field, zα (the spinon), and we obtained its critical properties in a

1/N expansion. Projecting onto the total spin S = 1/2 sector of this theory (which
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contains the ground state in the presence of the impurity) was not straightforward

here, and we achieved this by the relation Eq. (3.9). Our results obey scaling forms

which appear in Section 3.3.1. The scaling functions are in Eqs. (3.72) and (3.73),

and are plotted in Fig. 3.4. The boundary spin exponent for the deconfined critical

point appears in Eqs. (3.120), (3.121). We also obtained substantial evidence for the

structure of the operator product expansion near the impurity, and the fact that the

staggered and uniform magnetizations flow to the same impurity spin operator.

After the theoretical work presented above was completed, the numerical simula-

tions in Ref. [57] of the SU(2) antiferromagnet with a single S = 1/2 spin per unit cell

were extended to include the response to a non-magnetic impurity.[124] It was found

that the universal scaling forms (3.3),(3.5) acquire logarithmic corrections. Similar

logarithmic violations have been found in other response functions.[59] The precise

origin of such corrections is not completely settled. Note that in a model of a SU(3)

antiferromagnet,[125] the scaling forms (3.3),(3.5) are seen to hold, albeit with large

finite size corrections. This suggests that the theory possesses an operator, which

becomes nearly marginal in the vicinity of N = 2.

In the context of the present study, the basic scaling structure of the uniform

and staggered magnetization for the conventional LGW and the unconventional de-

confined transitions is quite similar. In both cases, there is a single impurity spin

operator which determines the exponents characterizing the spatial form of the spin

texture. The main observable difference is in the very different values of the expo-

nents. However, a more significant difference arises when we consider the form of the

VBS order near the impurity, as this is an issue only for the deconfined critical point.
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Results on the structure of the VBS order will be presented in Chapter 4.



Chapter 4

Valence bond solid order near
impurities in two-dimensional
quantum antiferromagnets

Recent scanning tunnelling microscopy (STM) experiments on underdoped cuprates

have displayed modulations in the local electronic density of states which are centered

on a Cu-O-Cu bond.[12] As a paradigm of the pinning of such bond-centered order-

ing in strongly correlated systems, we present the theory of valence bond solid (VBS)

correlations near a single impurity in a square lattice antiferromagnet. The antiferro-

magnet is assumed to be in the vicinity of a quantum transition from a magnetically

ordered Néel state to a spin-gap state with long-range VBS order. We identify two

distinct classes of impurities: (i) local modulation in the exchange constants, and (ii)

a missing or additional spin, for which the impurity perturbation is represented by

an uncompensated Berry phase. The “boundary” critical theory for these classes is

developed: in the second class we find a “VBS vortex” around the impurity, accom-

panied by a suppression in the VBS susceptibility. Implications for numerical studies

of quantum antiferromagnets and for STM experiments on the cuprates are noted.

125
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4.1 Introduction

A number of recent scanning tunnelling microscopy experiments have highlighted

spatial modulations in the local density of states in the cuprate compounds, nucleated

by external perturbations. In Ref. [126], the spatial modulation was observed in the

normal state above Tc, presumably nucleated by impurities. In Refs. [127, 128, 129],

the order was found in a halo around vortices, which were in turn pinned by impu-

rities. Most recently, in Ref. [12], similar charge-ordering patterns were found to be

ubiquitous in the underdoped cuprates at low temperatures, and it was established

that the charge ordering was “bond-centered”, and had an anisotropic structure sim-

ilar to a valence bond solid state [130, 131, 132, 133].

In the light of these observations, it is of general interest to study the appearance

of varieties of charge order (including “valence bond solid” (VBS) order [132, 133])1

near impurities in strongly correlated systems. For superfluid states, such a theory

has been presented in earlier work [134, 135], and compared quantitatively with some

of the above experiments. It was argued that the charge order was linked to quan-

tum fluctuations of vortices/anti-vortices in the superfluid order. Consequently, the

problem mapped onto the pinning of the vortices by impurities, and the quantum

zero-point motion of vortices about the pinning site. In both zero and non-zero mag-

1In an antiferromagnet of S = 1/2 degrees of freedom, VBS order is associated with modulations

in the expectation values of the bond exchange energy ~S1 · ~S2, where ~S1,2 are the spin operators on
the ends of the bond. While this is the best physical interpretation of VBS order, in a symmetry
classification VBS order can also be considered to be a particular realization of “charge order”. This
is because in the underlying Hubbard-like model (with a respulsive energy U and hopping matrix
element t), from which the antiferromagnet descends, the VBS state will have modulations of order
t/U in the charge density in the bonding orbital between the two sites. For a discussion of how the
VBS characterization of the charge order can explain the experimental observations in the cuprates,
see Ref. [132, 133].
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netic fields, enhanced charge order was found in the spatial region over which the

vortex executed its zero-point motion [134]. This charge order was present even when

the net vorticity was zero everywhere (as is the case in zero magnetic field): the vor-

ticity cancelled between the vortex and anti-vortex fluctuations, but the charge order

did not.

This chapter will present an extensive field-theoretic analysis of a paradigm of

the problem of charge order near impurities in correlated systems. We will consider

insulating S = 1/2 antiferromagnets on the square lattice, across a quantum phase

transition from the magnetically ordered Néel state, to a spin-gap valence bond solid

(VBS) state [21, 22, 1, 2]. By representing the S = 1/2 spins as hard-core bosons,

our results can be reinterpreted as applying to the superfluid-insulator transition of

bosons at half-filling on the square lattice: the Néel state of the antiferromagnet

maps onto the superfluid state of the bosons, while the VBS state maps onto a Bose

insulator with bond-centered charge order. The bond-centered charge correlations

in the underdoped cuprates now appear to have two possible physical mechanisms

(“disordered” antiferromagnet/superfluid), but it was argued in Ref. [136] that they

represent the same underlying physics. Our results here will go beyond the earlier

work [134, 135] in two important respects:

(i) We will describe the critical singularities in the impurity-induced VBS/charge

order at the quantum critical point, and

(ii) We will consider a wider class of impurity perturbations. In the previous work

[134, 135], an “impurity” was assumed to be a generic deformation of the underlying

Hamiltonian which broke its space group symmetry. For the Néel-VBS transition,
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Figure 4.1: A modulated exchange impurity which is described in Section 4.1.1. The
dashed line indicates a different value of the antiferromagnetic exchange constant.
We expect VBS order to be enhanced near such an impurity, because the modulated
exchange will lock in a preferred orientation and offset of the VBS state.

such an impurity is realized e.g. by the modulation in the magnitude of a particu-

lar exchange coupling – see Fig 4.1. We briefly will discuss the critical singularities

describing the enhancement of VBS order near such an impurity in Section 4.1.1 be-

low; these results have a natural extension to the models of charge order near the

superfluid-insulator transition discussed above. However, the primary focus of the

present chapter is on a distinct class of impurities, in which the valence-bond structure

of the non-magnetic ground state of the antiferromagnet is more strongly disrupted,

and a “Berry phase” contribution of an unpaired spin is the crucial impurity-induced

perturbation [106, 121]. Such impurities are realized by replacing the S = 1/2 Cu

spins in antiferromagnets by a non-magnetic Zn ion, or a S = 1 Ni ion (see Fig. 4.2).

For the superfluid-insulator transition, such an impurity is a site from which parti-
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Figure 4.2: A vacancy (the shaded circle) in a square lattice quantum antiferromagnet
which is described in Section 4.1.2 and the remainder of the chapter. The red lines
represent singlet bonds between the spins. The red squares can be thought of as a
resonance between a pair of horizontal and a pair of vertical singlet bonds. The local
value of the VBS order is measured by the phase factors on the singlet bonds. Moving
anti-clockwise from the right, we observe that VBS order cycles as −1 → −i →
1 → i. Thus, this configuration is a “vortex” of the VBS order (this VBS vortex is
“dual” to the vortex in the superfluid/Néel order that is discussed in the beginning
of the chapter). Anti-vortices in the VBS order appear only around vacancies on the
other sublattice; in other words, VBS vortices transform to VBS anti-vortices under
translation by a single site—see Fig 4.3 later.

cles are excluded, and so a local “phase-shift” is induced in the charge order of the

insulating state (replacing a Cu atom by Zn or Ni is expected to have the desired

“Cooper pair” exclusion effect[136]). Our main results will include a description of

the suppression of VBS order near such “Berry phase” impurities: these results are

summarized in Section 4.1.2 below, and described in the body of the chapter. A sim-

ple sketch of how such an impurity disrupts the VBS order is shown in Fig. 4.2; this
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figure builds upon the dual theory of spinons in the VBS state developed by Levin

and Senthil [137]. The bulk of this chapter will describe how quantum fluctuations

of the type sketched in Fig. 4.2 lead to a modification of the scaling dimension of the

VBS order in the vicinity of the vacancy.

The remainder of the chapter will be presented in the language of the Néel-VBS

transition in quantum antiferromagnets, For this model, a field theoretic description

of the vicinity of the quantum critical point [1, 2, 3, 51] is provided by the CPN−1

theory at N = 2:

S =

∫
d2xdτ

[
|(∂µ − iAµ)zα|2 + s|zα|2 +

g

2

(
|zα|2

)2
+

1

2e2
(εµνλ∂νAλ)

2

]
. (4.1)

Here µ, ν λ are spacetime indices, zα, α = 1 . . . N is a complex scalar which is a

SU(N) fundamental, and Aµ is a non-compact U(1) gauge field. The Néel order of

the antiferromagnet is na = z†T az, where T a is a SU(N) generator. The SU(N)

symmetry is spontaneously broken in the Néel phase, 〈na〉 6= 0, which is realized for

s < sc, where sc is the critical value of the tuning parameter, s, for the quantum phase

transition. For s > sc, the CPN−1 theory above describes a U(1) spin liquid state of

the antiferromagnet, with gapped spinons zα and a gapless, U(1) photon. However,

as has been argued at length elsewhere [21, 22], lattice effects not included in the

continuum field theory (4.1) eventually render the U(1) spin liquid unstable to spinon

confinement and fully gapped state with VBS order. The VBS order parameter, V ,

is an operator [21, 2] which creates a Dirac monopole with total flux 2π in the U(1)

gauge field Aµ. This chapter will therefore be concerned with correlations of the

monopole/VBS operator V under the field theory S after including the impurity

perturbations described below. The bulk scaling dimension of the monopole operator
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at the s = sc critical point will make frequent appearances in our analysis, and so we

define this as

∆V = dim[V (~x, τ)] in the theory S without an impurity. (4.2)

The following subsections will now describe the two classes of impurity perturba-

tions to the theory S shown in Figs. 4.1 and 4.2 respectively.

4.1.1 Modulated exchange

A modulation in the magnitude of an exchange constant in the underlying anti-

ferromagnet (see Fig. 4.1) breaks the lattice space group symmetry, but preserves the

spin rotation symmetry. Also, the number of spins on each sublattice is preserved,

so no “Berry phase” term is expected. Consequently, we need to consider all local

perturbations to S which preserve the required symmetries. The simplest allowed

possibility is a local shift in the position of the critical point. For an impurity at the

spatial origin, x = 0, this would lead to a term

s̃

∫
dτ |zα(~x = 0, τ)|2 (4.3)

However, a simple computation [107] shows that s̃ is very likely an irrelevant pertur-

bation at the bulk critical point. We have dim[s̃] = 1 − (D − 1/ν), where D = 3 is

the spacetime dimension, and ν is the correlation length exponent of S. Because it

is almost certainly the case that ν > 1/2, we conclude that s̃ is irrelevant. However,

a more interesting perturbation is that considered in previous work [134, 135] on the

superfluid-insulator transition. In the present context, this perturbation follows from

the fact that with broken space group symmetry, a linear coupling to the monopole
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operator is permitted. So we have the impurity action

S̃imp =

∫
dτ [h∗ V (~x = 0, τ) + c.c.] (4.4)

where h is a complex-valued constant whose value depends upon the details of the

modulated exchange near x = 0. Now the renormalization group (RG) flow of h

follows from Eq. (4.2) to linear order

dh

d`
= (1−∆V )h+O(h2) (4.5)

The remainder of this subsection will analyze the correlations of the monopole/VBS

operator V (~x, τ) in the theory S + S̃imp.

First, let us consider the likely possibility that ∆V < 1. In this case, h is a relevant

perturbation, and higher order corrections to Eq. (4.5) cannot be ignored. By analogy

with results in the theory of boundary critical phenomena [138], and in particular with

the theory of the “extraordinary” transition [139, 140, 141], we conclude that a likely

possibility is that the RG flow is to strong coupling, to a fixed point with |h| =∞. In

this, case some powerful statements on the correlations of V (~x, τ) can be immediately

made. It is useful to express the correlations in the vicinity of the impurity by an

operator product expansion (OPE). In general, this expansion will have the structure

lim
|~x|→0

V (~x, τ) ∼ |~x|∆V
imp Vimp(τ) (4.6)

where Vimp is an operator localized on the impurity site, and ∆V
imp is the difference in

scaling dimensions between V and Vimp. Specifically, Eq. (4.6) implies

∆V = −∆V
imp + dim[Vimp]. (4.7)
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Now at a |h| =∞ fixed point, we expect that fluctuations of V near the impurity are

strongly suppressed, and so it is a reasonable conclusion that Vimp is just the identity

operator

Vimp = 1. (4.8)

Consequently, dim[Vimp] = 0, and we have our main result

∆V
imp = −∆V . (4.9)

The combination of Eq. (4.6) and (4.9) appears to be a promising route to measur-

ing the scaling dimension of a monopole operator in numerical studies of quantum

antiferromagnets.

To complete our analysis of modulated exchange, we also address the case with

∆V > 1. In this situation, by Eq. (4.5), the perturbation h is irrelevant, and so we

may compute the consequences of h by perturbation theory. Computing correlations

to first order in h we see that Eq. (4.6) is now replaced by

lim
|~x|→0

V (~x, τ) ∼ h |~x|−2∆V +1 (4.10)

4.1.2 Missing spin

Next we will consider the behavior of the monopole/VBS operator V near the

missing spin impurity illustrated in Fig. 4.2. As discussed in some detail in Ref. [121],

the dominant consequent of such an impurity is an exactly marginal perturbation to

S given by

Simp = iQ

∫
dτAτ (~x = 0, τ) (4.11)
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where Q is a “charge” characterizing the impurity. The value of Q does not flow

under the RG, and so Q is a pure number which controls all universal characteristics

of the impurity response. For an impurity of Fig. 4.2 with a single missing spin,

Q = ±1. The remainder of this chapter presents an analysis of the critical properties

of the S + Simp defined in Eqs. (4.1) and (4.11).

The magnetic correlations of the theory S + Simp (and of a related theory [142])

have been computed in chapter 3, which obtained the scaling dimensions of the Néel

order parameter, na, and of the uniform magnetization density in the vicinity of

the impurity. It was found that the impurity significantly enhanced the local mag-

netic susceptibilities. For the case of double-layer antiferromagnets, which have mag-

netic ordering transitions described by Landau-Ginzburg-Wilson theory, such impu-

rity magnetic correlations have also been computed by similar methods [106, 107, 112],

and found to be in excellent agreement with numerical studies [144, 96, 117].

This chapter will describe the “charge-order” correlations of the theory S + Simp

by a computation of the OPE of the monopole/VBS operator V (~x, τ) as ~x→ 0. Our

principal result is that the OPE is modified from the form in Eq. (4.6) to

lim
|~x|→0

V (~x, τ) ∼ |~x|∆V
imp e−iQθ Vimp(τ) (4.12)

where θ is the azimuthal angle of ~x. There are two important changes from Eq. (4.6).

The first is that Vimp is no longer a trivial unit operator, but a fluctuating impurity

degree of freedom with a non-trivial scaling dimension. The second is the presence

of the e−iQθ factor, which indicates a Q-fold winding in the phase of the VBS order

parameter around the impurity. The sketch in Fig. 4.2 gives a simple physical inter-

pretation of this winding in terms of the valence bond configurations of the underlying
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Figure 4.3: A VBS anti -vortex in the presence of an impurity with a charge Q opposite
in sign to that required by Eq. (4.12). This configuration has a higher energy cost
than the VBS vortex configurations in Fig. 4.2.

antiferromagnet. Also, as we discussed earlier [121], the sign of Q is determined by

the sublattice location of the missing spin. Thus, the result Eq. (4.12) indicates that

VBS vortices will occur preferentially around impurities on one sublattice, while VBS

anti-vortices occur around impurities on the other sublattice. This same result is also

obtained from the intuitive microscopic picture in Fig. 4.2. Also, we show in Fig. 4.3

an illustration of an anti-vortex in the presence of an impurity on the disfavored

sublattice: the same sublattice bond indicates that this configuration has a higher

energy.

Apart from establishing the form of Eq. (4.12), we will also describe computations

of the exponent ∆V
imp. There are general reasons for expecting that ∆V

imp > 0, and

this will be the case in the explicit result we obtain. This positive value of ∆V
imp char-
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acterizes the suppression of VBS order near the impurity, and should be contrasted

with the negative value in Eq. (4.9) for the impurity in Fig. 4.1.

Our analysis will begin in Section 4.2 by a large N analysis of the theory S+Simp

with full SU(N) spin symmetry. We will establish Eq. (4.12) in this limit. We will

also find that the N = ∞ limit (at fixed Q) of the exponent ∆V
imp vanishes, but we

will not evaluate the subleading correction in the 1/N expansion here.

The remainder of the chapter will explore another approach to estimating ∆V
imp.

This relies [1, 2] on examining the “easy-plane” limit of the CPN−1 model, in which

the global SU(N) spin symmetry is reduced to U(1)N−1. With this simplification to

an abelian global symmetry, an explicit duality transformation of the theory becomes

possible. In the dual theory, the monopole/VBS operator V has a local expression

in terms of the dual fields, and so this facilitates the analysis of the impurity critical

property. We will begin the dual analysis in Section 4.3 by considering the simplest

N = 1 case [145]: this model describes the onset of VBS order in a S = 1/2 quantum

antiferromagnet in the presence of a staggered magnetic field [2], and is the simplest

setting in which several technical issues can be described. We then extend the analysis

to general N in Section 4.4. The exponent ∆V
imp will be estimated in these sections

by a self-consistent theory of Gaussian fluctuations about a mean-field state; in the

physically interesting case of N = 2 and Q = 1, which describes both the easy plane

antiferromagnet and the boson superfluid/insulator transition, we obtain the estimate

∆V
imp ≈ 0.57, N = 2, Q = 1 (4.13)

Our analysis of the easy plane theory in Section 4.4 also exhibits certain features

which we do not expect to be shared by the case with global SU(N) symmetry: for
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Q/N = 1/2, we find VBS-vortex solutions in which the e−iQθ factor in Eq. (4.12)

is replaced by e−i`θ with the integer −Q ≤ ` ≤ Q. In the self-consistent theory we

present here, all the values of ` are degenerate, but we expect these degeneracies are

partially lifted in the full easy-plane theory. These issues are discussed further in

Section 4.4.

4.2 1/N Expansion of the CPN−1 theory in the pres-

ence of monopoles

The insertion of one monopole into the partition function of CPN−1 model in the

disordered phase has been originally considered in Ref. [3]. The 1/N expansion pro-

ceeds by replacing the quartic self-interactions in Eq. (4.1) by a fixed-length constraint

on the spinons; so we consider the action

S =

∫
d2xdτ

[
|(∂µ − iAµ)zα|2 + iλ

(
|zα|2 −

1

g

)]
(4.14)

where λ is a fluctuating Lagrange multiplier field. The procedure for generating the

1/N expansion is now simple. One first integrates over the z fields obtaining an effec-

tive action for Aµ and λ. However, instead of expanding this effective action around

the trivial classical vacuum Aµ = 0, one expands around the monopole (instanton)

solution, Aiµ, with

F i
µ = 2πq

(x− x0)µ
4π|x− x0|3

(4.15)

where Fµ = εµνλ∂νAλ, q is the monopole charge and x0 is the monopole position. In

practice, integrating out the z fields in the background of spatially varying monopole
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fields is quite complicated (even more so due to the appearance of UV and IR diver-

gences), so that only the leading term in the 1/N expansion has been computed in

the past (that is fluctuations of Aµ about the monopole solution have not been taken

into account). At this order, one finds,

〈V q(x)〉 ∼
(m

Λ

)2Nρq
(4.16)

where V q(x) is the monopole operator of charge q, m is the mass gap of the theory, Λ

is the ultraviolet cut-off and ρq is a collection of universal numbers (depending only

on the charge of the monopole) which have been computed in Ref. [3]. Thus, the

dimension of operator V q(x), dim[V q] = 2Nρq.

If finding the expectation value of a monopole operator (and its scaling dimension)

was very complicated, finding correlators of V (x) with Wilson loops at N =∞ turns

out to be exceedingly simple. Indeed, we notice that at leading order in 1/N it is

sufficient to simply replace Aµ in the Wilson loop by its monopole value,

〈V q(x) exp
(
−iQ

∫
C Aµdxµ

)
〉

〈V q〉 → exp

(
−iQ

∫
C
Aiµdxµ

)
= exp

(
−iQ

∫
S
F i
µdSµ

)
(4.17)

provided that we take the charge Q to be O(1) in N (otherwise, if Q ∼ O(N) the

Wilson line will change the background monopole field and the problem becomes

intractable). Here C is some closed contour and S is any surface such that ∂S = C.

Thus, all we have to do is find the flux of our monopole through the Wilson loop that

we are considering. Fluctuations of Aµ about the monopole field (4.15) will contribute

at O(1/N) to the correlator (4.17). Likewise, if we denote the Wilson loop operator

by W (C), then in the absence of the monopole field 〈W (C)〉 ∼ 1 +O(1/N) (saturated
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by fluctuations of Aµ around the trivial vacuum), so

〈V q(x)W (C)〉
〈W (C)〉 = 〈V q〉 exp

(
−iQ

∫
S
F i
µdSµ

)
(4.18)

and at leading order in 1/N the external charge only changes the phase of the expec-

tation value of monopole operator but not its magnitude.

In principle we are interested in finding the correlator of the monopole operator

(that we place at a point x = (r cos θ, r sin θ, 0)) and a straight, temporal Wilson

line of charge Q (which we place at the origin). However, to regularize possible IR

divergences let’s also place a charge −Q on the positive x axis far away from the

origin. As usual, we may connect the two oppositely directed Wilson lines in the far

past and far future. Then, according to (4.17) we have to compute the magnetic flux

due to the monopole field (4.15) through the y = 0, x > 0 half-plane,∫
~F · d~S = −q

2

∫ ∞
−∞

dτ

∫ ∞
0

dx
r sin θ

((x− r cos θ)2 + r2 sin2 θ + τ 2)
3
2

(4.19)

= −q
∫ ∞

0

dx
r sin θ

(x− r cos θ)2 + r2 sin2 θ
(4.20)

= −q(π − θ) (4.21)

We see that the flux through the Wilson loop changes by 2πq as the monopole crosses

the surface of the loop. However, the expectation value,

〈V q(x)〉imp =
〈V q(x)W (C)〉
〈W (C)〉 = 〈V q〉eiQq(π−θ) (4.22)

remains single valued, as by Dirac’s condition Q is an integer (in what follows, we

shall also often discuss Wilson loops with non-integer charge Q, which in the presence

of monopole operators are defined by specifying a surface S, W (S) = e−iQ
∫
S FµdSµ .

The correlation functions then explicitely depend on the choice of the surface, as can
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be seen from (4.22)). Thus, we see that the phase of the monopole operator winds

by −2πQ as we move it in a full circle around the Wilson line, i.e. an external charge

creates a vortex of the monopole field, consistent with the OPE in Eq. 4.12. We

expect that once we go beyond the leading order in N , this vortex will also get a

nontrivial spatial profile,

〈V q(x)〉imp = 〈V q〉f(m|~x|)e−iQqθeiχ (4.23)

Here f(r) is the vortex profile function and eiχ is some overall phase (discussed below).

We expect that far away from the external charge, the monopole field tends to its

vacuum expectation value so that f(∞) = 1. Moreover, by continuity we expect the

monopole field to vanish at the origin, f(0) = 0. To the order to which we were

working, f(r) = 1, which implies that the impurity exponent ∆V
imp ∼ O(1/N).

Notice that the result (4.22) is sensitive to the angular position of the distant

charge relative to the one at the origin (we introduced the variable θ as the angle

between the plane of the Wilson loop and the monopole operator). This is not

unexpected: the monopole field is the order parameter for the flux symmetry, which

is spontaneously broken in the disordered phase. As we rotate the distant charge, the

overall phase eiχ of the expectation value of the monopole operator changes - that is

we explore different states in our vacuum manifold.

If we were instead considering a correlation function of a string of monopole opera-

tors
∏

i V
qi(xi) such that the overall combination is invariant under the flux symmetry

(that is
∑

i qi = 0) we expect the dependence on the angular position of the distant

charge to drop out. We can check this in the limit m|xi − xj| � 1, m|~xi| � 1,
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assuming clustering,

〈
∏
i

V qi(xi)〉imp →
∏
i

〈V qi(xi)〉imp →
∏
i

〈V q
i 〉e−iQqiθi (4.24)

which is invariant under θi → θi +χ. Alternatively, in the same limit of far separated

monopoles and at N = ∞, the classical magnetic field will just be a linear superpo-

sition of magnetic fields due to each monopole. Thus, the flux Φ through the Wilson

loop will be given by, Φ = −∑i qi(π−θi) =
∑

i qiθi and using the equivalent of (4.18)

for a string of monopole operators, we arive at the same expression (4.24).

We expect the general form (4.23) to be preserved at any finite order in 1/N .

Nevertheless, in the flux-broken phase of the theory, there are also non-perturbative

effects that should be taken into consideration. Indeed, the U(1)Φ vortex nucleated by

the external charge is global, and thus, will have a logarithmically divergent energy.

Put into a more conventional language, the external charge creates a Coulomb poten-

tial, which is logarithmic in two dimensions, V (r) ≈ − e2Q
2π

log(mr) for mr � 1. The

effective coupling constant e2 can be calculated in the 1/N expansion to be e2 ∼ 1
N
m.

Thus, it will be energetically favourable for the external charge to bind a dynamical

spinon (we concentrate on the case Q = 1 here for simplicity). This process can be

analyzed by means of a non-relativistic Schrodinger equation[23]. One finds a bound

state of size rb ∼ N
1
2m−1. We expect that for r � rb the external charge will be

screened by the dynamical spinon. On the other hand for r � rb this logarithmic

confinement should generally have little effect on the physics. However, there is one

notable exception: the expectation value of the monopole operator V q (4.22) will

be drastically altered on all distance scales by the screening. Indeed, if we assume

that screening takes place, 〈V q(~x)〉 has to tend to its vacuum expectation value for
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|~x| � rb, and should experience no phase winding. We don’t expect the winding

number to change abruptly as we decrease |~x|, so we won’t see a phase winding of

〈V q(~x)〉 on short distances |~x| � rb as well.

A toy model for the disappearance of winding when screening effects are taken into

account can be constructed as follows. We can use the charge −Q that we previously

put far away from the origin to represent the dynamical spinon that gets bound to

the external charge. We first freeze the location of this spinon at some position ~x′

away from the origin and compute the resulting expectation value of V q(~x) using

eq. (4.18). We then average the resulting 〈V q(~x)〉 over the spinon positions x′ with

the probability distribution |ψ(~x′)|2, where ψ(~x) is the spinon wave-function. Since

this wave-function will be azimuthally symmetric, one immediately learns that upon

averaging over the angular position of the spinon, 〈V q(~x)〉 looses its finite winding

number and will, in fact, carry a constant phase for all ~x. This same averaging will

also lead to an additional supression 〈V q(~x)〉 ∼ |~x| as ~x → 0 (recall that at N = ∞

there was no supression of the vortex profile for x → 0 before screening effects were

taken into account). The origin of this supression is easy to see - for an external

charge located infinitely far away, the averaging over the azimuthal position of the

charge is identical to averaging of the phase χ in eq. (4.23) producing a zero result

for 〈V q〉.

Do the above findings invalidate the OPE (4.12)? The answer is no. The above

discussion simply implies that 〈Vimp〉 = 0 and, thus, the expectation value 〈V (~x)〉

for ~x → 0 is controlled by higher order terms in the OPE (namely, by the impurity

operator with angular momentum zero). However, higher correlation functions of V
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operator, e.g. the V BS susceptibility 〈V (x)V †(x′)〉, are still controlled by the OPE

(4.12). Such correlators are invariant under the U(1)Φ symmetry, so as we argued

above, their short distance properties are not sensitive to the location of the distant

charge, and hence, to screening physics.

4.3 Easy plane model at N = 1

This section, and the next, will examine a simplified version of the theory S+Simp

in which the non-abelian global SU(N) symmetry is reduced to an abelian U(1)N−1

symmetry. This enables us to use the tools of abelian particle-vortex duality [52,

53] to obtain a theory expressed in terms of fields which are locally related to the

monopole/VBS operator V . The present section will consider the simplest case [145]

with N = 1. This model describes the onset of VBS order in a S = 1/2 quantum

antiferromagnet in the presence of a staggered magnetic field [2], and is useful in

resolving a number of key technical questions in their simplest setting. For N = 1,

the theory S does not have any global continuous symmetry, and becomes equivalent

to scalar electrodynamics. With the results for the N = 1 theory obtained in the

present section, we will be able to rapidly analyze the general N case in the next

section.

4.3.1 Duality and Wilson loops

It is well known that in three space-time dimensions, near its critical point, non-

compact N = 1 scalar electrodynamics is dual to a theory of a complex (pseudo)scalar

field with a global U(1) symmetry [52, 53]. The Lagrangians of these two theories are
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as follows,

LQED =
1

2e2
F 2
µ + |(∂µ − iAµ)z|2 +m2|z|2 +

g

2
|z|4 (4.25)

LXY = |∂µV |2 + m̃2|V |2 +
g̃

2
|V |4 (4.26)

Here z and V are complex one component fields. The duality is understood as being

true for the range of parameters where LQED has a second order phase transition

(which at weak coupling is believed to occur for g/e2 sufficiently large). One way to

understand the duality is by noting that the phase transition in scalar QED is driven

by spontaneous breaking of flux symmetry U(1)Φ, which is precisely the global sym-

metry of LXY . The order parameter for the flux symmery is the monopole operator

V (x) - that is the dynamical field of LXY
2. As we know, to each continous symmetry

there corresponds a conserved current. In the case of flux symmetry of QED, this

pseudo-vector current is just the magnetic field Fµ, which is trivially conserved in the

absence of monopoles, ∂µFµ = 0. Let’s introduce an external field Hµ that would

couple to this current,

δLQED = iHµFµ (4.27)

Suppose we are calculating some correlation function with insertion of a string of

monopole operators of charge qi at points xi. The gauge field Aµ in the path in-

tegral is then subject to the condition, ∂µFµ =
∑

i 2πqiδ(x − xi). Then under the

transformation,

Hµ → Hµ + ∂µα (4.28)

2Here we use the notation that V q=1(x) ∼ V (x) and V q=−1(x) ∼ V †(x). The precise proportion-
ality factor between V ’s in the direct and dual picture is a delicate matter (related in part to the
precise definition of the monopole operator in the direct picture), which shall not be very important
to us here.
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SQED → SQED + i

∫
dx ∂µαFµ = SQED − i

∫
dxα ∂µFµ = SQED − 2πi

∑
i

qiα(xi)

(4.29)

Hence, by introducing the field Hµ we can enlarge the global U(1)Φ symmetry to a

fictitious local symmetry, provided that the monopole operators transform as,

V q(x)→ e2πiqα(x)V q(x) (4.30)

The dual Lagrangian LXY has to posses this local symmetry. Hence, to introduce the

field Hµ into the dual Lagrangian we simply have to covariantize the derivative of the

dynamical monopole field V ,

∂µV → DµV = (∂µ − 2πiHµ)V (4.31)

in eq. (4.26). Other “gauge invariant” operators can also be added to LXY , e.g. H2
µν ;

however, their contribution will, generally, either cancel out in correlation functions

or be less singular near the critical point.

Thus, the dual Lagrangian in the presence of a background source field Hµ is given

by,

LXY = |(∂µ − 2πiHµ)V |2 + m̃2|V |2 +
g̃

2
|V |4 (4.32)

The covariantization procedure (4.31) was explicitly written down in Ref. [146].

Similar arguments for the case of a constant imaginary Hµ, which physically repre-

sents an external magnetic field in the QED language and translates into a chemical

potential for the flux symmetry in the XY language, have been given in Ref. [147]. In

Ref. [148] we have also given an argument based on an exact duality transformation

on the lattice, which support (4.32).
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Having learned how to incorporate the source field Hµ into the dual Lagrangian,

it is now trivial to dualize Wilson loops. Indeed, insertion of a Wilson loop W (C) into

a correlation function is equivalent to adding into the Lagrangian the source term

δL = iQ

∫
C
dxµAµ = iQ

∫
S
dSµFµ = i

∫
dxHµFµ (4.33)

where

Hµ(x) = Q

∫
y∈S

dSµ δ(x− y) (4.34)

That is Hµ is a field that lives on the surface of the Wilson loop and is directed

perpendicular to this surface.

Another benefit of introducing the source field Hµ is that by differentiating with

respect to it we can compute correlation functions of the magnetic field Fµ. For

instance,

〈−iFµ(x)〉H =
δ logZ[H]

δHµ(x)
= −2πi〈

(
V †DµV − (DµV )†V

)
(x)〉H (4.35)

That is the topological flux current Fµ of QED gets mapped into the Noether’s current

associated with the global U(1) symmetry of the dual model. Differentiating once

again,

〈Fµ(x)Fν(y)〉H, conn = − δZ[H]

δHµ(x)δHν(y)

= (2π)2
(
〈V †←→D µV (x)V †

←→
D νV (y)〉H, conn + 2δµνδ(x− y)〈V †V (x)〉H

)
(4.36)

The first term in (4.36) is the expected correlator of two U(1)Φ currents, while the

second term is a tadpole that ensures the overall transversality of the correlation

function.
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Having discussed the duality at length, we now return to our original problem:

what is the influence of the exernal charge (Wilson line) on various physical observ-

ables. The observable of most interest to us is the monopole operator V (x). However,

this observable is physical only for integer-valued charge Q of the Wilson line (Dirac’s

condition). Indeed, recall that in the dual language the field H depends on a choice

of surface S of the Wilson loop. If we pick a different surface S ′ then the field Hµ

undergoes a gauge transformation Hµ → H ′µ = Hµ+∂µα with α(x) = −Q 1x∈V where

V is the volume bounded by the two surfaces S and S ′. Hence,

〈V (x)...〉H′ = e2πiα(x)〈V (x)...〉H (4.37)

where ellipses denote some other operators. Thus, the operator V (x) is invariant

under changing the surface of the Wilson loop if and only if Q is an integer. However,

if the charge Q is a rational number, Q = p/q where p and q are integers then

the flux 2πq monopole operator V q(x) ∼ (V (x))q is physical. Moreover, a theory

with arbitrary irrational Q is still sensible provided that we confine our attention

to correlation functions of operators which are invariant under the fictitious U(1)Φ

local symmetry, e.g. the magnetic field operator −iFµ = −2πiV †
←→
D µV . In fact, if we

are dealing with such gauge invariant operators we don’t necessarily have to use the

precise form of H given by (4.34); defining γµ to be a field living on the perimeter of

the Wilson loop and directed along it,

γµ(x) = Q

∫
y∈C

dyµδ(x− y) (4.38)

we see that,

εµνλ∂νHλ = γµ (4.39)
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Then, by performing a suitable gauge transformation on Hµ and V we can choose Hµ

to be any field with curl given by γµ. Thus, we see that the duality maps a Wilson

loop of charge Q in the QED language to an external magnetic flux tube of flux

2πQ in the XY language. This correspondence has been noted in Ref. [149], but the

consequences of this correspondence for the critical properties of Wilson loops were

not discussed.

Now we can address the problem that we originally posed in a dual language.

Let’s place an charge external charge Q at the spatial origin. For now we don’t insist

that this charge be an integer. The dual source field Hµ must, therefore, satisfy

∇× ~H = Qδ2(~x)τ̂ (4.40)

Thus, we basically have to solve an Aharonov-Bohm problem with flux 2πQ. One

choice for the source field Hµ is

Hµ(x) = Qδµ,2θ(x)δ(y) (4.41)

This is the so-called string gauge, which corresponds to (4.34), with the surface of

the Wilson loop being the plane y = 0, x > 0. As is well known, the string gauge is

equivalent to Hµ = 0 and the boundary condition,

V (θ = 2π) = e−2πiQV (θ = 0) (4.42)

where θ is the azimuthal angle. Thus, we have to solve the theory (4.26) with the

twisted boundary condition (4.42). We observe that the physics is, therefore, a pe-

riodic function of Q. For integer Q the boundary condition (4.42) is trivial - there

is no twist. So our argument indicates that integral external charges do not affect
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correlation functions on distances of order of the correlation length of the theory:

screening of integral charges takes place on distance scales of oder of microscopic UV

cutoff. This surprising fact is discussed in more detail in Ref. [148].

The behaviour at non-integer Q is less unexpected. One physical question that we

may ask is what is the magnetic (electric) field induced by the charge Q (we define

the electric field Ei = Fi3 = −εijFj where latin letters i, j, k run over spatial indices).

Although this is a departure from our original goal, we will see that a lot of the results

that we will obtain along the way will be useful when we return to discuss correlators

of monopole field for the planar theory with N fields. Another question that we will

adress for non-integer, rational, values of Q = p/q is the behaviour of higher flux

monopole operators V (x)q.

4.3.2 Perturbative expansion of the dual theory for Q→ 0

The magnetic field −iFµ is a conserved current and receives no renormalizations

and, thus, has conformal dimension 2. Therefore, at the critical point we expect,

〈−i ~E〉 = C(Q)
1

r2
r̂ (4.43)

The electric field is imaginary as we are working in Euclidean space. The coeficient

C(Q) is a universal number that is a periodic function of charge Q. We shall be

interested in determining this function.

For Q→ 0 we can perform a perturbative expansion in Hµ ∼ O(Q).

〈−iFµ(x)〉H =
δ logZ[H]

δHµ(x)
≈
∫
dy

δ2 logZ

δHµ(x)δHν(y)
Hν(y) = −

∫
dy〈Fµ(x)Fν(y)〉Hν(y)

(4.44)
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As we have learned, the correlation function of magnetic field Fµ dualizes to,

Kµν(x− y) = 〈Fµ(x)Fν(y)〉 = (2π)2
(
〈V †←→∂µV (x)V †

←→
∂ν V (y)〉+ 2δµνδ(x− y)〈V †V 〉

)
(4.45)

By transversality,

Kµν(p) = K(p)(δµν −
pµpν
p2

) (4.46)

By RG K(p) should have the form,

K(p) = Mg(p/M) (4.47)

where M is some physical scale in the theory (e.g. in the U(1)Φ disordered phase, the

mass of the monopole field V ). At the critical point,

K(p) = A|p| (4.48)

where A is some universal number. On the XY side of the theory, this univer-

sal number has been computed before using both ε expansion[150] and large M

expansion[151]. The large M expansion is obtained by replacing the complex scalar

V in the action for the XY theory (4.26) by an M component complex field. In the

large M expansion the coefficient A is found to be at next to leading order in M ,

A = (2π)2M

16

(
1− 1

M

32

9π2

)
M=1≈ 1.6 (4.49)

while in the ε expansion one obtains A ≈ 2.0 at O(ε2). Monte-Carlo simulations on

the XY model[151] indicate A ≈ 1.8.3 The coefficient A can also be computed by

performing a large N expansion in the original QED, whereby the field z is promoted

3Given our normalization of A one has to multiply the value of universal conductance presented
in Refs. [150, 151] by 2π.
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to have N components. At leading order one obtains A = 16/N
N=1
= 16 (as usual,

direct large N expansion in QED produces results, which are numerically notoriously

inaccurate for N ∼ 1).

For completeness, we also discuss the behaviour of K(p) at small momenta on both

sides of the critical point. In the phase where the U(1)Φ symmetry is spontaneously

broken the spectrum of the theory should contain a goldstone, which can be created

out of the vacuum by the U(1)Φ current,

lim
p→0
〈p|Fµ(x)|0〉 = 2π lim

p→0
〈p| − iV †←→∂µV (x)|0〉 = 2πifpµe

ipx (4.50)

where in three dimensions f 2 defines a physical energy scale. Note that equation

(4.50) is written in Minkowski space. We see that the goldstone is nothing but the

photon of the original QED. Then Kµν(p) should have a pole at p2 = 0 and using

spectral decomposition,

lim
p→0

K(p) = (2πf)2 (4.51)

On the other hand, in the the phase where the U(1)Φ symmetry is unbroken (that is in

the “superconducting” phase of QED) the V field is massive and all the excitatations

have a gap. Therefore, Kµν(p) cannot have a pole at p2 = 0 and

lim
p→0

K(p) ∼ p2

M
(4.52)

Having discussed the expected form of Kµν in different phases we can go back to

eq. (4.44) for electric field induced by the charge Q. Introducing the kernel D(p) =

K(p)/p2, and using eq. (4.40),

〈−iFµ(x)〉 = −
∫
dyKµν(x− y)Hν(y) = −Q

∫
dτ ′εµν3∂

x
νD(~x, τ ′) (4.53)
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Hence,

〈−i ~E(~x)〉 = Qh(|~x|)r̂ (4.54)

where

h(|~x|) = − ∂

∂|~x|

∫
dτ ′D(~x, τ ′) (4.55)

Substituting the expression (4.48) for K(p) at the critical point we obtain,

〈−i ~E(~x)〉 = Q
A

2π|~x|2 r̂ (4.56)

Hence we identify,

C(Q) ≈ QA/(2π), Q→ 0 (4.57)

Similarly, in the U(1)Φ ordered phase,

〈−i ~E(~x)〉 = Q
2πf 2

|~x| r̂ (4.58)

So in this phase, as expected, the external electric charge produces the usual Coulomb-

like electric field, ~E =
e2effQ

2πr
, as appropriate to two spatial dimensions with the iden-

tification eeff = 2πf .

4.3.3 Peculiarities of the free theory

So far we have only discussed the leading term in C(Q) for Q → 0. In principle,

we could continue the expansion in Q to higher orders: then the problem reduces

to finding correlators of current operators −iFµ = iV †
←→
∂µV . These correlators can

be found by performing either ε or 1/M expansion of the XY model. In either case,

going beyond the leading order in Q is not simple. So, instead, we choose to return

to the formulation of the problem involving the twisted boundary condition (4.42).
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In the next section we will use this formulation to compute C(Q) for all Q (albeit

numerically) at M = ∞. However, before we do so, we will solve a slightly simpler

problem: namely we find the form of C(Q) at the gaussian fixed point g̃ = 0, m̃2 = 0 of

the Lagrangian (4.26). The reason for studying the free theory is that the calculations

in it are, technically, very similar to those in the strongly coupled M = ∞ theory

addressed in the next section (even though the physical results are quite different).

In the free theory, C(Q) can be determined exactly, and, surprisingly, turns out

to be a non-analytic function of Q at Q = 0. We have not been able to see any

hints of this non-analyticity from the perturbative expansion of the free theory in Q

(perhaps because we could go perturbatively only to linear order in Q, whereas the

non-analyticity of C(Q) starts only at order |Q|2). On the other hand, once we go

in the next section to the strongly interacting fixed point (obtained in the M = ∞

limit), the theory cures itself of all IR divergences and C(Q) becomes analytic in Q.

So, let’s compute,

〈−iFµ(x)〉 = 〈−2πiV †
←→
∂µV (x)〉 = −2πi lim

x→y
(∂xµ − ∂yµ)〈V (x)V †(y)〉 (4.59)

in the free theory, L = |∂µV |2 subject to boundary condition (4.42). As eq. (4.59)

shows, to find the U(1)Φ current it is sufficient to determine the propagator, D(x −

y) = 〈V (x)V †(y)〉. The propagator will also determine the correlation function of

operators (V (x))q for rational Q = p/q,

〈(V (x))q
(
V †(y)

)q〉 = q!D(x− y)q (4.60)

We note that our problem is invariant under translations along the temporal direction,
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so,

D(~x, ~x′, τ − τ ′) =

∫
dω

2π
D2(~x, ~x′, ω2)eiω(τ−τ ′) (4.61)

where D2(~x, ~x′, ω2) denotes the two-dimensional propagator with mass m2 = ω2 and

twisted b.c. (4.42). We use spectral decomposition to find D2,

D2(~x, ~x′,m2) =
∑
l

eilθ

2π

∫ ∞
0

dE
1

m2 + E
φl,E(~r)φ∗l,E(~r′) (4.62)

where we sum over states with fixed azimuthal angular momentum l = n−Q, n ∈ Z.

Note that the angular momenta are not integral due to the twisted b.c. (4.42). The

radial eigenfunctions φl,E(r) satisfy,(
−1

r

∂

∂r
(r
∂

∂r
) +

l2

r2

)
φl,E(r) = Eφl,E(r) (4.63)

and are normalized as, ∫ ∞
0

dr rφ∗l,E(r)φl,E′(r) = δ(E − E ′) (4.64)

The solution to ODE (4.63) is,

φl,E(r) =
1√
2
J|l|(
√
Er) (4.65)

where Jn(u) is the n-th order Bessel function. Hence,

D(r, r′, θ − θ′, τ − τ ′) =
∑
l

eil(θ−θ
′)

∫
dω

2π
eiω(τ−τ ′)

∫ ∞
0

du

2π

u

u2 + ω2
J|l|(ur)J|l|(ur

′)

(4.66)

where we made the substitution u =
√
E. Integrating over ω,

D(r, r′, θ, τ) =
1

4πr′

∑
l

eilθ
∫ ∞

0

dvJ|l|(
r

r′
v)J|l|(v) exp(−|τ |

r′
v) (4.67)
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Now we can ask, what is the behaviour of the propagator D(r, r′, θ, τ) for r → 0, i.e.

for r � r′. Recalling, J|l|(r) ≈ 1
2|l|Γ(|l|+1)

r|l|,∫ ∞
0

dvJ|l|(
r

r′
v)J|l|(v) exp(−|τ |

r′
v) ≈

( r
r′

)|l|
Bl(
|τ |
r′

) (4.68)

with

Bl(u) =
1

2|l|Γ(|l|+ 1)

∫
dvv|l|J|l|(v) exp(−uv) =

Γ(|l|+ 1
2
)

Γ(|l|+ 1)

(
1 +

τ 2

r′2

)−|l|− 1
2

(4.69)

Thus, for r → 0 the contribution of states with angular momentum l to the propagator

scales as r|l|. So, the largest contribution comes from smallest |l| = |n − Q|. For

−1
2
< Q < 1

2
smallest |l| is given by setting n = 0, l = −Q. Hence, for |Q| < 1/2,

and r/r′ � 1,

D(r, r′, θ, τ) ≈ 1

4πr′

( r
r′

)|Q|
e−iQθBQ(

τ

r′
) (4.70)

For values of |Q| > 1/2 we simply periodize the eq. (4.70), since all physics in XY

model is periodic in Q with period 1 (see discussion in previous section). From here

on, we therefore confine our attention to |Q| < 1/2.

Thus, if we were to perform the OPE in Eq. (4.12) in the XY model

V (~x, τ) ∼ |~x|∆V
impe−iQθ Vimp(τ) for |~x| → 0 (4.71)

we would obtain for |Q| < 1
2

in the free XY model,

∆V
imp = |Q|. (4.72)

We immediately see that the free theory is non-analytic in Q at Q = 0. By periodizing

in Q, we also see that ∆V
imp is non-analytic at Q = ±1/2. However, this later non-

analyticity appears only after we take r → 0 limit of the propagator, while we expect

the non-analyticity at Q = 0 to persist in the propagator for arbitrary r, r′.
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In fact, Q = 1
2

is a very special point. At this point the n = 0, l = −Q and

n = 1, l = 1−Q, i.e. l = ±1/2 terms in the sum (4.67) become equally important for

r/r′ → 0. Thus, for Q → 1/2 it makes sense to keep both terms in the assymptotic

expansion of the propagator,

D(r, r′, θ, τ) ≈ 1

4πr′

(( r
r′

)Q
e−iQθBQ(

τ

r′
) +

( r
r′

)1−Q
e−i(Q−1)θBQ−1(

τ

r′
)

)
(4.73)

and we may hypothesize the impurity OPE, for Q→ 1/2,

V (~x, τ) ∼ cQ|~x|∆
V
Qe−iQθ VQ(τ) + cQ−1|~x|∆

V
Q−1e−i(Q−1)θ VQ−1(τ), for |~x| → 0 (4.74)

where VQ and VQ−1 are two impurity operators, with impurity anomalous dimensions

∆V
Q and ∆V

Q−1. In the free theory, ∆V
Q = Q and ∆V

Q−1 = 1−Q. Hence, for Q < 1/2,

∆V
Q < ∆V

Q−1 and the operator VQ is the most relevant as |~x| → 0, while the operator

VQ−1 provides a subleading correction. For Q > 1/2 the roles of these two operators

are reversed. Finally, for Q = 1/2 the two operators have degenerate anomalous

dimensions, ∆V
1/2 = ∆V

−1/2 and,

V (~x, τ) ∼ c1/2|~x|∆
V
1/2e−iθ/2 V1/2(τ) + c−1/2|~x|∆

V
−1/2eiθ/2 V−1/2(τ), for |~x| → 0 (4.75)

Physically, the Q = 1/2 point is special because the CP symmetry is effectively

restored at it.4 Indeed, under CP, Q → −Q. However, as already discussed, the

universal physics is periodic in Q, so the points Q = ±1/2 are identified. Thus, the

two impurity operators, V±1/2 are just CP conjugates of each other and must have

the same impurity anomalous dimensions. Hence, although our original analysis was

4In D = 3 we take the P -parity symmetry to correspond to a reflection about one spatial axis,
θ → −θ (a complete spatial inversion ~x→ −~x is a rotation in 2 + 1 dimensions). The monopole field
V is a pseudoscalar, which means that under charge conjugation C, V → V † and under P -parity,
V (x1, x2, x3)→ V †(x1,−x2, x3).
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performed for the case of the free theory, we expect the conclusions to remain valid

in the strongly interacting theory.

We remind the reader that even though the operator V (x) is mathematically

well defined by specifying the surface S of the Wilson loop for arbitrary Q, it is

not physical for non-integral Q. Indeed, a physical operator cannot obey twisted

boundary conditions. However, for rational Q = p/q, the flux 2πq monopole operator

V q(x) ∼ (V (x))q is well-defined on both sides of the duality. Using (4.60) and (4.70),

we obtain the OPE,

V q(~x, τ) ∼ |~x|∆V
imp(q)e−iqQθ V q

imp(τ) for |~x| → 0 (4.76)

with

∆V
imp(q) = q|Q| (4.77)

in the free XY theory for |Q| < 1/2. Since qQ = p is an integer, the OPE (4.76) is

invariant under θ → θ + 2π, making the operator V q(x) single-valued, as required.

Having discussed the impurity OPEs, let us return to the calculation of electric

field. Since we know that the electric field will be radial, we only need the θ̂ component

of the magnetic field,

〈−iFθ〉 = −2πi
1

r
lim
θ→θ′

(∂θ − ∂θ′)D(r = r′, θ − θ′, τ = τ ′)

= −4πi
1

r
lim
θ→0

∂θD(r = r′, θ, τ = τ ′) (4.78)

For this purpose, we don’t need the propagator with r/r′ � 1, but rather with r → r′,

τ → τ ′. We denote, D(r, θ) = D(r = r′, θ, τ = τ ′). Unfortunately, if we plug r = r′,

τ = τ ′ into the expression for propagator (4.67), the integral over v diverges. We

expect that if we instead first keep r − r′, τ − τ ′ finite, perform the integration over
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v, sum over angular momenta l and only then take r = r′, τ = τ ′, the divergence

disappears. There are also other ways to regularize the propagator: e.g. make the

integral over ω in (4.61) run over D − 2 dimensions. This would correspond to the

XY model in D dimensions coupled to an external flux-tube (the flux-tube is a defect

in 2 dimensions, so its world-volume is D− 2 dimensional). One then takes the limit

D → 3 at the end of the calculation. We have successfully used this method to

compute the electric field (see Appendix C.1). The result for the coefficient C(Q) of

eq. (4.43) is,

C(Q) =
1

8
(1− 2|Q|)2 tan(πQ), |Q| < 1 (4.79)

Thus, we see that the function C(Q) is non-analytic at Q = 0. This analyticity occurs

at non-leading order in Q,

C(Q) ≈ π

8
Q(1− 4|Q|), Q→ 0 (4.80)

The leading order term, C(Q) ≈ π
8
Q is the one which would have been predicted by

expanding the free theory perturbatively in Q.

One can also derive the result (4.79) in a different way, which can be more easily

generalized from the free theory to the 1/M expansion in a strongly interacting theory.

This calculation is based on the integral representation of the propagator of the

twisted theory derived in Ref. [152]. We repeat the calculations of Ref. [152] in

Appendix C.2 as in the next section we will need to generalize them for application

in 1/M expansion. The result is,

D(r, θ) =
1

4πr

∫ ∞
0

dν tanh(πν)Uν(θ) (4.81)
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with,

Uν(θ) =
e−2πiQsgn(θ) sinh(ν|θ|) + sinh(ν(2π − |θ|))

cosh(2πν)− cos(2πQ)
(4.82)

from which one recovers eq. (4.79) by using eq. (4.78), see Appendix C.2.

4.3.4 1/M expansion of the dual theory

We now progress from the free XY model to the 1/M expansion of the strongly

interacting theory. We take the Lagrangian to be,

L = |∂µV |2 + iλ(|V |2 − 1

g
) (4.83)

Here V is an M component complex scalar and λ is a Lagrange multiplier, which

enforces the local constraint,

|V |2 =
1

g
(4.84)

This hard constraint replaces the self-interaction of the V field. In the presence of

an external charge in the direct theory, we take V to satisfy the twisted boundary

conditions (4.42). In principle, we would like to solve the theory (4.83) in the limit

M → 1. However, practically we will only be able to perform computations at

M =∞.

We will be interested in the properties of the theory (4.42) at its critical point

g = gc. As is well known from standard 1/M expansion techniques, at M = ∞ the

critical coupling is given by,

1

Mgc
=

1

M
〈V †V 〉 = D(x = x′) (4.85)

where D is the usual massless 3D propagator,

D(x, x′) =
1

4π|x− x′| (4.86)
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Of course, the propagator with x = x′ in (4.85) is UV singular and has to be reg-

ularized. Since we will perform calculations of propagator in position space, it is

convenient for us to use point-splitting regularization.

In the absence of the twisted boundary condition (4.42) and at the critical point,

we perform the expansion around 〈iλ〉 = 0 (so that the effective mass for the V par-

ticles vanishes). However, once Q is finite, λ = 0 is no longer sufficient to make the

constraint (4.84) satisfied. Instead, the Lagrange muliplier aquires a spatial depen-

dence

〈iλ(~x, τ)〉 =
a(Q)

|~x|2 (4.87)

Here a is a universal function of the charge Q. The dependence on ~x is determined

from the canonical dimension of λ (λ aquires a non-trivial anomalous dimension only

at order 1/M). Thus, at finite Q, the propagator of V field satisfies,

(−∂2 +
a(Q)

|~x|2 )D(x, x′, Q) = δ(x− x′) (4.88)

and a(Q) should be determined self-consistently from the equation,

1

Mgc
=

1

M
〈V †V 〉Q = D(x = x′, Q) (4.89)

Combining eqs. (4.85), (4.89),

lim
x→x′

(D(x, x′, Q)−D(x, x′, Q = 0)) = 0 (4.90)

Thus, the problem is reduced to finding the propagator D(x, x′, Q). Just as in the

free case, we use spectal decomposition (4.62), and the radial functions φl,E(r) now

satisfy, (
−1

r

∂

∂r
(r
∂

∂r
) +

l2 + a

r2

)
φl,E(r) = Eφl,E(r) (4.91)
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where again due to the twisted boundary conditions l = n−Q, n ∈ Z. The solution

to (4.91) is,

φl,E(r) =
1√
2
J√l2+a(

√
Er) (4.92)

Comparing the result above to free theory (4.65), we see that the only difference is

in the replacement of the indices of Bessel functions |l| →
√
l2 + a. Going from 2D

to 3D propagator as in the free case (4.67),

D(r, r′, θ, τ) =
1

4πr′

∑
l

eilθ
∫ ∞

0

dvJ√l2+a(
r

r′
v)J√l2+a(v) exp(−|τ |

r′
v) (4.93)

Finally, expanding the propagator (4.93) for r � r′, we obtain the equivalent of

(4.70),

D(r, r′, θ, τ) ≈ 1

4πr′

( r
r′

)√Q2+a(Q)

e−iQθB√
Q2+a(Q)

(
τ

r′
), |Q| < 1/2 (4.94)

Thus, we recover the OPE (4.71), but the impurity exponent now becomes some

nontrivial function of Q,

∆V
imp =

√
Q2 + a(Q), |Q| < 1/2 (4.95)

We note that, similar to the free case, as Q passes 1/2, the most relevant angular

momentum l in the sum (4.93) changes from l = −1/2 to l = 1/2, and at Q = 1/2

we have the OPE (4.75) with two degenerate impurity operators.

To find the nontrivial impurity exponent we need to solve eq. (4.90) for a(Q). We

are, therefore, after the propagator D(x, x′, Q) with x → x′. We could, in principle

proceed as in the free case. Namely, make our flux-tube uniform along D − 2 spatial

dimensions (introducing a convergence factor vD−3 into (4.93)), perform the integrals

in (4.93) with r = r′, τ = 0, perform the sum over the angular momenta l, take
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θ → 0 and D → 3. However, unlike in the free case, the sums over angular momenta

cannot be now performed analytically in terms of hypergeometric functions (with nice

analytic continuation for θ → 0). The sum over l can still be performed numerically,

however, the convergence is rather slow. Nevertheless, we have been able to determine

a(Q) numerically using this method. However, this method is less suitable for finding

the electric field coefficient C(Q), which requires us to differentiate the propagator at

θ = 0, making the convergence properties of the series even worse.

Instead, we shall use a different method, generalizing the integral form of the

propagator (4.81) derived in Ref. [152] to the present problem. As shown in Appendix

C.2, the twisted propagator at M =∞ is given by,

D(r, θ) =
1

4πr

∫ ∞
0

dν tanh(πν)
ν√

ν2 + a
U√ν2+a(θ) (4.96)

with Uν(θ) still given by eq. (4.82).

Now, a(Q) can be determined from (4.90),

0 = lim
θ→0

(D(r, θ,Q)−D(r, θ,Q = 0)) (4.97)

=
1

4πr

∫ ∞
0

dν tanh(πν)

(
ν√

ν2 + a

sinh(2π
√
ν2 + a)

cosh(2π
√
ν2 + a)− cos(2πQ)

− sinh(2πν)

cosh(2πν)− 1

)
(4.98)

Eq. (4.97) can be solved numerically for a(Q). However, before we do this, let’s verify

our claim that 〈iλ〉 = 0 (i.e. a = 0) is not sufficient to satisfy (4.89) for finite Q.

Indeed, from (4.97) we obtain

lim
x→x′

(D(x, x′, Q, a = 0)−D(x, x′, Q = 0)) =
1

M

(
〈V †V (x)〉Q − 〈V †V (x)〉Q=0

)
=

1

4πr

∫ ∞
0

dν
cos(2πQ)− 1

cosh(2πν)− cos(2πQ)
= − 1

8πr
(1− 2|Q|) tan(π|Q|), |Q| < 1

(4.99)
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Figure 4.4: Coefficient a(Q) of the Lagrange multiplier 〈iλ(x)〉, see eq. (4.87), in the
M =∞ generalization of the dual theory.

where expectation values in the first line of (4.99) are computed in the free theory.

The precise value of expression (4.99) is not very important for our purposes (although

it is curious to note that like many quantities in the free theory it is non-analytic in

Q at Q = 0). What is important for us is that expression (4.99) is negative. This

means that the twisted boundary condition effectively creates a repulsive barrier,

leading to a decrease in V †V compared to untwisted theory. To compensate for this

decrease in the strongly interacting theory, we need 〈iλ(x)〉 to provide an attractive

potential for V particles. Hence, we conclude that a(Q) < 0 for Q finite. One may

be concerned that the square roots in expressions (4.96), (4.97) are ambigious for

a < 0 and ν2 < |a|. However, it turns out that these expressions do not depend on

our choice of the sign for the square root as long as it is consistent. The numerical
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Figure 4.5: Impurity anomalous dimension ∆V
imp of the monopole operator V (x), see

Eq. (4.71), computed in the M =∞ generalization of the dual theory.

solution for a(Q) is shown in Fig. 4.4. We note that this solution agrees with the one

obtained using the spectral form of propagator (4.93).

One can also attempt to use eq. (4.97) to find a series solution for a(Q) near

Q = 0. It is easy to convince oneself that,

a(Q) ≈ −Q2, Q→ 0 (4.100)

Unfortunately, the integrand in eq. (4.97) is quite singular at ν → 0 for a→ 0, Q→ 0,

so that a systematic series expansion beyond the leading order is not straight-forward.

Nevertheless, we believe that such an expansion exists and a(Q) is an analytic function

of Q near Q = 0. Assuming such analyticity and using charge conjugation symmetry,

a(Q) = a(−Q), one obtains, a(Q) ≈ −Q2 + c4Q
4 for Q → 0. Here c4 is a positive

constant as the integral (4.97) diverges for a < −Q2.
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Figure 4.6: Coefficient C(Q) of the electric field, see eq. (4.43). The doted and solid
curves corresponds to the strongly interacting theory at M =∞ and the free theory
respectively.

Having found a(Q) we immediately obtain the impurity anomalous dimension of

the operator V (given by eq. (4.95)), see Fig. 4.5. This anomalous dimension is

no-longer the trivial value ∆V
imp = |Q| of the free theory (4.72). Given the leading

behaviour of a(Q) as Q → 0 (4.100) and assuming analyticity of a(Q) we conclude

that ∆V
imp will also be analytic at Q = 0 (as opposed to the situation in the free

theory). Moreover,

∆V
imp ≈

√
c4Q

2, Q→ 0 (4.101)

Finally, we can now compute the coefficient of the electric field C(Q). For the

M -field generalization of the dual theory, we define the magnetic field by the same

equation (4.59) as for M = 1 theory, that is we consider the current associated with
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the global U(1) symmetry,

〈−iFµ(x)〉 = 〈−2πiV †α
←→
∂µVα(x)〉 = −2πi lim

x→y
(∂xµ − ∂yµ)〈Vα(x)V †α (y)〉 =

− 2πiM lim
x→y

(∂xµ − ∂yµ)D(x, y) (4.102)

Due to our normalization of the U(1) current, the electric field induced will be of

order M . Now, differentiating D(r, θ) in (4.96) and taking the symmetric limit as

θ → 0,

−i∂θD(r, 0) = − 1

4πr

∫ ∞
0

dνν tanh(πν)
sin(2πQ)

cosh(2π
√
ν2 + a)− cos(2πQ)

(4.103)

Using the values of a(Q) found earlier (Fig. 4.4) and evaluating the integral (4.103)

numerically we obtain the coefficient C(Q), shown in Fig. 4.6 (dotted curve). Fig.

4.6 also shows the value of C(Q) in the free theory (4.79) for comparison (solid line).

Alternatively, we can use (4.103) to expand C(Q) in a series in Q. Using the

leading behaviour (4.100), we find,

C(Q) ≈M

(
πQ

8
+O(Q3)

)
, Q→ 0 (4.104)

We see that the leading term in (4.104) agrees with the one, which would be obtained

by perturbation theory in Q in the large M limit (4.49), (4.57). It is also interesting

to compare eq. (4.104) to assymptotic behaviour of C(Q) in the free theory (4.80).

We see that the leading term C(Q)/M ≈ πQ/8 in both cases is the same, however,

the subleading terms are different. The first subleading term in the free theory is

non-analytic ∼ |Q|Q, as opposed to the strongly interacting theory’s analytic O(Q3).

Thus, we have been able to verify that the leading non-analyticity of C(Q) in the free

theory disappears in the interacting theory. We actually expect that the interacting

theory cures itself of non-analyticities in Q at all orders in Q.
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Finally, let us discuss impurity anomalous dimensions of higher flux operators

V q(x) for rational Q = p/q, as these are actual physical observables on the QED

side of the duality. Once we go from M = 1 dual theory to its large M counterpart,

there are many possible generalizations of the V q(x) operator. Indeed, we can form

different SU(M) multiplets out of q instances of SU(M) fundamental Vα(x). We

expect that these multiplets will have different (impurity) anomalous dimensions for

M finite. However, for M =∞ all of these operators will have degenerate (impurity)

anomalous dimensions. We can consider, for instance, the completely symmetric

representation V q
S (x) = (Vα(x))q, where α is some fixed index (no summation over

α). Then, for M =∞,

〈V q
S (x)(V q

S (y))†〉 = q!(D(x− y))q (4.105)

Hence, just as in the free case, the operator V q
S (x) has the impurity OPE (4.76) with

the corresponding impurity anomalous dimension,

∆V
imp(q) = q∆V

imp (4.106)

4.4 Easy plane theory for general N

We now turn to the general case of the model S + Simp with a global U(1)N−1

symmetry. The results of the previous section with N = 1 can be rapidly generalized,

and will lead to a quantitative result for the scaling dimension of the monopole/VBS

operator V near the impurity.
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4.4.1 Duality in the Easy Plane Theory

In this section, we consider a theory with N flavours of spinon fields zα (N does

not necessarily have to be large),

L =
1

2e2
F 2
µ + |(∂µ − iAµ)zα|2 + U(zα) (4.107)

Here, U is some potential with the global U(1)N symmetry under independent phase

rotations of the zα fields. The singlet component of this symmetry is actually gauged

by the field Aµ,

U(1) : zα → eiθ(x)zα, Aµ → Aµ + ∂µθ (4.108)

while the non-singlet components are true global symmetries of the theory,

U(1)N−1 : zα → eiθ
ataαzα (4.109)

where ta, a = 1..N−1 are the generators of the U(1)N−1 symmetry satisfying,
∑

α t
a
α =

0. We require U to have a symmetry under the permutation of labels of zα fields. We

choose U in such a fashion that in the “condensed” phase of the theory, it favours non-

zero expectation values of all components of the zα field, so that the vacuum manifold

of the theory is a torus, (S1)N (here we temporarily forget that the singlet symmetry

is gauged). For N = 2 the theory under consideration is believed to describe the

phase transition in the easy-plane antiferromagnet.

We would like to dualize the theory (4.107). Similar theories were dualized in

Ref. [134, 51, 153, 154, 155], and here we will present a related discussion. An exact

duality on the lattice appears in Ref. [148], but we can write down the form of the

dual action from very general considerations. Let us first identify the dual degrees

of freedom. We go to the condensed phase of the theory (4.107), where all 〈zα〉 6= 0.
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Then, we can have vortices in any component of the zα field. Formally, the homotopy

group, π1((S1)N) = ZN . So, we have N types of vortices, which become the degrees

of freedom of the dual theory Vα, α = 1..N .

These vortices are global, rather than local. Indeed, let’s consider a vortex in the

first component z1,

z1(~x) ∼ veiλ(~x), zα ∼ v, α 6= 1, |~x| → ∞ (4.110)

where λ(~x) winds from 0 to 2π as one goes around a contour out at infinity surrounding

the vortex. Then, this vortex corresponds to a space-time dependent transformation

of the vacuum (4.108), (4.109), with, θ(~x) = 1
N
λ(~x) and θa(~x)ta = (1−1/N,−1/N, ...−

1/N)λ(~x). Thus, our vortex possesses a winding both in the local and in the global

symmetry group. The winding in the local U(1) group will be canceled by the gauge

field,

Aµ(x) = ∂µθ(x) =
1

N
∂µλ(x) (4.111)

hence our global vortices carry a magnetic flux Φ = 2π/N .[156, 157] Therefore, under

the flux symmetry (4.28), the fields Vα should transform as,

Vα(x)→ e2πiα(x)/NVα(x) (4.112)

This fact will be crucial for the analysis to follow.

The winding in the global group will lead to a long-range Coulombic interaction

between our vortices. We will need dynamical gauge fields in the dual theory to give

rise to this interaction. However, if we have a unit winding in each component of the

z field, our vortex becomes completely local, and carries total flux 2π. We can think

of such a local vortex as a composite of N global vortices of different types. The
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creation operator for this flux-tube, therefore, will be,

V(x) =
∏
α

Vα(x) (4.113)

Since the local vortex carries flux 2π, we can also associate the operator (4.113) with

the monopole operator of the direct theory. Indeed, given (4.112), under the flux

symmetry (4.28),

V(x)→ e2πiα(x)V(x) (4.114)

which is the correct transformation law for the monopole operator (4.30).

We expect local vortices to interact by short range forces. Therefore, the operator

(4.113) should not be charged under the emergent gauge fields of the dual theory.

We are now ready to write down the dual theory,

L =
1

2ẽ2

∑
i

(Fα
µ )2 + |(∂µ − iBα

µ −
2πi

N
Hµ)Vα|2 + Ũ(Vα) (4.115)

Here Bα
µ = Ba

µt
a
α, a = 1..N − 1, are emergent dual gauge fields, which couple to

the non-singlet currents. Fα = εµνλ∂νB
α
λ are the corresponding field strengths. The

dual potential Ũ(Vα) is chosen to have the same properties as the direct potential U :

it has a U(1)N symmetry under independent phase rotations of the fields Vα and a

symmetry under permutation of labels of Vα fields. Moreover, it favours 〈Vα〉 6= 0 for

all α in the condensed phase of the dual theory. Thus, the theory (4.115) has a local

U(1)N−1 symmetry,

U(1)N−1 : Vα(x)→ eiφ
a(x)taαVα(x), Ba

µ → Ba
µ + ∂µφ

a (4.116)

as well as the global U(1) flux symmetry of the direct theory (4.112) (which we

have promoted to a local symmetry by introducing a non-dynamical source field Hµ).
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As required, the monopole operator (4.113) is invariant under the local U(1)N−1

symmetry of the dual theory (4.116).

The theory (4.115) also has a global U(1)N−1 symmetry associated with conser-

vation of fluxes of the N − 1 emergent gauge fields. This topological symmetry can

be identified with the Noether’s symmetry (4.109) of the direct theory.

4.4.2 Wilson loops in the easy plane theory

Now, we would like to apply the duality discussed in the previous sections to study

the properties of Wilson loops in the U(1)N−1 symmetric theory (4.107). Recall, that

to represent Wilson loops we must use a source field Hµ given by (4.34). As discussed

for the case of N = 1 theory, the effect of such a source field on the dual action (4.115)

is to introduce a twisted boundary condition for the vortex fields,

Vα(θ = 2π) = e−2πiQ/NVα(θ = 0) (4.117)

where Q is the charge of our Wilson line. The physical origin of the factor 1/N is the

fractional charge 2π/N of the vortex fields Vα under the flux symmetry. Thus, we come

to the amazing conclusion that the universal physics in the planar model is periodic

in the charge Q of the Wilson line, with period Q = N . This is a generalization of the

Q = 1 periodicity of single flavour QED discussed before. As explained in Ref. [148],

we expect that this Q ∼ N periodicity is a feature of the easy plane theory and does

not generalize to the case with the full SU(N) invariance.

Now, we would like to discuss more quantitative features of Wilson loops in the

planar model. In particular, we would like to find the impurity anomalous dimension

of the monopole operator (4.71) and the coefficient of the electric field (4.43) at the
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critical point of the theory. We note that as in the N = 1 case, we can easily dualize

the magnetic field by differentiating the dual action with respect to the source field

Hµ,

〈−iFµ〉 =
(−2πi)

N
〈V †α
←→
D µVα〉 (4.118)

with DµVα = (∂µ − iBα
µ − 2πi

N
Hµ)Vα.

To find ∆V
imp and C(Q), we follow the procedure established for the N = 1 case in

section 4.3.4 and perform a large M expansion of the dual theory (4.115). Namely,

we promote each field Vα to an SU(M) multiplet, V i
α, i = 1..M . Moreover, we replace

the soft potential Ũ(Vα) by a hard constraint,
∑

i |V i
α|2 = 1/g, for each α = 1..N .

This constraint will be enforced by a set of N Lagrange multipliers λα. Thus, our

Lagrangian becomes,

L =
∑
α,i

|(∂µ − iBα
µ −

2πi

N
Hµ)V i

α|2 +
∑
α,i

iλα(|V i
α|2 −

1

g
) (4.119)

In (4.119) we have also dropped the kinetic term for the gauge fields, as near the

critical point such operators will be irrelevant. In addition to the U(1)Φ global flux

symmetry and the U(1)N−1 local symmetry of the original M = 1 action, the theory

(4.119) also has a SU(M)N global symmetry under independent SU(M) rotations of

the N M -tuplets V i
α. We note that the various SU(M) multiplets talk to each other

only through the gauge fields Bα
µ .

We would like to generalize the observables of the M = 1 theory to the large M

case. The magnetic field (4.118) is generalized trivially,

〈−iFµ〉 =
(−2πi)

N
〈(V i

α)†
←→
D µV

i
α〉 (4.120)

The monopole operator (4.113) on the other hand, now carries indices under the
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SU(M)N group,

V(x)i1..iN =
∏
α

V iα
α (x) (4.121)

The insertion of the Wilson loop source Hµ is again equivalent to the twisted

boundary condition (4.117).

We now perform a largeM expansion of the theory (4.119) with the twisted bound-

ary condition (4.117), keeping N fixed. We will be only able to make computations

for M = ∞. We are interested in the physics at the critical point. We expand the

theory about the saddle point Bα
µ = 0 (this is a saddle point as the twisted boundary

condition (4.117) does not couple to the non-singlet sectors of the theory5). As usual,

the fluctuations of these gauge fields about the saddle point will be suppressed by

powers of 1/M . Thus, at M = ∞, we are left with N decoupled instances of the

Lagrangian (4.83) that has been discussed at length for the case of N = 1 theory.

The only difference is the replacement, Q→ Q/N in the boundary condition (4.42).

Hence, we conclude,

〈V(x)i1..iNV†(x′)j1..jN 〉
M=∞

=
∏
α

〈V iα
α (x)(V jα

α )†(x′)〉 = D(x, y,Q/N)N
∏
α

δiαjα (4.122)

where D(x, x′, Q) is the propagator in the N = 1 theory (4.83) with the twisted

boundary condition (4.42) at M =∞. The asymptotic behaviour of this propagator

for r � r′ is given in eq. (4.94). Thus, the asymptotic behaviour of the correlation

5In reality, we expect a non-zero Bαµ , corresponding to finite flavour charge density of the direct
theory. Indeed, we expect that the external charge will be screened in the direct theory by a flavoured
spinon zα. The associated flavour charge density (magnetization) in the SU(N) symmetric case has
been discussed in Ref. [143]. However, at the critical point, the screening cloud will be distributed
over the whole size of the system. Therefore, the corresponding (finite) flux density will be non-
intensive and will not affect intensive observables such as ∆V

imp and C(Q).



Chapter 4: Valence bond solid order near impurities in two-dimensional quantum
antiferromagnets 174

function (4.122) for r � r′ is

〈V(x)i1..iNV†(x′)j1..jN 〉 ≈
(

1

4πr′

)N ( r
r′

)N√(Q/N)2+a(Q/N)

e−iQθG(τ/r′)
∏
α

δiαjα ,

|Q/N | < 1/2

where G is some (known) function. Hence, the monopole operator V(x) in the planar

N component theory has the impurity OPE,

V(~x, τ) ∼ |~x|∆Vimpe−iQθ Vimp(τ) for |~x| → 0 (4.123)

with

∆Vimp = N
√

(Q/N)2 + a(Q/N) = N∆V
N=1(Q/N), |Q/N | < 1/2 (4.124)

where the monopole impurity anomalous dimenension ∆V
N=1(Q) in theN = 1, M =∞

theory is given by Fig. 4.5.

From OPE (4.123), we observe that for integer Q the monopole operator is single

valued under θ → θ + 2π, even though the dynamical fields of the theory Vα obey

twisted boundary conditions (4.117). We also note that formulas (4.123) and (4.124)

are correct only for |Q/N | < 1/2; for other values of Q they should be extended by

periodicity Q ∼ Q+N .

We can now take the N → ∞, Q-fixed limit of (4.124). Using the assymptotic

behaviour (4.101), ∆Vimp ∼ Q2/N . Thus, the impurity anomalous dimension of the

monopole operator is of order O(1/N) for N → ∞ in the easy plane theory. It is

interesting to note that, as discussed in section 4.2, this is also true of the theory

with a full SU(N) symmetry. At this point, it is not clear whether this is just a

coincidence.
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Finally, let us discuss the special point Q/N = 1/2. Our interest in this point

is not purely academic, as we expect N = 2, Q = 1 to correspond to the physical

case of a single impurity in an easy plane antiferromagnet or superfluid. We recall

that at this point the propagator D(r, r′, θ, τ) for r � r′ is dominated by two angular

momenta, l = ±1/2,

D(r, r′, θ, τ) ≈ 1

4πr′

( r
r′

)√1/4+a(1/2)

(eiθ/2 + e−iθ/2)B√
1/4+a(1/2)

(
τ

r′
) (4.125)

So that

D(r, r′, θ, τ)N ≈
(

1

4πr′

)N ( r
r′

)N√1/4+a(1/2)
2Q∑
m=0

(
2Q

m

)
ei(m−Q)θG(τ/r′) (4.126)

Hence, using (4.122), the correlation function of two monopole operators is dominated

by angular momenta l = −Q,−Q + 1..Q − 1, Q for r � r′. So, we conjecture the

operator product expansion,

V(~x, τ) ∼
Q∑

l=−Q

cl|~x|∆
V
l e−ilθ Vl(τ) for |~x| → 0 (4.127)

At M =∞ all the operators Vl have degenerate impurity anomalous dimensions ∆Vl .

As discussed in section 4.3.3, the anomalous dimensions of operators with oposite

angular momenta are equal by CP symmetry emergent at the Q/N = 1/2 point.

However, there is no fundamental reason why anomalous dimensions of operators

with different values of l should be equal. Thus, we expect the degeneracy to be

lifted at higher orders in 1/M expansion. Therefore, unfortunately, the question of

whether the OPE (4.127) will be dominated by l = 0 or by finite l is beyond the

reach of our calculation. Nevertheless, our calculation at M = ∞ predicts for the

physically relevant case of N = 2, Q = 1,

∆Vimp ≈ 0.57, N = 2, Q = 1 (4.128)
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The emergent CP symmetry at the point Q/N = 1/2 means that quantum fluc-

tuations manage to render the states of Figs. 4.2 and Fig. 4.3 degenerate in the

long-wavelength limit. We remind the reader the CP symmetry is due to the emer-

gent Q ∼ N periodicity of the easy plane theory. No such periodicity is expected to

occur in the full SU(N) symmetric theory, where the impurity OPE is dominated by

a single operator with a definite angular momentum as in eq. (4.12).

For completeness sake, we also discuss the coefficient C(Q) of the electric field.

From eq. (4.120) at M =∞ we obtain,

C(Q) = CN=1(Q/N) (4.129)

where the coefficient CN=1(Q) in the N = 1, M =∞ theory is given by Fig. 4.6. We

note that for Q/N = 1/2 the electric field vanishes, as it should, by the emergent CP

symmetry.

4.5 Conclusion

This chapter began with the theory S in Eq. (4.1) for square lattice quantum

antiferromagnets in the vicinity of a Néel-VBS quantum phase transitions. We con-

sidered generic local deformations of the antiferromagnet, and argued that they could

be classified into two categories. The first category, illustrated in Fig. 4.1, is a mod-

ulated exchange impurity: we found an enhancement of VBS order, characterized by

the exponent in Eq. 4.9. The second category was realized by a missing or additional

spin (e.g. Zn or Ni impurities on Cu sites), shown in Fig. 4.2. For this case we found

that VBS order was suppressed by the appearance of a VBS vortex, as in Fig. 4.2,
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and characterized by the scaling properties discussed in Section 4.1.2.

The results of this chapter should be useful in numerical studies of the quantum

phase transition between the Néel and VBS state [57, 58]. By enhancing an exchange

constant as in Fig. 4.1, and measuring the decay of the average VBS order parameter

away from the impurity, the exponent ∆V can be estimated from Eqs. (4.6-4.9). There

will be no mean VBS order in the vicinity of a missing spin impurity as in Fig. 4.2.

However, the spatial dependence in the VBS susceptibility is fixed by ∆V
imp in Eq.

(4.12). The positive value of ∆V
imp indicates that the VBS susceptibility should be

suppressed near such an impurity.

In STM studies of the cuprates, we have noted earlier the demonstration of bond-

centered charge order in the local density of states by Kohsaka et al. [12]. A numerical

analysis of the pinning of such charge order by modulated exchange impurities (in the

class in Section 4.1.1) has also been carried out [130, 131]. However, it is also exper-

imentally possible to induce “missing spin” impurities (in the class of Section 4.1.2)

by replacing the Cu sites with Zn and Ni impurities. There have been STM studies of

such impurities [100, 101, 102], and it would be of great interest to carefully examine

the nature of the bond-centered modulations in the vicinity of such impurities. If

we assume that the “stripe” instability is primarily associated with the appearance

of magnetic order [158, 159, 160, 161, 162], then the theory of the enhancement of

magnetic order near such impurities [121, 143] should apply: we should therefore

expect an increase in the strength of the density of states modulations in this model.

In contrast, if we assume a VBS theory of the modulations, then in the impurity

model of Section 4.1.2, the bond-centered modulations should be suppressed. The
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experimental situation could well include both effects, complicating the interpreta-

tion. However, evidence for VBS vortex configurations like those in Fig. 4.2 would

lend strong support to the VBS theory.



Chapter 5

Edge response in two-dimensional
quantum antiferromagnets

Motivated by recent Monte-Carlo simulations of Höglund and Sandvik[4], we study

edge response in square lattice quantum antiferromagnets. We use the O(3) non-linear

σ-model to compute the decay asymptotics of the staggered magnetization, energy

density and local magnetic susceptibility away from the edge. We find that the total

edge susceptibility is negative and diverges logarithmically as the temperature T → 0.

We confirm the predictions of the continuum theory by performing a 1/S expansion

of the microscopic Heisenberg model with the edge. We propose a qualitative ex-

planation of the edge dimerization seen in Monte-Carlo simulations by a theory of

valence-bond-solid correlations in the Néel state.

5.1 Introduction

The Heisenberg antiferromagnet on a square lattice is one of the best known

model magnetic systems. It has been studied extensively both numerically by quan-

tum Monte-Carlo and analytically by 1/S expansion and field-theoretic methods. It

179
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is known to have an ordered ground state at zero temperature with the staggered

magnetization reduced by quantum fluctuations to Nb = 〈N〉 = 0.307 for the spin

S = 1/2.[47]

Despite many years of study, the simple Heisenberg model does not cease to

surprise us. Recent Monte-Carlo simulations[4] on the S = 1/2 model have shown

that the edge response in this system is very peculiar. In particular, a negative edge

susceptibility is observed at low temperatures. This result is in contrast with an

intuitive picture of a “dangling” edge spin. In this picture a spin at the edge, having

fewer neighbors than bulk spins, is more losely coupled and, hence, fluctuates more,

leading to an enhancement in the susceptibility. The simulation of local susceptibility

near the edge shows that the negative sign of edge susceptibility does not come from

the edge spins per se, whose susceptibility is, indeed, enhanced, but rather from a

tail in the response decaying away from the edge. Another curious effect observed in

Ref. [4] is the dimerization of bond response near the edge, leading to the appearance

of a comb-like structure, as in Fig. 5.1. The tendency to dimerize into singlets near

the edge was argued in Ref. [4] to be the source of negative edge susceptibility.

In the present chapter, we study large-distance asymptotics of the edge response

of a square lattice quantum antiferromagnet by means of an effective O(3) σ-model

description. This field-theoretic method is an expansion in powers of energy and

momentum, with the microscopic physics entering at each order through a finite

number of parameters, such as the spin-wave velocity c, the spin stiffness ρs and

the value of the staggered moment Nb.
1 The O(3) σ-model has proved powerful

1We will use the subscript b from here on to denote bulk properties.
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Figure 5.1: A schematic picture of the comb structure in bond strengths observed in
Monte-Carlo simulations [4], with a free edge on the left side.

for studying finite temperature/size effects, which typically lead to a crossover into

an O(3) model of lower dimension.[7] It turns out to be also useful for studying

the edge behaviour, particularly as no new parameters beyond the bulk ones are

needed to describe the leading low temperature, large distance asymptotics in the

edge response. We concentrate our attention on the staggered moment 〈N(x)〉, the

local energy density 〈ε(x)〉 and the local magnetic susceptibility χ⊥(x). We show that

at zero temperature these quantities approach their bulk values away from the edge

with simple power law forms,

〈N(x)〉 −Nb

Nb

= − c

8πρsx
(5.1)

〈ε(x)〉 − εb =
c

16πx3
(5.2)

χ⊥(x)− χ⊥,b = − 1

8πxc
(5.3)

where x is the distance to the edge. Integrating eq. (5.3), we conclude that the total

edge susceptibility per unit edge length is negative and diverges logarithmically with
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the system size,

χ⊥,edge = − 1

8πc
log(L/a) (5.4)

We show that at finite temperature the 1/x power law in the susceptibility (5.3) is

cut-off for distances larger than the thermal wave-length, x & c/T , leading to the

total edge susceptibility,

χ⊥,edge = − 1

8πc
log(c/Ta) (5.5)

Such a log divergent susceptibility is indeed seen in the Monte Carlo simulations

[4]. For the co-efficient of the logarithm in χedge = (2/3)χ⊥,edge, with c = 1.69J ,

we find −0.0157/J , while the Monte Carlo has a best fit value of −0.0182/J (see

Fig. 5.2). This is in reasonable agreement, with the difference probably attributable

1.00 10.000.100.01-0.06

-0.04

-0.02

0.00

0.02

T/J

J

Figure 5.2: Edge susceptibility: Comparison of the Monte Carlo data of Ref. [4] (dots)
with the best fit line Jχedge = −0.0182 log(0.219J/T ) to the low T data.

to difficulties in numerically reaching the asymptotic low T limit.

As for the edge comb structure seen in Ref. [4], this is a short distance phe-

nomenon, which cannot be studied within our continuum O(3) σ-model. In fact, the
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standard, “perturbative” treatment of the O(3) model describes only the low-energy

excitations which live near the wave-vector (π, π) and cannot provide any informa-

tion about valence-bond-solid correlations, which live near (π, 0) and (0, π). Because

these correlations are gapped in the antiferromagnet, they must decay exponentially

away from the edge, as seen in Monte-Carlo. To capture the short-distance physics,

we have performed a 1/S expansion of the Heisenberg model on the lattice with an

edge. We find the large-distance asymptotics in agreement with the predictions of

our continuum theory. However, we don’t reproduce the multiple short-distance os-

cillations of bond energies away from the edge seen by Monte-Carlo. Instead, we

find that the bonds touching the edge are stronger than the bulk ones, while all

the subsequent bonds are weaker. We conclude that the edge dimerization is, likely,

a non-perturbative effect in 1/S, which is invisible in the spin-wave expansion. It

is remarkable that such non-perturbative effects are present in the simple S = 1/2

Heisenberg model, where the 1/S expansion yields quantitatively accurate results for

many quantities.

In principle, one may be able to explicitly incorporate the non-perturbative physics

in the form of hedgehogs into the semi-classical, large S treatment of the Heisenberg

model. The hedgehog configurations are relevant for the dimerization physics, as

they carry Berry phases,[50] which endow them with non-trivial quantum numbers

under the lattice symmetry.[21, 22] However, studying the hedgehog contribution to

the edge physics is technically intractable.

Instead, we pursue a more phenomenological approach, in which we assume that

the system possesses a dynamical valence-bond-solid order parameter with a large
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correlation length. This assumption is justified close to a phase transition into a

valence-bond-solid phase, which can be tuned by adding additional frustrating inter-

actions to the Heisenberg model.[57, 58] Moreover, even for the pure, nearest neigh-

bour Heisenberg model with S = 1/2, it has been argued long ago[163] that the

quantum fluctuations are strong enough that the system is “proximate” to a phase

transition at which the magnetic order is lost. This proximity is manifested by the

existence of an intermediate temperature window, dominated by the quantum critical

point (the low temperature physics is dominated by the antiferromagnet, while the

high temperature physics is dominated by the non-universal lattice effects). The ob-

servation of edge dimerization over more than 5 lattice spacings in the latest Monte

Carlo simulations implies that the correlation length of the valence-bond-solid order

parameter in the S = 1/2 Heisenberg model is rather large, further supporting the

proximity to a phase transition.

We show that the comb structure of the bond order seen in Monte-Carlo simula-

tions can be qualitatively understood in the quantum critical language. The particular

details of the critical theory are not very important for this purpose - the physics can

be read off straight-forwardly from the transformation properties of observables under

the lattice symmetry. In particular, we demonstrate that close to the critical point

the oscillations of bonds perpendicular to the edge and lines parallel to the edge in

the comb can be related to each other.

This chapter is organized as follows. Section 5.2.1 is devoted to the description of

the edge in the framework of the O(3) model at zero temperature. In section 5.2.2

we discuss the crossover of edge susceptibility to finite temperature. In section 5.3
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we perform the large S expansion of the Heisenberg model with an edge. In section

5.4 we discuss edge dimerization in a quantum antiferromagnet in the proximity to

a phase transition into a valence-bond-solid. Some concluding remarks are presented

in section 5.5.

5.2 Edge response in the O(3) σ-model

5.2.1 Zero Temperature

In this section we discuss the large distance asymptotic behaviour away from the

edge of the staggered moment, local uniform susceptibility and the bond energies

using the continuum O(3) σ-model. The advantage of this approach is that the

results obtained are exact, depending only on a few phenomenological parameters,

such as spin-wave velocity c, spin-stiffness ρs and bulk staggered moment Nb. These

parameters are known from 1/S-expansion and Monte-Carlo simulations.

The σ-model action for the local order parameter ~n, satisfying ~n2 = 1, is

S =
ρ0
s

2

∫
d3x (∂µ~n)2 (5.6)

Here, µ runs over the three indices of the space-time coordinate x = (x, y, τ), ρ0
s is the

“bare” spin stiffness (we will discuss the renormalization process shortly) and we have

set c = 1, we will restore c at the end of the computations. To introduce the edge, we

consider this model on the half-plane x ≥ 0. Thus, x is the coordinate perpendicular

to the edge and y is the coordinate along the edge. In addition to the bulk action

(5.6), we also have to consider boundary perturbations. The simplest terms allowed
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by symmetries are,

Sbound =
∑
µ

gµ

∫
dydτ (∂µ~n)2

∣∣∣∣
x=0

(5.7)

where gµ are some coupling constants. These terms are irrelevant by power counting

(the coupling has scaling dimension −1), and can be ignored for the leading asymp-

totic behaviour calculations performed below. Note that the “lower dimension” sur-

face term ~n∂x~n vanishes identically due to the constraint ~n2 = 1. The absence of a

boundary term implies that ~n obeys free boundary conditions,

∂x~n
∣∣∣
x=0

= 0 (5.8)

as can be seen by varying the action (5.6) with respect to ~n, integrating by parts and

requiring that the surface term be zero.

To set up perturbation theory, we write ~n = (~π,
√

1− ~π2) and expand the action

in ~π, obtaining,

S =
ρ0
s

2

∫
d3x

(
(∂µ~π)2 +

1

1− ~π2
(~π∂µ~π)2

)
(5.9)

The second term in brackets above can be expanded as a power series in ~π - yielding

terms with couplings of scaling dimension −1 and lower. These terms again will not

influence the leading asymptotic behaviour of observables discussed below.

We are, thus, left with the free theory for the Goldstone fields ~π, supplemented by

the free boundary condition ∂x~π = 0. The propagator with these boundary conditions

is,

〈πa(~x, τ)πb(~x′, τ ′)〉 =

=
δab

ρ0
s

∫
dω

2π

dky

2π

dkx

π

1

ω2 + k2
x + k2

y

eiω(τ−τ ′)eiky(y−y′) cos(kxx) cos(kxx′)

=
δab

ρ0
s

(D(x− x′, y − y′, τ − τ ′) +D(x + x′, y − y′, τ − τ ′)) (5.10)
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where D(x) is the standard 3d massless propagator,

D(x) =
1

4π|x| (5.11)

Now, we can calculate the observables. Let’s start with the staggered moment

〈 ~N〉. The microscopic ~N(x) is related to the O(3) field ~n(x) via a multiplicative

renormalization, ~N(x) = NbZN~n(x) where Nb is the exact value of the bulk staggered

magnetization and ZN is a formal power series in ρ−1
s , adjusted order by order to give

〈N3〉 = Nb in the bulk.

Hence, the staggered moment, to leading order is,

〈n3(x)〉 = 〈1− ~π2

2
〉 = 1− 1

ρ0
s

(D(0) +D(2x, 0, 0)) = 1− 1

ρ0
s

(D(0) +
1

8πx
) (5.12)

Thus, as limx→∞ ZN〈n3(x)〉 = 1, and to leading order ρ0
s = ρs,

ZN = 1 +
1

ρs
D(0) = 1 +

1

ρs

∫
d3k

(2π)3

1

k2
(5.13)

which is the familiar expression known from calculations with no boundary. So,

〈N3(x)〉 = Nb

(
1− c

8πρsx

)
(5.14)

where we’ve reinserted the spin-wave velocity c. The result (5.14) is asymptotically

exact and shows suppression of the Néel moment near the edge. We can check the

result (5.14) against the large distance asymptotics of the 1/S expansion performed

in section 5.3. The parameters ρs, c and Nb are known in 1/S expansion to be at

leading order,

ρs = JS2, c = 2
√

2JSa, Nb = S (5.15)

where a is the lattice spacing. Substituting these parameters into (5.14) and com-

paring to our numeric integration results from 1/S expansion on the lattice with an

edge, we find very reasonable asymptotic agreement (see Fig. 5.3).
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Figure 5.3: Depletion of the staggered moment, −δN(x) = −(〈N3(x)〉−Nb), near the
edge. The dotted line is the calculation in the 1/S expansion. The solid line is the
O(3) σ-model result for asymptotic behaviour, with phenomenological parameters ρs,
c, Nb matched to 1/S expansion.

Next we consider the uniform transverse susceptibility χ⊥. Recall, the uniform

magnetic field ~H enters (5.6) as,

SH =
ρ0
s

2

∫
d3x

(
(∂τn

a − iεabcHbnc)2 + (∂i~n)2
)

(5.16)

The corresponding response function is,

χab(x, x′) =
δ2 logZ

δHa(x)δHb(x′)
= ρ0

s(δ
ab − 〈nanb(x)〉)δ3(x− x′)

− (ρ0
s)

2εacdεbef〈nc∂τnd(x)ne∂τn
f (x′)〉

(5.17)

Specializing to the transverse susceptibility, a, b = 1, 2 and expanding in ~π,

χab(x, x′) ≈ δµνρ
0
s(δ

ab − 〈πa(x)πb(x′)〉)δ2(~x− ~x′)δ(τ − τ ′)

− (ρ0
s)

2εacεbd(〈∂τπc(x)∂τπ
d(x′)〉+ (〈∂τπc(x)(πd~π∂τ~π −

1

2
~π2∂τπ

d)(x′)〉

+ (x↔ x′, c↔ d))) (5.18)
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Now, we are actually interested in local response to a static, uniform external field,

χab⊥ (x) = lim
~q→0

∫
d3x′ χab(x, x′)e−i~q~x

′
(5.19)

Note that for a finite system size/temperature relevant for Monte-Carlo simulations,

at zero external field, there is no distinction between parallel and transverse suscep-

tibility, and we expect,

χ(x) =
2

3
χ⊥(x) (5.20)

Since we are working with the static susceptibility, the contribution of the terms in

the last two lines of (5.18) is zero, and

χab⊥ (x) = ρ0
s(δ

ab − 〈πa(x)πb(x)〉) = ρ0
sδ
ab(1− 1

ρ0
s

(D(0) +D(2x, 0, 0))) (5.21)

We know that in the bulk, χ⊥,b = limx→∞ χ⊥(x) = ρs by Lorentz invariance. The

bare spin-stiffness ρ0
s = ρsZρ where Zρ is a formal power series in 1/ρs. Thus,

Zρ = 1 +
1

ρs
D(0) = 1 +

1

ρs

∫
d3k

k2
(5.22)

and we recognize the standard renormalization factor for ρs. Note that the equality

of the first non-trivial terms in ZN and Zρ is an accident, which occurs in the O(3)

model (for O(N) the coefficients are generally different). Thus,

χ⊥(x) =
ρs
c2
− 1

8πxc
(5.23)

where we’ve reinserted c. Note that the deviation of χ⊥(x) from its bulk value is

negative, in agreement with the simulations of Höglund and Sandvik.[4] Moreover,

the long distance contribution to the total edge susceptibility (per edge length) is

given by,

χ⊥,edge =

∫ ∞
0

dx (χ⊥(x)− χ⊥,b) ∼ −
1

8πc
log(Lx/a) (5.24)



Chapter 5: Edge response in two-dimensional quantum antiferromagnets 190

At zero temperature, the log divergence of the long-distance tail will always over-

power any short-distance contribution (which can be positive as suggested by the

1/S calculation in section 5.3), leading to a negative total edge susceptibility, as seen

by Hoglund and Sandvik.[4] At a finite temperature T (and in the infinite volume

limit) the logLx divergence will be cut-off at the “thermal length,” c T−1, leading to

χ⊥,edge ∼ −
1

8πc
log
( c

Ta

)
(5.25)

This result will be confirmed by an explicit calculation in the next section.

Finally, we come to the behaviour of the bond energies. We observe that the sum

of bonds energies along the x and y directions is just the local energy density

ε(x) ∼ J

a2
(~Si~Si+x̂ + ~Si~Si+ŷ) (5.26)

For the free field theory describing our Goldstones, in Minkowski space,

ε(x) =
ρ0
s

2

(
(∂t~π)2 + (∂i~π)2

)
(5.27)

Continuing this to Euclidean space,

ε(x) =
ρ0
s

2

(
−(∂τ~π)2 + (∂i~π)2

)
(5.28)

Now,

ρ0
s

2
〈∂µ~π(x)∂ν~π(x)〉 = lim

x→x′
∂2

∂xµ∂x′ν
(D(x− x′, y − y′, τ − τ ′) +D(x+ x′, y − y′, τ − τ ′))

(5.29)

The first term on the righthandside is independent of the distance from the edge and,

therefore, we drop it. Noting,

∂µ∂νD(x) = − 1

4π|x|3
(
δµν − 3

xµxν
|x|2

)
(5.30)
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Figure 5.4: Asymptotic increase of local bond energy near the edge. The dotted line
is the calculation in the 1/S expansion. The solid line is the O(3) σ-model result for
asymptotic behaviour, with phenomenological parameters ρs, c, Nb matched to 1/S
expansion.

the second term in (5.29) yields,

ρ0
s

2
〈(∂τ~π)2(x)〉 = −∂2

τD(2x, 0, 0) =
1

4π(2x)3
(5.31)

ρ0
s

2
〈(∂x~π)2(x)〉 = +∂2

xD(2x, 0, 0) =
2

4π(2x)3
(5.32)

ρ0
s

2
〈(∂y~π)2(x)〉 = −∂2

yD(2x, 0, 0) =
1

4π(2x)3
(5.33)

Collecting terms we obtain,

〈ε(x)〉 =
c

16πx3
(5.34)

Note that energy density is enhanced near the edge, corresponding to a decrease of

bond strengths, −〈~Si~Sj〉. We can again compare the asymptotically exact expression

(5.34) to the results of the 1/S expansion in section 5.3, by using the parameters

(5.15). We see from Fig. 5.4 that the agreement is rather good.
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5.2.2 Edge susceptibility at finite temperature

To compute the uniform susceptibility at finite temperature T � ρs, we follow the

usual strategy of dividing the field n(~x, τ) into zero frequency piece, n(~x) and finite

frequency modes πα(~x, τ),

na(~x, τ) =
√

1− παπαna(~x) + πα(~x, τ)eaα(~x) (5.35)

where α = 1, 2 and ~eα(~x) and ~n(~x) form an orthonormal basis. The strategy is to

first integrate over the “fast” modes πα to obtain an effective action for the slow ~n

field. Expanding the action in powers of π to leading order,

S ≈ ρ0
s

2

∫
d3x (∂µπα)2 +

ρ0
s

2

∫
d3x ((∂in

a)2(1− ~π2) + ∂ie
a
α∂ie

a
βπαπβ + 2∂ie

a
αe

a
βπα∂iπβ)

(5.36)

In setting up the perturbation theory in π the first term above is treated as the

free piece, while the coupling of π to the slow fields in the second term is treated

as a perturbation. Thus, in a theory with the edge at finite temperature, the bare

propagator for the π field still satisfies free boundary conditions,

〈πα(~x, τ)πβ(~x′, τ ′)〉 =
1

ρ0
s

δαβDn(x, x′) (5.37)

where,

Dn(x, x′) = D̂(x− x′, y − y′, τ − τ ′) + D̂(x + x′, y − y′, τ − τ ′) (5.38)

with

D̂(~x, τ) =
1

β

∑
ωn 6=0

∫
d2k

(2π)2

1

k2 + ω2
n

ei(
~k~x+ωnτ) (5.39)
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Now, expanding the susceptibility (5.17),

χab(x) = ρ0
s(δ

ab − 〈nanb(x)〉)

− (ρ0
s)

2εacdεbef
∫
d3x′〈ecαedβ(~x)eeγe

d
δ(~x
′)πα∂τπβ(x)πγ∂τπδ(x

′)〉 (5.40)

At leading order, we may factorize the correlator of slow e and fast π fields in (5.40).

Moreover, since at finite temperature rotational invariance is restored,

〈nanb(x)〉 =
δab

3
〈~n2(x)〉 =

δab

3
(5.41)

Hence, the local susceptibility becomes,

χab(x) =
2

3
ρ0
sδ
ab−(ρ0

s)
2εacdεbef

∫
d3x′〈ecαedβ(~x)eeγe

d
δ(~x
′)〉〈πα∂τπβ(x)πγ∂τπδ(x

′)〉 (5.42)

We see that the susceptibility involves a convolution of correlators of slow and fast

fields. Evaluating the correlation function of the fast fields explicitly,

χab(x) =
2

3
ρ0
sδ
ab − εacdεbef (δαγδβδ − δαδδβγ)

∫
d3x′〈ecαedβ(~x)eeγe

f
δ (~x
′)〉(∂τDn(x, x′))2

(5.43)

We note,∫
dτ ′(∂τDn(x, x′))2 =

1

β

∑
ωn

ω2
nDn(~x, ~x′, ωn)2

=
1

β

∑
ωn

ω2
n(D(~x− ~x′, ωn)2 + 2D(~x− ~x′, ωn)D(~x−R~x′, ωn) +D(~x−R~x′, ωn)2)

(5.44)

where R denotes reflection across the edge at x = 0. In the absence of an edge, we

can drop the last two terms in (5.44). Then we note that the correlation function of

π′s decays exponentially for large distances, hence only |~x− ~x′| . T−1 contribute to
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the integral in (5.42). The slow degrees of freedom ~n(~x) and ~eα(~x) fluctuate only on

much larger distances (in fact T−1 serves as an effective short-distance cut-off for the

slow degrees of freedom), hence we can to leading order set ~x = ~x′ in the correlation

function of the e’s. This leads to a considerable simplification as,

eaαe
b
α = δab − nanb (5.45)

and,

(δαγδβδ − δαδδβγ)〈ecαedβ(~x)eeγe
f
δ (~x)〉 =

1

3
(δecδdf − δcfδde) (5.46)

and

χab(x) =
2

3
δab
(
ρ0
s − 2

∫
d3x′(∂τDn(x, x′))2

)
(5.47)

Now let’s introduce the edge back. We wish to compute the deviation of local sus-

ceptibility from its bulk value. The major difference from the situation in the bulk

is that eq. (5.44) no longer depends just on the difference ~x − ~x′. For xT . 1, the

integral over ~x′ in (5.43) is saturated with x′T . 1 and hence, we can effectively

set x = x′ = 0, y = y′ in the correlation function of the e’s and recover the simple

form (5.47). However, for xT � 1, the part of the integral in (5.43) that represents

χ(x) − χb is no longer saturated at x′ ∼ x. Hence, one really has to compute the

correlation function of the slow degrees of freedom. For T−1 � x� ξ, we expect this

to modify χ(x) − χb (which, as we shall see, is exponentially suppressed as e−4πTx)

by logarithmic corrections. On the other hand, for x & ξ, we expect additional ex-

ponential suppression coming from the slow degrees of freedom. As we shall see, the

total edge susceptibility is saturated by xT . 1 and, hence, can be computed directly

from (5.47).
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Keeping the above remarks in mind and setting ~x = ~x′ for the slow degrees of

freedom in (5.43), we obtain from (5.44) and (5.47),

χ(x) =
2

3

(
ρ0
s − 2

1

β

∑
ωn 6=0

ω2
n

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′(D(~x− ~x′, ωn)2

+D(~x− ~x′, ωn)D(~x−R~x′, ωn))

)
(5.48)

The first term under the integral in (5.48) is the familiar temperature dependent cor-

rection to bulk susceptibility, while the second term represents the edge contribution.

Performing the integral over ~x′,

χ(x) = χb(T )− 4

3

1

β

∑
ωn 6=0

d2k

(2π)2

ω2
n

(k2 + ω2
n)2

e2ikxx (5.49)

where,

χb(T ) =
2

3

(
ρ0
s − 2

1

β

∑
ωn 6=0

∫
d2k

(2π)2

ω2
n

(k2 + ω2
n)2

)
=

2

3

ρs
c2

(1 +
T

2πρs
) (5.50)

Now, we can compute the asymptotics of (5.49). For xT/c � 1, we can replace

the sum over ωn by an integral,

χ(x) → χb(T )− 4

3

∫
d3k

(2π)3

ω2

(k2 + ω2)2
e2ikxx = χb(T )− 1

3

∫
d2k

(2π)2

1

k
e2ikxx

= χb(T )− 1

12πxc
(5.51)

which agrees with our earlier T = 0 result (5.23) upon the usual replacement (5.20).

In the opposite limit xT/c � 1, the sum in (5.49) is going to be dominated by the

smallest thermal mass, ωn=1, and,

χ(x)→ χb −
2

3

T

c2

(
xT

2c

) 1
2

e−4πTx/c (5.52)

As noted earlier, this result will be modified by logarithmic corrections for x� ξ and

additional exponential suppression for x� ξ. It is also now clear from (5.52) that the
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total edge susceptibility is saturated by xT . 1, so that the corrections mentioned

above can be ignored for its computation, and we can use eq. (5.49), which obeys the

scaling form,

χ(x)− χb = Tfχ(Tx) (5.53)

Thus,

χedge =

∫ ∞
a

dx (χ(x)− χb) =

∫ ∞
Ta

dufχ(u) (5.54)

where a is a short distance cut-off. We observe that the singular behaviour of χedge for

T → 0 can be extracted from the short distance asymptotic of χ(x) (5.51). Noting,

fχ(u)→ − 1
12πu

for u→ 0,

χedge ∼ −
1

12π

∫
Ta

du

u
= − 1

12πc
log
( c

Ta

)
(5.55)

as predicted from T = 0 behaviour in the previous section.

5.3 Large S expansion of the Heisenberg model

with an edge

In this section we perform the large S expansion of the Heisenberg model on a

square lattice with an edge. We start with the usual nearest neighbour Hamiltonian,

H = J
∑
〈ij〉

~Si~Sj (5.56)

and use the Holstein-Primakoff representation of spin operators, which at leading

order in 1/S reads,

Szi = S − b†ibi, S+
i =
√

2Sbi, S
−
i =
√

2Sb†i , i ∈ A (5.57)

Szi = −S + c†ici, S
+
i =
√

2Sc†i , S
−
i =
√

2Sci, i ∈ B (5.58)
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where A and B are the two sublattices. We place the edge at ix = 0. Utilizing the

translational invariance along the y direction,

bix,iy =
1√
Ny/2

∑
ky

bix,kye
ikyiy , cix,iy =

1√
Ny/2

∑
ky

cix,kye
ikyiy (5.59)

where −π/2 < ky < π/2 and Ny is the number of sites in the y direction, we obtain

the Hamiltonian,

H = 4SJ
∑
ky

∑
ix,i
′
x

 bix,ky

c†ix,−ky


†

hixi′x

 bi′x,ky

c†i′x,−ky

 (5.60)

with

hii′ =

 Aii′ Bii′

Bii′ Aii′

 , Aii′ = δii′(1−
1

4
δi0), Bii′ =

1

2
cos kyδii′ +

1

4
(δi′,i+1 + δi′,i−1)

(5.61)

We perform a Bogoliubov transformation by writing, bix,ky

c†ix,−ky

 =
∑
λ>0

(
φ+λ(ix)β↓λ,ky + φ−λ(ix)β†↑λ,−ky

)
(5.62)

where the β’s obey canonical commutation relations and the two component vectors

φλ(ix) = (uλ(ix), vλ(ix)) are eigenstates of τ 3h,

τ 3hφ+λ = λφ+λ (5.63)

τ 3hφ−λ = −λφ−λ (5.64)

Explicitly, φ−λ = τ 1φ+λ. We normalize the φ’s as,

〈φ+λ|τ 3|φ+λ′〉 = δλ,λ′ (5.65)
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Then, up to a constant,

H = 4SJ
∑
ky

∑
λ>0

λ(β†↑λ,kyβ↑λ,ky + β†↓λ,kyβ↓λ,ky) (5.66)

The solutions to the eigenvalue problem (5.63) with positive eigenvalues can be di-

vided into the normalizable and non-normalizable branches. The normalizable branch

has dispersion

λ =
1√
2
| sin ky| (5.67)

The continuum branch can be parameterized by momentum 0 < kx < π− ky and has

dispersion,

λ =

√
1− 1

4
(cos kx + cos ky)2 (5.68)

We normalize our continuum solutions to,

〈φ(kx)|τ 3|φ(k′x)〉 = (2π)δ(kx − k′x) (5.69)

Explicit forms of the eigenstates are given in Appendix D.1. We note that for fixed

ky → 0, the energies of both the normalizable state and the continuum threshold tend

to 1√
2
|ky|, with the splitting between these two energies of order k3

y. This is the reason

why the bound state does not show up in the effective low energy O(3) description -

it is treated as being part of the continuum.

Now, we can compute the observables. The staggered magnetization is given by,

〈Nj〉 = S − 〈c†jcj〉 = S −
∫ π/2

−π/2

dky

π

∑
λ>0

|vλ(jx)|2 (5.70)

We have evaluated the sum (integral) over the eigenstates numerically - the result is

plotted in Fig. 5.3. The staggered moment is depleted near the edge and approaches

its bulk value monotonically. If we plug S = 1/2 into our expansion, the staggered
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moment at the edge is Nedge = 0.217 compared to Nb = 0.303 in the bulk. As already

noted, the long distance asymptotics of the staggered moment are in good agreement

with the predictions of the O(3) continuum theory.

Similarly, we can compute the bond energies,

〈~Sj ~Sj+x̂〉 = −S2 + S(〈b†jbj〉+ 〈c†j+x̂cj+x̂〉+ 〈bjcj+x̂〉+ 〈b†jc†j+x̂〉)

= −S2 + S

∫ π/2

−π/2

dky

π

∑
λ>0

(|vλ(jx)|2 + |vλ(jx + 1)|2

+ vλ(jx + 1)∗uλ(jx) + uλ(jx)∗vλ(jx + 1))

〈~Sj ~Sj+ŷ〉 = −S2 + S(〈b†jbj〉+ 〈c†j+ŷcj+ŷ〉+ 〈bjcj+ŷ〉+ 〈b†jc†j+ŷ〉)

= −S2 + S

∫ π/2

−π/2

dky

π

∑
λ>0

(2|vλ(jx)|2

+ (uλ(jx)∗vλ(jx) + vλ(jx)∗uλ(jx)) cos ky) (5.71)

The short distance behaviour of the bond energies is shown in Fig. 5.5. We see that

both the perpendicular and parallel bonds touching the edge are stronger than in

the bulk (〈~Si ~Sj〉 is more negative), while all the subsequent bonds are weaker than

in the bulk. Substituting S = 1/2 into our expansion, we find that at the edge

〈~Sj ~Sj+x̂〉 = −0.352, 〈~Sj ~Sj+ŷ〉 = −0.368, while in the bulk, 〈~Sj ~Sj+µ̂〉 = −0.329. Thus,

comparing to the results of quantum Monte Carlo, the 1/S expansion reproduces

qualitatively the behaviour of the first two rows of bonds away from the edge, but

fails to capture the subsequent oscillations in bond strengths on short distances. We

expect that these oscillations cannot be seen in the perturbative 1/S expansion. In

the next section, we will argue that the appearance of such oscillations can be linked

to the existence of a competing valence-bond-solid order parameter. As for the long

distance asymptotics, we can compare the sum of bond strengths along x and y
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Figure 5.5: Bond strength deviation from bulk value δ〈~Sj ~Sj+µ̂〉 = 〈~Sj ~Sj+µ̂〉 −
limjx→∞〈~Sj ~Sj+µ̂〉 along µ = x (circle) and µ = y (square) directions computed in
the 1/S expansion.

directions to the local energy density computed in the continuum O(3) model; the

two are in good agreement (see Fig. 5.4).

Now we turn our attention to the local transverse magnetic susceptibility

χ⊥(jx) =
1

2TNy

lim
qy→0

∑
j′x

〈S+(jx, qy)S−(j′x,−qy)〉 (5.72)

where

S+(jx, qy) =
∑
jy

S+(jx, jy)e−iqyjy (5.73)

A finite momentum ~q is needed as a regulator, since we are working in an infinite

volume; it is convenient to choose ~q along the y direction (the limit qy → 0 is assumed

in what follows). At leading order in the 1/S expansion,

χ⊥(j) =
1

2T
S
∑
j′x

〈(bjx,qy + c†jx,−qy)(b†j′x,qy + cj′x,−qy)〉 (5.74)

=
1

2T
S
∑
j′x

∑
λ>0

(uλ(jx, qy) + vλ(jx, qy))(uλ(j′x, qy) + vλ(j′x, qy))∗(1 + 2n(λ))

(5.75)
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where n(λ) = (eλ/T − 1)−1 is the bose distribution. As expected, for qy → 0, the

form-factor in (5.75) vanishes upon summing over j′x, unless λ → 0. Thus, we may

replace, n(λ)→ T/λ, obtaining,

χ⊥(j) = S
∑
j′x

∑
λ>0

1

λ
(uλ(jx, qy) + vλ(jx, qy))(uλ(j′x, qy) + vλ(j′x, qy))∗ (5.76)

A short calculation then yields,

χ⊥(j) =
1

8J
(1 + (−1)jx(

√
2 + 1)−(2jx+1)) (5.77)

This result is saturated by normalizable modes and states at the bottom of the con-

tinuum band. We see that as jx → ∞, the susceptibility approaches its bulk value

χ⊥,b = 1
8J

. We can define the edge susceptibility (per unit edge length) as,

χ⊥,edge =
∑
jx

(χ⊥(j)− χ⊥,b) =
1

8J
2−3/2 (5.78)

So, at leading order in 1/S the edge susceptibility is positive, moreover, the approach

of χ⊥(j) to its bulk value is governed by an oscillating exponential decay. Based

on our continuum treatment in the previous section, we expect these results to be

strongly modified at higher orders in 1/S. Indeed, at T = 0, from eq. (5.23) on large

distances χ⊥(x) − χ⊥,b falls off as 1/x. However, the coefficient of this power law is

of order 1/S and, hence, is not captured by the leading order result (5.77). When

integrated over all space, the large distance power law, which is subleading in the

1/S expansion, will lead to a logarithmic divergence in the size/inverse temperature

of the system, which would overpower the leading term in 1/S coming from short

distances. Thus, the combination of eqs. (5.23), (5.77) naturally explains the results

of Monte Carlo simulations, which see a positive susceptibility of the “dangling” edge



Chapter 5: Edge response in two-dimensional quantum antiferromagnets 202

aL bL

Figure 5.6: a) Lattice order with 〈Vx〉 6= 0. b) Bond order with 〈Ox〉 6= 0.

spin combined with the negative total edge susceptibility coming from a large distance

tail in χ(x).

5.4 The comb structure

In this section we explain the appearance of the comb structure (Fig. 5.1), seen

near the edge in recent Monte Carlo simulations. In our description, we assume

the existence of a dynamic valence-bond-solid (VBS) order parameter V (x) with a

large correlation length in the Néel state. Our treatment becomes exact near a phase

transition into a valence-bond-solid phase. This phase transition has attracted a lot

of attention in the recent years as it lies outside the Landau-Ginzburg paradigm.[1, 2]

It is described by the hedgehog suppressed O(3) σ-model, with the valence-bond-solid

order parameter V (x) being the hedgehog insertion operator. However, the particular

details of the phase transition will not be important for our discussion below.
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We begin by defining a microscopic VBS order parameter (which lives on the

direct lattice),

Vx(i) = (−1)ix+1/2
(
~S(i)~S(i+ x̂)− ~S(i)~S(i− x̂)

)
(5.79)

Vy(i) = (−1)iy+1/2
(
~S(i)~S(i+ ŷ)− ~S(i)~S(i− ŷ)

)
(5.80)

In this section, we take the origin to lie on the dual lattice. It is customary to

group Vx, Vy into a complex order parameter V = Vx + iVy which has the following

transformation properties under elements of the square lattice space group:

T †xV (ix, iy)Tx = −V †(ix − 1, iy) (5.81)

T †yV (ix, iy)Ty = V †(ix, iy − 1) (5.82)

I†dual
x V (ix, iy)Idual

x = V (−ix, iy) (5.83)

I†dual
y V (ix, iy)Idual

y = V (ix,−iy) (5.84)

R†dual
π/2 V (ix, iy)Rdual

π/2 = iV †(iy,−ix). (5.85)

Here Tx,y are translations by one lattice spacing in the x, y directions, Idual
x,y are x, y,

reflections about a dual lattice point, and Rdual
π/2 is a 90◦ rotation about a dual lattice

point. For completeness we also list the transformation property of V under rotations

about a direct lattice point (−1/2,−1/2),

R†dir
π/2V (ix, iy)Rdir

π/2 = iV (iy,−1− ix) (5.86)

A non-zero expectation value of the VBS order parameter V would lead to a bond

pattern shown in Fig. 5.6 a). As already noted, the operator V (x) is represented by

the hedgehog insertion operator in the continuum description of the antiferromagnet

- valence bond solid transition.
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Clearly, the order parameter V is adequate for describing the oscillations of hori-

zontal bonds in the comb structure (Fig. 5.1). However, the oscillations of the vertical

lines in the comb structure (Fig. 5.1), shown separately in Fig. 5.6 b) are not of the

“dimer form.” To describe them, we introduce a new order parameter,

Ox(i) = (−1)ix
(
~S(i+

1

2
x̂ +

1

2
ŷ)~S(i+

1

2
x̂− 1

2
ŷ)− ~S(i− 1

2
x̂ +

1

2
ŷ)~S(i− 1

2
x̂− 1

2
ŷ)

)
Oy(i) = (−1)iy

(
~S(i+

1

2
ŷ +

1

2
x̂)~S(i+

1

2
ŷ − 1

2
x̂)− ~S(i− 1

2
ŷ +

1

2
x̂)~S(i− 1

2
ŷ − 1

2
x̂)

)
Ox describes vertical bond lines which are oscillating in strength along the x direction

(see Fig. 5.6 b)). Similarly, Oy describes horizontal bond lines, which are oscillating

in strength along the y direction.

We can group Ox and Oy into a single complex order parameter O = Ox + iOy.

The transformation properties of O are,

T †xO(ix, iy)Tx = −O†(ix − 1, iy) (5.87)

T †yO(ix, iy)Ty = O†(ix, iy − 1) (5.88)

I†dual
x O(ix, iy)Idual

x = −O†(−ix, iy) (5.89)

I†dual
y O(ix, iy)Idual

y = O†(ix,−iy) (5.90)

R†dual
π/2 O(ix, iy)Rdual

π/2 = iO(iy,−ix) (5.91)

and for rotations about direct lattice point (−1/2,−1/2):

R†dir
π/2O(ix, iy)Rdir

π/2 = iO†(iy,−1− ix) (5.92)

Now we may ask whether it is possible in the continuum to construct an operator

with the transformation properties of O(x) out of V (x). Clearly, any function of V
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with no derivatives cannot do the job, since under dual lattice reflections Idual
x,y , O

transforms non-trivially, while V transforms trivially. Thus, a static uniform conden-

sate of V (not surprisingly) cannot give rise to the order in Fig. 5.6 b). However,

we can obtain an expression with the transformation properties of O if we allow for

derivatives of V . Considering expressions with one power of V and one derivative, we

obtain,

Ox ∼ ∂xVx, Oy ∼ ∂yVy (5.93)

(with the same proportionality constant).

Thus, if dimerization of horizontal bonds is present and is inhomogeneous along

the x direction then we automatically obtain the “secondary” order in Fig. 5.6 b).

Now, we may ask, how a non-zero expectation value of the VBS order is generated?

Indeed, in the Néel phase, in the bulk, the Z4 lattice rotation symmetry is unbroken

and 〈V 〉 = 0. However, the edge possesses a smaller lattice symmetry group than

the bulk - in particular, the lattice rotation symmetry is explicitly broken. This is

manifested in the continuum formulation by the appearance of an edge perturbation,

δS =
1

2
h

∫
dτdy (V + V †)

∣∣∣
x=0

= h

∫
dτdy Vx

∣∣∣
x=0

(5.94)

In the phase where V is gapped, we expect such a coupling will lead to an appearance

of 〈Vx(x, y)〉 decaying away from the edge. Hence, we will also have 〈Ox(x, y)〉 6=

0, which close to the critical point can just be obtained from (5.93). Thus, the

appearance of the comb structure is very natural.

Based on the known results on boundary critical behaviour,[138] we may write

down the scaling forms for 〈V (x)〉, 〈O(x)〉 in the critical region. The edge perturbation

δS is relevant at the critical point provided that ∆V < 2, where ∆V is the scaling
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dimension of operator V (x). Then the scaling forms become universal (up to overall

multiplicative factors),

〈Vx(x)〉 ∼ 1

ξ∆V g(x/ξ) (5.95)

〈Ox(x)〉 ∼ 1

ξ∆V +1
g′(x/ξ) (5.96)

Here ξ is the correlation length of the VBS order parameter in the Neel phase (which

is proportional to the inverse spin stiffness c/ρs with some universal amplitude). In

the deconfined criticality scenario, ξ will be given by the inverse skyrmion mass. Note

that due to the extra derivative in O compared to V , the modulations of lines parallel

to the edge become parametrically weaker than those of dimers perpendicular to the

edge as we approach the phase transition. We may also write down short and long

distance asymptotics of g(u),

g(u) ∼ 1

u∆V , u→ 0 (5.97)

g(u) ∼ e−u, u→∞ (5.98)

where we have not specified the likely power-law prefactor for the long distance asymp-

totic (5.98).

5.5 Conclusion

In this chapter we have addressed two puzzles raised by recent Monte Carlo simu-

lations of edge response in square lattice quantum antiferromagnets. The first puzzle

is the appearance of negative edge susceptibility - we have shown that this effect is

due to low energy spin-waves. We predicted that the total edge susceptibility diverges
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logarithmically as inverse temperature/system size goes to infinity, and found this to

be in good agreement with the Monte Carlo simulations of Ref. [4]. We would like to

note here that our results on the low temperature behaviour of susceptibility apply

equally well to a clean and rough edge, as our continuum O(3) σ-model description

does not assume translational invariance along the edge. (However, for the rough

edge, there may be additional important contributions to the susceptibility coming

from Berry phase effects, not present in the O(3) σ-model.) The second puzzle is the

observation of a comb structure in the bond response near the edge. We have argued

that this is likely a purely quantum mechanical effect, which cannot be captured by

the naive 1/S expansion. We have shown that the appearance of the comb structure

can be understood in the framework of a continuum theory involving a dynamical

valence-bond-solid order parameter. Such a description becomes exact in the neigh-

bourhood of a quantum phase transition to a valence-bond-solid phase. We hope

that the simulations of edge response in Heisenberg model[4] will be extended to the

so-called JQ model where such a phase transition is observed.[57, 58] We have made

a few predictions regarding the behaviour of the comb structure near criticality, e.g.

the relation between the behaviour of bonds parallel and perpendicular to the edge

in the comb. Edge response near the quantum critical point might also be a viable

way to extract the scaling dimension of the valence-bond-solid order parameter, see

eqs. (5.95),(5.97).



Chapter 6

Quantum phase transitions of
metals in two spatial dimensions:
Ising-nematic order

We present a renormalization group theory for the onset of Ising-nematic order

in a Fermi liquid in two spatial dimensions. This is a quantum phase transition,

driven by electron interactions, which spontaneously reduces the point-group sym-

metry from square to rectangular. The critical point is described by an infinite set

of 2+1 dimensional local field theories, labeled by points on the Fermi surface. Each

field theory contains a real scalar field representing the Ising order parameter, and

fermionic fields representing a time-reversed pair of patches on the Fermi surface. We

demonstrate that the field theories obey compatibility constraints required by our

redundant representation of the underlying degrees of freedom. Scaling forms for the

response functions are proposed, and supported by computations up to three loops.

Extensions of our results to other transitions of two-dimensional Fermi liquids with

broken point-group and/or time-reversal symmetry are noted. Our results extend

also to the problem of a Fermi surface coupled to a U(1) gauge field.

208
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6.1 Introduction

A number of recent experiments [10, 9, 12, 11] have noted the presence of Ising-

nematic order in the enigmatic normal state of the cuprate superconductors. This

order is associated with electronic correlations which spontaneously break the square

lattice symmetry to that of a rectangular lattice: i.e. the symmetry of 90◦ rotations

is lost, and the x and y directions become inequivalent. This broken symmetry is

associated with an Ising order parameter, which we will represent below by a real

scalar field φ.

Of particular interest are recent experiments on the anisotropy of the Nernst

signal [11] in YBa2Cu3Oy, which indicate that the Ising-nematic order has its onset

at the temperature T = T ∗, which also marks the boundary between the ‘pseudogap’

region and the ‘strange metal’. These results call for the theory of the quantum

phase transition involving Ising-nematic ordering in a Fermi liquid metal. Such a

quantum critical point would play an important role in the theory of the strange metal.

The metallic Ising-nematic critical point is also of importance in experiments [166]

on Sr3Ru2O7, where the observations of resistance anisotropies have demonstrated

spontaneous Ising-nematic ordering. Finally, there are clear indications of Ising-

nematic order driven by electron correlations in the pnictides. [167, 168, 169, 170]

One approach to the Ising-nematic ordering is to take a liquid-crystalline perspec-

tive [39], and view it among a class of phases with broken square lattice symmetry

[171, 162, 172, 173]. Ising nematic phases are also a generic feature of frustrated

and doped antiferromagnets, because the Ising-nematic order survives after antifer-

romagnetism (at wavevectors 6= (π, π)) has been disrupted by thermal [174, 175] or
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quantum [176, 177] fluctuations.

A complementary point of view [178, 179, 180, 181, 182, 183, 184, 185, 186, 187,

188, 189, 190, 191] is to start from the Fermi liquid with perfect square lattice symme-

try and look for the Pomeranchuk instability of Landau’s Fermi liquid theory in the

angular momentum ` = 2 channel. Almost all of these works rely on the perspective of

Hertz [192], in which the electrons are integrated out to yield a Landau-damped effec-

tive action for the scalar order parameter φ; the low energy particle-hole excitations

near the Fermi surface lead to long-range interactions in the action for φ. However,

this procedure of successive integration of fermionic and then bosonic degrees of free-

dom is clearly dangerous. A systematic renormalization group analysis requires that

all excitations at a given energy scale be treated together. Consequently, a complete

scaling analysis of the Ising nematic critical point is lacking: such an analysis should

be based on a local field theory, and provide a scheme for computing the scaling

dimensions of all perturbations of the critical point.

We can also consider the onset of Ising-nematic order in a superconductor, rather

than in a Fermi liquid. In a s-wave superconductor, the fermionic excitations are

fully gapped, and so the theory for φ has no long-range interactions: consequently

the transition is in the universality class of the 2+1 dimensional pure Ising model.

A d-wave superconductor does have gapless fermionic excitations at special ‘nodal

points’ in the Brillouin zone, and these nodal fermions do modify the universality of

the transition away from pure Ising [193, 194]. A fairly complete understanding of the

Ising-nematic transition in d-wave superconductors has been reached in recent work

[195, 196] using a large-N expansion, where N is the number of fermion components.
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This chapter provides a scaling theory of the Ising-nematic quantum critical point

in two-dimensional metals, satisfying the requirements stated above. Our theory

builds upon the work in the d-wave superconductor [195, 196], and also on advances

by Polchinski[75], Altshuler, Ioffe, and Millis[197], and Sung-Sik Lee[79, 198] on a

closely-related problem: the dynamics of a Fermi surface with the fermions coupled

minimally to a U(1) gauge field.

We focus on a pair of time-reversed patches on the Fermi surface and describe

their vicinity by a local 2+1 dimensional field theory. In principle, there are separate

critical theories for each pair of time-reversed points on the Fermi surface, as is also

the case in the Fermi surface ‘bosonization’ methods.[199, 200, 201, 202, 203, 188, 187]

However, a key difference from the latter methods is that each Fermi surface point is

associated with a 2+1 dimensional theory, and not a 1+1 a dimensional theory. This

means that there is a redundancy in our description, and sowing the theories together

is not trivial: we show in Section 6.4.1 how this is done in a consistent manner.

Apart from their application to the Ising-nematic transition of interest, simple

extensions of our results apply also to the U(1) gauge field case, and to other sym-

metry breaking transitions in Fermi liquids involving order parameters which carry

momentum ~Q = 0. We will describe these cases in Section 6.2 below, and briefly

indicate the needed extensions in the body of the chapter.

Transitions with order parameters which carry momentum ~Q 6= 0 lead to different

field theories, which will be described in Chapter 7.

After a discussion of the one loop results in Section 6.3, we present our main

scaling analysis in Section 6.4. This includes a discussion of Ward identities which
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strongly constrain the structure of renormalization group flow. Finally, explicit three

loop computations appear in Section 6.5 and Appendix E.2.

6.2 The model

We consider quantum phase transitions in metals of electrons cσ (σ =↑, ↓), in-

volving an onset of a real order parameter φ(x) at wave-vector ~Q = 0. The order

parameter is taken to have the same transformation properties under lattice symme-

tries and time reversal as,

O(~x) =
1

V

∑
~q

∑
~kσ

d~kσc
†
~k−~q/2,σ

c~k+~q/2,σe
i~q·~x (6.1)

For definiteness, we consider a system on a square lattice. Then, φ can describe the

following patterns of symmetry breaking:

1. Breaking of the point-group symmetry with d~k↑ = d~k↓ and d~kσ = d−~kσ. In these

cases d~k has either dx2−y2 , dxy, or g-wave symmetry. The Ising-nematic transi-

tion of most interest to us here corresponds to the dx2−y2 or dxy cases. These

cases all belong to one-dimensional representations of the square lattice point

group, and we will argue that these transitions are all in the same universality

class.

2. Breaking of time-reversal and point-group symmetry with d~k↑ = d~k↓ and d~kσ =

−d−~kσ. In this case d~k transforms under the two-dimensional p-wave represen-

tation, and so requires a two component order parameter ~φ = (φx, φy). We will

not consider the two-component case explicitly, but our results have an imme-

diate generalization to this transition. This case corresponds to the “circulating
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current” order parameters proposed by Simon and Varma [40], as was argued

in Refs. [193, 204].

3. Breaking of spin-inversion symmetry with d~k↑ = −d~k↓. In this case, d~k can

have either s-wave symmetry (Ising ferromagnet), d-wave symmetry (Ising spin-

nematic) or g-wave symmetry. Unlike transitions i) and ii), which respect the

full SU(2) spin rotation symmetry, in the present case we assume this symmetry

is explicitly broken to a U(1) “easy axis” subgroup.

Notice that in all cases, there is a Z2 symmetry (either π/2 rotation, reflection or

time-reversal) under which φ→ −φ.

Apart from the above symmetry breaking cases, we will also consider the problem

of a Fermi surface minimally coupled to a U(1) gauge field [198, 79, 75, 74, 205, 206,

207, 197, 208, 209, 210, 211, 212, 78, 213, 214]. This case is similar to case 2 above,

as we describe below Eq. (6.4). Such models arise in theories [78, 213, 214] of certain

U(1) spin liquid phases in which cσ describe the fermionic spinons. We will therefore

refer to this model as the “spin-liquid” case below. The same theory also describes

[24, 28, 29] “algebraic charge liquids” in which case the cσ are spinless, charge −e

fermions, and σ represents the charge of the fermion under the emergent U(1) gauge

field; we will not refer to this case explicitly below.

Given the order parameter in Eq. (6.1), we may write down an effective spacetime

Lagrangian describing the interactions of the order parameter φ with the fermions as,

L = c†σ

(
∂τ + ε(−i∇)

)
cσ −O(x)φ(x) +

1

2
(∇φ)2 +

r0

2
φ2 (6.2)
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Here, we have added by hand a gradient term and a mass for the bosonic mode

φ. Such terms will be generated automatically after integrating out the high-energy

fermions. The absence of higher order terms in φ and gradients of φ will be justified

below.

The Lagrangian L in Eq. (6.2) is not yet in a form suitable for our analysis of

quantum criticality. The main point is that the fermion spectrum ε(~k) has zeros along

the entire Fermi surface of large momenta ~k: so, as is well known, we are not in a

position to make a low momentum expansion needed for a field theory. One strategy

is to use the Hertz approach [192] of integrating out all the c fermions to obtain a non-

local effective action for the order parameter φ. The latter is singular only at small

momenta ~q and ω, and so it is then at least permissible to make a low momentum and

frequency expansion. However, the terms in the effective for φ turn out to be highly

singular as ~q → 0 (see Ref. [186] and Appendix E.1). Moreover, in d = 2, the strength

of the singularity increases with increasing powers of φ in the effective action. The

situation now seems hopeless, but progress becomes possible after a key observation:

the leading singularities in the φ effective action appear only when all the φ fields

have their momenta nearly collinear to each other, as is explained in Appendix E.1,

and as will become clear from the structure of our analysis below (by nearly collinear

we mean that the angle θ between the momenta is of order θ ∼ |~q|/kF ). In other

words, if we are interested only in leading critical behavior, φ fields with non-collinear

momenta effectively decouple from each other. The couplings between φ fields with

non-collinear momenta are then irrelevant corrections to the critical theory. The

argument supporting this statement is presented in Appendix E.1. More generally,
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consider an n-point function

〈φ(~q1)φ(~q2)φ(~q3) . . . φ(~qn)〉 .

In a Gaussian theory for φ, which is the claim of Hertz [192], such a correlator would

decouple into products over pairs of momenta which sum to zero. However, such a

decoupling is too drastic: rather, the decoupling is only over sets of momenta which

are collinear with each other, so that the leading critical singularity of the above

correlator takes the form ∏
a

〈φ(~qa1)φ(~qa2) . . .〉 .

Here all the momenta ~qai in a group Qa are collinear to each other, while being non-

collinear to momenta in groups Qb with b 6= a. We can therefore limit ourselves to φ

fields with momenta along a fixed direction ~q. We will now argue that for each such

direction ~q, there is a sensible and powerful continuum limit of Eq. (6.2).

It is now clear that we may restrict our search for a field theory to that describing

the singularities in the φ correlations for a single group of collinear momenta Qa. So

let us pick a direction ~q for φ. It is believed that a bosonic mode with momentum ~q

interacts most strongly with the patches of the Fermi-surface to which it is tangent

[198, 79, 75, 197]. Assuming that only a single Fermi surface is present, for each ~q

there will be two such points with opposite Fermi-momenta ~k0 and −~k0, see Fig. 6.1.

We will denote fermions at these momenta as ψ+ and ψ−:

ψ+σ(~k) = c~k0+~k,σ , ψ−σ(~k) = c−~k0+~k,σ. (6.3)

We choose coordinate vectors x̂ and ŷ to be respectively perpendicular and parallel

to ~q. Then, expanding the fermion energy near ~k0 and −~k0, the needed, low energy,
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Figure 6.1: The shaded region represents the occupied states inside a Fermi sur-
face. Fluctuations of the order parameter φ at wavevectors parallel to ~q couple most
strongly to fermions near the Fermi surface points ±~k0. These fermions are denoted
ψ±.

continuum Lagrangian becomes

Lk0 = ψ†+σ

(
∂τ − ivF∂x −

1

2m
∂2
y

)
ψ+σ + ψ†−σ

(
∂τ + ivF∂x −

1

2m
∂2
y

)
ψ−σ

− d+σ φψ
†
+σψ+σ − d−σ φψ†−σψ−σ +

1

2
(∂yφ)2 +

r0

2
φ2 (6.4)

Here vF and m are the Fermi velocity and the band mass at k0, while d±σ = d±k0σ,

and we have added a subscript k0 to L emphasize that this is the Lagrangian for the

patch near ±~k0.

We should emphasize here that all the fields in Eq. (6.4) are 2+1 dimensional

quantum fields, with full dependence upon x, y, and τ i.e. the fields are φ(x, y, τ)

and ψ±σ(x, y, τ). In principle, we should also add a term (∂xφ)2 to Eq. (6.4); however,

we omit it at the outset because it will later be seen to be irrelevant near criticality.
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Further, because of this full dependence on x, and y, the fermion fields ψ±σ describe

an extended patch of the Fermi surface near the points ±~k0, and not just the two

points ±~k0. We place some finite cutoff Λ on the size of this patch, and will be

interested in the scaling behavior at momenta much smaller than this cutoff.

We now discuss the structure of the couplings d±σ in Eq. (6.4). For the transitions

in s, d and g channels in case 1 above d+σ = d−σ by inversion symmetry, and d±σ is

σ independent. For case 2, we have d+σ = −d−σ and also σ independent, although

the fermions now couple to a projection of the two component order parameter ~φ · ~d,

while the bosonic gradient term generally involves both components of the order

parameter. The spin liquid case also has d+σ = −d−σ and σ independent, and φ is

associated with the transverse component of the spatial gauge field in the Coulomb

gauge [198, 79, 75, 197]; moreover the spin-liquid has r = 0 by gauge invariance.

Finally, the Ising ferromagnet case 3 has d+σ = d−σ and d±↑ = −d±↓.

We note that for transitions in non-zero angular momentum channels, the coupling

d vanishes along certain axes in the Brillouin zone. The intersections of these axes

with the Fermi surface are known as cold-spots, as the fermion coupling to the order

parameter at these points involves additional derivatives and is much weaker. The

scaling theory that follows only describes the Fermi surface away from cold spots.

It is convenient to rescale coordinates and fields in (6.4), x = (2mvF )−1x̃, ψ =

v
−1/2
F ψ̃, φ = 1

2m|d| φ̃. We drop the tildes in what follows. Then,

L = ψ†+σ

(
η∂τ − i∂x − ∂2

y

)
ψ+σ + ψ†−σ

(
η∂τ + i∂x − ∂2

y

)
ψ−σ

− λ+σ φψ
†
+σψ+σ − λ−σ φψ†−σψ−σ +

1

2e2
(∂yφ)2 +

r

2
φ2 (6.5)



Chapter 6: Quantum phase transitions of metals in two spatial dimensions:
Ising-nematic order 218

with e2 = 2md2/vF , r = r0/(2md
2), η = 2m, and λsσ = dsσ/|d|, and we will hence-

forth drop the subscript k0 on L. We note that as usual, the relation between the

parameters of the effective theory and the original model should not be taken literally.

Rather, in the critical regime, we have r0 − r0c = Zr(r − rc), where rc and r0c de-

note the critical points of the effective theory and the microscopic theory respectively.

Moreover, the original fields and the fields defined in each patch of the Fermi surface

are related by,

φ(~q, ω) ∼ Z
1/2
φ Kφpatch(Kqx, qy, ω), ψ(~q, ω) ∼ Z

1/2
ψ Kψpatch(Kqx, qy, ω) (6.6)

Note that the “metric factors” K, Zr, e
2, Zψ, Zφ are generally dependent on the

direction of the boson momentum q̂ and the cut-off of the low-energy theory Λ.

For brevity, we will only present explicit calculations for the case that does not

involve spin (Ising-nematic transition and spin-liquid); the extension of the results to

the Ising ferromagnet case will be noted. Moreover, we extend the number of spin

components (flavours) to N from the physical value N = 2 with the view towards

performing a large-N expansion. For this purpose, it is convenient to rescale e2 and

r, yielding our Lagrangian in its final form

L =
∑
s=±

ψ†s

(
η∂τ − is∂x − ∂2

y

)
ψs −

∑
s=±

λs φψ
†
sψs +

N

2e2
(∂yφ)2 +

Nr

2
φ2. (6.7)

Here and below we suppress the flavour index. To reiterate, the Ising-nematic case

has λ+ = λ− and the spin-liquid case (i.e. Fermi surface coupled to U(1) gauge field)

has λ+ = −λ−.
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6.3 One loop propagators

To gain some insight into the low energy properties of the theory (6.7), it is useful

to compute the one loop boson and fermion self-energies.

a) b)

Figure 6.2: One loop contributions to the boson a) and fermion b) self-energies.

The one-loop boson polarization in Fig. 6.2 a) is given by,

Π0(q) = N

∫
dlτd

2~l

(2π)3
G0
s(l)G

0
s(l + q) (6.8)

We first evaluate this diagram with a bare fermion propagator,

G0
s(k) =

1

−iηkτ + skx + k2
y

(6.9)

The resulting polarization function takes on a characteristic Landau-damped form,

Π0(q) = N

∫
dlτdly
(2π)2

i [θ(lτ )− θ(lτ + qτ )]

−iηqτ + 2qyly + qx + q2
y

+ (~q → −~q)

=
Nqτ
2π

∫
dly
2π

(−i)
−iηqτ + 2qyly + qx + q2

y

+ (~q → −~q) = cbN
|qτ |
|qy|

, cb =
1

4π
.

(6.10)

Note that η has dropped out of the final result. We are interested above only in the

singular contribution to Π0, and this is insensitive to orders of integration: so unlike
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the conventional order, we have integrated over lx before lτ . We include the RPA

polarization bubble (6.10) into the bosonic propagator to obtain

D(q) =
1

N

(
cb
|qτ |
|qy|

+
q2
y

e2
+ r

)−1

. (6.11)

Note that the q2
y term is not renormalized by the polarization contribution at this

order, and the bare co-efficient represents the phenomenological contribution of higher

energy modes.

The one-loop correction to the fermion propagator is given by Fig. 6.2 b). For

simplicity, we work at the critical point and set r = 0. Then, the fermion self-energy

assumes a non-Fermi liquid form

Σs(k) = −
∫
dlτd

2~l

(2π)3
D(l)G0

s(k − l)

= − i

2N

∫
dlτdly
(2π)2

(
cb
|lτ |
|ly|

+
l2y
e2

)−1

× sgn(kτ − lτ )

= −icf
N

sgn(kτ )|kτ |2/3, cf =
2√
3

(
e2

4π

)2/3

. (6.12)

Note, again, that η has dropped out of the result. Incorporating this correction into

the fermion propagator,

Gs(k) =

(
−icf
N

sgn(kτ )|kτ |2/3 + skx + k2
y

)−1

(6.13)

Here we have dropped the bare fermion time derivative term proportional to η, which

is irrelevant at low energies compared to the dynamically induced self-energy (6.12).

As is well known,[75] the one-loop expressions (6.10), (6.12) actually satisfy the

Eliashberg-like equations, in which the lines of Fig. 6.2 become self-consistent prop-

agators. In what follows, we will use these self-consistent propagators (6.11), (6.13)

in our calculations and drop self-energy corrections like those in Fig. 6.2.
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6.4 Scaling and renormalization

As has been argued by a numer of authors[75, 198, 79, 197], a useful starting point

for the renormalization group analysis of the theory (6.7) is obtained by using the

scaling,

kx → s2kx, ky → sky, ω → s3ω,

ψ(x, y, τ) → s2ψ(s2x, sy, s3τ), φ(x, y, τ)→ s2φ(s2x, sy, s3τ) (6.14)

This scaling is suggested by the one-loop calculation of fermion and boson propagators

in Eqs. (6.11), (6.13). The bare fermion time derivative term ψ†∂τψ is irrelevant under

this scaling, and so we will take the limit η → 0+. Note that neither of the one loop

corrections Eqs. (6.10), (6.12) depend upon η.

Alternatively, note that the scaling of time in (6.14) could also have been derived

by demanding that the ‘Yukawa coupling’ λs be invariant. This avoids the somewhat

unnatural appeal to the one-loop self-energy to set bare scaling dimensions, and yields

all the scaling dimensions in (6.14) by a simple rescaling of the bare Lagrangian L

in Eq. (6.7). Of course, once we have set λs to be invariant, then the coupling η

becomes irrelevant. These features of the scaling analysis are shared by the theory of

the nematic transition in d-wave superconductors in Ref. [196].

Note also the different scaling of spatial momenta kx and ky in Eq. (6.14). The

main physical consequence of such momentum anisotropy is the effective decompact-

ification of the Fermi surface, which allows one to focus on a theory with two Fermi

patches. Also observe that under (6.14) the (∂xφ)2 part of the boson tree level action

is irrelevant, which justifies omitting this term in eqs. (6.4), (6.7).
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Apart from the fermion time derivative term and the relevant mass perturbation

(r → s−2r), all the terms in the Lagrangian (6.7) are marginal. Higher order pertur-

bations to (6.7), consistent with the Z2 symmetry of the order parameter, such as a

φ4 term, are irrelevant.

We would like to note that for the case of the Ising-nematic (or g-wave) transition

the low-energy action (6.7) does not possess a φ→ −φ symmetry. This is due to the

fact that the direction of bosonic momentum ~q is transformed under π/2 rotations

(reflections) and hence the physics is controlled by a different pair of patches of

the Fermi surface. Hence, in principle, it is possible that in the kinematic regime

of interest a φ3 term is generated by the renormalization group process. Such a

term would be marginal under the scaling (6.14). A linear term in φ can also be

generated by the effective theory. However, the one-point function has momentum

~q = 0 and, hence, does not belong to any particular kinematic regime. In practice,

we can demand that the expectation value of φ is zero in the disordered phase by

tuning the coefficient of the φ-linear term. In any case, as we will show below, there

exists a Ward identity, which guarantees that if these terms are initially zero, they

are not generated by the RG of the low-energy theory (6.7). Note that for the case of

the spin-liquid or Ising ferromagnet transitions, the low energy theory (6.7) respects

the time reversal symmetry which maps Fermi patches at k0 and −k0 into each other

and, hence, terms odd in φ are prohibited.

An important observation is that the theory (6.7) lacks an expansion parameter.

To see this, note that due to the rescaling performed in section 6.2, the engineering

dimensions, [kx] = [ky]
2, but the dimension of ω is kept independent. Then, the
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coupling constant e2 has the dimensions [ky]
3/[ω]. Therefore, e2 is a dimensionful

quantity and cannot be used as an expansion parameter. Moreover, e2 is actually

the only parameter in the theory relating frequencies and momenta. Hence, its flow

under RG is equivalent to an appearance of a non-trivial dynamical critical exponent.

Note that up to this point we have dropped an allowed relevant fermion chemical

potential term,

∆L = −δ ψ†sψs (6.15)

This term can be absorbed into the definition of the momentum ~k0 about which

the theory is expanded and, thus, is redundant (note, the scaling dimension [δ] =

[kx] = 2). Nevertheless, it is convenient to leave this term in the Lagrangian for

renormalization group purposes. We assume that when the theory is tuned to the

criticality r = rc and the coefficient δ is set to δ = δc, the Fermi surface passes through

the points ~k0,−~k0.

We now discuss the renormalization of our theory. The Lagrangian contains four

marginal operators, which each requires a renormalization constant. However, as we

will argue below, emergent low-energy symmetries of the theory (6.7) imply certain

relations between these constants. Moreover, the two relevant operators, have the

same bare dimension, [r] = [δ] = 2. Thus, we need to consider possible mixing

between these operators.

6.4.1 Rotational symmetry

Observe that the initial shape of the Fermi surface does not enter the low-energy

theory (6.7). In fact, we could have started with a circular Fermi surface with



Chapter 6: Quantum phase transitions of metals in two spatial dimensions:
Ising-nematic order 224

kF = mvF . This is reflected by the fact that Eq. (6.7) has an emergent continu-

ous “rotational symmetry”,

φ(x, y)→ φ(x, y + θx), ψs(x, y)→ e−is(
θ
2
y+ θ2

4
x)ψs(x, y + θx) (6.16)

Equivalently in momentum space,

φ(qx, qy)→ φ(qx − θqy, qy), ψs(qx, qy)→ ψs

(
qx − θqy − s

θ2

4
, qy + s

θ

2

)
(6.17)

Note that the rotation angle θ becomes non-compact and the rotation group becomes

R instead of U(1). This is a consequence of the effective decompactification of the

Fermi surface. Moreover, due to the anisotropic scaling θ is now dimensionful [θ] =

[ky]. In fact, the situation is analogous to the transformation of the Lorentz symmetry

to Galilean invariance in the non-relativistic limit ω � c|~q|. Here the role of ω is

played by qx and the role of |~q| by qy.

The symmetry (6.17) implies the following form of the bosonic and fermionic

Green’s functions (we suppress the frequency dependence):

D(qx, qy) = D(qy) (6.18)

Gs(qx, qy) = G(sqx + q2
y). (6.19)

In particular, the form of the fermionic Green’s function implies that the terms

ψ†s(−is∂x)ψs and ψs(−∂2
y)ψs in the Lagrangian (6.7) must renormalize in the same

way. Physically, this means that the curvature radius of the Fermi surface K does

not flow under RG (i.e. K has a limit as the cutoff Λ→ 0).

The identities (6.18,6.19) ensure that the Green’s functions at a given physical

momentum remain invariant under small changes in the choice of the points ±~k0 on
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P

Figure 6.3: The momentum of the fermion at point P can be measured with respect
to either the co-ordinate system at ~k0, or that at ~k1.

the Fermi surface about which the field theory is defined. Let us demonstrate this

explicitly using Fig. 6.3. We set the co-ordinate system so that ~k0 = (0, 0), and

measure the momentum of a fermion at the point P to be (qx, qy). Now let us shift

to the field theory defined at the Fermi surface point ~k1 = (κx, κy). As this point

has to be on the Fermi surface, we have κx + κ2
y = 0. We denote the co-ordinates

of the point P in the new co-ordinate system by (q′x, q
′
y). These are obtained from

the old co-ordinates by a shift in origin followed by a rotation by an angle θ, where

tan θ = 2κy; this yields

q′x = qx − κx + 2κy(qy − κy)

q′y = qy − κy , (6.20)

where we only keep terms to the needed accuracy of O(x, y2). It can now be verified

that q′x + q′2y = qx + q2
y , and so by Eq. (6.19) the fermion Green’s function remains
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invariant under the change in the Fermi surface reference point. Also, by choosing

κy = qy we can set q′y = 0, and then qx + q2
y is identified as the invariant measuring

the distance between P and the closest point on the Fermi surface. For the boson

Green’s function, there is no shift in origin of the co-ordinates, and the corresponding

transformation is q′x = qx+2κyqy, q
′
y = qy, and this remains invariant under Eq. (6.18).

These invariances are essential in ensuring the consistency of our description of

each pair of time-reversed Fermi surface points by a separate 2+1 dimensional field

theory. Note that such a consistency requirement would not have arisen if we had

used a 1+1 dimensional field theory at each Fermi surface point,[199, 200, 201, 202,

203, 188, 187] because then every fermion momentum would appear only in the theory

defined at the closest point on the Fermi surface. In our case, we are free to use the

2+1 dimensional theory at this closest point, or at any of the neighboring points.

Before concluding this section, we would like to point out that in the case of the

Ising-nematic transition, the “rotational symmetry” (6.17) is not related in any way

to “large” rotations by π/2, which are actually not implemented in the low-energy

theory.

6.4.2 Ward identities

We now examine the consequences of Ward identities associated with the global

symmetries of Eq. (6.7). Similar consequences were implicit in the analysis of the

superconducting case in Ref. [196]. Here we will present a more formal analysis,

which also shows that Eq. (3.20) in Ref. [196] holds to all orders in 1/N .

The low energy theory (6.7) has two continuous global U(1) symmetries. The first
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of these is related to the conservation of particle number,

U(1)F : ψ+ → eiαψ+, ψ− → eiαψ− (6.21)

The conserved current associated with this symmetry is,

(jτ , jx, jy)F = (iη(ψ†+ψ+ +ψ†−ψ−), ψ†+ψ+−ψ†−ψ−,−i(ψ†+
←→
∂ yψ+ +ψ†−

←→
∂ yψ−)) (6.22)

For the spin-liquid problem, the gauge field φ couples precisely to the x component

of jF .

The second U(1) symmetry is lattice translation. Indeed, ψ+ and ψ− come from

opposite points in the Brilloin zone and, hence, transform under general lattice trans-

lations as,

U(1)T : ψ+ → eiαψ+, ψ− → e−iαψ− (6.23)

The conserved current associated with this symmetry is

(jτ , jx, jy)T = (iη(ψ†+ψ+− ψ†−ψ−), ψ†+ψ+ + ψ†−ψ−,−i(ψ†+
←→
∂ yψ+− ψ†−

←→
∂ yψ−)) (6.24)

Observe that the Ising-nematic order parameter φ couples to the x component of jT .

Note that despite the similarity of the spin-liquid and Ising-nematic problems, there

is an important difference. In the spin-liquid case, the gauge field couples to the

fermion current on all energy scales. In the case of the Ising-nematic transition, the

order parameter couples to a conserved current only at low energies.

We note in passing that for an Ising ferromagnet transition, the current to which

the order parameter couples is related to the symmetry,

U(1)I : ψ+↑ → eiαψ+, ψ−↑ → e−iαψ−, ψ+↓ → e−iαψ+↓, ψ−↓ → eiαψ−↓ (6.25)
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In fact, this is not a symmetry of the underlying theory, but only of the low-energy

Lagrangian (6.4). The symmetry is broken by four-Fermi interactions, which are

however irrelevant under (6.14).

Current conservation implies that the insertion of ∂τjτ + ∂xjx + ∂yjy into any cor-

relation function is zero, up to contact terms (we have dropped the current subscript;

the current, which couples to the order parameter is implicitely assumed). We note

that the temporal component of the currents (6.22), (6.24) has a coefficient η in front

and, therefore, can be set to zero in the kinematic regime of interest. We, thus, have

∂xjx + ∂yjy ∼ 0. Defining the one-particle irreducible polarization function,

Πij(q) =

∫
dτd2xeiqτ τ−i~q·~x〈ji(x)jj(0)〉1PI (6.26)

we have

qxΠxx(q) + qyΠyx(q) = 0 (6.27)

We note that Πxx(q) = Πxx(qτ , qy) is precisely the irreducible boson self-energy.

Hence,

Πyx(qτ , qx, qy) = −qx
qy

Πxx(qτ , qy)

Power counting indicates that Πxx has the following UV structure

Πxx(qτ , qy)
UV
= K1 +K2r +K3q

2
y (6.28)

where K1 ∼ Λ2, K2, K3 ∼ log Λ and Λ is the UV cut-off with dimensions of qy.

For Πyx(qτ , qx, qy) to have an analytic UV behaviour (as again expected from power

counting), we must have

K1 = K2 = 0
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Thus, the coefficient of the mass operator φ2 requires no renormalization (i.e. the

metric factor Zr has a limit as Λ→ 0).

An interesting question is whether the polarization function Πxx actually vanishes

for qy → 0 as suggested by Eq. (6.27). However, for finite qτ we already know from

one-loop calculations that such a limit does not exist within the scaling regime, as

Πxx(qτ , qy)1loop = cb
|qτ |
|qy|

, Πyx(qτ , qx, qy)1loop = −cb
qx
qy

|qτ |
|qy|

However, one might hope that the limits limqy→0 limqτ→0 Πxx(qτ , qy),Πxy(qτ , qx, qy) do

exist. In this case, we would conclude,

lim
qy→0

lim
qτ→0

Πxx(qτ , qy) = 0 (6.29)

which would be a stronger statement than the non-renormalization of the mass term.

Otherwise, if the limit above exists only for Πxx by not Πxy then,

lim
qy→0

lim
qτ→0

Πxx(qτ , qy) = crr (6.30)

with cr - some universal constant. We have explicitly checked that to three loop order

cr = 0 and the strong form of the non-renormalization identity Eq. (6.29) holds.

One can generalize the discussion above to higher order correlation functions of

the order parameter. Ward-identities imply that the effective potential for the φ field

is not renormalized from its tree-level form,

V (φ) =
r

2
φ2 (6.31)

This property is also shared by the theory of the nematic transition in a d-wave

superconductor.[195, 196] In particular, no φ3 term is induced in the Lagrangian by
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the renormalization group process if this term is originally zero. (Note that if a φ3

term is initially present, correlation functions of currents no longer coincide with the

correlation functions of the order parameter, and the Ward identities do not constrain

the renormalization properties of the theory). The effective potential (6.31) becomes

unstable for r < 0. Thus, we expect that in the ordered phase the theory is controlled

by dangerously irrelevant operators, such as φ4.

Finally, one can derive a Ward identity for the fermion boson vertex,

qxΓx(q, p, p+ q) + qyΓy(q, p, p+ q) = G−1(p+ q)−G−1(p) (6.32)

with

Γi(q, p, p+ q) =

∫
dxτd

2xdyτd
2ye−iqτxτ+i~q·~xei(p+q)τyτ−i(~p+~q)·~y〈ji(x)ψ(y)ψ†(0)〉1PI

(6.33)

G(p) =

∫
dτd2xeiqτ τ−i~q·~x〈ψ(x)ψ†(0)〉 (6.34)

Γx is precisely the irreducible fermion-boson vertex. Power counting gives UV struc-

ture of Γx and G−1 as,

Γx(q, p, p+ q) = C1 (6.35)

G−1(p) = C2 + C3(px + p2
y) (6.36)

Thus, for the UV behaviour of Γy to be analytic in external momenta, C1 = C3.

Therefore, the vertex and the fermion self-energy renormalize in the same way. Hence,

the boson field requires no field-strength renormalization (i.e. the metric factor Zφ

has a limit as Λ→ 0).

Before concluding this section, we would like to note that perturbation theory

based on self-consistent propagators (6.11), (6.13) actually does not respect the Ward
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identities. This is due to the fact that these one-loop propagators include the fermion

self-energy correction, but not the vertex correction. However, since the fermion

self-energy is only frequency dependent, Ward identities involving currents at zero

external frequency are still respected.

6.4.3 RG equations

From the discussion above, we conclude that at criticality, our theory needs only

two renormalizations: a rescaling of the field strength of the fermion field ψ and a

renormalization of e2,

ψ = Z
1/2
ψ ψr, e2 = Zee

2
r (6.37)

Here the subscript r denotes renormalized quantities and we define renormalized

irreducible correlation functions of nb boson and nf fermion fields as,

Γ
nb,nf
r = Z

nf/2

ψ Γnb,nf (6.38)

Both Zψ and Ze are functions of Λ/µ where µ is a renormalization scale (which

we choose to have dimensions of qy) and of the number of fermion flavours N . As

e2 is dimensionful, Zψ and Ze cannot depend on it. We introduce the anomalous

dimensions,

b = Λ
∂

∂Λ
logZe (6.39)

ηψ = −Λ
∂

∂Λ
logZψ (6.40)

The constants ηψ and b are expected to be pure universal numbers, independent of

Λ/µ.
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Away from criticality, we recall that by the Ward identity, the coupling r does not

renormalize. On the other hand, the coupling δ can pick up a renormalization linear

in r,

δ = δc + δr + Zrδe
2
rr (6.41)

with Zrδ again a function of Λ/µ only. In what follows, we denote δ − δc as δ for

brevity. Note that there is no renormalization constant in front of δr since a finite

change in δ only shifts the value of kx in correlation functions:

Γnb,nf ({p}, δ + a) = Γnb,nf ({p− sax̂} , δ) (6.42)

where s = ±1 for momenta of fermions ψ± and s = 0 for boson momenta. We let,

α = Z−1
e Λ

∂

∂Λ
Zrδ (6.43)

Now, differentiating Eq. (6.38) we obtain the renormalization group equations(
Λ
∂

∂Λ
+ be2 ∂

∂e2
+ αe2r

∂

∂δ
− nf

2
ηψ

)
Γnb,nf ({py}, {px}, {ω}, r, δ, e2,Λ) = 0 (6.44)

It is convenient to get rid of the derivative with respect to δ in Eq. (6.44). To do

so, let the location of the Fermi-surface of fermion ψ+ at finite δ and r be given by

kx + k2
y = ∆k(r, δ, e2,Λ). Then, ∆k is clearly a physical quantity and must satisfy,(

Λ
∂

∂Λ
+ be2 ∂

∂e2
+ αe2r

∂

∂δ

)
∆k(r, δ, e2,Λ) = 0. (6.45)

We will solve this equation shortly. However, first note that

∂∆k

∂δ
= 1. (6.46)

Now, it is convenient to expand momenta around the physical Fermi-surface, defining,

Γ̃nb,nf ({p}, r, δ, e2,Λ) = Γnb,nf ({p+ s∆k(r, δ, e2,Λ)x̂}, r, δ, e2,Λ) (6.47)
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The resulting Γ̃ is independent of δ and by Eqs. (6.42), (6.44), (6.45), (6.46) satisfies,(
Λ
∂

∂Λ
+ be2 ∂

∂e2
− nf

2
ηψ

)
Γ̃nb,nf ({py}, {px}, {ω}, r, e2,Λ) = 0 (6.48)

By dimensional analysis,

Γ̃nb,nf = Λ6−2nf−2nb(e2)nf/2−1fnb,nf
({

py
Λ

}
,

{
px
Λ2

}
,

{
ωe2

Λ3

}
,
Λ2r

µ2

)
(6.49)

and solving the RG equation, we obtain

fnb,nf (s{p̃y}, s2{p̃x}, s3−b{ω̃}, s2−br̃) = s6−b+(b−ηψ−4)nf/2−2nbfnb,nf ({p̃y}, {p̃x}, {ω̃}, r̃)

(6.50)

Hence, the critical theory is invariant under,

py → spy, px → s2px, ω → szω (6.51)

with

z = 3− b, (6.52)

where z is the dynamic critical exponent. Note that we have defined z with reference

to length scales associated with directions tangent to the Fermi surface (y); as indi-

cated in (6.51), length scales orthogonal to the Fermi surface scale as the square of

length scales tangent to the Fermi surface. Moreover, if we define ξ as the correlation

length along the y direction then upon approaching the critical point, ξ ∼ r−ν , with

ν =
1

z − 1
. (6.53)

Note that by combining Eqs. (6.37,6.39,6.52) we can write down the RG equation

for the coupling e:

Λ
∂e2

∂Λ

∣∣∣∣
e2r,µ

= −(z − 3)e2. (6.54)
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This shows that the renormalization of the coupling e is directly related to the dy-

namic critical exponent, as we had claimed earlier.

Now, let us consider a few explicit examples of correlation functions. For the

bosonic two-point function we have,

D−1(qy, ω) = rg
(
qy(re

2Λz−3)−
1
z−1 , ω(rze2Λz−3)−

1
z−1

)
(6.55)

Note that,

lim
qy→0

lim
ω→0

D−1(qy, ω) = rg(0, 0) (6.56)

i.e. the Ising-nematic susceptibility satisfies χ ∼ r−γ with the exponent

γ = 1. (6.57)

We may also write more succinctly,

D−1(qy, ω) ∝ ξ−(z−1)g(qyξ, ωe
2Λz−3ξz) (6.58)

So far, we have been concentrating on a fixed direction of bosonic momentum ~q.

Now let us study the dependence of the result on q̂. Using Eq. (6.6)

D−1(~q, ω) = Z−1
φ K−1Z−1

r r0g
(
|~q|(Z−1

r e2Λz−3r0)−
1
z−1 , ω(Z−zr e2Λz−3rz0)−

1
z−1

)
(6.59)

where for brevity r0 is taken to denote the deviation from the critical point. We

concentrate on the static limit ω = 0. In a Fermi liquid, the susceptibility must have

a continuous limit as ~q → 0. Therefore, we conclude that the combination ZφKZr

must be independent of the direction q̂. This is quite plausible, as neither of the

constants run under RG.
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Now let us look at the behaviour of susceptibility at the critical point,

D−1(qy, ω) =
qz−1
y

e2Λz−3
h

(
ωe2Λz−3

qzy

)
(6.60)

In particular, the static susceptibiltiy satisfies,

D−1(~q, 0) ∼ a(q̂)|~q|z−1 (6.61)

In the context of the spin-liquid problem, many studies [205, 208, 209, 210, 211,

212] examined the structure of the higher loop corrections to the susceptibility. In

particular, Kim et al. [205] examined two-loop corrections to ImD−1(~q, ω) for real

frequencies |ω| � |~q|, and found no corrections to the leading answer ∼ ω/|qy| in

Eq. (6.11); Fermi liquid arguments were made [205, 208, 209, 210, 211] that this

functional form held at higher orders. However, this result by itself does not fix

the value of z; indeed, ImD−1(~q, ω) ∼ ω/|qy| is consistent with the scaling form

(6.60) for any z. These studies also implicitly assumed a Fermi liquid picture with

D−1(~q, ω = 0) ∼ ~q2, and this does imply z = 3. We will examine D−1(~q, ω = 0) up to

3 loops in Section 6.5.1, and find no correction to z = 3.

Proceeding to the fermion Green’s function,

G−1
s (~k, ω) = Λ2

(
re2

Λ2

) 2−ηψ
z−1

L
(
k(re2Λz−3)−

2
z−1 , ω(rze2Λz−3)−

1
z−1

)
(6.62)

with k = skx + k2
y - the distance to the Fermi surface. More compactly,

G−1(~k, ω) ∝ ξ−(2−ηψ)L
(
kξ2, ωe2Λz−3ξz

)
(6.63)

A crucial property of the theory that is manifested by the above expression is that

the “fermionic correlation length” scales as the square of the “bosonic correlation

length”.
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For ω � ξ−z, k � ξ−2 we expect the fermion Green’s function to assume a

Fermi-liquid form,

G(~k, ω) =
Z

−iω + vFk
(6.64)

By matching to the scaling form,

vF ∼ ξ−(z−2), Z ∼ ξ−(z+ηψ−2) (6.65)

Notice that both the Fermi velocity vF and the residue Z tend to zero as we approach

the critical point, albeit with different power laws. Finally, at the quantum critical

point,

G−1(~k, ω) = Ληψk1−ηψ/2P

(
ωe2Λz−3

kz/2

)
, (6.66)

where we reiterate that k = skx+k2
y is the distance to the Fermi surface. In particular,

the self-energy on the Fermi surface scales as,

G−1(0, ω) ∼ ω(2−ηψ)/z (6.67)

and the static self energy,

G−1(~k, 0) ∼ k1−ηψ/2 (6.68)

Moreover, from Eq. (6.66) we can obtain the tunneling density of states,

N(ω) =

∫
d2k

(2π)2
A(~k, ω) (6.69)

where

A(~k, ω) = − 1

π
ImG(~k, iω → ω + i0+) (6.70)

The ~k integral in Eq. (6.69) factorizes into integrals over components along and

perpendicular to the Fermi surface. The former gives a factor proportional to the
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perimeter of the Fermi surface, while the later yields the frequency dependence,

N(ω) ∼ ωηψ/z (6.71)

We remind the reader that the expression in Eq. (6.71) corresponds to the physically

observable electron tunneling density of states only in the case of a nematic transition,

as for the spin/charge-liquid problem, the physical electron operator is a product of

ψ and a boson operator.

Related scaling forms for the fermion Green’s function were discussed on a phe-

nomenological basis by Senthil.[213, 214] However his definition of z differs from ours.

We define it using the fermion momentum parallel to the Fermi surface, because this

is the natural momentum scale appearing also in the boson correlations. He defines

it by the fermion momentum orthogonal to the Fermi surface, which scales as the

square of the parallel momentum.

Finally, let us discuss the shift of the Fermi surface ∆k. Using Eq. (6.46) in the

RG equation (6.45), we obtain,

∆k =
α

z − 3
re2 + Ck(re

2Λz−3)2ν + δ (6.72)

Thus, the shift of the Fermi surface upon deviation from the critical point receives

two contributions: one analytic in r and the other non-analytic. Reexpressing the

second contribution in terms of the correlation length,

∆k =
α

z − 3
re2 + C̃kξ

−2 + δ (6.73)

where the coefficient C̃k is expected to be universal. We would like to point out that

the case z = 3 has to be treated separately. In this situation one obtains,

∆k =
αre2

2
log

re2

Λ2
= −Ĉkξ−2 log(Λξ) + δ (6.74)
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with Ĉk again universal.

The value of the Fermi surface shift ∆k can be used to compute the compressibility,

∂n
∂µ

, where µ is the physical chemical potential. Indeed, by Luttinger’s theorem the

change in density can be obtained as,

δn =
N

(2π)2

∫
ds∆k(θ) (6.75)

where the integral is over the circumference of the Fermi-surface. The main question

is how does the chemical potential enter our low-energy theory. If µ only couples

to the operator ψ†ψ, renormalizing the value of δ, then from Eqs. (6.72), (6.74) we

would conclude that the compressibility tends to a constant and has no interesting

corrections near the quantum critical point. On the other hand, if the coupling r has

a non-trivial µ dependence, then we would conclude,

∂n

∂µ
= κ0 + κ1ξ

z−3, z 6= 3 (6.76)

∂n

∂µ
= κ0 + κ̂1 log Λξ, z = 3 (6.77)

Note that for z ≥ 3 the above forms imply that the compressibility diverges as we

approach the critical point.

6.5 Anomalous exponents to three loops

In this section, we evaluate the exponents z and ηψ to three loop order. We find

that the exponent ηψ is non-zero at this order. The value of ηψ is not suppressed

in the large-N limit. On the other hand, the dynamical critical exponent z remains

unrenormalized from its RPA value z = 3 to this order. Moreover, in the large-N
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limit, the boson self energy acquires a finite correction of order N3/2, which is larger

than the bare value (order N). Finally, we find that the constant α in Eq. (6.43)

associated with the shift of the Fermi-surface away from criticality is non-zero at

three loop order. We note that the N3/2 correction to the boson self-energy and the

non-zero ηψ are only present for the Ising-nematic and spin-liquid universality classes,

and are absent for the Ising ferromagnet transition.

6.5.1 Dynamical critical exponent

Let us first address the question of renormalization of e2. At two-loops the only

correction to the static boson-self energy Π(qτ = 0, ~q), which is not already taken into

account by the solution to self-consistent Eliashberg equations is given in Fig. 6.4.

However, this diagram vanishes when the external frequency is equal to zero. Indeed,

as pointed out in Ref. [198], any diagram with fermions from a single patch, in which

the fermion propagators involve a sum of two or less internal momenta, vanishes in

the static limit (one picks the internal frequency with the largest absolute value and

integrates over the corresponding x component of the momentum. All poles will be in

the same half-plane). Actually, a calculation presented in Appendix E.2 shows that

the diagram in Fig. 6.4 vanishes for any external frequencies and momenta.

The three loop corrections to Π(q) are shown in Figs. 6.5 and 6.6. By the argument

described above, all of these diagrams vanish when the external frequency is zero if

all the fermions are from the same patch. Hence, the only non-zero corrections to

Π(qτ = 0, ~q) come from the Aslamazov-Larkin type diagrams, Fig. 6.6,
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q q

p+ q p+ q − l

l

p− lp

Figure 6.4: Two loop corrections to the polarization.

δ3Π(q) = −1

2

∫
dlτd

2~l

(2π)3
Γ3(q, l,−(l + q))Γ3(−q,−l, l + q)D(l)D(l + q) (6.78)

Here Γ3 is the fermion-induced cubic boson vertex, which receives contribution from

the two fermion patches,

Γ3 = Γ3
+ + Γ3

− (6.79)

Γ3
s(l1, l2, l3) = Nλ3

s(fs(l1, l2, l3) + fs(l2, l1, l3)) (6.80)

fs(l1, l2, l3) =

∫
dpτd

2~p

(2π)3
Gs(p)Gs(p− l1)Gs(p+ l2) (6.81)

The diagrams where the fermions in the two loops come from the same patch give a

vanishing contribution to Π(qτ = 0, ~q). Thus, to three loops,

δ3Π(qτ = 0, ~q) = −1

2

∫
dlτd

2~l

(2π)3
Γ3

+(q, l,−(l + q))Γ3
−(−q,−l, l + q)D(l)D(l + q)

+ (q → −q)

= −λ3
+λ

3
−N

2

∫
dlτd

2~l

(2π)3

[
f+(q, l,−(l + q))(f−(−q,−l, l + q)

+ f−(−q, l + q,−l))D(l)D(l + q)
]

+ (q → −q). (6.82)
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q q

p1

p1 + q p2 + q

p2

p1 − p2

l

p2 − lp1 − l

p1

q

p1 + q
p2 + q

p3 + q

p3

p2

p1 − p2 p2 − p3
q q q

p1 + p3 + q
p2 + p3 + q

p2 + q

p2

p1

p1 + p3

p1 − p2p3

q q

l p− k

k

p

p+ q

k − l
p− l

p

Figure 6.5: Three loop corrections to the boson self-energy with one fermion loop.

The two terms in brackets in the equation above originate respectively from diagrams

in Figs. 6.6 a) and b). Converting these diagrams into the double line representation

of Ref. [198], we obtain Figs. 6.7 a) and b). [We remark that the genus expansion

of Ref. [198] was developed for a theory with only a single Fermi-surface patch. The

extension to the present case of a pair of time reversed patches is simple: a reversal

of the direction of loops with fermions from the second patch reduces the problem to

that with one patch only. The diagrams in Fig. 6.7 have their lines reversed precisely
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a) b)

q q

lp1

p1 + l

l + q

p1 − q p2 + q

p2

p2 − l
q q

p1 − q

p1 l

p1 + l

l + q

p2 + l

p2

p2 − q

Figure 6.6: Aslamazov-Larkin type three loop contributions to the boson self-energy.

a) b)

Figure 6.7: Double line representation of Ref. [198] applied to the Aslamazov-Larkin
diagrams in Fig. 6.6. The fermions in the two loops are assumed to come from
opposite patches. We have reversed the directions of the fermion propagators from
the second patch, and the dotted arrows indicate the true directions of the fermion
momenta.

in this way. The additional dotted arrow besides each propagator indicates the true

direction of fermion momentum.] In this representation, the graph a) contains a loop

while the graph b) does not. As a result, in the genus expansion of Ref. [198], the

diagram in Fig. 6.6 a) is enhanced to O(N), while the diagram in Fig. 6.6 b) is of

O(1). However, we will see that the diagrams are actually individually ultra-violet

divergent, as a result the counting of Ref. [198] is inapplicable here. It turns out that

the sum of the diagrams is UV finite and of O(N3/2).
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We give details of the evaluation of Eq. (6.82) in Appendix E.2, where we find

δ3Π(qτ = 0, ~q) = Cλ+λ−
q2
y

e2
(6.83)

In the large-N limit, the coefficient C is given by,

C ≈ −0.09601N3/2, N →∞ (6.84)

while for the physical value N = 2,

C ≈ −0.04455, N = 2 (6.85)

The N3/2 behaviour in Eq. (6.84) indicates a breakdown of the genus expansion of

Ref. [198]. Moreover, since this correction is parametrically larger than the tree level

value, the existence of the large-N limit of the theory is cast into doubt. In particular,

it is not clear if there are higher loop graphs with even stronger divergences in the

large-N limit. Moreover, we expect contributions to the bosonic self-energy analytic in

qy to be generated from kinematic regimes involving the whole Fermi-surface and not

just the two Fermi patches. Such analytic contributions might also exhibit anomalous

scaling with N .

Note that there is no logarithmic dependence on Λ/µ in Eq. (6.83), and so we

have z = 3 at this order. For the physical value of N = 2, the finite three-loop

correction turns out to be rather small numerically.

6.5.2 Fermion anomalous dimension

The Feynman diagrams for the fermion self-energy up to three loop order are

shown in Figs. 6.8, 6.9 and 6.10. By reasons explained in the previous section, the
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diagrams in Figs. 6.8 and 6.9 vanish when the external frequency is zero and, hence,

do not contribute to the fermion anomalous dimension.

l1 l2

p p− l1 p− l1 − l2 p− l2 p

Figure 6.8: Fermion self-energy at two loops.

Thus, the only fermion self-energy diagrams that can give UV divergences are

shown in Fig. 6.10. Actually, the diagram in Fig. 6.10 a) is zero since the polarization

correction in Fig. 6.4 vanishes. Thus, we only need to consider the two diagrams in

Fig. 6.10 b) and c). For these graphs to be UV divergent, the fermions running in

the loop and the external fermions must come from different patches. The diagram

in Fig. 6.10 b) contains two loops in the double line representation (Fig. 6.11 a))

and is expected to be of order 1/N , while the one in Fig. 6.10 c) has no loops in the

double line representation (Fig. 6.11 b)) and, hence, is expected to scale as 1/N2.

A calculation presented in Appendix E.2 gives the UV divergent contribution,

δ3bΣ+(ω = 0, ~p) = λ+λ−Jb(px + p2
y) log

(
Λy

|px + p2
y|1/2

)
, (6.86)

δ3cΣ+(ω = 0, ~p) = δ3cΣ+(ω = 0, ~p = 0) + λ+λ−Jc(px + p2
y) log

(
Λy

|px + p2
y|1/2

)
(6.87)

The constant Jb is independent of N and given numerically by,

Jb ≈ 0.1062 (6.88)
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l1

l1 − l2
l3

p p+ l1 p+ l2

p+ l2 − l3

p+ l1 − l3 p− l3 p

l1

l1 − l2 l3

p p+ l1 p+ l2

p+ l2 − l3

p+ l1 − l3 p+ l1 p

l1

l2
l3 − l2

p p− l1 p− l1 − l2

p− l1 − l3

p− l3 p+ l2 − l3 p

l1 l2 l3

p p− l1 p− l1 − l2

p− l2

p− l2 − l3 p− l3 p

Figure 6.9: Three loop fermion self-energy diagrams with no fermion loops.

On the other hand, the constant Jc is N -dependent. For N = 2 we obtain,

Jc ≈ −0.03795, N = 2 (6.89)

while in the large-N limit,

Jc ≈
9

4π2N2
log3N, N →∞ (6.90)

Notice that there is no 1/N suppression in Eq. (6.86). A way to interpret this, is

that the diagram is really of order 1/N (as the genus expansion predicts), however,

it is a function of N(px + p2
y). Indeed, recall that the genus expansion assumes
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a)

c)

p

l1 −l2
l2 − l1

k

k + l1 k + l2

p+ l1 p+ l2 p

b)

p

l1 −l2
l2 − l1

k

k + l1 k + l2

p− l1 p− l2 p

Figure 6.10: Three loop fermion self-energy diagrams with one fermion loop.

N(px + p2
y) ∼ 1. However, the UV divergent piece of the diagram cannot depend

on the magnitude of px + p2
y and is valid for any external momentum or frequency.

On the other hand, the infrared scale under the log is expected to become ω1/3

once ω � N3/2|px + p2
y|3/2. Also observe that up to a logarithmic enhancement, the

non-planar diagram 6.10 c) (6.11 b)) is of order 1/N2, as expected from the genus

expansion.

Note that the UV divegence in Eqs. (6.86), (6.87) is logarithmic, as expected

from power counting, and comes from a region where both internal momenta and

frequencies diverge in accordance with the scaling (6.14). This is unlike the anomalous

linear divergences of the Aslamazov-Larkin diagrams that occur when the internal

momenta qy are of order of external momenta, while internal qx, qτ diverge.
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b)a)

Figure 6.11: Double line representation of fermion self-energy diagrams in Figs. 6.10
b),c), as in Fig. 6.7. The external fermions and the fermions inside the loop are
assumed to come from opposite patches.

Thus, to three loop order,

δ3Σ+(ω = 0, ~p) = δ3Σ+(ω = 0, ~p = 0) + λ+λ−J(px + p2
y) log

(
Λy

|px + p2
y|1/2

)
(6.91)

J = Jb + Jc ≈

 0.06824 N = 2

0.10619 N =∞
(6.92)

Although the self-energy correction (6.91) is not parameterically suppressed compared

to the bare value even when N =∞, it appears to be suppressed numerically. Thus,

we may estimate,

Zψ = 1− λ+λ−J log Λ/µ

ηψ = λ+λ−J = ±0.06824 (6.93)

where the upper sign refers to the Ising-nematic transition and the lower sign to the

spin-liquid and we have used the value of J at N = 2.
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6.5.3 Fermi surface shift

We now evaluate the coefficient α, Eq. (6.43), associated with the renormalization

of chemical potential δ away from criticality. This coefficient can be obtained from the

insertion of the φ2 operator into the two-point fermion Green’s function at criticality.

By setting all external frequencies to zero, we find that at three loop order the only

UV divergent contribution can originate from the diagrams in Figs. 6.10 b) c) with

the φ2 operator inserted into the boson propagators. The details of the calculation

are presented in appendix E.2. We find,

δ3∂Σ

∂r
UV
= Jre

2 log Λy (6.94)

with

Jr = 0.00208, N = 2

Jr ∼ O

(
1

N3

)
, N →∞ (6.95)

Absorbing this divergence into the chemical potential,

Zrδ = Jr log Λy/µ (6.96)

and

α = Jr (6.97)

Thus, the φ2 operator mixes with the ψ†ψ operator. If the dynamical critical exponent

z = 3, this leads to a logarithmic divergence of the compressibility, Eq. (6.77). Note

that the magnitude of the mixing α is suppressed in the large N limit and is also

numerically small for N = 2.
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6.6 Conclusion

This chapter has presented the scaling properties of the field theory in Eq. (6.7)

which describes a number of problems involving the breakdown of Landau Fermi liquid

theory at all points on a two dimensional Fermi surface. The main motivation was

provided by the quantum phase transition caused by the onset of Ising-nematic order,

which reduces the point-group symmetry from square to rectangular. However our

theory also directly applies or can be generalized to breaking of other point-group

and/or time-reversal symmetries, and these were described in Section 6.2. One of

these cases is the “circulating current” order parameter of Simon and Varma [193,

40, 204]. Apart from applications to quantum critical points, our theory also described

non-Fermi liquid phases associated with spin liquids [78, 213, 214] or algebraic charge

liquids [24, 28, 29], which have Fermi surfaces coupled to U(1) gauge fields.

Our critical theory was formulated in terms of a time-reversed pair of patches on

the Fermi surface, centered at the wavevectors ±~k0 (see Fig. 6.1). The value of ~k0

was determined by requiring that the tangent to the Fermi surface at ~k0 be parallel to

the wavevector ~q carried by the order parameter insertion in the correlation function

being computed. However, in general, there is nothing special about the point ~k0,

and neighboring points on the Fermi surface should behave in a similar manner. This

key feature was implemented in our theory by the rotational symmetry discussed in

Section 6.4.1, and the identities (6.18,6.19), which show that the Green’s function

remains invariant as we move along the Fermi surface.

We emphasize that although we have critical theories associated with every pair

of points on the Fermi surface, the Lagrangian (6.7) and all the fields are 2+1 dimen-
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sional i.e. φ and ψσ are integrated over arbitrary functions of x, y, and τ . Thus, as

we noted earlier, our approach and results differ from studies using a ‘tomographic’

representations of the Fermi surface, in which every point on the Fermi surface is de-

scribed by a 1+1 dimensional field theory.[199, 200, 201, 202, 203, 188, 187] Our 2+1

dimensional representation leads to a redundancy in our description of the degrees of

freedom, and the identities of Section 6.4.1 ensure the consistency of this redundant

description.

Our main results include the scaling relations for the order parameter suscepti-

bility in Eq. (6.58), and for the fermion Green’s function in Eq. (6.63). These are

associated with only two independent exponents, the dynamic scaling exponent z, and

the fermion anomalous dimension ηψ. The correlation length exponent ν was given

by exact scaling relation in Eq. (6.53), while the susceptibility exponent γ = 1. For

the spin-liquid case, Fermi liquid arguments were made [74, 205, 208, 209, 210, 211]

suggesting that z = 3; we found z = 3 to three loop order in Section 6.5, although

we did not prove this to all orders, and our scaling theory is compatible with a gen-

eral value of z. Our three loop computation also gave a non-zero value of ηψ, with

opposite signs for the Ising-nematic and spin-liquid cases. In the case of the nematic

transition, a non-zero positive ηψ implies the suppression of the electron tunneling

density of states, Eq. (6.71). Another striking effect that we find for the case of a

nematic transition is the power law divergence of the compressibility for z > 3, which

turns into a logarithmic divergence if z = 3.

Our scaling results were expressed in terms of correlators of the fermionic field

ψ+σ carrying momentum ~q as measured from the point ~k0 from the Fermi surface,
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implying from (6.3) that the electron cσ has momentum ~k0 + ~q (and similarly for

ψ−σ). However, note that (after appropriate rescaling of momenta, and for a circular

Fermi surface) |~k| − kF ≈ qx + q2
y. Thus the identity (6.19) implies that the scaling

function (6.63) for the two-point fermion Green’s function depends only on |~k| − kF .

This is similar to the dependence found in other treatments e.g. in the recent critical

theories [215, 216, 217, 218, 219] obtained by applying the AdS/CFT duality to

fermions propagating near a Reissner-Nordstrom black hole. The latter theories, in

their current classical gravity formulation, find [217] ηψ = 0.

It is also interesting to compare the structure of the critical theory in the AdS/CFT

framework to that found here. We have an infinite set of 2+1 dimensional field theo-

ries labeled by pairs of momenta on a one-dimensional Fermi surface i.e. a S1/Z2 set

of 2+1 dimensional field theories. In the low-energy limit, the AdS/CFT approach

yields [217] a AdS2×R2 geometry: this can be interpreted as an infinite set of chiral

1+1 dimensional theories labeled by a R2 set of two-dimensional momenta ~k. It is

notable, and perhaps significant, that both approaches have an emergent dimension

not found in the underlying degrees of freedom. We began with a 2+1 dimensional

Hamiltonian, and ended up with a S1/Z2 set of 2+1 dimensional field theories. In

AdS/CFT, there is the emergent radial direction representing energy scale. These

emergent dimensions imply redundant descriptions, and require associated consis-

tency conditions: we explored such consistency conditions in Section 6.4.1, while in

AdS/CFT the consistency conditions are Einstein’s equations representing the renor-

malization group flow under changes of energy scale. It would be interesting to see

if fluctuations about the classical gravity theory yield corrections to the AdS2 × R2
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geometry which clarify the connection to our theory.

In the analysis of the spin-liquid problem, Ref. [198] considered a single patch of

the Fermi surface, and argued that the 1/N expansion should be organized by the

genus of the Feynman graph (after the propagators are written in a suitable double line

representation, and the graph is interpreted as lying on a two-dimensional surface).

In our two-patch theory here, we have shown that this genus counting is violated.

This is the implication of the N3/2 dependence of the boson self-energy in Eq. (6.83).

In fact, at present, it is not clear how to take the large-N limit of the theory. On the

other hand, for the physical value N = 2, we found that the higher loop contributions

are numerically small, which suggests that the critical exponents are close to the Hertz

mean-field values. However, because the loop-wise expansion does not possess even

a formal expansion parameter, it is not clear if there is a systematic way to extract

corrections to the mean-field exponents. Thus, our value of the fermion anomalous

dimension ηψ, Eq. (6.93), should be regarded as an estimate only.



Chapter 7

Quantum phase transitions of
metals in two spatial dimensions:
Spin density wave order

We present a field-theoretic renormalization group analysis of Abanov and Chubukov’s

model of the spin density wave transition in two dimensional metals. We identify the

independent field scale and coupling constant renormalizations in a local field theory,

and argue that the damping constant of spin density wave fluctuations tracks the

renormalization of the local couplings. The divergences at two-loop order overdeter-

mine the renormalization constants, and are shown to be consistent with our renor-

malization scheme. We describe the physical consequences of our renormalization

group equations, including the breakdown of Fermi liquid behavior near the “hot

spots” on the Fermi surface. In particular, we find that the dynamical critical expo-

nent z receives corrections to its mean-field value z = 2. At higher orders in the loop

expansion, we find infrared singularities similar to those found by S.-S. Lee for the

problem of a Fermi surface coupled to a gauge field. A treatment of these singularities

implies that an expansion in 1/N , (where N is the number of fermion flavors) fails

for the present problem. We also discuss the renormalization of the pairing vertex,

253
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and find an enhancement which scales as logarithm-squared of the energy scale. A

similar enhancement is also found for a modulated bond order which is locally an

Ising-nematic order.

7.1 Introduction

There is little doubt that the quantum transition involving the onset of spin den-

sity wave (SDW) order in a metal is of vital importance to the properties of a variety

of correlated electron metals. This is amply illustrated by some recent experimen-

tal studies. In the cuprates, Daou et al. [36] argued that the Fermi surface change

associated with such a transition was the key in understanding the physics of the

strange metal. In the pnictide superconductors, experiments [220, 221, 222] have

explored the interesting coupling between the onsets of SDW order and superconduc-

tivity. In CeRhIn5 (and other ‘115’ compounds), Knebel et al. [223] have described

the suppression of the SDW order by pressure, and the associated enhancement of

superconductivity.

The theory of Hertz [5, 224, 192] has formed much of the basis of the study of

the spin density wave transition in the literature. The central step of this theory is

the derivation of an effective action for the spin density wave order parameter, after

integrating out all the low energy excitations near the Fermi surface. A conventional

renormalization group (RG) is then applied to this effective action, and this can be

extended to high order using standard field-theoretic techniques [225]. However, it has

long been clear that the full integration of the Fermi surface excitations is potentially

dangerous, because the Fermi surface structure undergoes a singular renormalization
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from the SDW fluctuations.

Important advances were subsequently made in the work of Abanov and Chubukov

[226, 67]. They argued that the Hertz analysis was essentially correct in spatial dimen-

sion d = 3, but that it broke down seriously in d = 2. They proposed an alternative

low energy field theory for d = 2, involving the bosonic SDW order parameter and

fermions along arcs of the Fermi surface; the arcs are located near Fermi surface “hot

spots” which are directly connected by SDW ordering wavevector. They also pre-

sented a RG study of this field theory, and found interesting renormalizations of the

Fermi velocities at the arcs.

This chapter will present a re-examination of the model of Abanov and Chubukov,

using a field-theoretic RG method. We will begin in Section 7.2 by introducing the low

energy field theory for the SDW transition in two dimensional metals, and reviewing

the Abanov-Chubukov argument for the breakdown of the Hertz theory. Section 7.3

will define the independent renormalization constants using the structure of the local

field theory, and determine their values using the divergences in a 1/N expansion

(where N is the number of fermion flavors) to two loop order. Actually, the two-loop

divergences overdetermine the renormalization constants, but we will find a consis-

tent solution: this is a significant check on the consistency of our renormalization

procedure. While our renormalizations of the Fermi velocities agree with those of

Abanov and Chubukov, we find significant differences in the other renormalizations,

and associated physical consequences. Specifically, the RG-improved computations

at two-loop order yield:

• a fermion self energy at the hot spot given by Eq. (7.63);
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• moving away from the hot spot, we find that Fermi liquid behavior is restored,

but the quasiparticle residue and the Fermi velocity vary strongly as a function

of the momentum (p‖) along the Fermi surface: these are given in Eq. (7.64);

• the bosonic SDW spectrum does not obey dynamic scaling with z = 2, but

instead obeys the ‘super power-law’ form in Eq. (7.65), and the amplitude of

the spectrum scales as in Eq. (7.66).

In Section 7.4, we describe the structure of the field theory at higher loop order.

Similar to the effects pointed out recently by S.-S. Lee [198] for the problem of a

Fermi surface coupled to a gauge field, we find that there are infrared singularities

which lead to a breakdown in the naive counting of powers of 1/N . However, unlike

in the problem of a gauge field coupled to a single patch of the Fermi surface [198], we

find that the higher order diagrams cannot be organized into an expansion in terms

of the genus of a surface associated with the graph. Rather, diagrams that scale as

increasingly higher powers of N are generated upon increasing the number of loops.

In Section 7.5, we consider the onset of pairing near the SDW transition, a question

examined previously by Abanov, Chubukov, Finkel’stein, and Schmalian [227, 228,

229]. Like them, we find that the corrections to the d-wave pairing vertex are enhanced

relative to the naive counting of powers of 1/N . However, we also find an enhancement

factor which scales as the logarithm-squared of the energy scale: this is the result in

Eq. (7.90). We will discuss the interpretation of this log-squared term in Section 7.5.

In Section 7.6 we show that a similar log-squared enhancement is present for the

vertex of a bond order which is locally an Ising-nematic order; this order parameter is

illustrated in Figs. 7.22 and 7.23. The unexpected similarity between this order, and
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the pairing vertex, is a consequence of emergent SU(2) pseudospin symmetries of the

continuum theory of the SDW transition, with independent pseudospin rotations on

different pairs of hot spots. One of the pseudospin rotations is the particle-hole trans-

formation, and the other pseudospin symmetries will be described more completely

in Section 7.2.

7.2 Low energy field theory

We will study the generic phase transition between a Fermi liquid and a SDW

state in two spatial dimensions, and our discussion also easily generalizes to charge

density wave order. The wavevector of the density wave order is ~Q, and we assume

that there exist points on the Fermi surface connected by ~Q; these points are known

as hot spots. We assume further that the Fermi velocities at a pair of hot spots

connected by ~Q are not parallel to each other; this avoids the case of ‘nested Fermi

surfaces’, which we will not treat here.

A particular realization of the above situation is provided by the case of SDW

ordering on the square lattice at wavevector ~Q = (π, π). We also take a Fermi

surface appropriate for the cuprates, generated by a tight-binding model with first

and second neighbor hopping. We will restrict all our subsequent discussion to this

case for simplicity.

At wavevector ~Q = (π, π) the SDW ordering is collinear, and so is described by

a three component real field φa, a = x, y, z. There are n = 4 pairs of hot spots, as

shown in Fig. 7.1. We introduce fermion fields (ψ`1σ, ψ
`
2σ), ` = 1...n, σ =↑↓ for each

pair of hot spots. Lattice rotations map the pairs of hot spots into each other, acting
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Figure 7.1: Square lattice Brillouin zone showing the Fermi surface appropriate to
the cuprates. The filled circles are the hot spots connected by the SDW wavevector
~Q = (π, π). The locations of the continuum fermion fields ψ`1 and ψ`2 is indicated.

cyclically on the index `. Moreover, the two hot spots within each pair are related

by a reflection across a lattice diagonal. It will be useful to promote each field ψ to

have N -flavors with an eye to performing a 1/N expansion. (Note that in Ref. [229],

the total number of hot spots 2nN is denoted as N .) The flavor index is suppressed

in all the expressions. The low energy effective theory is given by the Lagrangian,

L =
N

2c2
(∂τ ~φ)2 +

N

2
(∇~φ)2 +

Nr

2
~φ2 +

Nu

4
(~φ2)2

+ ψ†`1 (∂τ − i~v`1 · ∇)ψ`1 + ψ†`2 (∂τ − i~v`2 · ∇)ψ`2

+ λφa
(
ψ†`1στ

a
σσ′ψ

`
2σ′ + ψ†`2στ

a
σσ′ψ

`
1σ′

)
(7.1)

The first line in Eq. (7.1) is the usual O(3) model for the SDW order parameter,

the second line is the fermion kinetic energy and the third line is the interaction
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Figure 7.2: Configuration of the ` = 1 pair of hot spots, with the momenta of the
fermion fields measured from the common hot spot at ~k = 0, indicated by the filled
circle. The Fermi velocities ~v1,2 of the ψ1,2 fermions are indicated.

between the SDW order parameter and the fermions at the hot spots. Here, we have

linearized the fermion dispersion near the hot spots and ~v` are the corresponding Fermi

velocities. It is convenient to choose coordinate axes along directions x̂ = 1√
2
(1, 1)

and ŷ = 1√
2
(−1, 1), so that

~v`=1
1 = (vx, vy) , ~v`=1

2 = (−vx, vy); (7.2)

these Fermi velocities are indicated in Fig. 7.2. The other Fermi velocities are related

by rotations, ~v` = (Rπ/2)`−1~v`=1.

We choose the coefficient λ of the fermion-SDW interaction to be of O(1) in N .

As a result, the coefficients in the first line of Eq. (7.1) are all scaled by N as this

factor will automatically appear upon integrating out the high-momentum/frequency

modes of the fermion fields.

Before proceeding with the analysis of the theory (7.1), let us note its symmetries.

Besides the microscopic translation, point-group, spin-rotation and time-reversal sym-

metries, the low energy theory possesses a set of four emergent SU(2) pseudospin
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Figure 7.3: Modification of the Fermi surfaces in Fig. 7.2 by SDW order with 〈φ〉 6= 0.
The full lines are the Fermi surfaces, and the white, light shaded, and dark shaded
regions denote momenta where 0, 1, and 2 of the bands are occupied. The upper and
lower lines are boundaries of hole and electron pockets respectively.

symmetries associated with particle-hole transformations. Let us introduce a four-

component spinor,

Ψ`
i =

 ψ`i

iτ 2ψ†`i

 (7.3)

We will denote the particle-hole indices in the four-component spinor by α, β. The

spinor (7.3) satisfies the hermiticity condition,

iτ 2

 0 −1

1 0

Ψ`
i = Ψ∗`i (7.4)

Then, the fermion part of the Lagrangian (7.1) can be rewritten as,

Lψ =
1

2
Ψ†`1 (∂τ − i~v`1 ·∇)Ψ`

1 +
1

2
Ψ†`2 (∂τ − i~v`2 ·∇)Ψ`

2 +
1

2
λ~φ ·

(
Ψ†`1 ~τΨ`

2 + Ψ†`2 ~τΨ`
1

)
(7.5)

Now the Lagrangian (7.5) and the condition (7.4) are manifestly invariant under,

SU(2)` : Ψ`
i → U`Ψ

`
i (7.6)

with U` - SU(2) matrices. We note that the diagonal subgroup of (7.6) is associated

with independent conservation of the fermion number at each hot spot pair. The
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symmetry (7.6) is a consequence of linearization of the fermion spectrum near the hot

spots and is broken by higher order terms in the dispersion. The diagonal subgroup

noted above is preserved by higher order terms in the dispersion, but is broken by

four-fermi interactions, which map fermion pairs from opposite hot spots into each

other. Both symmetry breaking effects are irrelevant in the scaling limit discussed

below.

The pseudospin symmetry (7.6) constrains the form of the fermion Green’s func-

tion to be,

−〈Ψ`
iασΨm†

jβσ′〉 = δ`mδijδαβδσσ′G
`
i(x− x′) (7.7)

which implies,

G`
i(x− x′) = −G`

i(x
′ − x) (7.8)

The corresponding expression in momentum space, G`
i(k) = −G`

i(−k), implies that

the location of hot spots in the Brillouin zone is not renormalized by the spin wave

fluctuations in the low energy theory.

Another important manifestation of the particle-hole symmetry is the equality of

any Feynman graphs, which are related by a reversal of a fermion loop direction.

7.2.1 The Hertz action

The Hertz action is derived by working in the metallic phase, and integrating out

the fermions in Eq. (7.1), leaving an effective theory for φ alone. In particular, the

one-loop self-energy of the field φ is evaluated in Appendix F.1.1, and is given by

Π0(ω, ~q) = Π0(ω = 0, ~q = 0) +Nγ|ω|+ ..., γ =
nλ2

2πvxvy
(7.9)
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The presence of the non-analytic term |ω| is due to the fact that the density of particle-

hole pairs with momentum ~Q and energy ω scales as ω. As usual, the constant piece

Π0(q = 0) is eliminated by tuning the coefficient r. The ellipses in Eq. (7.9) denote

terms analytic in ω and ~q, starting with ω2 and ~q2. These terms formally disappear

when we take the cut-off of the effective theory (7.1) to infinity. Thus, the quadratic

part of the effective action for the field φ reads

S2 =
N

2

∫
dωd2k

(2π)3
φa(−k,−ω)

(
γ|ω|+ 1

c2
ω2 + ~k2 + r

)
φa(k, ω) (7.10)

At sufficiently low energies, the analytic term ω2 in the boson self-energy coming from

the bare action, Eq. (7.1), can be neglected compared to the dynamically generated

|ω| term. Thus, at low energies the propagation of collective spin excitations becomes

diffusive, due to the damping by the fermions at the hot spots.

Hertz [5] proceeds by neglecting all the quartic and higher order self-interactions

of the field φ, which are generated when the fermions are eliminated. This is justified

if such interactions are local, as one can then absorb them into operators, which are

polynomial in the order parameter and its derivatives (the simplest of which is just

the operator (~φ2)2). The theory then reduces to,

SH =
N

2

∫
dωd2k

(2π)3
φa(−k,−ω)

(
γ|ω|+ ~k2 + r

)
φa(k, ω) +

Nu

4

∫
dτd2x(~φ2)2 (7.11)

The quadratic part of the action (7.11) is invariant under scaling with the dynamical

critical exponent z = 2,

~k → s~k, ω → s2ω, φ(~x, ~τ)→ sφ(s~x, s2τ) (7.12)

Thus the theory is effectively d + z = 4 dimensional and the quartic coupling u is

marginal by power-counting in d = 2.
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At one loop order, the flow of u follows easily from the conventional momentum

shell RG [230]

du

d`
= − 11

2π2Nγ
u2, (7.13)

where s = e−` is the renormalization scale. Thus u is marginally irrelevant, and flows

to the Gaussian fixed point with u = 0 in the infrared. This stability of the Gaussian

fixed point has formed the basis of much of the subsequent work [192, 225, 230] on

the Hertz theory.

7.2.2 Breakdown of the Hertz theory

The analysis in Section 7.2.1 is valid only under the assumption that the fermion-

induced quartic and higher order couplings of the field φ can be neglected. In fact,

as observed in Refs. [229, 67], this assumption is not justified in spatial dimension

d = 2. Indeed, as shown in Ref. [229], the fermion-induced four-point vertex is given

by,

Γa1a2a3a44 (q1, q2, q3, q4) = λ4fa1a2a3a4(q1, q2, q3, q4) + permutations of 2, 3, 4 (7.14)

fa1a2a3a4(q1, q2, q3, q4) =

=
∑
`

N(δa1a2δa3a4 − δa1a3δa2a4 + δa1a4δa2a3)(|ω1| − |ω2|+ |ω3| − |ω4|)
2πvxvy(i(ω2 + ω3)− ~v`1 · (~q2 + ~q3))(i(ω1 + ω2)− ~v`2 · (~q1 + ~q2))

(7.15)

We see that the vertex (7.14) is highly non-local. Moreover, under the z = 2 scaling

(7.12), we can neglect the frequency dependence in the denominators of Eq. (7.15),

obtaining Γ4 ∼ |ω|/~q2 ∼ O(1), which produces a marginal interaction. Similarly,

one can show that all the higher order fermion-induced vertices behave as Γ2n ∼
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|ω|/|~q|2n−2 ∼ |~q|4−2n, which is again marginal under (7.12) when combined with the

scaling of the field-strength. Thus, the Hertz-Millis theory has an infinite number of

non-local marginal perturbations and the standard action (7.11) is incomplete.

7.2.3 RG interpretation

An RG interpretation of the results of Section 7.2.2 follows by performing a scaling

analysis directly on the spin-fermion model (7.1). As before, we will scale the boson

fields according to Eq. (7.12). Correspondingly, it is natural to scale the fermion

momenta towards the hot spots,

ψ`12(~x, τ)→ s3/2ψ`12(s~x, s2τ) (7.16)

Here the field-strength rescaling has been chosen to preserve the spatial gradient

terms in the fermion action. We now see that the boson-fermion coupling λ in (7.1)

is marginal under the field scalings in Eqs. (7.12) and (7.16); a similar analysis in

d = 3 would show that λ is irrelevant.

The marginality of λ, and the infinite number of marginal couplings in Sec-

tion 7.2.2 indicate that all subsequent RG should be performed direction on the

spin-fermion model (7.1). Further, with the scalings as in (7.12) and (7.16), we

should not expand in powers of λ, but rather analyze the theory at a fixed boson-

fermion “Yukawa” coupling. A similar strategy was followed in Refs. [195, 196] for

the Ising-nematic transition in a d-wave superconductor.

An important consequence of the scalings (7.12) and (7.16) on (7.1) is that both

the boson kinetic term (∂τφ)2 and the fermion kinetic term ψ†∂τψ are irrelevant. We

may safely drop the boson kinetic energy. However, the fermion kinetic energy must
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be retained - otherwise, the theory does not possess any dynamics. We will return to

this point shortly. Let us now rescale the fermion fields ψ = ψ̃/
√
λ to eliminate the

marginal coupling λ. We define, η = 1/λ and ~̃v = ~v/λ . Note that ṽ has the unusual

dimensions of [ω]1/2/[k]. We drop the tildes in what follows. Then,

L =
N

2
(∇~φ)2 +

Nr

2
~φ2 +

Nu

4
(~φ2)2

+ ψ†`1 (η∂τ − i~v`1 · ∇)ψ`1 + ψ†`2 (η∂τ − i~v`2 · ∇)ψ`2

+ φa
(
ψ†`1στ

a
σσ′ψ

`
2σ′ + ψ†`2στ

a
σσ′ψ

`
1σ′

)
(7.17)

As already remarked, the coupling constant η is irrelevant. Thus, we take the limit

η → 0+ in all our calculations. In practice, η gives the prescription for integrating

over the poles of the fermion propagator. We will work with the action (7.17) for the

rest of this chapter. At criticality it is characterized by two dimensionless constants,

α =
vy
vx

, ũ =
u

γ
(7.18)

and a dimensionful constant γ, Eq. (7.9),

γ =
n

2πvxvy
. (7.19)

Thus, in the critical regime, the theory (7.17) does not possess an expansion in any

coupling constant.

7.3 Field-theoretic RG

We begin by discussing the general renormalization structure of (7.17). In the

absence of a coupling constant, we will use the RPA based scaling (7.12) and (7.16)
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1

2

1

2

Figure 7.4: The boson self-energy at N = ∞. The full lines represent the ψ1,2

fermions, and the dashed lines represent the boson φa.

as the starting point of our analysis. Naively, one expects that this scaling is also

obeyed by the N =∞ limit of the theory and that corrections to it can be calculated

in a systematic expansion in 1/N . Indeed, the usual arguments would indicate that

at N = ∞, the boson self-energy is given by the RPA bubble in Fig. 7.4, Eq. (7.9),

(see the Appendix F.1.1 for details of the calculation). Hence, the bosonic propagator

〈φa(x)φb(x′)〉 = δabD(x− x′) (7.20)

at N =∞ takes the form,

D(x) =
1

N

∫
dωd2q

(2π)3

1

γ|ω|+ ~q2 + r
e−iωτ+i~q~x (7.21)

which respects the scaling (7.12). On the other hand, the fermion propagator

−〈ψ`iσ(x)ψ†mjσ′(x
′)〉 = δ`mδijδσσ′G

`
i(x− x′)

at N =∞ is given by its free value,

G`
i(x) =

∫
dωd2k

(2π)3

1

iηω − ~v`i · ~k
e−iωτ+i~k·~x (7.22)
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Applying scaling (7.16) to this propagator indicates η scales to zero; we will eventually

take this limit, but need a non-zero η for now to properly define the fermion loop

integrals.

As we will see later in Section 7.4, the N = ∞ limit in the present theory turns

out to be much more subtle and is not given by the simple forms in Eqs. (7.21),(7.22).

Moreover, the anomalous dimensions in this limit are not expected to be parametri-

cally small. Nevertheless, we can reasonably expect that the RG structure presented

here remains valid, even though we are not able to accurately compute higher loop

corrections to the renormalization constants. In addition, the difficulties with the 1/N

expansion appear only at high loop order, which enables us to check the consistency

of our approach to the order discussed below.

With the above remarks in mind, we are ready to discuss the renormalization of

the theory in Eq. (7.17). The theory contains five operators that are marginal by

power counting at z = 2, and not related by symmetry. Two of these are eliminated

by field-strength renormalizations,

φ = Z
1/2
φ φr, ψ = Z

1/2
ψ ψr (7.23)

As is conventional, we can fix Zφ by demanding that the coefficient of (∇φ)2 remains

invariant. For fermion field, it is convenient to allow both velocities to flow, and so

we renormalize these as

vx = Zx
v v

r
x, vy = Zy

v v
r
y. (7.24)

The fermion spatial gradient terms are then not available to fix Zψ, and we cannot use

the fermion temporal gradient term because its coefficient η scales to zero. Instead

we demand the invariance of the boson-fermion coupling term to fix the fermion field
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strength renormalization; it is thus consistent to use a unit coefficient for this term,

as we have done in Eq. (7.17). The quartic boson coupling renormalizes

ũ =
ZuZ

x
vZ

y
v

Z2
φ

ũr. (7.25)

It is also useful to track the renormalization of the dimensionless velocity ratio α in

Eq. (7.18)

α =
Zy
v

Zx
v

αr. (7.26)

All the renormalization factors Z depend only on N , αr, ũr and the ratio µ/Λ, where

µ is a renormalization scale and Λ is a UV cutoff.

An important point is that the damping parameter γ appearing in the boson

propagator does not have an independent renormalization constant. It is not a cou-

pling in a local field theory, and only appears in certain correlation functions as a

measure of the strength of the particle-hole continuum, as determined by Eq. (7.19).

This implies that when we consider the renormalization of the boson propagator,

the renormalization of the parameter γ should track the the renormalizations of the

velocties vx,y obtained from the renormalization of the fermion propagator; in other

words, the renormalization of γ is

γ =
1

Zx
vZ

y
v
γr. (7.27)

This tight coupling between the boson and fermion sectors is a key feature of the

theory (7.17), and a primary reason for strong coupling physics in d = 2.

The theory (7.17) contains two relevant perturbations. One of these is the usual

~φ2 operator, whose coefficient renormalizes as,

r =
Zr
Zφ
rr (7.28)
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Here, r always denotes the deviation from the critical point. The other relevant

perturbation, whose discussion we have omitted thus far, is the chemical potential,

δL = −µψ`†iσψ`iσ (7.29)

However, this perturbation is redundant, as it can be absorbed into a shift of hot spot

location. Moreover, as already observed in section 7.2, the location of the hot spots

is not renormalized in the low-energy theory, which implies that there is no mixing

between the two relevant operators. This is unlike the situation for the Ising-nematic

transition in a metal studied in Ref. [68], where such mixing leads to a nontrivial

shift of the Fermi surface as a function of deviation r from the critical point.

Introducing the renormalized one-particle irreducible correlation functions of nf

fermion and nb boson fields

Γ
nf ,nb
r = Z

nf/2

ψ Z
nb/2
φ Γnf ,nb (7.30)

we can write down the renormalization group equations,(
µ
∂

∂µ
+ βα

∂

∂αr
+ βu

∂

∂ũr
+ ηγγr

∂

∂γr
− η2rr

∂

∂rr
− nbηφ

2
− nfηψ

2

)
×

× Γ
nb,nf
r ({p}, αr, ũr, γr, rr, µ) = 0 (7.31)

Here, the β-functions and anomalous dimensions are functions of αr and ũr given by,

βα = µ
∂αr
∂µ

∣∣∣
α,ũ,Λ

, βu = µ
∂ũr
∂µ

∣∣∣
α,ũ,Λ

, ηγ =
1

γr
µ
∂γr
∂µ

∣∣∣
α,ũ,γ,Λ

, (7.32)

ηφ = µ
∂

∂µ
logZφ

∣∣∣
α,ũ,Λ

, ηψ = µ
∂

∂µ
logZψ

∣∣∣
α,ũ,Λ

, η2 = µ
∂

∂µ
log

Zr
Zφ

∣∣∣
α,ũ,Λ

(7.33)

Using dimensional analysis,

Γ
nb,nf
r ({ω}, {~p}, αr, ũr, γr, rr, µ) = γ

nb/2+nf/4−1
r µ4−nb−3nf/2

fnb,nf
({

γrω

µ2

}
,

{
~p

µ

}
, αr, ũr,

rr
µ2

)
(7.34)
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Now, solving the RG equation (7.31),

fnb,nf ({ω̂}, {p̂}, αr, ũr, r̂) = s4−3nf/2−nbZφ(s)−nb/2Zψ(s)−nf/2Zγ(s)
nb/2+nf/4−1

× fnb,nf (s−2Zγ(s){ω̂}, s−1{p̂}, αr(s), ũr(s), Zr(s)r̂)

(7.35)

with

s
dαr
ds

= βα(αr(s), ũr(s)), αr(1) = αr, s
dũr
ds

= βu(αr(s), ũr(s)), ũr(1) = ũr

Zφ(s) = exp

(∫ s

1

ds′

s′
ηφ(αr(s

′), ũr(s
′))

)
,

Zψ(s) = exp

(∫ s

1

ds′

s′
ηψ(αr(s

′), ũr(s
′))

)
,

Zγ(s) = exp

(∫ s

1

ds′

s′
ηγ(αr(s

′), ũr(s
′))

)
,

Zr(s) = exp

(
−
∫ s

1

ds′

s′
η2(αr(s

′), ũr(s
′))

)
(7.36)

Now, let us construct the scaling forms of the correlation functions assuming that

the couplings αr, ũr have a stable fixed point. Actually, as we will see below, this

assumption is not supported by explicit calculations of low loop contributions to

the β-functions and anomalous dimensions. However, as already remarked, higher

loop diagrams, which are naively suppressed by powers of 1/N , actually scale as

progressively higher powers of N and might modify the RG flow significantly. Thus,

the fixed-point form of the correlation functions satisfies,

f(s2−ηγ{ω̂}, s{p̂}, s2+η2 r̂) = s4−ηγ−(3+ηψ−ηγ/2)nf/2−(2+ηφ−ηγ)nb/2f({ω̂}, {p̂}, r̂) (7.37)

Hence, typical frequencies and momenta are related by ω ∼ |~p|z, with the dynamical

critical exponent z being given by,

z = 2− ηγ (7.38)
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Moreover, the correlation length ξ away from the critical point scales as ξ ∼ r−ν with

ν =
1

2 + η2

(7.39)

Specializing to boson and fermion two-point functions,

D−1(ω, ~p) ∼ ξ−(2−ηφ)K(ωξz, ~pξ)
ξ→∞→ |~p|2−ηφK̃(ω/|~p|z, p̂) (7.40)

G−1(ω, ~p) ∼ ξ−(z/2−ηψ)L(ωξz, ~pξ)
ξ→∞→ |~p|z/2−ηψ L̃(ω/|~p|z, p̂) (7.41)

Here, the expressions on the right give the correlation functions at the critical point

to which we confine our attention from here on. From Eq. (7.41) we may infer the fate

of the Fermi surface at the critical point. We expect that as ξ →∞ the Fermi-surface

remains sharply defined. Close to the hot spots, the Fermi surfaces of fermions ψ1

and ψ2 will evolve into straight lines with a fixed angle between them. At the hot

spot, the fermion self-energy takes the form,

G−1(ω, ~p = 0) ∼ ω1/2−ηψ/z (7.42)

which is generally non Fermi-liquid like. On the other hand, away from the hot spot,

if we define p⊥ as the distance to the Fermi surface and p‖ as the distance to the hot

spot, for p⊥ � p‖ and ω � pz‖, we expect well-defined Landau quasi-particles,

G(ω, ~p) ∼ Z
iω − vFp⊥

(7.43)

with the Fermi velocity v and quasiparticle residue Z vanishing as we approach the

hot spot as,

vF (p‖) ∼ pz−1
‖ , Z(p‖) ∼ p

z/2+ηψ
‖ (7.44)

The remainder of this section will provide a computation of the 4 renormalization

constants Zφ, Zψ, Zx
v , Zy

v to leading order in 1/N . At this order, the constants will
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21 1

Figure 7.5: The leading contribution to the fermion self-energy.

depend only upon the dimensionless constant α, and do not involve u. We discuss the

renormalization of u in Appendix F.2.2. Thus our considerations here will involve the

RG flow only of the single coupling α, the ratio of the velocities, and a discussion of

its physical implications. For completeness, we will also compute the renormalization

constant Zr, which determines the scaling of the correlation length away from the

critical point. This constant will depend upon both α and u already at leading order

in 1/N .

As we will see below, the 4 renormalization constants will be overdetermined from

the structure of the 1/N corrections to the fermion self energy, the boson-fermion

vertex, and the boson self energy. Computations of these quantities are provided in

the appendix, and we use the results here to compute the Z’s.

The first correction to the self-energy of the fermion ψ`=1
1 is given by Fig. 7.5, and

computed in Appendix F.1.2.

Σ1(ω, ~p) = − 3

2πN |~v|γ

(
isgn(ω)(

√
γ|ω|+ (v̂2 · ~p)2 − |v̂2 · ~p|) +

2

π
v̂2 · ~p log

Λ

|v̂2 · ~p|

)
(7.45)

Note that unless otherwise stated, we will discuss the ` = 1 hot spot and drop the

index `. We see that at the hot spot, ~p = 0, the self-energy has a non-Fermi liquid



Chapter 7: Quantum phase transitions of metals in two spatial dimensions: Spin
density wave order 273

form, [66, 226]

Σ(~p = 0) = −i 3

(2πn)1/2N

(
1

α
+ α

)−1/2

|ω|1/2sgn(ω) (7.46)

This result is consistent with our scaling form (7.42); to this order the anomalous

dimension ηψ = 0. On the other hand, away from the hot spot, in the regime γ|ω| �

(v̂2 · ~p)2, the fermion propagator takes the Fermi-liquid form (7.43). To leading order,

the Fermi surface is given by v̂1 · ~p = 0. The Fermi velocity and quasiparticle residue

vanish with the distance p‖ along the Fermi-surface to the hot spot as,

vF =
4nN

3γ
p‖, Z =

4N

3
(2πn)1/2γ−1/2

(
1

α
+ α

)−1/2

p‖ (7.47)

consistent with the scaling form (7.44) with mean-field exponents z = 2, ηψ = 0.

The last term in Eq. (7.45) contributes to the renormalization of vx, vy, and so

constrains the renormalization constants by

ZψZ
x
v = 1− 6

πnN

α

1 + α2
log(Λ/µ) (7.48)

ZψZ
y
v = 1 +

6

πnN

α

1 + α2
log(Λ/µ) (7.49)

Next we consider the correction to the boson-fermion vertex,

−〈ψ2σ(p′)ψ†1σ′(p)φ
a(−q)〉1PI = τaσσ′Γφψ2ψ

†
1
(p, q)(2π)3δ3(p′ − p− q) (7.50)

This is given by Fig. 7.6 and computed in Appendix F.1.3. We need only the UV

divergent part, which is

Γφψ2ψ
†
1
(p, q) = 1 +

2

πnN
tan−1 1

α
log Λ (7.51)

Eq. (7.51) constrains the renormalizations by

Z
1/2
φ Zψ = 1− 2

πnN
tan−1 1

α
log(Λ/µ) (7.52)
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Figure 7.6: The leading correction to the boson-fermion vertex.

Finally, we consider the corrections to the boson two-point function, shown in

Fig. 7.7, and computed in Appendix F.1.4. These yield

D−1(ω, ~q) = Nγ|ω|
[
1 +

4

πnN
tan−1 1

α
log Λ

]
+ N~q2

[
1 +

2

πnN

(
1

α
− α +

(
1

α2
+ α2

)
tan−1 1

α

)
log Λ

]
+ Nr

[
1 +

(
4

πnN
tan−1 1

α
− 5

2π2N
ũ

)
log Λ

]
(7.53)

Note that both the frequency and momentum dependent parts of the boson propa-

gator receive renormalization corrections. As we discussed earlier, the corrections to

the coefficient of |ω| should not be considered as renormalizations of an independent

coupling γ, but should rather track the renormalizations of the fermion velocities.

Consequently, from Eqs. (7.27) and (7.53), we conclude that

Zφ(Zx
vZ

y
v )−1 = 1− 4

πnN
tan−1 1

α
log(Λ/µ) (7.54)

From the momentum dependent part of (7.53) we immediately obtain the bosonic



Chapter 7: Quantum phase transitions of metals in two spatial dimensions: Spin
density wave order 275

(a) (b)

(c) (d)

Figure 7.7: The leading correction to the boson polarization. A sum over both
directions of the fermion loop is implied.

field strength renormalization,

Zφ = 1− 2

πnN

(
1

α
− α +

(
1

α2
+ α2

)
tan−1 1

α

)
log(Λ/µ) (7.55)

while the r dependent part of (7.53) yields the renormalization constant Zr,

Zr = 1−
(

4

πnN
tan−1 1

α
− 5

2π2N
ũ

)
log(Λ/µ) (7.56)

We note that while our results for the fermion self-energy (7.45) and the ver-

tex (7.51) are in agreement with Ref. [229], the expression for the boson two-point

function Eq. (7.53) differs from that of Ref. [229]. More precisely, the frequency de-

pendent part of our D−1 agrees with Ref. [229], while the momentum dependent part

does not. As already noted, the renormalization of the frequency dependent part of

D−1 is constrained by that of the fermion self-energy and the vertex. On the other
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hand, the renormalization of the momentum dependent part is completely indepen-

dent. The authors of Ref. [229] found that both the frequency and the momentum

parts are renormalized by the same factor, which would imply that the dynamical

critical exponent z = 2 to this order. However, our calculations indicate that the two

renormalizations are equal only at α = 1 and, as we will see below, the dynamical

critical exponent z receives corrections already at the present order in 1/N .

We now have 5 equations for 4 renormalization constants: Eqs. (7.48), (7.49),

(7.52), (7.54), and (7.55). It is easily verified that they are consistent with each

other. This is a strong check on our renormalization procedure, and verifies the

consistency of tying γ to the velocities by Eq. (7.19). We can solve these equations

to obtain

Zy
v

Zx
v

= 1 +
12

πnN

α

1 + α2
log(Λ/µ)

Zx
vZ

y
v = 1− 2

πnN

(
1

α
− α

)(
1 +

(
1

α
− α

)
tan−1 1

α

)
log(Λ/µ)

Zψ = 1 +
1

πnN

(
1

α
− α

)(
1 +

(
1

α
− α

)
tan−1 1

α

)
log(Λ/µ) (7.57)

7.3.1 RG flows

The renormalization constants in Eq. (7.57) determine the flow of the dimension-

less coupling α with the β-function

β(αr) =
12

πnN

α2
r

α2
r + 1

(7.58)

The β function for the velocity anisotropy α has an infrared stable fixed point α = 0

and an infrared unstable fixed point α =∞. Physically, both fixed points correspond

to a nested Fermi surface. For α = 0, the Fermi-velocities at the two hot spots are
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anti-parallel, while for α =∞ they are parallel. The flows to the two fixed points are

logarithmic. In particular, near the infrared stable fixed point α = 0,

αr(s) =
αr

1 +
12αr
πnN

log(1/s)
(7.59)

Here we’ve assumed that the starting point of the flow αr � 1. Note that the

logarithmic flow to α→ 0 in the infrared, with vanishing velocity ratio, is similar to

that found recently in Ref. [196] in a different physical context.

Let us now discuss the physics of the α = 0 fixed point. The renormalization

constants in (7.55),(7.56), (7.57) also determine the renormalization of the velocities,

the anomalous dimensions of the bosons, fermions and of the φ2 operator. For the

velocities, the ratio is already specified by α, and it is convenient to take γ as the

other independent combination of the velocities. We have therefore

ηγ =
2

πnN

(
1

αr
− αr

)(
1 +

(
1

αr
− αr

)
tan−1 1

αr

)
ηφ =

2

πnN

(
1

αr
− αr +

(
1

α2
r

+ α2
r

)
tan−1 1

αr

)

ηψ = − 1

πnN

(
1

αr
− αr

)(
1 +

(
1

αr
− αr

)
tan−1 1

αr

)
η2 = − 2

πnN

(
1

αr
− αr

)(
1 +

(
1

αr
− αr

)
tan−1 1

αr

)
− 5

2π2N
ũr (7.60)

Note that as can be seen from Eqs. (7.35),(7.38) the flow of the dimensionful constant

γr described by the exponent ηγ is equivalent to an anomalous dynamical critical

exponent z. Since ηγ is non-zero, the dynamical behaviour of the theory deviates

from the simple Hertz-Millis scaling with z = 2.

As α flows slowly to 0, the critical exponents in Eq. (7.60) slowly vary:

ηφ →
1

nN

1

α2
r

, ηψ → −
1

2nN

1

α2
r

, ηγ →
1

nN

1

α2
r

, η2 → −
1

nN

1

α2
r

, αr → 0 (7.61)
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Figure 7.8: Modification of the Fermi surfaces in Fig. 7.2 at the SDW quantum critical
point. As in Figs. 7.2 and 7.3, the full lines are the Fermi surfaces, and the white,
light shaded, and dark shaded regions denote momenta where 0, 1, and 2 of the bands
are occupied. The equation of one of the Fermi surfaces is given in (7.62).

Observe that the corrections to the critical exponents diverge as αr → 0. Thus, for

sufficiently small momenta the 1/N expansion breaks down. From Eq. (7.61) we see

that this will happen when α ∼ 1/
√
N ; from Eq. (7.59), we can estimate that this

occurs at a momentum scale k ∼ exp(−N3/2). This is parametrically smaller than the

scale k ∼ exp(−N) at which the direct expansion in 1/N (without RG improvement)

becomes invalid.

Despite the breakdown of the RG at the longest scales, there is an intermediate

asymptotic regime, 1/
√
N � αr � 1, where Eq. (7.61) remains valid, and we can

integrate the RG equations and find interesting consequences for both the fermionic

and bosonic spectra.

For the fermions, the location of the ψ1 Fermi surface is given at tree-level by

v̂1 · ~p = 0, or py = −vxpx/vy = −px/α. Evaluating α at s = µ/px, we find the Fermi

surface at

py = − 12

πnN
px log(µ/|px|) (7.62)
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The resulting Fermi surface distorts from the shape shown in Fig. 7.1 to that in

Fig. 7.8. We may also use RG to improve the one-loop result for the fermion self-

energy (7.45). From Eq. (7.35), the fermion self-energy at the hot spot is,

Σ(ω, ~p = 0) ∼ −i exp

(
− 3

π2n3N3
log3 µ2

γr|ω|

)
|ω|1/2sgn(ω), (7.63)

Along the Fermi surface away from the hot spot, the quasiparticle residue and Fermi

velocity behave as,

vF ∼ exp

(
48

π2n3N3
log3 µ

p‖

)
p‖, Z ∼

(
log

µ

p‖

)−1/2

p‖ (7.64)

The characteristic frequency of the bosonic spectrum is ω ∼ ~q2/γr; evaluating γr

at s = µ/|~q|, we find that it scales with a ‘super power-law’ of the momentum

ω ∼ ~q2 exp

(
48

π2n3N3
log3 µ

|~q|

)
. (7.65)

From Eq. (7.35) we also obtain the static and dynamic scaling of the bosonic propa-

gator,

D−1(ω, ~q = 0) ∼ |ω|1− 1
nN exp

(
6

π2n4N4
log3 µ2

γr|ω|

)(
log

µ2

γr|ω|

)−1/3

D−1(ω = 0, ~q) ∼ |~q|2 exp

(
48

π2n3N3
log3 µ

|~q|

)
(7.66)

Note that the unusual super-power law dependencies in Eqs. (7.63)-(7.66) are

consequences of the scaling of αr → 0 in the infrared and associated divergences of

the anomalous dimensions.

7.4 Counting powers of N

As written in Eq. (7.17), our field theory offers a potentially simple way of orga-

nizing perturbation theory in powers of 1/N : each boson propagator comes with a
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power of 1/N , each fermion loop yields a power of N , and each u interaction yields a

factor N : we refer to this as the “naive” 1/N expansion, and it has been the basis of

our computations so far.

However, because we have to take η → 0 in the scaling limit, there is a danger

that some of the higher order diagrams will have a singular dependence on η. The

fermion propagators in such diagrams need to include self-energy corrections for the

diagrams to be finite in the η → 0 limit. The price we will pay for this regularization

is that the diagram will acquire additional powers of N , and the naive counting of

powers of 1/N will break down.

Recently, in the context of a theory of a Fermi surface interacting with a gauge

field, S.-S. Lee [198] has given a procedure for identifying diagrams with a breakdown

of naive 1/N counting, and shown that the expansion in powers of 1/N is actually

an expansion in the genus of a surface defined by the graph. Using his methods we

will show that many similar issues appear in our theory for the SDW transition of a

Fermi surface, although subtle differences in RG properties imply that in the present

case no genus expansion exists, and diagrams of increasingly higher order in N are

generated as the number of loops is increased.

In the absence of an external pairing vertex (see section 7.5), the simplest diagrams

exhibiting the above effect are the three-loop corrections to the boson-fermion vertex,

see Fig. 7.9. In fact, the two diagrams are equal as they are related by particle-hole

symmetry. The external fermions are taken to have hot spot index ` = 1, while the

fermions running in the loop can come from any hot spot `′, although we will see that

the singular contributions will originate from `′ = 1 and `′ = 3. The diagram is given
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Figure 7.9: Three loop corrections to the boson-fermion vertex that are enhanced in
N , scaling as O(N0).

by,

δΓφψ2ψ
†
1
(p, q)τa = −τa1τa2τa3

∫
dkτd~kdk

′
τd
~k′

(2π)6
faa1a2a3(q, p− k′, k′ − k, k − p− q)×

G1(k)G2(k′)D(k′ − p)D(k − k′)D(p+ q − k)
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Substituting the four-point boson vertex f , Eq. (7.15),

δΓφψ2ψ
†
1
(p, q) = − 7N

2πvxvy

∑
`′

∫
dkτd~kdk

′
τd
~k′

(2π)6

(|qτ | − |pτ − k′τ |+ |k′τ − kτ | − |kτ − pτ − qτ |)

× 1

(iη(pτ − kτ )− ~v`′1 · (~p− ~k))(iη(qτ + pτ − k′τ )− ~v`
′

2 · (~q + ~p− ~k′))
× 1

(iηkτ − ~v1 · ~k)(iηk′τ − ~v2 · ~k′)
D(k′ − p)D(k − k′)D(p+ q − k)

(7.67)

Observe that if `′ = 2 or `′ = 4 the four denominators in Eq. (7.67) involve four linearly

independent combinations of internal momenta ~k, ~k′. As a result, the integral has a

well defined limit when η → 0. On the other hand, when `′ = 1 or `′ = 3 (which

we will also denote as `′ = −1), ~v`
′

and ~v are parallel. Keeping only these two hot

spots, let us integrate over the momentum components ~v1 ·~k, ~v2 ·~k′. We focus on the

contribution from the fermionic poles, which, as we will see, is infrared singular.

δΓφψ2ψ
†
1
(p, q) =

7N

2πvxvy|~v|2
∑
`′=±1

∫
dkτdk‖dk

′
τdk

′
‖

(2π)4

(|qτ | − |pτ − k′τ |+ |k′τ − kτ | − |kτ − pτ − qτ |)

× (θ(kτ )− θ(`′(kτ − pτ )))(θ(k′τ )− θ(`′(k′τ − pτ − qτ )))
(iη((1− `′)kτ − pτ ) + `′~v1 · ~p)(iη((1− `′)k′τ − pτ − qτ ) + `′~v2 · (~p+ ~q))

×D(k′ − p)D(k − k′)D(p+ q − k).

Here k‖, k
′
‖ denote the components of ~k, ~k′ along the Fermi surface of ψ1 and ψ2

respectively, and the arguments of boson propagators are evaluated at ~v1 ·~k = ~v2 ·~k′ =

0. (Strictly speaking, only one pair of poles has ~v1 · ~k = ~v2 · ~k′ = 0, while the other

pair has ~v1 ·~k = ~v1 · ~p and ~v2 ·~k′ = ~v2 · (~p+ ~q). However, in situations of interest to us

discussed below the above difference may be neglected in the bosonic propagators).
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Note that if we take the initial and final fermion momenta to lie on the Fermi

surface, i.e. ~v1 · ~p = 0, ~v2 · (~p+ ~q) = 0, then δΓ diverges as η−2. Since the dimension

of η is ω−1/2, this is synonymous to an infra-red divergence,

δΓφψ2ψ
†
1
∼ η−2N−2ω−1. (7.68)

This behavior can be easily checked by, for instance, setting all the external momenta

to zero (i.e. taking the external fermions to be at the hot spots). We also note that

in the case when the external fermion momenta do not lie on the Fermi surface, the

limit η → 0 can be taken in the contribution of hot spot pair `′ = 1, but not `′ = −1,

as the latter contains a non-local UV divergence. Keeping η finite, we obtain,

δΓφψ2ψ
†
1
∼ η−1N−2p−1

⊥ . (7.69)

where p⊥ schematically denotes the distance of external fermion momenta to the

Fermi surface.

The infra-red divergences in Eqs. (7.68), (7.69) are a product of the bare fermion

propagator having z = 1 dynamics, whereas we expect that the full fermion propa-

gator has the same dynamics as the spin-density wave excitations. We saw that this,

indeed, holds at the one-loop level, where both the boson (7.21) and fermion (7.45)

propagators are invariant under scaling with z = 2 (up to logarithmic corrections

in the latter case). As in Ref. [198], the divergence can be cured by including the

one-loop fermion self-energy within the fermion propagators, before taking the η → 0

limit. This is the approach that will be adopted below. From Eq. (7.46), we know

that the self-energy is ∼ √ω/N . Therefore, mapping ηω → √ω/N , we find from
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Eq. (7.68) that

δΓφψ2ψ
†
1
∼ O(1) (7.70)

Thus, the vertex correction is not suppressed relative to the bare value, and the

naive 1/N expansion has broken down. In the appendix F.2.1, we compute the

vertex correction in Fig. 7.9 with dressed fermion propagators and find to logarithmic

accuracy,

δΓφψ2ψ
†
1
∼ X(α) log

Λ

|~q| (7.71)

where X is a finite negative function of α. Note that the strong infra-red divergence

of Eq. (7.68) is now replaced by a mild logarithmic divergence that one may hope to

treat with renormalization group. However, the price one has to pay for curing the

strong infra-red divergence is the enhancement of the diagram with N , as anticipated

in Eq. (7.70). This enhancement occurs for any external fermion momenta (not only

for momenta on the Fermi surface). Finally, the presence of a logarithm implies that

not only is the diagram itself unsuppressed relative to its bare value, but also that

the anomalous dimensions are not expected to be suppressed with N .

Having seen an explicit example of violation of naive large-N counting, we would

like to investigate the general scaling of diagrams with N in our theory, when a

one-loop dressed fermion propagator is used. Our procedure closely follows that of

Ref. [198]. A general diagram can be schematically written as,

D = NLf

∫ L∏
i=1

d2pidωi

If∏
j=1

1

Σ1loop(lj) + ~v ·~lj

Ib∏
k=1

D(qk) (7.72)

Here, If and Ib are numbers of fermion and boson propagators respectively, Lf is the

number of fermion loops and L is the number of total loops. The momenta lj and
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qk are linear combinations of pi entering the fermion and boson propagators. The

“naive” scaling of the diagram with N is given by D ∼ NQ0 ,

Q0 = Lf − Ib (7.73)

It is clear that the enhancement of diagrams with N comes from the dangerous factor

of 1/N in the fermion self-energy. However, in order to access this factor the fermion

momentum must be on the Fermi surface. Given a diagram, let us call the phase-space

for all internal fermion momenta to lie on the Fermi surface, the “singular manifold.”

Having identified this manifold, one can divide the momentum integration variables

into components parallel p‖ and perpendicular p⊥ to the manifold,

L∏
i=1

d2pi =
n∏
a=1

dp‖a

2L−n∏
b=1

dp⊥b (7.74)

where n is the dimension of the manifold. Linear combinations of p⊥’s enter the

fermion energy ~v · ~lj and hence scale as 1/N , making the fermion propagators scale

as N . On the other hand, the components p‖ only enter the bosonic propagators and

the one-loop fermion self-energy Σ1loop and scale as N0. Hence, the diagram acquires

an enhancement, D ∼ NQ, Q = Q0 + ∆Q,

∆Q = [If − 2L+ n] (7.75)

where [x] = x if x ≥ 0 and [x] = 0 if x < 0.

Thus, to find the degree of a diagram in N , one has to find the singular man-

ifold and compute its dimension n. This can be done diagramatically by intro-

ducing a double-line representation, originally used in the study of electron-phonon

interactions.[231] Below, we will consider diagrams involving opposite hot spot pairs
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` = 1 and ` = −1 only. Subsitution of fermions from hot spots ` = 2 and ` = −2

into these diagrams is expected to reduce the dimension of the singular manifold.

Moreover, we for simplicity consider diagrams without the quartic bosonic vertex u.

Finally, we take all the exernal fermion momenta to be on the Fermi surface.

Now, we are ready to introduce the double-line representation. We would like to

find under what conditions do all the fermions in a diagram go to the Fermi surface.

Observe, that any momentum can be uniquely decomposed into components along

the Fermi surface of fermion 1 and fermion 2. Thus, we fatten bosonic propagators

into double lines, one carrying momentum along the Fermi surface of fermion 1, and

the other along the Fermi surface of fermion 2. If a fermion is to absorb this bosonic

momentum and stay on the Fermi surface, its incoming and outgoing momenta are

fixed in terms of the components of the double line. Hence, the boson-fermion vertices

can be redrawn as shown in Fig. 7.10. Note that if a certain momentum is along the

Fermi surface of fermion 1 from hot spot ` = 1, it is also along the Fermi surface of

fermion 1 from hot spot ` = −1. Thus, the fermion lines in our diagrams can come

from either of these hot spots. Also, the direction of lines in the double-line represen-

tation is not fixed, and need not coincide with that in the single line representation.

If the two are opposite, then it is understood that the physical fermion momentum ~p

is the negative of the momentum carried by the fermion in the double-line represen-

tation, see Fig. 7.11. Because we are neglecting the Fermi surface curvature in the

low-energy theory, a particle with momentum ~p is on the Fermi surface if and and

only if a particle with momentum −~p is on the Fermi surface, and the above repre-

sentation is consistent. (We remind the reader that here all the fermion momenta are
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Figure 7.10: Double line representation for the boson-fermion vertex.

Figure 7.11: Double line representation for the boson-fermion vertex. The direction
of momentum and particle flow need not coincide.

defined relative to hot spot locations).

Thus, the double line representation completely specifies the singular manifold.

In particular, the dimension of the manifold n is just given by the number of loops

in this representation. As an example, consider the double line represenation of the

diagrams in Fig. 7.9 shown in Fig. 7.12. We see that Fig. 7.12 contains two closed

loops, which implies that the singular manifold is two-dimensional. From Eq. (7.75),

the enhancement of the diagram is ∆Q = 2, which combined with the naive degree of

the diagram, Eq. (7.73), Q0 = −2, gives Q = 0, consistent with the explicit calculation

in Eq. (7.71). In Fig. 7.13 we also give an example of a vertex correction which is

not enhanced in N . Here, the double line representation contains no loops so the

dimension of the singular manifold is zero, ∆Q = 0 and the degree of the diagram is

given by the naive N counting, Q = −2.
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Figure 7.12: Double line representation applied to the diagrams in Fig. 7.9. The
enhancement of the diagram in N is related to the number of loops n in the double
line-representation via Eq. 7.75.

It is easy to see that the violations of naive large-N counting are not confined

to vertex corrections alone. In Fig. 7.14 we show a fermion self-energy diagram

that acquires an enhancement. Indeed, the naive degree of the graph is Q0 = −3.

However, since the double line representation contains three loops, the graph receives

an enhancement ∆Q = 2, so that the total degree of the graph is Q = −1. Hence,

the graph is of the same order O(1/N) as the one-loop fermion self-energy. Similarly,

in Fig. 7.15 we show an enhanced diagram for the boson self-energy. In this case,

Q0 = −1, ∆Q = 2, Q = 1. Hence, the diagram is of O(N), again the same as the

tree level contribution.

A remarkable feature of the large-N counting in Eqs. (7.73), (7.75), pointed out

in Ref. [198], is that the degree of a diagram is related to its topology. Let us

first apply the topological classification to vacuum energy diagrams, i.e. graphs with

no external lines. We can convert these diagrams into two-dimensional surfaces in

the following way. First, let us introduce fermion loops back into the double line
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Figure 7.13: A three loop vertex correction with no enhancement in N .

represenation (they will appear dotted in our diagrams, see Fig. 7.16). Then attach

a face to each solid loop of the double-line representation and a face to each dotted

loop (i.e. fermion loop). As a result, each boson propagator is shared by two faces

with solid boundaries, while each fermion propagator is shared by a face with a solid

boundary and a face with a dotted boundary. Therefore, if we glue the faces along

propagators we obtain a closed surface. Now consider the Euler characteristic of this

surface,

χ = F − E + V (7.76)

where F is the number of faces, E is the number of edges and V is the number of
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Figure 7.14: A diagram for the fermion self-energy that is of O(1/N) as a result of
enhancement.

vertices of the surface. We have, F = Lf + n, E = Ib + If and V is just the number

of vertices in the original Feynman graph. Now, using V = 2Ib, 2V = 2If we obtain,

χ = Lf + n− V

2
(7.77)

However, using L = Ib + If − V + 1, we see that the degree of a diagram in N given

by Eqs. (7.73), (7.75), is,

Q = Lf −
V

2
+ n− 2 (7.78)

where we’ve assumed that the argument of [ ] in Eq. (7.75) is positive. Thus, we arrive

at the relation,

Q = χ− 2 (7.79)



Chapter 7: Quantum phase transitions of metals in two spatial dimensions: Spin
density wave order 291

2

1

1

2

1 1

2 2

2 2

1 1

Figure 7.15: A diagram for the boson self-energy that is of O(N) as a result of
enhancement.

This result means that at each order in 1/N one has to sum an infinite set of diagrams

with a given Euler characteristic. In particular, at N = ∞ the theory is dominated

by diagrams with χ = 2, i.e. those whose double-line representation can be drawn on

a sphere. Such graphs are often referred to as planar diagrams.

It is straightforward to extend the classification above to diagrams with external

legs. For instance, fermion self-energy diagrams can be obtained by cutting one

fermion propagator in a vacuum graph. This results in Ib → Ib, Lf → Lf − 1, so

Q0 → Q0 − 1, and If → If − 1, L → L − 1, n → n − 1, as cutting a fermion

propagator destroys a solid loop in the double line representation. Hence, ∆Q→ ∆Q

and Q→ Q− 1, i.e.

Q = χ− 3 (7.80)
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Figure 7.16: Converting vacuum energy diagrams into surfaces: a face is attached
to each solid and grey loop in the double-line representation (on the right). In the
present case, the resulting surface is a sphere.

with χ the Euler characteristic of the initial vacuum diagram. In particular, planar

vacuum graphs give rise to fermion self-energy diagrams of O(1/N).

Similarly, to obtain a boson self-energy diagram, we cut a boson propagator in a

vacuum bubble. This gives Ib → Ib − 1, Lf → Lf , so Q0 → Q0 + 1, and If → If ,

L → L − 1, n → n − 2, as we now destroy two solid loops in the double line

representation. Hence, ∆Q→ ∆Q and Q→ Q+ 1, i.e.

Q = χ− 1 (7.81)

Hence, planar graphs give rise to boson self-energy diagrams of O(N).

Likewise, to obtain vertex correction diagrams, we remove a vertex in a vacuum
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bubble. As a result, Ib → Ib − 1, Lf → Lf − 1, so Q0 → Q0, and If → If − 2,

L → L − 2, n → n − 2, as we again destroy two solid loops in the double line

representation. Hence, ∆Q→ ∆Q and Q→ Q, i.e.

Q = χ− 2 (7.82)

and all planar graphs give rise to vertex diagrams of O(1).

At this point, we would like to make a remark about conditions on external mo-

menta in diagrams needed for the enhancements to occur. Up to now we have been

assuming that all the external fermion momenta in a diagram are on the Fermi sur-

face. If all the diagrams in our theory were UV finite then this condition would,

indeed, be required. However, as we have seen, some of the diagrams actually con-

tain logarithmic divergences, i.e. they receive contributions from momenta, which

are much larger than the external momenta. For the purpose of computing the UV

divergent contribution to these diagrams and estimating its scaling with N , we can

set the external momenta to zero (which certainly puts the external fermions on the

Fermi surface). This explains why the vertex correction in Figs. 7.9,7.12 receives

an enhancement for any external fermion momentum, as can be explicitly seen in

Eq. (7.71).

So far, we have left out one type of diagram which is important from the point

of view of RG properties of the theory, namely diagrams for the boson four-point

function. Such diagrams can be obtained by cutting two boson propagators in a

vacuum bubble. This results in Ib → Ib − 2, Lf → Lf , so Q0 → Q0 + 2. Now let

us discuss the change in the enhancement ∆Q. We see that If → If , L → L − 2.

The change in the dimension of the singular manifold δn depends on how many loops
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Figure 7.17: Producing a boson four-point function from a vacuum bubble by cutting
two boson propagators. If the initial diagram is planar and only two solid lines are
cut in the double-line representation then the resulting diagram is disconnected, as
in (a). Diagrams of highest degree are obtained by starting with a planar diagram
and cutting three solid line loops, as in (b), or starting with a diagram with χ = 1
and cutting two solid line loops, as in (c).
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in the double line representation the two propagators that we cut share. If both the

components 1 and 2 of the two propagators are part of the same two solid loops,

see Fig. 7.17c, then the change in the dimension of the singular manifold δn = −2.

If these two propagators share only one solid loop, see Fig. 7.17b, then δn = −3.

Finally, if the two propagators don’t share any solid loops, then δn = −4. Thus, we

obtain, ∆Q→ ∆Q+ 4 + δn and Q→ Q+ 6 + δn, i.e.

Q = χ+ 4 + δn (7.83)

It appears that the highest possible degree of the four-point vertex corresponds to

starting with a planar graph and cutting two bosonic propagators, which are part of

the same double-line loop, to obtain, Q = 4. However, it is easy to see that this always

produces a diagram, which is disconnected, see Fig. 7.17a. To obtain a connected

diagram for the four-point function starting from a planar graph, we must cut at

least three solid loops, such that the highest possible degree of a four-point function

is Q = 3. The fact that the four-point vertex scales as N3 could be anticipated from

the simple one-loop result in Eq. (7.15). Indeed, for special kinematic conditions,

~v1 · (~q2 + ~q3) = 0, ~v2 · (~q1 + ~q2) = 0, Eq. (7.15) diverges as N(η2ω)−1, which after

including the one-loop fermion self-energy is expected to become of order N3. Such

kinematic conditions are automatically assumed in our double line representation

that led to the large-N counting in Eq. (7.83). However, as was already noted,

diagrams that have ultraviolet divergences are expected to receive the enhancement

in Eq. (7.75) independent of external momenta. The simplest diagram for the boson

four-point vertex that is expected to scale as N3 and exhibits such a divergence is

shown in Fig. 7.18. In the appendix, we explicitly evaluate this diagram obtaining to
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Figure 7.18: A diagram for the boson four-point function that diverges logarithmically
and scales as N3.

logarithmic accuracy,

δΓ4 = N3Y (α)γ log
Λ

|~q| (7.84)

with Y a finite function of α.

The fact that there are diagrams for the four-point boson function that scale as

N3 for arbitrary external momenta has drastic consequences for the theory. Indeed, a

diagram with just quartic internal vertices (which can themselves have a non-trivial

internal structure), will scale as NQ, with Q = V4 + Eb
2

, where V4 is the number of

quartic vertices and Eb is the number of external bosons. Thus, the degree of the

diagram in N grows with the number of quartic vertices. This means that perturba-

tion theory based on the one-loop dressed fermion propagator is not a good starting

point for taking the large-N limit, and no genus expansion similar to that of Ref. [198]
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exists in the present case. Note that this effect was not captured in our initial large-N

counting, as we have ignored the possible presence of UV divergent subdiagrams.

7.5 Pairing vertex

In this section we will study the renormalization properties of the BCS order

parameter to one loop order. We consider pairing in the spin singlet, parity even,

momentum zero channel. There are four order parameters that one can form out of

our four pairs of hot spots,

Vµν = εσσ′(ψ
`=−1
1σ ψ`=1

1σ′ + µψ`=−1
2σ ψ`=1

2σ′ ) + νεσσ′(ψ
`=−2
1σ ψ`=2

1σ′ + µψ`=−2
2σ ψ`=2

2σ′ ) (7.85)

Here the minus sign in the hot spot labels ` = −1 ≡ 3 and ` = −2 ≡ 4 denotes the

opposite hot spot pair. The geometry of the pairing operators for ` = 1 is illustrated in

Fig. 7.19. The coefficients µ = ±1, ν = ±1 determine the transformation properties

of V under the lattice rotation symmetry Rπ/2 and the reflection symmetry I(−1,1)

about the (−1, 1) axis:

Rπ/2 : Vµν → νVµν (7.86)

I(−1,1) : Vµν → µVµν (7.87)

These properties are summarized in Table 7.1. Since the theory (7.17) conserves the

number of fermions at each hot spot pair `, the parts of the order parameter involving

` = ±1 and ` = ±2 renormalize independently. Hence, the scaling dimension of the

pairing vertex in the low-energy theory is independent of ν and is sensitive only to µ,

i.e the operators with s and dxy, and g and dx2−y2 symmetries are degenerate.
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Figure 7.19: Pairing of the electrons at the ` = ±1 hotspots of Fig. 7.1. Electrons at
opposite ends of the arrows form spin-singlet pairs. The µ = +1 (µ = −1) pairing
amplitude in Eq. (7.85) has the same (opposite) sign on the two arrows. Only the
µ = −1 spin singlet pairing is enhanced near the SDW critical point.

µ

1 -1
ν 1 s g

-1 dxy dx2−y2

Table 7.1: Symmetry properties of the pairing vertex.

The renormalization properties of the operator V can be determined from its

insertion into the correlation function,

εσσ′ΓV ψ†ψ†(k1, k−1) =

∫
dDx1d

Dx−1〈V (0)ψ†`=−1
1σ′ (x−1)ψ†`=1

1σ (x1)〉1PIei(k1x1+k−1x−1)

(7.88)

At tree level, ΓV ψ†ψ† = 1. Let us now consider the one-loop renormalization of V ,

shown in Fig. 7.20 a). This diagram is given by

δΓV ψ†ψ†(k1, k−1) = −3µ

∫
d3l

(2π)3
D(l)G1

2(k1 − l)G−1
2 (k−1 + l). (7.89)
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(a)

(b)

Figure 7.20: The leading corrections to (a) BCS pairing vertex, (b) density-wave
vertex.

Details of the evaluation of (7.89) appear in Appendix F.2.3. Direct computation

with bare fermion propagators gives rise to strong infra-red divergences, which are

cured by using the one-loop dressed propagators. With this approach, we obtain to

logarithmic accuracy

δΓV ψ†ψ† = − µα

π(α2 + 1)
log2

(
Λ2

γω

)
(7.90)

Note that the one loop renormalization of the pairing vertex (7.90) is of order

unity, and is not suppressed in 1/N . Thus the naive counting in powers of 1/N is

violated, as was already noted in Ref. [227]. Moreover, the one-loop contribution

gives a suppression of the vertex for µ = 1 (s and dxy channels) and an enhancement

for µ = −1 (dx2−y2 , g channels) as expected. Finally, we find that the one-loop result
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has a non-local log2 divergence. The origin of this non-local divergence is BCS pairing

of the Fermi surface away from the hot spots. Indeed, as noted in Appendix F.2.3,

the divergence comes from the regime where γ|lτ | � l2‖, with l‖ the component of ~l

along the Fermi surface of ψ2. This is precisely the regime in which one has good

Landau-quasiparticles, suggesting that it may be possible to obtain Eq. (7.90) in a

Fermi liquid computation.

We now show this is indeed the case, and obtain (7.90) in a physically transparent

form. Let us approximate the propagators in Eq. (7.89) by the Fermi-liquid form

Eq. (7.43),

δΓV ψ†ψ† =
3µ

N

∫
dl‖
2π

∫
γ|lτ |.l2‖

dlτ
2π

∫
dl⊥
2π

1

γ|lτ |+ l2‖

Z(l‖)

i(lτ − ω)− vF (l‖)l⊥

× Z(l‖)

i(lτ + ω) + vF (l‖)l⊥
(7.91)

with the Fermi-liquid parameters given by Eq. (7.47). Note that due to the restriction

γ|lτ | � l2‖ the bosonic propagator is static. Changing variables to ε = vF (l‖)l⊥,

δΓV ψ†ψ† =
3µ

N

∫
dl‖
2π

Z2(l‖)

vF (l‖)l2‖

∫
γ|lτ |.l2‖

dlτ
2π

∫
dε

2π

1

i(lτ − ω)− ε
1

i(lτ + ω) + ε
(7.92)

The integral over lτ , ε has the form familiar from Fermi-liquid theory and gives the

usual BCS logarithm,∫
dlτ
2π

∫
dε

2π

1

i(lτ − ω)− ε
1

i(lτ + ω) + ε
= − 1

2π
log

ΛFL

ω
(7.93)

where ΛFL is the frequency/energy cut-off, which in the present case is ΛFL = l2‖/γ.

Of course, for the above form to hold, we need ω � ΛFL. Thus,

δΓV ψ†ψ† = − 3µ

2π2N

∫ ∞
√
γω

dl‖
Z2(l‖)

vF (l‖)l2‖
log

l2‖
γω

= − µα

π(α2 + 1)
log2 Λ2

γω
(7.94)
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which agrees with the result in Eq. (F.60) obtained from a more complete com-

putation. Note that the prefactor of 1/N arising from the boson propagator has

disappeared from the final result. A similar log-squared term has been noted for

the pairing vertex in a theory of a Fermi surface coupled to a gauge field in three

dimensions[232, 233] and in a theory of a Fermi surface interacting via a Chern-Simons

gauge field and a 1/r potential in two dimensions.[206, 207]

The appearance of the log-squared term above indicates a breakdown of the

present RG in analyzing the renormalization of the pairing vertex. It is clearly a

consequence of two different physical effects. One is the familiar BCS logarithm of

Fermi liquid theory, which appears here from the Fermi surface away from the hot

spots. The second logarithm is a critical singularity associated with SDW fluctuations

at the hot spot. Our RG approach, defined in terms of a cutoff Λ which measures

distance from the hot spot, is unable to regulate the first logarithm: the Fermi surface

is present at momenta all the way upto Λ.

An alternative RG is necessary to analyze the consequences of the log-squared

term. One possible approach is that of Son [232], who worked with an RG defined in

terms of momentum shells a fixed distance from the Fermi surface of fermions coupled

to a gauge field. We leave such investigations for future work.

7.6 Density vertices

In this section we focus attention on one of the interesting consequences of the

pseudospin symmetries of the critical theory of the SDW transition, specified by

Eq. (7.6). Note that the pseudospin rotations can be performed independently on
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different pairs of hotspots.

Under the operation in Eq. (7.6), the pairing operator (7.85) in the particle-particle

channel becomes exactly degenerate with certain operators in the particle-hole channel

which connect opposite patches of the Fermi surface. Indeed, consider spin-singlet

operators that can be built out of fermions coming from hot spots ` and −`. Using

the spinor representation (7.3), we may write these as,

V `
αβ = Mijεσσ′Ψ

−`
iασΨ`

jβσ′ (7.95)

The indices α, β of Vαβ carry spin 1/2 under the independent SU−`(2) and SU `(2)

particle-hole symmetries. Hence, we have a set of four degenerate operators. Choosing

α = 1, β = 1,

V `
11 = Mijεσσ′ψ

−`
iσ ψ

`
jσ′ (7.96)

The mixing matrix Mij is fixed by lattice symmetries to give operators,

V `, ~Q=(0,0)
µ = εσσ′

(
ψ−`1σψ

`
1σ′ + µψ−`2σψ

`
2σ′

)
(7.97)

V `, ~Q=(π,π)
µ = εσσ′

(
ψ−`1σψ

`
2σ′ + µψ−`2σψ

`
1σ′

)
(7.98)

which correspond to superconducting order parameters with momenta (0, 0) and (π, π)

respectively. The index µ = ±1 determines the parity of the operator under a re-

flection about a lattice diagonal. The operator (7.97) was considered above. We will

not discuss the other operator (7.98) below; due to kinematics, its renormalization at

one-loop order contains neither the large-N enhancement, nor the unusual powers of

logarithm squared.

Now, let us discuss the particle-hole partners of (7.97). Setting α = 2, β = 2

in (7.95) simply gives rise to the Hermitian conjugate of (7.97). On the other hand
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α = 2, β = 1 gives the operators,

O`
µ = ψ−`†1σ ψ

`
1σ + µψ−`†2σ ψ

`
2σ (7.99)

The other choice α = 1, β = 2 generates the Hermitian conjugates of (7.99). Following

Fig. 7.19, the O`
µ operators are illustrated in Fig. 7.21. To determine the wavevectors

Figure 7.21: Spin singlet density operators (∼ ψ†ψ) of the electrons at the ` = ±1
hotspots of Fig. 7.1 (see also Fig. 7.19), shown with an arrow pointing from the
Brillouin zone location of ψ† to that of ψ. The dashed arrows are the density operators
in the first Brillouin zone. The full arrows are in an extended zone scheme which shows
that these operators have net momentum ~Q1 = 2Ky(−1, 1), where (Kx, Ky) is the
location of the ` = 1, i = 1 hot spot. The density operator with opposite signs
(µ = −1) on the two arrows is enhanced near the SDW critical point. Similarly the

` = ±2 hot spots contribute density operators at ~Q2 = 2Ky(1, 1).

of these operators, let the ` = 1, i = 1 hot spot be at ~K1 = (Kx, Ky). (Note that here

we are using the principal axes of the square lattice for the momentum co-ordinates,

not the diagonal axes indicated in Fig. 7.1.) Then, from Fig. 7.1 we note that the
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` = 1, i = 2 hot spot is at (−Ky,−Kx), and so the value of the SDW wavevector

~Q = (π, π) implies that Kx +Ky = π. Also from Fig. 7.1, the ` = −1, i = 1 hot spot

is at (−Kx,−Ky), and so we conclude that the ordering wavevector of the first term

in O1
µ is (2Kx, 2Ky). Similarly, the ordering wavevector of the second term in O1

µ is

seen to be (−2Ky,−2Kx). Using Kx + Ky = π, we observe that these two ordering

wavevectors are actually equal, and take the common value ~Q1 = 2Ky(−1, 1), which is

therefore the momentum of the O1
µ order parameters, as shown in Fig. 7.19. Similarly,

the momentum of the O2
µ order parameters is seen to be ~Q2 = 2Ky(−1,−1). Thus

the O`
µ represent density modulations along the diagonals of the square lattice.

For a clearer physical interpretation of the O`
µ orders, it is useful to express them

in terms of the lattice fermions c~kσ, where the momentum ~k ranges over the full square

lattice Brillouin zone. Then by looking at the transformations of Eq. (7.99) under all

square lattice space group operations, and under time-reversal, we find that the O`
+

are orders are characterized by

〈
c†~k− ~Q`/2,σ

c~k+ ~Q`/2,σ

〉
= O`

+ f0(~k), (7.100)

where f0(~k) is any periodic function on the Brillouin zone that is invariant under the

point group operations which leave the wavevector ~Q` invariant i.e. under the little

group of ~Q`. Also time-reversal and inversion symmetries imply f0(~k) is real and

even. The little group consists only of reflections along the diagonals, and so a simple

choice is f0(~k) = 1 + c1 (cos kx + cos ky) + . . ., where c1 is a constant. By taking a

Fourier transform of Eq. (7.100), it is clear that O`
1 corresponds to an ordinary charge
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�1

�1

Figure 7.22: (Color online) Plot of the bond density modulations in Eq. (7.104).
The lines are the links of the underlying square lattice. Each link contains a colored

square representing the value of
〈
c†~rσc~sσ

〉
, where ~r and ~s are the sites at the ends

of the link. We chose the ordering wavevector ~Q1 = (2π/16)(1,−1). Notice the
local Ising-nematic ordering, and the longer wavelength sinusoidal envelope along the
diagonal.

density wave (CDW) on the sites of the square lattice:

〈
c†~rσc~rσ

〉
=
∑
`=1,2

(
O`

+e
i ~Q`·~r + c.c.

)
(7.101)

As we saw in Section 7.5, SDW fluctuations suppress pairing with µ = +1, and so its

particle-hole partner, the CDW order parameter O`
+ will also be suppressed. We will

therefore not consider it further.

By the same reasoning, the order parameter O`
− should be enhanced by the

SDW fluctuations, and so it is of far greater interest. Following the steps leading
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�1

�1

Figure 7.23: (Color online) As in Fig. 7.22, but for orderings along both ~Q1 =

(2π/16)(1,−1) and ~Q2 = (2π/16)(1, 1).

to Eq. (7.100), we now find

〈
c†~k− ~Q`/2,σ

c~k+ ~Q`/2,σ

〉
= O`

− f̃0(~k) (cos kx − cos ky) , (7.102)

where f̃0(~k) has the same structure as f0(~k). Time-reversal symmetry played an

important role in constraining the rhs: it is easily verified that Eq. (7.102) is invariant

under time-reversal for general complex O`
−. The order in Eq. (7.102) is odd under

reflections along the diagonals, and so it is a px±y-density wave, in the nomenclature

of Ref. [234]. Despite the d-wave-like factor on the rhs of Eq. (7.102), this order is

not the popular d-density wave [235]; the latter is odd under time-reversal, and in

the present notation takes the form

〈
c†~k− ~Q/2,σc~k+ ~Q/2,σ

〉
∼ i (sin kx − sin ky) , (7.103)
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with ~Q = (π, π). The order in Eq. (7.103) is not enhanced near the SDW critical

point, while that in Eq. (7.102) is. By taking the Fourier transform of Eq. (7.102),

it is easy to see that O`
− does not lead to any modulations in the site charge density〈

c†~rσc~rσ

〉
, and so it is not a CDW. The non-zero modulations occur in the off-site

correlations
〈
c†~rσc~sσ

〉
with ~r 6= ~s. For ~r and ~s nearest-neighbors, we have

〈
c†~rσc~sσ

〉
=
∑
`=1,2

(
O`
−e

i ~Q`·(~r+~s)/2 + c.c.
)

[δ~r−~s,x̂ + δ~s−~r,x̂ − δ~r−~s,ŷ − δ~s−~r,ŷ] , (7.104)

where x̂ and ŷ are unit vectors corresponding to the sides of the square lattice unit cell.

The modulations in the nearest neighbor bond variables
〈
c†~rσc~r+x̂,σ

〉
and

〈
c†~rσc~r+ŷ,σ

〉
are plotted in Figs. 7.22 and 7.23. These observables measure spin-singlet correla-

tions across a link: if there are 2 electrons on the 2 sites of a link, this observable

takes different values depending upon whether the electrons are in a spin singlet or

a spin triplet state. Thus O`
− has the character of a valence bond solid (VBS) order

parameter. The first factor on the rhs of Eq. (7.104) shows that the VBS order has

modulations at the wavevectors ~Q` along the square lattice diagonals. However, from

our discussion above, note that | ~Q`| = 2
√

2Ky, where the magnitude of Ky is quite

small for the Fermi surface in Fig. 7.1: the ` = 1, i = 1 hot spot is at (Kx, Ky). Thus

the first factor in Eq. (7.104) contributes a relatively long-wavelength modulation,

as is evident from Figs. 7.22 and 7.23. This long-wavelength modulation serves as

an envelope to the oscillations given by the second factor in Eq. (7.104). The latter

indicates indicates that the bond order has opposite signs on the x and y directed

bonds: this short distance behavior corresponds locally to an Ising-nematic order,

which is also evident in Figs. 7.22 and 7.23. The ordering in Eq. (7.104) becomes

global Ising-nematic order in the limit ~Q` → 0. Non-linear terms in the effective
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action for the bond order will lock in commensurate values of ~Q`, and so it is possible

that strong-coupling effects will prefer ~Q` = 0.

As already remarked, the particle-hole symmetry of our theory guarantees a de-

generacy between the d-wave superconducting vertex and the density-wave vertex.

However, this degeneracy is lifted once effects which break the particle-hole symme-

try are introduced. One such effect is the curvature of the Fermi surface at the hot

spots. Nominally, the curvature is irrelevant under the scaling towards hot spots

(7.16). However, we recall that the double-log structure in Eq. (7.90) originates from

an interplay between scaling in a Fermi-liquid and quantum critical scaling. Moreover,

we know that the scaling of the superconducting vertex and the density-wave vertex

in a Fermi liquid are very different: at one loop the corrections to former are loga-

rithmic, while corrections to latter are suppressed by ω1/2. Thus, one might expect

that the Fermi surface curvature will play an important role in the renormalization of

the density-wave vertex, reducing its enhancement compared to the BCS vertex and

establishing superconductivity as the dominant instability of the SDW critical point.

We check this by an explicit calculation below.

We introduce the Fermi-surface curvature into the theory via a perturbation,

Lc =
1

2m

∑
`,i

|(∇ · n̂`‖,i)ψ`i |2 (7.105)

where n̂`‖,i = ẑ × v̂`i is the unit tangent to the Fermi surface of ψ`i .

Let us define the insertion of the density-wave order parameter O`
µ into the fermion

correlation function,

ΓOψψ†(k1, k−1)δσσ′ =

∫
dDx1d

Dx−1〈O`
µ(0)ψ−`1σ (x−1)ψ†`1σ′(x1)〉1PIei(k1x1−k−1x−1)

(7.106)
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At tree level ΓOψψ†(k1, k−1) = 1. The one loop correction to the vertex is given by

the diagram in Fig. 7.20b). We perform the calculations with propagators dressed by

the one-loop fermion self-energy and by the curvature (7.105). Details are presented

in Appendix F.2.4. To leading logarithmic accuracy we obtain,

δΓOψψ† = − µα

3π(α2 + 1)
log2 Λ2

γω
(7.107)

which is a factor of 3 smaller than the corresponding expression for the superconduct-

ing vertex (7.90).

Finally, we note the resemblance between our results and those obtained by Hal-

both and Metzner,[179] and Honerkamp et. al,[236] using a functional renormalization

group treatment of the Hubbard model. They find dominant instabilities to SDW

order and d-wave pairing, along with a sub-dominant enhancement of Ising-nematic

order. They assumed their Ising-nematic order was at ~Q` = 0, but their results could

be limited by the finite resolution of Fermi surface points, and their specific Fermi

surface configurations. It would be interesting if higher resolution studies of more

generic Fermi surfaces lead to ordering compatible with Eq. (7.102).

7.7 Conclusion

Quantum phase transitions involving symmetry breaking in the presence of a Fermi

surface can be associated with the appearance of a condensate of particle-hole pairs

of the Fermi surface quasiparticles. Such transitions can be divided into two broad

classes: those in which the particle-hole condensate carries net momentum ~Q 6= 0, and

those in which the particle-hole condensate is at ~Q = 0. Both classes were considered
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by Hertz in his 1976 paper [5], using a self-consistent RPA approach, formulated in

terms of a RG analysis of an effective action for the condensate fluctuations. He

argued that for both cases, and for all spatial dimensions d ≥ 2, the condensate

fluctuations were effectively Gaussian, and hence the leading critical behavior could

be exactly calculated.

We have re-examined both classes of Fermi surface transitions in this and a pre-

vious chapter. While Hertz’s conclusions are expected to be largely correct in d = 3,

they break down [67] in both classes for the physically important case of d = 2. The

previous chapter proposed and analyzed a critical theory in d = 2 for a paradigm

of the ~Q = 0 case: the onset of Ising-nematic order. This theory involved both the

bosonic order parameter and the fermionic quasiparticles as fundamental degrees of

freedom, which interact strongly at the quantum critical point. The present chapter

has considered a typical case in d = 2 with ~Q 6= 0, the onset of spin density wave

(SDW) order, using a field theory for the bosonic order parameter and the fermions

proposed by Abanov and Chubukov [226].

Our analysis for ~Q 6= 0 begins by focusing on the vicinity of the “hot spots” on

the Fermi surface shown in Fig. 7.1. Zooming in on a single pair of hot spots, and

shifting one of the hot spots by a momentum ~Q, we obtain the situation shown in

Fig. 7.2, where we can approximate the two Fermi surfaces near the hot spots by two

non-collinear straight lines. The two Fermi surfaces are coupled at the hot spot by

the SDW order parameter φ, and the low energy physics is then described by the

field theory in Eq. (7.1). In the phase with SDW order with 〈φ〉 6= 0, the Fermi

surfaces reconnect into the configuration shown in Fig. 7.3, leading to electron and
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hole pockets appearing from the original large Fermi surface in Fig. 7.1.

Our RG analysis of Eq. (7.1) was performed using the 1/N expansion, where

the fermions are endowed with an additional flavor index which runs over N values.

Initially, it seems that the counting of powers of 1/N is simple: each boson propagator

comes with a factor of 1/N , and each fermion loop yields a factor N . Using this

“naive” counting, all RG flow equations were computed to order 1/N in Section 7.3.

We found a consistent renormalization of the couplings in the local field theory in

Eq. (7.1); the damping parameter γ appearing in the boson propagator was tied to

the local couplings via Eq. (7.9), and this relation was maintained under the RG.

The flow of the spin-damping rate under RG implies that the dynamical critical

exponent z renormalizes away from its RPA value z = 2. This is in stark contrast

to Hertz theory[5] and previous studies of the present theory.[229] One of the main

consequences of the RG flow in Section 7.3 was a logarithmic divergence in the ratio

of Fermi velocity components with length scale: this implied that the Fermi surfaces

at the quantum critical point took the shape in Fig 7.8. The effective dynamical

nesting of the Fermi surfaces at low energies gives rise to a divergence of anomalous

dimensions, which may lead to a first order phase transition.

Section 7.4 looked at higher loop effects which showed that the naive counting

of powers of 1/N was not correct. The enhancements in powers of N arose from

infrared singularties appearing when internal fermion lines were restricted to momenta

on the Fermi surface, similar to the Fermi surface enhancements discovered by S.-

S. Lee for the problem of a Fermi surface coupled to a U(1) gauge field. These

enhancements distinguish the present problem from that considered in Refs. [195, 196]:
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the Ising-nematic transition in a d-wave superconductor. Formally, the latter problem

is described by a field theory similar to that of the present chapter: fermions with

linear dispersion coupled via a Yukawa interaction to a scalar field φ. Also, in both

problems we find a logarithmic divergence of velocity ratios in the infrared at order

1/N for the RG flows. However, for the d-wave superconductor, with Dirac fermions

whose energy vanishes only at isolated “hot spots”, the 1/N expansion was found

to be stable at higher loops. In contrast, for the present SDW problem, the fermion

hot spots are connected to “cold” Fermi lines, and singularities associated with these

lines lead to a breakdown in the naive 1/N counting. Because of this breakdown, the

nature of the N →∞ limit of Eq. (7.1) remains unclear.

Next, we examined the instability of the SDW metal to the onset of superconduc-

tivity near the quantum critical point in Section 7.5. We found a strong tendency

towards spin-singlet pairing, with pairing amplitude having opposite signs across a

pair of hot spots. For the cuprate Fermi surface in Fig. 7.1 this includes dx2−y2 pair-

ing, while for the pnictide Fermi surfaces this includes s+− pairing. This pairing

instability was manifested in a log-squared divergence of the renormalization of the

pairing vertex, arising from an interplay of the infrared singularities associated with

the Fermi surfaces and the hot spot. This log-squared singularity cannot be resolved

by the present RG approach, and other methods are needed to determine its con-

sequences. An important problem for future research is to understand the feedback

of the pairing fluctuations on the non-Fermi liquid singularities at the metallic hot

spot. Clearly, superconductivity appears near the quantum critical point as T → 0.

The interesting question is the behavior above Tc, involving the interplay between the
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metallic quantum criticality and the pairing fluctuations.

In our discussion of the critical theory for the SDW transition in Section 7.2, we

noted that the field theory had emergent pseudospin SU(2) symmetries (Eq. (7.6))

containing the particle-hole transformation; note that the pseudospin rotations can

be carried out independently on different pairs of hot spots. Given the strong insta-

bility towards d-wave pairing near the SDW critical point described in Section 7.5, it

is natural to examine the action of the SU(2) pseudospin symmetries on the d-wave

pairing order parameter. This was described in Section 7.6, where we found a simi-

lar log-squared enhancement of the susceptibility to a modulated valence bond solid

(VBS) order parameter illustrated in Figs. 7.22 and 7.23. Notice that at short scales

this ordering has an Ising-nematic character: this corresponds to the breaking of a

90 degree rotation symmetry of the square lattice by the values of the bond order

parameter in Eq. (7.104). It would be interesting if future work supports a connec-

tion between the ordering instability of Section 7.6, and the bond and Ising-nematic

ordering observed in experiments [10, 12, 166, 9, 11, 13]. While the present analysis

has focused exclusively on the vicinity of the hot spots, it is quite possible that strong

coupling physics away from the hot spot could lock in a preference for commensurate

values, such as ~Q` = 0, in Eq. (7.104), leading to global Ising-nematic order. Also,

it would be interesting to study the changes in the VBS ordering for the case of a

SDW transition at an incommensurate ordering wavevector, like that found in the

hole-doped cuprates.

Finally, we note an interesting possibility for future theoretical work. Given the

breakdown of the 1/N expansion for the theory in Eq. (7.1) for the SDW critical point
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in a two-dimensional metal, other systematic methods of analyzing this field theory

are clearly needed. Following Ref. [206, 207], one possibility is to modify the (∇~φ)2

term in Eq. (7.1) to k1+x~φ2, where k is the momentum carried by φ. Then at the

RPA level, we obtain a theory with z = 1 + x, and an expansion in small x appears

possible.



Chapter 8

Entanglement entropy in the O(N)
model

It is generally believed that in spatial dimension d > 1 the leading contribution

to the entanglement entropy S = −trρA log ρA scales as the area of the boundary

of subsystem A. The coefficient of this “area law” is non-universal. However, in

the neighbourhood of a quantum critical point S is believed to possess subleading

universal corrections. In the present work, we study the entanglement entropy in the

quantum O(N) model in 1 < d < 3. We use an expansion in ε = 3 − d to evaluate

(i) the universal geometric correction to S for an infinite cylinder divided along a

circular boundary; (ii) the universal correction to S due to a finite correlation length.

Both corrections are different at the Wilson-Fisher and Gaussian fixed points, and

the ε → 0 limit of the Wilson-Fisher fixed point is distinct from the Gaussian fixed

point. In addition, we compute the correlation length correction to the Renyi entropy

Sn = 1
1−n log trρnA in ε and large-N expansions. For N →∞, this correction generally

scales as N2 rather than the naively expected N . Moreover, the Renyi entropy has a

phase transition as a function of n for d close to 3.

315
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8.1 Introduction

One of the most fascinating and counterintuitive properties of a quantum sys-

tem is the entanglement of its many-body wave-function. In recent years, there has

been a lot of interest in using entanglement as a theoretical probe of ground state

correlations.[237] It is hoped that this viewpoint will be particularly fruitful in study-

ing quantum critical points, which realize some of the most non-classical, entangled

states of matter.

A useful measure of entanglement is given by the entanglement entropy S, also

known as von-Neumann entropy. To compute S, we divide the system into two parts,

A and B, and determine the reduced density matrix ρA = trBρ, where ρ is the full

density matrix of the system. Then, the entanglement entropy,

SA = −trAρA log ρA (8.1)

If the system is in a pure state, then the entanglement entropy is “mutual”, i.e.

SA = SB.

One may ask how does the entanglement entropy behave near a quantum critical

point. This question has been addressed completely for one-dimensional critical points

with dynamical critical exponent z = 1. Such critical points are described by 1 + 1

dimensional conformal field theories (CFT’s). In these systems if A is chosen to be a

segment of length l and B - its complement in the real line, the entanglement entropy

is given by,[238, 6]

S =
c

3
log l/a (8.2)

where a is the short-distance cut-off and the constant c, known as the central charge,
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is a fundamental property of the CFT. Moreover, if the system is perturbed away

from the critical point, the entanglement entropy becomes,

S = A c
6

log ξ/a (8.3)

where ξ is the correlation length and A is the number of boundary points of the region

A. Here it is assumed that A and B are composed of intervals whose length is much

larger than ξ.

The study of entanglement entropy at quantum critical points in dimension d > 1

has received much less attention. The leading contribution to S is believed to satisfy

the “area law”,[239, 240]

S = C
A
ad−1

(8.4)

where A is the length/area of the boundary between the regions A and B. Physically,

the area law implies that the entanglement in d > 1 is local to the boundary even at

the critical point (for a recent review of the area law see Ref. [241]). The coefficient

C entering the area law is sensitive to the short distance cut-off, and is, therefore,

non-universal. So, in contrast to the one-dimensional case, the leading term (8.4) in

the entanglement entropy in higher dimensions cannot be used to characterize various

critical points.

Proceeding, more generally, beyond the leading area law term, at least for Lorentz-

invariant theories that we study here it is expected that the entanglement entropy

near a critical point has the scaling form,[242, 243, 244, 245, 246]

S = gd−1[B]a−(d−1) + gd−2[B]a−(d−2) + . . .+ g0[B] log(L/a) + S0(L/ξ) (8.5)

Here L is a characteristic finite size in the problem. The coefficients of the ultra-violet
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divergent terms, gi[B], are integrals of local geometric invariants over the boundary

B between regions A and B and scale as Li under dilatations. In particular, the

first coefficient gd−1[B] is proportional to the area of the boundary A. Clearly, the

prefactors of extensive terms gi[B] with i ≥ 1 are non-universal, while the coefficient

of the logarithmic term g0[B] is universal. The finite piece S0 is a function of the

dimensionless ratio L/ξ and encodes geometric and correlation length corrections to

the entanglement entropy. It is universal up to additive dilatation invariant geometric

contributions from the boundary. If such contributions, g0[B] in particular, vanish,

S0 becomes completely universal. There exists some evidence[247, 242, 243] that this,

indeed, occurs when the boundary B is closed and smooth and the spatial dimension

d = 2. On the other hand, if the dimension d = 3 then g0[B] is generally non-zero

due to the extrinsic curvature of the boundary and S0 contains additive non-universal

contributions.[242, 243, 248] Likewise, g0[B] is known to be non-zero even in d = 2

when the boundary contains corners/endpoints.[245, 246, 244]

We note that the above considerations have only been verified by explicit field

theoretic calculations in free theories. These assertions were also confirmed in strongly

coupled supersymmetric gauge theories using the AdS/CFT correspondence.[242, 243]

Recently, universal corrections were found for a special class of quantum critical

points in d = 2 which are described by dimensional reduction to a classical d = 2

field theory.[249, 250] However, such critical points are non-generic, and unstable

[251, 252] in physical situations to quantum critical points described by interacting

field theories in 3 space-time dimensions.

In the present work, we compute the geometric and correlation length corrections
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x � 0x � �� x � �

A B

Figure 8.1: The cylindrical geometry considered in calculation of finite size correction
to the entanglement entropy.

to the entanglement entropy in the simplest generic interacting CFT in d = 2 dimen-

sions - the O(N) model. We verify that these corrections are, indeed, universal. We

perform our calculations using expansions in ε = 3− d and 1/N .

In the rest of this chapter we consider the following geometry. We take two semi-

infinite regions A and B with a straight boundary at x = 0. The boundary extends

along the remaining d − 1 spatial directions, each taken to have a length L. For

technical reasons, we impose anti-periodic boundary conditions along each of these

directions. We also consider more general boundary conditions with a twist by an

arbitrary phase ϕ in a theory of N/2 complex scalar fields. So in the physical case

d = 2, our space is an infinite cylinder divided into regions A and B along a circle

of length L, see Fig. 8.1. For general d, the boundary B between the regions A and

B is a d − 1 dimensional torus. As B is flat, the only geometric invariant on it is

the area, A = Ld−1. Hence, all the subleading coefficients gi[B], 0 ≤ i < d− 1 in eq.

(8.5) vanish and S0 is universal in this geometry. In particular, at the critical point

S0 becomes a universal geometric constant γ and the entanglement entropy is given
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by,

S = C
Ld−1

ad−1
+ γ (8.6)

We explicitly compute the constant γ. To leading order in ε-expansion we obtain,

γ = − Nε

6(N + 8)

(
log
∣∣∣θ1

(ϕ(1 + i)

2π
, i
)∣∣∣− ϕ2

4π
− log η(i)

)
,

d = 3− ε, Wilson-Fisher fixed point (8.7)

Here θ1 and η are Jacobi elliptic and Dedekind-eta functions and i is the square root

of −1. The sign of γ depends on the value of ϕ: it is negative for ϕ = π (anti-periodic

boundary conditions) and positive for ϕ → 0. Note that eq. (8.7) is only valid for

ϕ � ε1/2. For zero twist (periodic boundary conditions), we hypothesize that to

leading order,

γ = − Nε

12(N + 8)
log ε (8.8)

The result (8.7) should be compared to the corresponding value at the Gaussian fixed

point in d = 3− ε dimensions,

γ = −N
6

(
log
∣∣∣θ1

(ϕ(1 + i)

2π
, i
)∣∣∣− ϕ2

4π
− log η(i)

)
, d = 3− ε, Gaussian fixed point

(8.9)

We see that |γ| is parametrically smaller at the Wilson-Fisher fixed point than at

the Gaussian fixed point. Thus, entanglement entropy distinguishes these two fixed

points already at leading order in ε-expansion.

If we perturb the system by tuning a relevant coupling t slightly away from the

critical point t = tc, the entanglement entropy obeys the scaling form,

S = C(t)
Ld−1

ad−1
+ S0(L/ξ) (8.10)
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Here C(t) is a non-universal, analytic function of t, while S0 is a universal function of

the dimensionless ratio L/ξ. In the limit L/ξ → 0, the system is effectively critical and

S0 reduces to the geometric constant γ of eq. (8.6). In the opposite limit L/ξ →∞,

the system obeys the area law, hence,

S = C(t)
Ld−1

ad−1
+ r

Ld−1

ξd−1
(8.11)

where r is a universal coefficient that we compute. Note that both terms in eq. (8.11)

contribute to the t dependence of the prefactor in the area law. The contribution of

the first term is analytic and so to leading order scales as t− tc. On the other hand,

the contribution of the second term is non-analytic and scales as (t− tc)ν(d−1), where

ν is the correlation length exponent. Since in the O(N) model ν < 1 for d = 2, the

non-analytic contribution from the universal term dominates.

In general, the coefficient r is tied to the specific choice for the definition of the

correlation length ξ. In the O(N) model there is a very natural choice, ξ = m−1,

where m is the gap to the first excitation. Note that in the present work we only

consider the phase of the O(N) model with unbroken symmetry. The value of r to

leading order in ε-expansion is found to be,

r = − N

144π
, d = 3− ε, Wilson-Fisher fixed point (8.12)

As with the finite size correction, |r| is parametrically smaller at the Wilson-Fisher

fixed point than at the Gaussian fixed point where,[6]

r = − N

24πε
, d = 3− ε, Gaussian fixed point (8.13)

We would like to note that the only corrections to the scaling forms in eqs. (8.6),

(8.10) come from irrelevant operators and scale as L−p, p > 0. Two operators compete
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for the role of the leading correction to scaling. The first of these has the usual

bulk correction-to-scaling exponent p = ω. The second is an operator living on the

boundary B with p = 2 − 1/ν. Numerically, 2 − 1/ν < ω for d = 2 and N = 1, 2, 3,

so the corrections from the boundary operator dominate.[49]

In addition to the entanglement entropy, we study the Renyi entropy,

Sn =
1

1− n log trAρ
n
A (8.14)

The Renyi entropy always naturally appears in field-theoretic calculations as it is

related to the partition function of the theory on an n-sheeted Riemann surface.

One then obtains the entanglement entropy by taking the limit, S = limn→1 Sn. At

least for n close to 1, the Renyi entropy is believed to possess the same universal

properties as the entanglement entropy. In particular, the finite size and correlation

length corrections are given by,

Sn = Cn
Ld−1

ad−1
+ γn (8.15)

Sn = Cn(t)
Ld−1

ad−1
+ rn

Ld−1

ξd−1
(8.16)

where the non-universal coefficient Cn of the leading area law term, as well as the

universal coefficients γn, rn are now n dependent. We compute rn in ε and large-

N expansions. A careful renormalization group analysis demonstrates that rn is

parametrically enhanced in both of these limits. In particular, rn ∼ O(1
ε
) in the

ε-expansion. However, the enhancement is most striking in the large-N expansion

where we find rn ∼ O(N2). Such scaling is in contrast with the result rn ∼ O(N)

that one would obtain at each order in 1/N for fixed correlation length ξ, implying

that the limits ξ →∞ and N →∞ do not commute. As far as we know, this is the
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first violation of naive large-N counting in the O(N) model. A common feature of

the two expansions is that the leading term of rn behaves as rn ∼ n−1 for n→ 1 and

does not contribute to the entanglement entropy S. Hence, r ∼ O(N) in the large N

limit and r ∼ O(1) in the ε-expansion.

Another unusual phenomenon that we find in ε-expansion is non-analytic depen-

dence of the coefficients γn, rn on n. In fact, γn and rn will have a discontinuity at

n = n∗, where n∗ is generally non-universal and lies in the range, 1 < n∗ ≤ 1+ 3
4
N+2
N+8

ε.

The n-dependence of γn and rn for n < n∗ and n > n∗ is, however, universal. Thus,

we have two universal branches for γn and rn. We note that eqs. (8.15) and (8.16)

are understood in the limit L→∞, ξ →∞. However, there appears a new divergent

length-scale in the problem as n→ n∗, and the limits n→ n∗ and L→∞, ξ →∞ do

not commute. In particular, if we fix the size of our regions L or the correlation length

ξ, the n-dependence of the Renyi entropy Sn will be completely analytic. Moreover,

due to the emergence of a new length-scale as n → n∗, in the crossover region Sn

is not entirely universal. We stress that any non-analyticity and non-universality

only occurs away from the point n = 1. In particular, the entanglement entropy

S = limn→1 Sn is well defined and universal.

The non-analytic behaviour discussed above is also found to occur in the large-

N expansion in dimensions 2.74 . d < 3. The limited range of d suggests that

this phenomenon might be absent in the O(N) model in the physically relevant case

d = 2. Nevertheless, we expect that such non-trivial n dependence will occur quite

generically at other quantum critical points.

This chapter is organized as follows. In section 8.2, we remind the reader of the
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replica trick, which relates the entanglement entropy to the partition function on

an n-sheeted Riemann surface. In section 8.3, we show that the coefficient of the

correlation length correction to the Renyi entropy rn is parametrically enhanced in

both expansions we consider. Sections 8.4 and 8.5 are respectively devoted to the

evaluation of correlation length and finite size corrections in ε-expansion. In section

8.6 we compute the coefficient rn in the large-N expansion. Some concluding remarks

are given in section 8.7.

8.2 The replica trick

We consider the O(N) model in D = d+ 1 space-time dimensions. The action for

the N -component real scalar field φ is given by ,

S =

∫
ddxdτ

(
1

2
(∂µφ)2 +

t

2
φ2 +

u

4
φ4

)
(8.17)

We divide our space into two regions A and B with the boundary being a d − 1

dimensional plane at x = 0. We will denote the coordinates along the boundary

directions by x⊥. The Renyi entropy Sn may be calculated as,

Sn =
1

1− n log
Zn
Zn

1

(8.18)

from which we obtain the entanglement entropy,

S = lim
n→1

Sn (8.19)

Here Zn is the partition function of the theory on an n-sheeted Riemann surface.

This Riemann surface lies in the x‖ = (τ, x) plane and has a conical singularity at
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(τ, x) = (0, 0). The surface is invariant under translations along the x⊥ directions.

We may use the following metric for our space-time,

ds2 = dr2 + r2dθ2 + dx2
⊥ (8.20)

where r, θ are the polar coordinates in the (τ, x) plane. Concentrating on this plane,

we see that the metric is exactly the same as for the usual Euclidean plane; the only

modification is that the angular variable θ has a period θ ∼ θ + 2πn.

8.3 Parametric enhancement of correlation length

correction

In this section, we show that the coefficient rn of the correlation length correction

to the Renyi entropy, eq. (8.16), is parametrically enhanced in both expansions that

we consider. Moreover, we demonstrate that rn can to leading order be extracted

from the properties of the theory at the critical point.

We start with the O(N) model perturbed away from the critical point t = tc by

a finite t̃ = t− tc > 0 (we drop the tilde below). To compute rn, we need to find the

dependence of the partition function Zn on the mass gap m = ξ−1. Here we assume

that the dimensions of the boundary L � ξ, so that we can take the limit L → ∞.

It is useful to differentiate,

d

dt
log

Zn
Zn

1

= −1

2

(∫
n−sheets

dDx 〈φ2(x)〉n − n
∫

1−sheet

dDx 〈φ2(x)〉1
)

(8.21)

= −1

2
Ld−1

∫
n−sheets

d2x‖ (〈φ2(x)〉n − 〈φ2(x)〉1) (8.22)
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where we have used the fact that the contribution to the integral from each of the

sheets is the same (from here on, all integrals over d2x‖ are understood to be over

n-sheets). Now, recalling, m ∼ tν , we may convert the derivative with respect to t

into a derivative with respect to m,

m
d

dm
log

Zn
Zn

1

= − 1

2ν
Ld−1

∫
d2x‖ t(〈φ2(x)〉n − 〈φ2(x)〉1) (8.23)

The expression t(〈φ2(x)〉n − 〈φ2(x)〉1) is renormalization group invariant.1 Thus, we

may write,

t(〈φ2(x)〉n − 〈φ2(x)〉1) = mDfn(mr) (8.24)

where fn is a universal function. The function fn is expected to decay exponentially

for mr � 1, and the integral in (8.23) converges for r → ∞. The short-distance

asymptotic of fn is controlled by the critical point. From the scaling dimension of

the operator φ2(x), [φ2(x)] = D − ν−1, we conclude,

fn(u)→ dn
uD−1/ν

, u� 1 (8.25)

where dn is a universal constant. So the integral in (8.23) converges for r → 0,

provided that ν−1 > D − 2.2 In the O(N) model in both expansions we consider,

ν−1 = D − 2 + ν1, where the correction ν1 is given to leading order by,

ν1 =
6ε

N + 8
, D = 4− ε (8.26)

ν1 =
1

N

8Γ(D)

DΓ(2−D/2)Γ(D/2− 1)2Γ(D/2)
, ν1(D = 3) =

32

3π2N
, N →∞

(8.27)

1Two subtractions (constant and linear in t), in addition to the multiplicative renormalization,
are needed to render the operator φ2 finite. However, these subtractions cancel among the two
expectation values in (8.23).

2Otherwise, a UV divergence appears which adds a piece analytic in t to the entanglement
entropy, in addition to the singular contributions discussed below.
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In particular, ν1 > 0 and ν−1 asymptotically approaches D − 2 from above in both

limits. With these remarks in mind, we integrate eq. (8.23) with respect to m,

log
Zn
Zn

1

(t)− log
Zn
Zn

1

(t = 0) = − πn

ν(d− 1)
(mL)d−1

∫ ∞
0

du ufn(u) (8.28)

This is as far as we can proceed in general - to make further progress one needs the

function fn(u). However, we have already noted that due to the fact, ν−1 → D − 2,

the integral in (8.28) is very close to diverging in both expansions. Hence, to leading

order in ε or 1/N , this integral is saturated at short distances,∫ ∞
0

du ufn(u)→ dn
ν−1 − (D − 2)

=
dn
ν1

(8.29)

and

log
Zn
Zn

1

≈ −πn
ν1

dn(mL)d−1 (8.30)

where we’ve dropped the constant contribution at the critical point t = 0. So, the

universal coefficient rn of the correlation length correction, eq. (8.16), is given by,

rn ≈ −
πn

(1− n)ν1

dn (8.31)

Thus, to leading order the problem is reduced to evaluating the coefficient dn in (8.25).

Since this coefficient is a short distance property, we may work directly at the critical

point. Note in particular that in the large N limit, dn ∼ O(N), so our result for

log Zn
Zn1

scales as N2. This is in contrast to the linear in N behaviour that one would

obtain at any finite order in the 1/N expansion for a fixed correlation length ξ.

It turns out that the leading term (8.31) behaves as rn ∼ (n − 1) for n → 1 in

both expansions and does not contribute to the entanglement entropy, eq. (8.19).

Thus, the correlation length correction to the entanglement entropy has the expected
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scaling r ∼ O(N). To proceed systematically beyond the leading order one needs to

use renormalization group (RG) technology that will be developed explicitly in the

context of ε-expansion in section 8.4.3.

8.4 ε - expansion: correlation length correction

In this section we compute the correlation length correction to the entanglement

entropy in ε-expansion. Recall that for the interacting O(N) model, ν1 = ν−1− (D−

2) ∼ O(ε) in D = 4− ε dimensions, hence the argument in section 8.3 can be applied.

This is also true for the non-interacting (Gaussian) fixed point for D = 4− ε, where

ν1 = ε, allowing us to compare the predictions of our method to the exact calculations

of Ref. [6]. We first consider the Gaussian fixed point and then proceed to the Wilson-

Fisher fixed point.

8.4.1 Gaussian theory

Consider the Gaussian theory,

L =
1

2
(∂µφ)2 +

t

2
φ2 (8.32)

where, t = m2. We need to compute the expectation value,

〈φ2(x)〉n − 〈φ2(x)〉1 (8.33)

at the critical point, t = 0. To leading order we may work in D = 4. The massless

propagator on an n-sheeted Riemann-surface in D = 4 is known to be,[152]

Gn(r, r′, θ, x⊥) =
sinh(η/n)

8π2nrr′ sinh η(cosh(η/n)− cos(θ/n))
(8.34)
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where

cosh η =
r2 + r′2 + x2

⊥
2rr′

(8.35)

Hence,

〈φ2(x)〉n − 〈φ2(x)〉1 =
N

48π2r2

(
1

n2
− 1

)
(8.36)

So comparing to eqs. (8.24), (8.25), we obtain,

dn =
N

48π2

(
1

n2
− 1

)
, Gaussian fixed point, D = 4− ε (8.37)

We can now use eq. (8.31) to compute the coefficient rn of the correlation length

correction. As noted above for the Gaussian theory, ν1 = ε, so

rn = − N

48πε

(
1 +

1

n

)
(8.38)

and for the entanglement entropy proper,

r = lim
n→1

rn = − N

24πε
(8.39)

This can be compared to the exact result of Ref. [6],

rn = N
Γ(2−D

2
)

24(4π)(D−2)/2

(
1 +

1

n

)
(8.40)

Eq. (8.40) is in agreement with our result (8.38) to leading order in ε, which is all

that the discussion in section 8.3 guarantees.

8.4.2 Interacting theory

We now proceed to consider the interacting O(N) model, eq. (8.17). We again

need to compute the expectation value (8.33). Naively, one would expect that at

leading order in ε, one can work with the mean-field approximation, u = 0, recovering



Chapter 8: Entanglement entropy in the O(N) model 330

the result (8.37). Then, one would simply substitute (8.37) into eq. (8.31) and use the

appropriate ν1, eq. (8.26), for the Wilson-Fisher fixed point. However, such reasoning

turns out to be too simple minded, as it neglects “boundary perturbations.” Indeed,

our conical singularity will generally induce local perturbations at r = 0. Of these,

the term with the lowest engineering dimension is,

δS =
c

2

∫
dD−2x⊥ φ

2(r = 0, x⊥) (8.41)

In the absence of the conical singularity this perturbation is known to be irrelevant

in the O(N) model as the scaling dimension [c] = ν−1 − 2 < 0.[107] However, as we

will now show, the presence of the conical singularity will modify the renormalization

group flow of the coefficient c.

xx'

pp

Figure 8.2: Leading correction to the propagator δG1,0 due to the boundary pertur-
bation. Here and below, a cross denotes an interaction vertex of c.

xx'
pp

y

a�

xx'
pp p

b�

Figure 8.3: Corrections to the propagator, a) δG0,1 and b) δG2,0. Here and below, a
dot denotes an interaction vertex of u.

The engineering dimension of the coupling constant c is zero in any space-time

dimension D. We wish to compute the β-function, β(c). Let us perform perturbation
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xx'

p pp

a�
xx'

p pp

b�
xx'

pp

y
c�

Figure 8.4: Corrections to the propagator δG1,1.

theory in u and c for the two-point function 〈φα(x)φβ(x′)〉 = δαβG(x, x′). It is suffi-

cient to work in D = 4 dimensions to compute the leading terms in β(c). We use a

mixed momentum/position p⊥, x‖ representation. To first order in c and zeroth order

in u, we have the simple diagram in Fig. 8.2,

δ1,0G(x‖, x
′
‖, p⊥) = −cGn(x‖, 0, p⊥)Gn(0, x′‖, p⊥) (8.42)

where the superscripts on δ indicate the order in c and u. Notice that the bare

propagator Gn(x, x′), eq. (8.34), remains finite as its arguments approach the conical

singularity. In fact,

Gn(0, x) =
1

n
G1(x) (8.43)

Also, Gn(x‖, x
′
‖, p⊥) is just the two dimensional massive propagator (−∇2

2 + p2
⊥)−1

on an n-sheeted Riemann surface. In particular, Gn(x‖, 0, p⊥) = 1
n
K0(p⊥|x‖|) (which

implies that the relation (8.43) is actually correct in any dimension). Thus, the

correction (8.42) is finite.

We next consider the Hartree-Fock (first order in u) correction to the propagator,
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Fig. 8.3 a),

δ0,1G(x‖, x
′
‖, p⊥) = −(N + 2)u

∫
d2y‖Gn(x‖, y‖, p⊥)Gn(y‖, x

′
‖, p⊥)(Gn(y, y)−G1(y, y))

(8.44)

We have already evaluated Gn(y, y) − G1(y, y) ∼ 1
y2‖

, eq. (8.36). Thus, the integral

(8.44) has an ultraviolet divergence in the region y‖ → 0,

δ0,1G(x‖, x
′
‖, p⊥)

UV
=

(N + 2)u

24π

(
n− 1

n

)
Gn(x‖, 0, p⊥)Gn(0, x′‖, p⊥) log(Λ) (8.45)

Notice that this divergence is local to the conical singularity and, as is evident from

eq. (8.42), can be canceled by an additive renormalization of the coupling constant

c. Hence, the perturbation (8.41) will be automatically induced by the presence of

the conical singularity.

We also consider the second order contribution in c to the propagator, Fig. 8.3

b),

δ2,0G(x‖, x
′
‖, p⊥) = c2Gn(x‖, 0, p⊥)Gn(0, x′‖, p⊥)Gn(0, 0, p⊥) (8.46)

The quantity Gn(0, 0, p⊥) is UV singular,

Gn(0, 0, p⊥) =

∫
d2y⊥Gn(0, 0, y⊥)e−ip⊥y⊥ =

1

4π2n

∫
d2y⊥

1

y2
⊥
eip⊥y⊥

UV
=

1

2πn
log(Λ/p⊥)

(8.47)

so

δ2,0G(x‖, x
′
‖, p⊥)

UV
=

c2

2πn
Gn(x‖, 0, p⊥)Gn(0, x′‖, p⊥) log(Λ) (8.48)

The divergence of (8.48) is a manifestation of the well-known fact that the two-

dimensional δ-function potential requires regularization. Again, from (8.42), we ob-

serve that the divergence can be eliminated by a renormalization of the coefficient

c.
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Finally, we consider corrections which are bilinear in c and u, Fig. 8.4. For

c - small, these corrections are generally subleading compared to δ0,1G, Fig. 8.3 a).

However, for n→ 1, δ0,1G vanishes, and the diagram in Fig. 8.4 c) becomes important.

On the other hand, the diagrams in Figs. 8.4 a,b) can be ignored to leading order for

all n since they also vanish at n = 1.3 With this in mind, we only need to evaluate

Fig. 8.4 c) at n = 1. We recognize, that this is just the diagram corresponding to the

usual multiplicative renormalization of the φ2 operator. Explicitly,

δ1,1G(x‖, x
′
‖, p⊥)

n=1
= (N + 2)uc

∫
d2y‖G1(x‖, y‖, p⊥)G1(y‖, x

′
‖, p⊥)

∫
d2z⊥G1(y‖, z⊥)2

= (N + 2)uc

∫
d2y‖G1(x‖, y‖, p⊥)G1(y‖, x

′
‖, p⊥)

1

16π3y2
‖

UV
=

(N + 2)uc

8π2
G1(x‖, 0, p⊥)G1(0, x′‖, p⊥) log Λ (8.49)

We can now introduce counterterms to cancel the divergences considered above,

c = cr +

(
(N + 2)ur

24π

(
n− 1

n

)
+

(N + 2)urcr
8π2

+
c2
r

2πn

)
log(Λ/µ) (8.50)

where cr and ur are the renormalized coupling constants and µ is the renormalization

scale. Note that the coefficient of the urcr term has been only computed at n = 1.

So,

β(cr) = µ
∂

∂µ
cr

∣∣∣
c,u

=
(N + 2)ur

24π

(
n− 1

n

)
+

(N + 2)urcr
8π2

+
c2
r

2πn
(8.51)

Note that the RG flow of u is not affected by the boundary perturbation or by the

presence of the conical singularity,

β(ur) = −εur +
N + 8

8π2
u2
r (8.52)

and we have the usual Wilson-Fisher fixed point u∗ = 8π2ε
N+8

.

3Technically, these diagrams contain (log Λ)2 divergences, and one needs to use a consistent
regularization method to evaluate them.
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a�
cr

Β�cr�

b�cr
�cr

� cr

Β�cr�

c�cr
�cr

� cr

Β�cr�

d�
cr

Β�cr�

Figure 8.5: β-function of the boundary coupling cr for a) Non-interacting theory (u =
0), b) Interacting theory, n = 1, c) Interacting theory, n < nc, d) Interacting theory,
n > nc.

We now discuss the RG flow of cr in detail. Let us start with the non-interacting

theory, u = 0, which corresponds to the well-studied problem of a particle in a two-

dimensional δ-function potential. Then, β(cr) = 1
2πn

c2
r. As demonstrated in Fig. 8.5

a), the coupling constant cr flows logarithmically to zero for cr > 0 and runs away to

−∞ for cr < 0, signaling the formation of a bound state.

Next, consider turning on the interaction u, in the absence of conical singularity

(n = 1). Then, β(cr) = −η2(ur)cr+
c2r
2π

, where η2 is just the usual anomalous dimension

of the φ2 operator, ([φ2] = D − 2− η2),

η2(ur) = −(N + 2)ur
8π2

(8.53)

The RG flow of c is sketched in Fig. 8.5 b). We find two fixed-points: c+
r = 0
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and c−r = −N+2
N+8

(2πε). The first fixed point c+
r = 0 is stable, due to β′(cr = 0) =

−η2(u∗) > 0, which implies that for c - small, the perturbation (8.41) is irrelevant.[107]

This conclusion can be immediately reached by consideration of scaling dimensions

at the interacting fixed point, since [c] = D − 2− [φ2] = η2 < 0.

The second fixed point c−r is unstable, and for cr < c−r the RG flow runs away to

cr = −∞. Naively, such a flow may be interpreted as a tendency of φ to condense in

the vicinity of r = 0. However, this would result in a condensate that is effectively

D − 2 < 2 dimensional, which, at least for N ≥ 2 and t > 0, is prohibited by

the Mermin-Wagner theorem. Exactly at the critical point, long-range forces could,

in principle, stabilize the condensate. However, as we will discuss in section 8.6,

large-N expansion suggests that no such condensation occurs even at t = 0, and the

flow actually terminates at a scale invariant fixed-point, which is inaccessible in our

perturbative expansion. However, this fixed point can likely be interpreted in terms

of a fluctuating “boundary” order parameter.

Finally, we proceed to the interacting case in the presence of a conical singularity.

For n < nc ≈ 1 + 3
4
N+2
N+8

ε we again obtain two fixed points, Fig. 8.5 c),

c±r = π

−N + 2

N + 8
nε±

√(
N + 2

N + 8

)2

n2ε2 − 2

3

N + 2

N + 8
(n2 − 1)ε

 (8.54)

The fixed point c+
r is stable, while c−r is unstable. In the limit n → 1, which is

relevant for the computation of entanglement entropy, c+
r smoothly evolves to the

c+
r = 0 stable fixed point, which we obtained in the absence of the conical singularity.

Moreover, for n→ 1, we expect the starting point of the RG flow cr → 0. Hence, for

n close to 1 the RG flow will terminate at the fixed point c+
r . The stability exponent

of this fixed point β′(c+
r ) → [φ2] − (D − 2) = 2 − 1/ν as n → 1. This boundary
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exponent, as well as the usual bulk exponent, ω = β′(u∗r), will control corrections to

scaling for the entanglement entropy S.

Thus, the main effect of the conical singularity is to shift c+
r away from 0. The

parametric magnitude of this shift depends on whether 1− n� ε or |1− n| � ε:

c+
r ≈ π

√
2

3

N + 2

N + 8
(1− n2)ε, 1− n� ε (8.55)

c+
r ≈ −2π

3
(n− 1)− 2π

9

N + 8

N + 2

(n− 1)2

ε
, |1− n| � ε (8.56)

Thus, for 1− n� ε, c+
r ∼ O(

√
ε): this is the regime in which the urcr term in the β-

function (8.51) can be ignored. On the other hand, for |n− 1| � ε, c+
r ∼ (n− 1)� ε

and the urcr term in β(cr) becomes important. Note that in both regimes, c+
r is

parametrically small and the perturbative expansion in cr is justified.

For n > nc, both fixed points disappear and the RG flow runs away to cr = −∞,

Fig. 8.5 d). As discussed above for the case n = 1, large N analysis suggest that the

flow is towards another fixed point (which itself evolves as a function of n). Now there

are two possibilities. If as n increases from 1 to nc, the initial value of cr, determined

by the microscopic details of the theory, satisfies cr(n) > c−r (n) then the run-off to the

cr = −∞ fixed point will occur precisely at n = n∗ = nc. On the other hand, if the

initial value of the coupling cr(n) < c−r (n) for n > n∗ where 1 < n∗ < nc, the runaway

to cr = −∞ will occur before n reaches nc. Note that the value of n∗ is generally

non-universal. In either case, the long-distance physics is controlled by the c+
r fixed

point for n < n∗ and the cr = −∞ fixed point for n > n∗. Thus, the constants γn, rn,

eqs. (8.15), (8.16) will always have a discontinuity at some n = n∗, 1 < n∗ ≤ nc. Note

that eqs. (8.15), (8.16) are understood in the limit when the size of the regions whose

entanglement entropy we are computing and the correlation length ξ tend to infinity.



Chapter 8: Entanglement entropy in the O(N) model 337

However, as n → n∗ a new divergent length scale emerges in the problem. In fact,

we can think of the point n = n∗, t = 0 as a multicritical point. Thus, the limits L,

ξ →∞ and n→ n∗ do not commute. In particular, if we fix L or ξ, the dependence

of the Renyi entropy on n will be completely analytic. Moreover, the emergence of a

new length-scale as n→ n∗ implies that the Renyi entropy in the cross-over region is

not entirely universal.

a� b�

Figure 8.6: Leading contributions to 〈φ2(x)〉n (denoted by a black square here and
below): a) Mean-field result, b) Correction due to the boundary perturbation.

Having discussed the non-trivial n-dependence of the Renyi entropy that occurs

for n away from 1, we come back to the range n < nc and concentrate on the c+
r fixed

point. We will from here on denote c+
r as c∗r. Let us now compute the value of 〈φ2(x)〉

at this fixed point. The leading correction to the mean-field result, Fig. 8.6 a), eq.

(8.36), is given by the diagram in Fig. 8.6 b),

δ1,0〈φ2(x)〉 = −Ncr
∫
dD−2y⊥G

2
n(x, y) = − Ncr

16π3n2

1

r2
(8.57)
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Since to leading order we still have t = m2, from eqs. (8.24) and (8.25),

dn ≈ N

[
1

48π2

(
1

n2
− 1

)
− c+

r

16π3n2

]
(8.58)

and from eqs. (8.26), (8.31), the coefficient of the correlation length correction to the

Renyi entropy is,

rn ≈ −
πn(N + 8)

6ε(1− n)
dn (8.59)

As we see, in the regime 1 − n � ε, taking the boundary perturbation into account

only weakly modifies the mean-field result for dn, eq. (8.37), by a term of order
√
ε.

Note that rn is still strongly modified due to a different value of ν1.

However, in the regime |1− n| � ε,

dn ≈
N(N + 8)

(N + 2)

(n− 1)2

72π2ε
, |1− n| � ε (8.60)

rn ≈
N(N + 8)2

N + 2

n− 1

432πε2
, |1− n| � ε (8.61)

Thus, for n→ 1, the behavior of dn at the Wilson-Fisher is drastically different from

the mean-field result, eq. (8.37). In particular, notice that to the present order in ε,

the correction due to the boundary perturbation precisely cancels the term linear in

n−1 coming from eq. (8.36). The technical reason for this remarkable cancellation is

as follows. For n→ 1, we expect cr ∼ O(n−1), and we can work just to first order in

c. Then, in considering the corrections to the propagator, we can drop the diagram

in Fig. 8.3 b), keeping only Figs. 8.3 a) and 8.4 c). These diagrams are, essentially,

Hartree-Fock corrections to the propagator, and the “Hartree-Fock potential” at y

is just 〈φ2(y)〉n − 〈φ2(y)〉1 ∼ 1/y2
‖. As a result, the diagrams diverge for y‖ → 0.

The β-function for the coupling constant cr vanishes precisely when this divergence

is absent, i.e. 〈φ2(y)〉n − 〈φ2(y)〉1 = 0.
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The crucial consequence of eq. (8.60) is that to this order the correction to en-

tanglement entropy proper, r = limn→1 rn = 0. Thus,

r ∼ O(1), D = 4− ε (8.62)

We conclude that the correlation length dependent contribution to the entanglement

entropy at the Wilson-Fisher fixed point is parametrically smaller than at the Gaus-

sian fixed point in D = 4 − ε, eq. (8.39). As a result, we have to proceed to higher

order in ε to evaluate it. This will be done in the next section.

Before we perform the higher order computation, let us ask how do the correla-

tion functions of the field φ(x) behave as x approaches the conical singularity. This

question is connected to the effective boundary conditions on the field φ that are

generated at the singularity. In accordance with the general theory of boundary crit-

ical phenomena,[138] we expect the field φ to satisfy the operator product expansion

(OPE),

φ(x‖, x⊥) ∼ rαφ(0, x⊥), r → 0 (8.63)

where φ(0, x⊥) is an operator living on the conical singularity. The exponent α can

be extracted from the two-point function G(x, x′). Combining the free propagator

with the boundary correction, eq. (8.42),

G(x‖, x
′
‖, p⊥)

x‖→0
=
(

1 +
cr

2πn
log(p⊥r)

)
Gn(0, x′‖, p⊥) (8.64)

from which we conclude,

α =
c∗r

2πn
(8.65)

Note that from eq. (8.54) the exponent α is positive for n < 1, implying effective

Dirichlet boundary conditions on φ(x) at the conical singularity. On the other hand,
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α is negative for 1 < n < nc and correlation functions of φ(x) exhibit a power-law

divergence as x‖ approaches the origin.

8.4.3 Beyond the leading order in ε

The inhomogeneous renormalization group equation

At leading order in ε, our calculation has relied on the integral in eq. (8.28) being

saturated at short distances, u = mr → 0, allowing us to work directly at the critical

point. However, we saw that the coefficient dn of the short-distance asymptotic of

fn, eq. (8.25), behaved as dn ∼ (n − 1)2/ε for n → 1, giving no contribution to

the entanglement entropy. We expect that to next order in ε, dn will acquire a term

linear in n − 1, dn ∼ ε(n − 1), which by eq. (8.30) will give a contribution of O(1)

to S. Notice that this is of the same order as the contribution of the long distance,

u → ∞, part of the integral (8.28), which now has to be taken into account. Thus,

we need to compute the long distance part of fn to leading order in ε and the short

distance part to subleading order. Although the separation between short and long

distance contributions is unambiguous to present order, it is convenient to introduce

a formalism that allows one to consistently treat the problem order by order in ε.4

Let us define,

Φ(p) = n

∫
1−sheet

d2x‖
(〈 [

φ2(x)
]
r

〉
n
−
〈 [
φ2(x)

]
r

〉
1

)
e−i~p~x (8.66)

4We note that the discussion below closely parallels the renormalization group technology used
to calculate the specific heat in the classical O(N) model.
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Here, we have introduced the usual renormalization of the φ2 operator,

[φ2(x)]r =
Z2

Z
φ2(x), tr =

(
Z2

Z

)−1

t (8.67)

We are considering Φ at a finite momentum p in order to make Φ well-defined even

at the critical point, t = 0. We are actually interested in computing Φ at p = 0 in

the gapped phase, t 6= 0, as from eq. (8.22),

tr
∂

∂tr
log

Zn
Zn

= −1

2
trΦ(p = 0)LD−2 (8.68)

As already observed in section 8.3, although the integrand in (8.66) is finite, the

integral diverges logarithmically for |x| → 0 at each order in u. Thus, Φ(p) requires

an additive renormalization,

Φ(p) = Φr(p) + C(ur, cr, µ/Λ)µ−ε (8.69)

where C is a renormalization constant. We will use dimensional regularization below,

so that C is, in fact, just a function of ur and cr. Then Φr satisfies the inhomogeneous

renormalization group equation,(
µ
∂

∂µ
+ β(ur)

∂

∂ur
+ β(cr)

∂

∂cr
− η2(ur)

(
1 + tr

∂

∂tr

))
Φr = B(ur, cr)µ

−ε (8.70)

with

B(ur, cr) = −
(
β(ur)

∂

∂ur
+ β(cr)

∂

∂cr
− (η2(ur) + ε)

)
C(ur, cr) (8.71)

where as usual,

η2(ur) = µ
∂

∂µ

∣∣∣∣
u

log
Z2

Z
(8.72)
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Note that B must be finite, as the left hand side of eq. (8.70) is finite. The solution to

(8.70) can be represented as a sum of the solution to the homogeneous RG equation

and a particular solution. In the scaling limit, tr → 0,

Φr(p = 0) = Asµ
−ε
(
tr
µ2

)−(ε+η2)/(2+η2)

+ Ans(ur, cr)µ
−ε (8.73)

where the coefficient of the particular solution Ans satisfies,(
β(ur)

∂

∂ur
+ β(cr)

∂

∂cr
− (η2(ur) + ε)

)
Ans(ur, cr) = B(ur, cr) (8.74)

Hence, at the critical point,

Ans(u
∗
r, c
∗
r) = − 1

η2 + ε
B∗ = − 1

ν1

B∗ (8.75)

where we recall our definition in section 8.3, ν1 = ν−1 − (D − 2) and ν−1 = 2 + η2.

Thus, from eq. (8.68),

log
Zn
Zn

= − As
2ν(D − 2)

(
µ

(
tr
µ2

)ν)D−2

LD−2 (8.76)

where we’ve dropped terms analytic in tr. Note that the mass gap m is related to

µ
(
tr
µ2

)ν
via a finite proportionality constant, which at leading order in ε is just 1. So

to leading order,

rn ≈ −
As

2(1− n)
(8.77)

Hence, we must compute As. To do so, we perturbatively calculate Φr(p = 0) and

B(ur, cr). As can then be determined by matching the perturbative expansion with

the solution to the RG equation (8.73) a the critical point, where the corrections to

scaling vanish. Notice that we always need to compute B to one higher order in ε

than Φr(p = 0) due to the factor ν1 in the denominator of eq. (8.75). Moreover,
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since Φr is finite for ε → 0, while Ans = −B∗/ν1 behaves as 1/ε, to leading order

As = −Ans = B∗/ν1. Precisely this fact was utilized in section 8.3, and we identify

to leading order B∗ = 2πndn.

Regularization

For the purpose of computing the entanglement entropy S we can work to linear

order in n−1. Since the fixed point value c∗ ∼ O(n−1), we also work to linear order

in c. Therefore, all diagrams that include an insertion of c can be evaluated at n = 1.

In addition, power counting indicates that if we work to linear order in c, all diagrams

will be finite for D < 4 (by contrast, higher order diagrams in c, such as Fig. 8.3

b) diverge even for D < 4). Thus, we use dimensional regularization and minimal

subtraction below. We remind the reader that in dimensional regularization the bare

coupling constant u = µεurZu/Z
2. We list below the renormalization constants in the

MS scheme to the order that they will be needed in our calculation.

Zu
Z2

= 1 +
(N + 8)

ε

ur
8π2

(8.78)

Z2

Z
= 1 +

(N + 2)

ε

ur
8π2

+
(N + 2)(N + 5)

ε2

( ur
8π2

)2

− 5(N + 2)

4ε

( ur
8π2

)2

(8.79)

Correspondingly,

β(ur) = −εur +
(N + 8)u2

r

8π2
(8.80)

η2(ur) = −(N + 2)
ur
8π2

(
1− 5

2

ur
8π2

)
(8.81)

As we saw, the boundary coupling constant c will also require renormalization.

To linear order in c,

c = D(ur) +
Z2

Z
cr (8.82)
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where we observe that the multiplicative renormalization of c to zeroth order in

(n−1) is just Z2/Z. On the other hand, the additive renormalization, which behaves

as D(ur) ∼ (n− 1) for n→ 1, needs to be computed explicitly. So the β-function,

β(cr) = −
(
Z2

Z

)−1

β(ur)
∂D

∂ur
− η2(ur)cr (8.83)

Entanglement entropy to O(1)

To calculate the entanglement entropy to O(1) in ε, we need to find the finite part

of Φ(p = 0), eq. (8.66), at t 6= 0 to O(1) in u and the divergent part of Φ(p), which

determines B, eq. (8.71), to O(u).

Φ(p) to O(1) in u is given by the two diagrams in Fig. 8.6. The diagram Fig. 8.6

a) is just the mean field contribution computed in Ref. [6],

Φ(p = 0)MF = N

∫
d2x‖ (Gn(x, x)−G1(x, x))

= N

∫
dD−2k⊥
(2π)D−2

∫
d2x‖

(
GD=2
n (x, x; k2

⊥ +m2)− n→ 1
)

= −N
12

(
n− 1

n

)∫
dD−2k⊥
(2π)D−2

1

k2
⊥ +m2

= −N
12

(
n− 1

n

)
Γ(2−D/2)

(4π)D/2−1
mD−4 (8.84)

where GD=2
n (x, x′;M2) is the two dimensional massive propagator on the n-sheeted

Riemann surface, and we have used the result proved in Ref. [6],∫
d2x‖

(
GD=2
n (x, x;M2)−GD=2

1 (x, x;M2)
)

= − 1

12

(
n− 1

n

)
1

M2
(8.85)

The diagram in Fig. 8.6 b) is the boundary correction,

δ1,0Φ(p = 0) = −Ncr
∫
d2x‖

∫
dD−2y⊥G

2
1(x‖, y⊥) = −Ncr

Γ(2−D/2)

(4π)D/2
mD−4 (8.86)
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Combining eqs. (8.84), (8.86),

Φ(p = 0)
O(1)
= −N

(
n− 1

12π
+

cr
8π2

)(
1

ε
+

1

2
log 4π − γ

2
− log(m/µ)

)
µ−ε (8.87)

where we keep only terms linear in n− 1.

Subtracting the pole, we obtain for the additive renormalization constant C, eq.

(8.69),

C
O(1)
= −N

(
n− 1

12π
+

cr
8π2

)
1

ε
(8.88)

and consequently from eq. (8.71),

B
O(1)
= εC = −N

(
n− 1

12π
+

cr
8π2

)
(8.89)

and

Φr(p = 0)
O(1)
= −N

(
n− 1

12π
+

cr
8π2

)(
1

2
log 4π − γ

2
− log(m/µ)

)
µ−ε (8.90)

In particular, at the critical point, by eq. (8.56),

c∗r
O(1)
= −2π

3
(n− 1) (8.91)

and

Φ∗r(p = 0) = O(ε), B∗ = O(ε) (8.92)

Thus, in the minimal subtraction scheme Φ∗r(p = 0) vanishes at the critical point to

O(1) in ε. The fact that B∗ = 2πndn vanishes to O(1) in ε has already been observed

in section 8.4.2. Thus, from eqs. (8.73), (8.75),

As
O(1)
=

B∗
ν1

(8.93)

We now proceed to evaluate B to O(ε). To do this, we compute Φ(p) at the critical

point. We first evaluate 〈[φ2]r〉n−〈[φ2]r〉1 and use it to determine the renormalization
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of the coupling c in dimensional regularization. We then perform the Fourier trans-

form, eq. (8.66), to find the subtraction constant C and hence B. To leading order,

we have the two familiar diagrams in Fig. 8.6,

〈φ2(x)〉n − 〈φ2(x)〉1
O(1)
= N

[
J(D)− cr

Γ(D/2− 1)3

16πD/2+1Γ(D − 2)

]
1

rD−2
(8.94)

where we’ve defined,

Gn(x, x)−G1(x, x) =
J(D)

rD−2
(8.95)

Note that in dimensional regularization 〈φ2〉1 = NG1(x, x) = 0 at the critical point.

We will show in section 8.4.3 that to linear order in n− 1,

J(D) = (n− 1)
Γ(D/2)3

4πD/2(1−D/2)Γ(D)
(8.96)

In particular, J(D = 4) = − n−1
24π2 in agreement with eq. (8.36). We note that the

diagrams that contain the tadpole (8.95) can effectively be evaluated with n = 1.

The computation is simplest in position space, where one uses,

G1(x, x′) =
Γ(D/2− 1)

4πD/2|x− x′|D−2
(8.97)

At order u, 〈[φ2]〉n − 〈[φ2]〉1 receives contributions from the diagrams in Fig. 8.7.

Note that the diagram c) is the renormalization of the coupling constant c0 = cr +

δ1c + .... Taking the multiplicative renormalization of the operator φ2 into account,

we obtain,

〈[φ2]r〉n − 〈[φ2]r〉1
O(u)
= N

(
Z2

Z

1

rD−2
− Γ(D/2− 1)Γ(2−D/2)2

16πD/2(D − 3)Γ(4−D)

(N + 2)urµ
ε

r2(D−3)

)
×
(
J − Γ(D/2− 1)3

16πD/2+1Γ(D − 2)
cr

)
−N Γ(D/2− 1)3

16πD/2+1Γ(D − 2)

δ1c

rD−2

(8.98)
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a� b� c�

Figure 8.7: Contributions to 〈φ2(x)〉n − 〈φ2(x)〉1 at order u. The counterterm δ1c is
denoted by a circled cross here and below.

Performing minimal subtraction,

δ1c =
(N + 2)ur

ε

(
n− 1

12π
+

cr
8π2

)
(8.99)

Notice that the coefficient of the multiplicative renormalization is precisely Z2/Z as

expected. We also obtain the additive renormalization constant, eq. (8.82),

D(ur) =
(N + 2)ur

ε

n− 1

12π
(8.100)

Hence, from eq. (8.83), to first order in u,

β(cr)
O(u)
= (N + 2)ur

(
n− 1

12π
+

cr
8π2

)
(8.101)

in agreement with the expression (8.51) obtained earlier using cut-off regularization.

By Fourier transforming eq. (8.98), we can compute Φ(p) at the critical point to

order u. From the divergent part, we obtain the additive renormalization constant C

(8.69),

C(ur, cr) = −N
(

1

ε
+
N + 2

ε2
ur
8π2

)(
n− 1

12π
+

cr
8π2

)
(8.102)
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which gives the O(u) correction to our previous result (8.88). Substituting into eq.

(8.71), we obtain

B
O(u)
= −N

(
n− 1

12π
+

cr
8π2

)
(8.103)

Comparing the above result to eq. (8.89), we observe that B receives no additional

contributions at O(u). Thus, from eq. (8.93),

As
O(1)
= −N(N + 8)

6ε

(
n− 1

12π
+

c∗r
8π2

)
(8.104)

which, upon determination of c∗r to order ε would yield the entanglement entropy, eq.

(8.77).

β(cr) to order u2

a� b� c� d� e�

Figure 8.8: Contributions to 〈φ2(x)〉n − 〈φ2(x)〉1 at order u2 (diagrams involving
insertions of cr are not shown). The counterterm for the coupling u is shown as a
circled dot.

To complete our calculation, we need the value of the fixed point coupling c∗r to

order ε. This requires the knowledge of β(cr) to order u2. As before, we will determine
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the renormalization of c by computing the expectation value 〈[φ2]r〉n − 〈[φ2]r〉1. As

explained in section 8.4.3, we need to find only the additive renormalization of c.

Hence, we ignore all diagrams with vertices proportional to cr. At order u2, we

obtain the graphs shown in Fig. 8.8.

Now we are faced with a new technical difficulty. Up to this point, to linear order

in n − 1, the conical singularity entered our calculations through the tadpole term

Gn(x, x)−G1(x, x), whose form was fixed by dimensional analysis, eq. (8.95), up to

an overall constant J(D). Moreover, the renormalization constants only depended

on J(D = 4), which could be extracted from the explicit form of the propagator, eq.

(8.34). However, at the present order, we are faced with the diagram in Fig. 8.8 a),

which requires the full position dependence of the propagator Gn(x, x′). Yet, as far

as we know, there is no simple expression for Gn(x, x′) in arbitrary dimension, and

even in D = 4 eq. (8.34) is rather awkward to work with.

To address this problem, we expand the propagator Gn(x, x′) to linear order in

n− 1 in terms of the usual propagators G1(x, x′), eq. (8.97). The simplest way to do

this is to consider the O(N) model in the presence of an arbitrary metric gµν ,

S =

∫
dDx

√
det g

(
gµν∂µφ∂νφ+

t

2
φ2 +

u

4
φ4

)
(8.105)

It is convenient to parameterize the n-sheeted Riemann surface using rescaled vari-

ables,

r̃ =
√
nr, ϕ = θ/n (8.106)

Then, the angular variable ϕ ∼ ϕ+ 2π. We may also define,

τ̃ = r̃ cosϕ, x̃ = r̃ sinϕ (8.107)
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The coordinates (τ̃ , x̃) form the usual two dimensional Euclidean plane and uniquely

specify each point on the Riemann surface. With this choice of variables, the metric

(8.20) in the x‖ plane becomes,

gαβ = nδαβ +

(
1

n
− n

)
x̃αx̃β
x̃2

(8.108)

where α,β run over τ̃ , x̃. Note that we have chosen to rescale r in such a way that,

det g = 1 (8.109)

Moreover, expanding g in powers of n− 1, gαβ = δαβ + δgαβ,

δgαβ ≈ (n− 1)

(
δαβ −

2x̃αx̃β
x̃2

)
(8.110)

We drop the tildes on variables τ, x in what follows. We can now obtain the usual

Feynman graph expansion for the theory (8.105), treating δgαβ as a perturbation.

Note that all the integrals in the resulting expansion are over the usual D-dimensional

Euclidean space. In particular, note that the bare propagator becomes,

Gn(x, x′) ≈ G1(x, x′) + δGn(x, x′) (8.111)

δGn(x, x′) = (n− 1)

∫
dDy

(
δαβ −

2yαyβ
y2
‖

)
∂αG1(x− y)∂βG1(x′ − y) (8.112)

By performing the integral, we immediately obtain eq. (8.96) for Gn(x, x)−G1(x, x).

Using the expansion (8.112) we compute the divergent part of the diagrams in Fig.

8.8 to linear order in n−1. After accounting for the multiplicative renormalization of

the φ2 operator, eq. (8.79), we extract the additive renormalization of the coupling

constant c, eq. (8.82) to O(u2),

D(ur) =
n− 1

12π

(
(N + 2)ur

ε
+

(N + 2)(N + 5)

ε2
u2
r

8π2
− 7(N + 2)

4ε

u2
r

8π2

)
(8.113)
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and from eq. (8.83),

β(cr) = (N + 2)ur

(
1− 7

2

ur
8π2

)
n− 1

12π
+ (N + 2)

ur
8π2

(
1− 5

2

ur
8π2

)
cr (8.114)

Hence,

c∗r = −2π

3

(
1− u∗r

8π2

)
(n− 1) = −2π

3

(
1− ε

N + 8

)
(n− 1) (8.115)

and from eq. (8.104),

As = − N

72π
(n− 1) (8.116)

which by eq. (8.77) finally yields the coefficient of the correlation length correction

to the entanglement entropy,

r = − N

144π
(8.117)

8.5 ε - expansion: finite size correction

In this section we compute the geometric corrections γ, γn to the entanglement

entropy and the Renyi entropy, eqs. (8.6), (8.15), at the critical point.

As before, we consider two semi-infinite regions A and B with a boundary at

x = 0. However, we now take the remaining D − 2 spatial directions to have a finite

length L. In order to avoid dealing with the zero mode, we use twisted boundary

conditions along these directions.

φ(x+ Ln̂i) = eiϕiφ(x) (8.118)

where n̂i are unit vectors along the boundary. If the fields φ are real, then ϕi = 0

or π. On the other hand, in an O(N) model with N even, we can group our fields
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into N/2 complex pairs - then, an arbitrary twist is allowed (however, this breaks the

O(N) symmetry down to U(1)× SU(N/2)). We note that when accessing D = 3 via

ε-expansion, we will choose all ϕi’s to be equal.

Thus, the boundary between regions A and B is a D− 2 dimensional torus. Since

this manifold is smooth we expect the constants γ, γn to be universal. Moreover,

we don’t have to take into account divergences which appear as D → 4 when the

boundary has a finite curvature,[243] since this manifold is flat.

8.5.1 Gaussian theory

Let us begin with the free theory. We wish to compute,

log
Zn
Zn

= −N
2

(Tr log(−∂2)n − nTr log(−∂2)1) (8.119)

= −N
2

∑
~k⊥

[
Tr‖ log(−∂2

‖ + ~k2
⊥)n − nTr‖ log(−∂2

‖ + ~k2
⊥)1

]
(8.120)

where ki⊥ = 2πni+ϕi
L

and ni are integers. We leave the regularization of eq. (8.120)

implicit for now (we will later use dimensional regularization). Eq. (8.120) involves

the partition function of the two-dimensional massive gaussian theory evaluated in

Ref. [6],

log
Zn
Zn

∣∣∣
D=2

= −1

2
(Tr‖ log(−∂2

‖ +m2)−nTr‖ log(−∂2
‖ +m2)1) =

1

24

(
n− 1

n

)
log(m2)

(8.121)

Thus,

log
Zn
Zn

=
N

24

(
n− 1

n

)∑
~k⊥

log(~k2
⊥) = −N π

6

(
n− 1

n

)
LD−2GL

1 (x, x) (8.122)
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Here, GL
n(x, x) is the free propagator on an n-sheeted Riemann surface, which incor-

porates the finite size effects in the transverse direction. Explicitly,

GL
n(x, x′) =

1

LD−2

∑
~k⊥

GD=2
n (x‖, x

′
‖; k

2
⊥)ei

~k⊥(~x⊥−~x′⊥) (8.123)

In particular, for n = 1,

GL
1 (x, x′) =

1

LD−2

∑
~k⊥

∫
d2k‖
(2π)2

1

k2
‖ + k2

⊥
eik(x−x′) (8.124)

justifying the last step in eq. (8.122).

An alternative representation for the propagator (8.123) on the torus can be ob-

tained by Poisson resumming ~k⊥, which is equivalent to “periodizing” the infinite

volume propagator,

GL
n(x, x′) =

∑
~l

ei
~l~ϕGn(x+~lL, x′) (8.125)

where ~l is a vector of D − 2 integers in the plane parallel to the boundary. Note

that when x = x′, only the l = 0 term in eq. (8.125) is ultra-violet divergent and

GL
n(x, x) − Gn(x, x) is finite. Moreover, since the l = 0 term, G1(x, x) ∼ ΛD−2,

is L independent, it gives a non-universal contribution to log(Zn/Z
n), eq. (8.122),

proportional to the area of the boundary. Concentrating on the universal constant

term,

log
Zn
Zn

= −N π

6

(
n− 1

n

)
LD−2(GL

1 (x, x)−G1(x, x)) (8.126)

where from eqs. (8.97), (8.125),

LD−2(GL
1 (0)−G1(0)) =

Γ(D/2− 1)

4πD/2

∑
~l 6=0

ei
~l~ϕ

|~l|D−2
(8.127)

Here and below we abbreviate GL
1 (x, x) by GL

1 (0).
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We can now explicitly evaluate the universal constant contribution γn to the en-

tanglement entropy for D = 3 and D = 4.

γn = −N
12

(
1 +

1

n

)
log(2| sinϕ/2|), D = 3 (8.128)

γ = −N
6

log(2| sinϕ/2|), D = 3 (8.129)

For D = 4, we note that the sum

∑
~l 6=0

ei
~l~ϕ

~l2
= (2π)2GD=2(~ϕ) (8.130)

where GD=2(~ϕ) is the massless two-dimensional propagator (with the zero-mode re-

moved) on a torus with side-length 2π. This propagator can be expressed in terms of

the Jacobi-theta function θ1,

GD=2(~ϕ) = − 1

2π

(
log
∣∣∣θ1

(ϕ1 + iϕ2

2π
, i
)∣∣∣− ϕ2

2

4π
− log η(i)

)
(8.131)

where η is the Dedekind-eta function.

Thus,

γn =
πN

6

(
1 +

1

n

)
GD=2(~ϕ), D = 4 (8.132)

γ =
πN

3
GD=2(~ϕ), D = 4 (8.133)

8.5.2 ε - expansion

We now compute the universal finite size correction to leading order in ε-expansion.

The leading correction to the free theory behaviour comes from the boundary per-

turbation (8.41), as at the fixed point c∗r ∼
√
ε for 1 − n � ε and c∗r ∼ (n − 1) for
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|1− n| � ε. Thus,

δ1,0 log
Zn
Zn

= −cr
2

∫
dD−2x⊥〈φ2(r = 0)〉n = −Ncr

2
LD−2GL

n(r = r′ = 0)

= −Ncr
2n

LD−2GL
1 (x, x) (8.134)

where in the last step we’ve used eqs. (8.43), (8.125). Again, subtracting the non-

universal area law piece ∼ LD−2G1(0), and combining eq. (8.134) with the free theory

result (8.126),

log
Zn
Zn

= −N
(
π

6

(
n− 1

n

)
+
cr
2n

)
LD−2(GL

1 (0)−G1(0)) (8.135)

Now replacing cr by it’s fixed point value and taking D → 4,

γn = N

(
π

6

(
1 +

1

n

)
+

c∗r
2n(n− 1)

)
GD=2(ϕ, ϕ) (8.136)

Here we’ve set all the twists ϕi equal. For 1− n� ε, eq. (8.55), the c∗ term gives a

correction of order
√
ε to the free theory result. However, in the limit |1−n| � ε, eq.

(8.56), the correction due to the boundary perturbation cancels with the free theory

result to leading order in n− 1, leaving,

γn
n→1≈ −πN(N + 8)

9(N + 2)

n− 1

ε
GD=2(ϕ, ϕ) (8.137)

This implies that at the Wilson-Fisher fixed point the universal finite size correction

to the entanglement entropy,

γ ∼ O(ε) (8.138)

parametrically smaller than at the Gaussian fixed point in D = 4− ε.
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a� b� c�

Figure 8.9: Contributions to the partition function at order u.

8.5.3 Beyond the leading order in ε

We now evaluate the universal finite size correction to the entanglement entropy γ

to order ε. As before, we only work to leading order in n−1. To order u the partition

function receives contributions from the diagrams in Fig. 8.9. The diagram in Fig.

8.9 a) is given by,

δ0,1 log
Zn
Zn

= −N(N + 2)urµ
ε

4

∫
dDx

(
GL
n(x, x)−GL

1 (x, x)
)
×[

(GL
n(x, x)−G1(x, x)) + (GL

1 (x, x)−G1(x, x))
]

n→1≈ −N(N + 2)urµ
ε

2
(GL

1 (0)−G1(0))×∑
~k⊥

∫
d2x

(
GD=2
n (x, x; k2

⊥)−GD=2
1 (x, x; k2

⊥)
)

=
N(N + 2)(n− 1)urµ

ε

12
(GL

1 (0)−G1(0))
∑
~k⊥

1

~k2
⊥

(8.139)

where in the last step we’ve used eq. (8.85).
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The diagram in Fig. 8.9 b) can be evaluated with n = 1 propagators,

δ1,1 log
Zn
Zn

=
N(N + 2)urcrµ

ε

2
(GL

1 (0)−G1(0))

∫
dD−2x⊥

∫
dDx′GL

1 (x⊥, x
′)2

=
N(N + 2)urcrµ

ε

8π
(GL

1 (0)−G1(0))
∑
~k⊥

1

k2
⊥

(8.140)

Finally, the diagram in Fig. 8.9 c) can be obtained from eq. (8.134) by substituting

the counterterm for c, eq. (8.99). Combining all the diagrams in Fig. 8.9 with the

O(1) result, eq. (8.135),

log
Zn
Zn

= −N
2

(
2π

3
(n− 1) + cr

)
LD−2(GL

1 (0)−G1(0))

×

1− (N + 2)ur
4π

(µL)ε
∑
~k⊥

1

(Lk⊥)2
− 1

2πε

 (8.141)

Applying the usual technique for analytically continuing sums over D-dimensional

vectors, ∑
~k⊥

1

(Lk⊥)2
=

∫ ∞
0

ds T (s)D−2 (8.142)

where

T (s) =
∑
n

e−s(2πn+ϕ)2 (8.143)

The function T (s) has the following asymptotics,

T (s) → 1√
4πs

, s→ 0 (8.144)

T (s) → e−sϕ
2

, s→∞ (8.145)

Hence, for finite ϕ the integral in eq. (8.142) converges in the s→∞ region. More-

over, the s→ 0 region contributes a pole for D → 4,

∑
~k⊥

1

(Lk⊥)2
→ 1

2πε
+ finite terms (8.146)
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Figure 8.10: The function GD=2(ϕ, ϕ) determining the dependence of γ on the twist
ϕ, eq. (8.148).

As expected, this pole precisely cancels with the c counterterms, so that the expression

(8.141) is finite. Moreover, setting cr to its fixed point value, eq. (8.115), the prefactor

in eq. (8.141) is already O(ε), so that we can neglect the O(u) terms in the square

brackets. Thus,

log
Zn
Zn

= −Nπε(n− 1)

3(N + 8)
LD−2(GL

1 (0)−G1(0)) (8.147)

and

γ =
Nπε

3(N + 8)
GD=2(ϕ, ϕ) (8.148)

Note that the result (8.148) is of O(1) in N for N → ∞, instead of the naively

expected O(N). It is not clear if this is an artifact of working to leading order in ε.

The function GD=2(ϕ, ϕ) which determines the ϕ dependence of γ is shown in Fig.

8.10. We observe that γ is a monotonically decreasing function of ϕ for 0 < ϕ < π.
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In particular, for ϕ = π,

γ = − Nε

12(N + 8)
log 2 (8.149)

Thus, γ is negative for anti-periodic boundary conditions. On the other hand, for

ϕ→ 0,

γ≈− Nε

6(N + 8)
logϕ, ϕ→ 0 (8.150)

suggesting that γ is positive for periodic boundary conditions. Note that our ex-

pression for γ becomes invalid for ϕ sufficiently small. The value of ϕ where the

breakdown of direct perturbative expansion occurs can be estimated as follows. Let

us separate out the quasi-zero mode φ0 of the field φ,

φ(x) =
1

L(D−2)/2
φ0(x‖)e

i~ϕ·~x⊥/L + φ̃(x) (8.151)

where φ̃(x) has the ~k⊥ = ~ϕ
L

mode omitted. At the mean-field level, the effective

action for φ0 is a two dimensional φ4 field theory, with an effective mass m2
2D ∼ ϕ2

L2

and quartic coupling u2D ∼ u
LD−2 . We know that perturbative expansion in a 2D

theory is valid for u2D/m
2
2D � 1. Thus, setting D = 4 and u = u∗, we obtain,

ϕ2 � ε (8.152)

as the domain of validity of perturbation theory. For smaller values of ϕ, the zero

mode must be treated separately and non-perturbatively. This result can be checked

in the 1/N expansion where one obtains a slightly stronger condition ϕ2 � ε logϕ.

Cutting off the logarithmic divergence of (8.150) at the value of ϕ where perturbation

theory breaks down, we obtain,

γ ≈ − Nε

12(N + 8)
log ε (8.153)
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We conjecture that eq. (8.153) is the leading order result for the case of zero twist

(periodic boundary conditions).

8.6 Large N limit

In this section we compute the correlation length correction to the Renyi entropy

Sn, eq. (8.16), in the large N limit. Although we are mainly interested in the physical

case D = 3, we will keep the dimension of space-time arbitrary in our discussion in

order to compare the results of the large-N and ε-expansions.

When working in the large-N limit, it is more convenient to use the non-linear σ-

model version of the O(N) model (8.17), where the quartic interaction is replaced by

a local constraint φ2(x) = 1
g
. Enforcing this constraint with the help of the Lagrange

multiplier λ(x), the action takes the form,

S =

∫
dDx

(
1

2
(∂µφ)2 +

1

2
iλ(φ2 − 1

g
)

)
(8.154)

Our discussion in section 8.3 is then directly transcribed into the present case with

the replacement, t→ −(1
g
− 1

gc
), φ2 → iλ. In particular, to determine the coefficient

rn of the correlation length correction to leading order in 1/N , we need to find the

behaviour of 〈iλ(x)〉 at the critical point.

We tune the O(N) model to criticality g = gc. At N =∞, the problem is reduced

to finding the saddle-point value of the Lagrange multiplier 〈iλ(x)〉n such that the

gap equation,

Gn(x, x) =
1

N
〈φ2(x)〉n =

1

Ngc
(8.155)

is satisfied. Here Gn(x, x′) is the Green’s function of the operator −∂2 + 〈iλ(x)〉n
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on the n-sheeted Riemann surface. The quantity Gn(x, x) requires regularization; we

will implicitly use point splitting regularization. It is convenient to rewrite the gap

equation as,

Gn(x, x)−G1(x, x) = 0 (8.156)

We note that at N =∞ the scaling dimension of λ(x) is 2, so,

〈iλ(x)〉n =
an
r2

(8.157)

From (8.24), with the appropriate replacement φ2 → iλ, t→ g−1
c − g−1, the constant

an is related to the constant dn (8.25) as

dn =
1

mD−2

(
1

gc
− 1

g

)
an (8.158)

Now from the gap equation at finite m,

1

Ng
− 1

Ngc
=

∫
dDp

(2π)D

(
1

p2 +m2
− 1

p2

)
=

1

(4π)D/2
Γ(1−D/2)mD−2 (8.159)

and

dn = − N

(4π)D/2
Γ(1−D/2) an (8.160)

In particular in D = 3, dn = N
4π
an. Thus, the problem of computing the entanglement

entropy at N =∞ reduces to finding the constants an.

We now need to find the Green’s function Gn. The main observation is that the

angular harmonics on an n-sheeted Riemann surface are 1√
2πn

eilθ/n, where l is an

integer. Hence,

Gn(x, x′) =

∫
dD−2k⊥
(2π)D−2

eik⊥(x⊥−x′⊥)GD=2
n (r, r′, θ; k2

⊥) (8.161)
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where the two-dimensional massive propagator on an n-sheeted Riemann surface is

given by,

GD=2
n (r, r′, θ;m2) =

∑
l

eil(θ−θ
′)/n

2πn
gl(r, r

′;m2) (8.162)

Here, (
−1

r

∂

∂r

(
r
∂

∂r

)
+

(l/n)2 + an
r2

+m2

)
gl(r, r

′;m2) =
1

r
δ(r − r′) (8.163)

We use spectral decomposition for gl,

gl(r, r
′;m2) =

∫
dE

1

E +m2
φl,E(r)φ∗l,E(r′) (8.164)

where (
−1

r

∂

∂r

(
r
∂

∂r

)
+

(l/n)2 + an
r2

)
φl,E = Eφl,E (8.165)

and φl,E are normalized to∫
drrφ∗l,E(r)φl,E′(r) = δ(E − E ′) (8.166)

The constant an must be positive in order to avoid the presence of negative energy

states, which would render our saddle point unstable. Let us call the quantity l2/n2 +

an = ν2. Eq. (8.165) admits two linearly independent solutions,

φ(r) =
1√
2
J|ν|(
√
Er) (8.167)

φ(r) =
1√
2
J−|ν|(

√
Er) (8.168)

We recall that

Jν(x) ∼ |x|ν , x→ 0 (8.169)

When working in free space (in the absence of conical singularity and potential

(8.157)) one chooses only the solutions with a positive index |ν| = |l|, so that φE(r)
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is finite and differentiable at r = 0. However, in the present problem there is no a

priori physical reason why the solutions (and hence the propagator) have to remain

finite as r → 0.

In fact, a particle in a 1/r2 potential is a famous problem known as conformal

quantum mechanics. Note that the potential (8.157) is highly singular and requires

regularization at short distances. Such regularization will automatically appear in

the linear O(N) model, which can be obtained from (8.154) by adding a term λ2/4u

to the Lagrangian. In that case, eq. (8.157) only holds for ur4−D � 1 and the

saddle point value 〈iλ〉 is modified at short distances. We note that even after this

regularization, the l 6= 0 states still experience an l2/r2 centrifugal barrier and we

must choose positive index solutions (8.167) for them. We now concentrate on the

l = 0 sector. For simplicity, imagine cutting the 1/r2 divergence off at some radius

r = r0 and replacing it by a finite potential. Generally, the resulting scattering states

will approach the positive index solutions (8.167) for
√
Er0 → 0. However, non-trivial

behaviour can occur if the potential is close to developing a bound state. In that case,

for |ν| < 1, one “dynamically” generates a length-scale ξ and the scattering solutions

become linear combinations of (8.167) and (8.168) with coefficients (and, thus, the

phase-shifts) depending on
√
Eξ. Since we are looking for a scale invariant solution

to the gap equation, we need ξ → ∞, i.e. the system is exactly at the threshold of

bound state formation. At this threshold, for
√
Er0 → 0 one obtains negative index

solutions (8.168). Note, that this behaviour is special to the range |ν| < 1 and does

not occur for |ν| > 1. This fact could be anticipated as the negative index solutions

are square integrable at short distances for |ν| < 1 but not for |ν| > 1.
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Thus, applying RG terminology to the simple quantum mechanics problem (8.165),

we conclude that there are two fixed points - one stable (8.167) and one unstable

(8.168). However, we are allowed to choose the unstable fixed point solutions as

we are fine tuning both the long and short distance parts of 〈iλ〉 to solve the gap

equation.

With these remarks in mind,

gl(r, r
′;m2) =

∫ ∞
0

kdk
1

k2 +m2
Jνl(kr)Jνl(kr

′) (8.170)

where νl = α for l = 0 and νl =
√
l2/n2 + α2 for |l| > 0, with an = α2. The

constant α can be either positive or negative. We note that as discussed in Ref [165],

α enters the operator product expansion of the field φ(x) as x approaches the conical

singularity,

φ(x‖, x⊥) ∼ rαφ(0, x⊥), r → 0 (8.171)

Combining eqs. (8.161),(8.162) and (8.170), and performing the integrals over k⊥,

k we obtain

Gn(r = r′, θ, x⊥ = x′⊥) =
Γ((3−D)/2)

2πn(4π)(D−1)/2rD−2

∑
l

Γ(D/2− 1 + νl)

Γ(2−D/2 + νl)
eilθ/n (8.172)

Since we are mostly interested in Gn(x = x′), we have set r = r′, x⊥ = x′⊥ in (8.172);

we have left θ 6= 0 as a regulator.

As an aside that will be of some interest later, we note that (8.172) is meaningful

only for α > −(D/2− 1). For α ≤ −(D/2− 1) one obtains an infrared divergence in

the k⊥, k → 0 region of integrals (8.161),(8.170). We note that at α = −(D/2 − 1),

eq. (8.165) has a zero energy solution,

φ(r) =
1

rD/2−1
(8.173)
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The solution (8.173) could, in principle, correspond to a saddle point with a non-zero

expectation value 〈φ(x)〉. Note that the r dependence of (8.173) is consistent with the

scaling dimension [φ(x)] = D/2− 1 in the N →∞ limit. Alternatively, observe that

the scaling dimension of the “boundary” operator, [φ(0, x⊥)] = D/2 − 1 + α → 0 as

α→ −(D/2−1), indicating a tendency to condense. However, the infrared divergence

of the propagator (8.172) indicates that condensation of φ(x) at the conical singularity

is unstable to fluctuations. This is not unexpected, as the condensate would be

D− 2 < 2 dimensional. Such a condensate certainly cannot exist for any g > gc, as it

would violate the Mermin-Wagner theorem. Long range interactions could potentially

stabilize the condensate exactly at the critical point, however, the above discussion

shows that this does not occur (at least in the large-N limit).

We use contour integration to write (8.172) in a somewhat more convenient form,

Gn(r = r′, θ, x⊥ = x′⊥)

=
1

4πD/2Γ(2−D/2)rD−2

(∫ ∞
0

dν
ν√

ν2 + α2
U√ν2+α2(θ)R(ν) + θ(−α)

iR(iα)

n

)
(8.174)

with

Uν(θ) =
cosh(ν(πn− |θ|))

sinh(πnν)
(8.175)

R(ν) = −iΓ(3−D)

[
Γ(−iν +D/2− 1)

Γ(−iν + 2−D/2)
− Γ(iν +D/2− 1)

Γ(iν + 2−D/2)

]
(8.176)

=
2πΓ(3−D) sin(π(3−D)/2) sinh(πν)

cosh2 πν − sin2(π(3−D)/2)

1

|Γ(iν + 2−D/2)|2 (8.177)

In particular, for D = 3, R(ν) = π tanh(πν). We note that despite the presence of the

θ(−α) term in eq. (8.174), Gn(r = r′, θ, x⊥ = x′⊥) is analytic at α = 0 as is evident
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from eq. (8.172). Thus, the gap equation (8.156) takes the form,

(Gn −G1)
∣∣
x=x′

=
1

4πD/2Γ(2−D/2)rD−2

[∫ ∞
0

dν

(
ν√

ν2 + α2
coth(πn

√
ν2 + α2)− coth(πν)

)
R(ν)

+ θ(−α)
i

n
R(iα)

]
= 0 (8.178)

The function R(ν) is positive for real values of ν. So the left-handside of the gap

equation goes to −∞ as α → ∞ and to ∞ as α → −(D/2 − 1)+. Hence, the gap

equation always has at least one solution, and more generally, an odd number of

solutions. Numerically, we find that the gap equation has a unique solution for all n

for D < Dc, Dc ≈ 3.74. For D > Dc, there are one or three solutions depending on

the value of n, as we will discuss below.

As we are mainly interested in the entanglement entropy, let us consider the limit

n→ 1. Then we expect α→ 0. The integral in (8.178) is non-analytic at α = 0, due

to singular behaviour in the ν → 0 region. Noting that R(ν) ≈ R′(0)ν, as ν → 0, we

obtain to leading order in α,

(Gn −G1)
∣∣
x=x′
− (Gn −G1)

∣∣
x=x′,α=0

≈ R′(0)

4nπD/2Γ(2−D/2)rD−2

(
1

π

∫ ∞
0

dν

(
ν2

ν2 + α2
− 1

)
− θ(−α)α

)
=

R′(0)

4nπD/2Γ(2−D/2)rD−2

(
−1

2
|α| − θ(−α)α

)
= −Γ(D/2− 1)2Γ(D/2)

4πD/2Γ(D − 1)rD−2

α

n

(8.179)

where the contributions from the integral and the θ function have combined to produce

a result analytic in α. Now using eqs. (8.95), (8.96) for (Gn −G1)
∣∣
x=x′,α=0

,

α ≈ − D − 2

2(D − 1)
(n− 1), n→ 1 (8.180)
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Note that the exponent α controlling the OPE (8.171) of the field φ(x) at the conical

singularity is positive for n < 1 and negative for n > 1. Now, from (8.180),

an =
(D − 2)2

4(D − 1)2
(n− 1)2, n→ 1 (8.181)

Therefore, combining eqs. (8.31) and (8.158), we find that

rn ∝
an

1− n ∝ n− 1, n→ 1 (8.182)

and the correlation length correction to the entanglement entropy proper vanishes at

leading order in N ,

r = lim
n→1

rn = 0 (8.183)

Thus, for all dimensions 2 < D < 4

r ∼ O(N) (8.184)

even though rn ∼ O(N2) for all n 6= 1.

So far we have concentrated on the solution to the gap equation in the n → 1

limit for arbitrary dimension. However, we can also obtain an analytic solution for

arbitrary n in the limit D = 4 − ε. Such a solution is useful for comparison to the

results of the ε-expansion presented in section 8.4.

When D = 4 − ε, the function R(ν) = −2ν1−εΓ(−1 + ε). The divergence of the

Γ function is not important here as it is just an overall factor in the gap equation

(which anyway cancels with Γ(2 − D/2) in (8.174)). However, the integral (8.178)

now diverges for ν → ∞ if ε = 0. Hence, for generic n and D = 4 − ε the leading

α-dependent contribution to the gap equation comes from the region ν � 1 and is

of order, 1
ε
α2. This suggest that α will be at most of order ε1/2. However, for α very
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small (i.e. n → 1), we already know from the previous discussion that the leading

contribution to the integral scales as |α| and comes from the ν → 0 region. Keeping

these two contributions (one non-analytic in α and the other analytic, but with a

diverging coefficient) and setting α = 0 in the rest of the integral, we reduce the gap

equation to

1

πn

∫ ∞
0

dν

(
ν2

ν2 + α2
− 1

)
+

∫ ∞
0

dν ν

(
cosh(πnν)

sinh(πnν)
− cosh(πν)

sinh(πν)

)
− 1

2
α2

∫ ∞
ν�1

dν ν−ε−1 − θ(−α)
α

n
= 0 (8.185)

α

n
+
α2

ε
− 1

6

(
1

n2
− 1

)
= 0 (8.186)

The quadratic has two solutions,

α± = − ε

2n
± 1

2n

√
ε2 +

2ε

3
(1− n2) (8.187)

and the corresponding values of dn, eq. (8.160), are,

d±n =
N

8π2

1

6

(
1

n2
− 1

)
+
ε∓

√
ε2 + 2

3
ε(1− n2)

2n2

 (8.188)

Eq. (8.188) is in agreement with the result of the ε-expansion, eq. (8.58), and we

can identify the α± saddle points with the c±r fixed points. Moreover, we see that

the predictions of the large-N (8.187) and ε-expansion (8.65) for the OPE exponent

α also agree. Note that both saddle points (8.187) disappear for n > nc ≈ 1 + 3ε/4.

This coincides with the value of n at which runaway of RG flow is observed in the ε-

expansion. However, as we noted earlier, the gap equation always has an odd number

of solutions. Thus, we have missed a solution in our discussion above. This solution

has α ≈ −(D/2 − 1) → −1, i.e. α is not small. Its existence is possible due to a
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cancellation of 1/ε divergences between the large ν part of the integral and the θ(−α)

term in (8.178). Keeping these two contributions to the gap equation, we obtain in

the α→ −(D/2− 1) limit,

α2

ε
− ε

n

1

α +D/2− 1
= 0 (8.189)

So,

α = −1 +
1

2
ε+

1

n
ε2 (8.190)

Eqs. (8.187), (8.190) comprise the three solutions to the gap equation for 1 < n < nc,

and eq. (8.190) is the only solution for n > nc. We speculate that the runaway of the

RG flow observed in ε-expansion for n > nc is towards the fixed point (8.190). As we

noted above, the value α = −(D/2 − 1) corresponds to the would be condensation

of the φ field at the conical singularity. Thus, for ε → 0, the saddle-point (8.190)

is proximate to such condensation. This is consistent with our interpretation of the

RG flow c→ −∞ as the tendency to formation of 〈φ(x)〉 6= 0. However, the large-N

analysis demonstrates that no true spontaneous symmetry breaking at the conical

singularity occurs for D < 4.

To our knowledge no such non-trivial n-dependence has been previously observed

in any theories. Still, in the large-N expansion such behaviour is only present for

D > Dc ≈ 3.74 and its relevance to the physical case D = 3 is doubtful. Moreover,

the non-analyticity occurs away from n = 1 and, thus, is unimportant for computing

the entanglement entropy proper. Indeed, the behaviour of the theory for n → 1

(8.180) is found to evolve smoothly as the dimension D increases from 2 to 4.

We now come back to the physical case D = 3, where the solution to the gap

equation is unique. The numerical solution for the first few integers n is listed in
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n αn
2 -0.16515
3 -0.26594
4 -0.32905
5 -0.36743

Table 8.1: Solution to the gap equation in the large-N limit for D = 3.

Table 8.1. Then, from (8.30) and (8.158),

rn =
3π2N2

128

nα2
n

n− 1
, D = 3 (8.191)

The coefficient (8.191) can be, in principle, obtained numerically by performing clas-

sical Monte-Carlo simulations of the O(N) model in the spirit of Refs. [253, 254].

So far our large-N computation has been confined to the correlation length cor-

rection to the Renyi entropy. At leading order the calculation was technically fairly

simple, as utilizing the discussion in section 8.3, we could work at the critical point.

In particular, the form of the Lagrange multiplier 〈iλ(r)〉 was fixed by scale invariance

up to an overall constant. To proceed beyond the leading order, as is required for the

calculation of the correlation length correction to the entanglement entropy proper,

we would have to work in the gapped phase. The Lagrange multiplier 〈iλ(r)〉 would

now be a non-trivial function of r with a length scale determined by the correlation

length ξ = m−1. Similarly, if we wish to compute the finite size correction γ to the

entanglement entropy, 〈iλ(r)〉 will again vary non-trivially with a length scale deter-

mined by the size L of the compact direction. In both cases, we have to solve the gap

equation for a whole function 〈iλ(r)〉 rather than a single number an. In principle,

this problem can be addressed numerically. It would be particularly interesting to
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check whether γ ∼ O(1) for N →∞ as suggested by the ε-expansion, eq. (8.148).

8.7 Conclusion.

In the present work we have computed the universal finite size and correlation

length corrections to the entanglement entropy and the Renyi entropy for the O(N)

model. The evaluation of this entropy required a study of the O(N) field theory

on a n-sheeted Riemann surface for general n, and an understanding of the nature

of the n → 1 limit. For n 6= 1, there is a conical singularity at the origin of the

Riemann surface and we have presented a detailed analysis of the structure of the

“boundary” excitations of the O(N) CFT at this singularity. (A closely related

CFT with vortex boundary conditions was studied in Ref. [165] with a very different

physical motivation.) In particular, we showed that in the context of ε = 3 − d

expansion, the RG flow of the boundary coupling c in Eq. (8.41) was the key to

a determination of the entanglement entropy. The RG flow of c had two possible

structures shown in Figs. 8.5 c) and d). For n greater than a critical nc, we had

flow in the infrared to c = −∞ as in Fig. 8.5 d). In contrast for n < nc, we had

three possible fixed points, and the n→ 1 limit was controlled by the non-zero fixed

point c = c+
r , at which all strong hyperscaling assumptions were obeyed. All our

computations in the ε and 1/N expansions were consistent with this RG flow and

fixed-point structure. One crucial consequence of the boundary perturbation and the

subtle limit n → 1 is that the finite size and correlation length corrections to the

entanglement entropy are different at the Wilson-Fisher and Gaussian fixed points

already at leading order in ε-expansion.
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Here we have considered a geometry with a smooth, straight boundary between

regions A and B. Therefore, we can make no strong claims regarding possible presence

of non-universal terms in the entanglement entropy associated with the curvature of

the boundary. Nevertheless, we generally expect such terms to be absent in spatial

dimension d = 2. Indeed, as we discussed in the introduction, any non-universal

contributions ot the entanglement entropy must involve integrals of local geometric

quantities over the length of the boundary. The simplest geometric object for a

one dimensional boundary is the curvature vector ~κ. Assuming that the integrand

is analytic in ~κ, the leading correction due to the boundary curvature that we can

construct is,

∆S ∼
∫
B
ds~κ2 (8.192)

which scales as 1/L under dilatations. Such a behaviour is subleading not only to

the universal terms in the entanglement entropy, but also to corrections to scaling

coming from irrelevant operators.

One possible extension of our work is to consider boundaries with sharp corners.

In such geometries, it is expected that the entanglement entropy will contain a uni-

versal logarithmically divergent term.[245, 246, 244, 249, 250] Moreover, we have only

studied the correlation length correction to the entanglement entropy in the symme-

try unbroken region t > 0. It would be interesting to extend our treatment to the

symmetry broken phase t < 0.

As this work was being completed, we learned of the numerical study of entan-

glement entropy in the d = 2 quantum Ising model in Ref. [255]. At the quantum

critical point the authors of Ref. [255] find evidence for a finite size correction γ as
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in Eq. (8.6) in the case when the boundary between regions A and B is smooth. We

note that the geometry studied in Ref. [255] is an L×L torus divided into two equal

cylinders rather than the infinite cylinder cut in half that we have considered here.

Thus, the two results cannot be compared directly. Nevertheless, the value of γ in

Ref. [255] is found to be positive, as in our conjecture in Eq. (8.8) for the case of

periodic boundary conditions along the cylinder.
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Appendix to Chapter 2

A.1 Functions Gq(b
2) and Fq(b

2)

The purpose of this appendix is to compute the behaviour of functions Gq(b
2)

[Eq. (2.30)], and Fq(b
2) [Eq. (2.41)], in the limit b→∞.

We begin with Gq. First, we consider the case q-even. Then,

Gq(b
2) =

∞∑
l=0

(
l + 1/2

((l + 1/2)2 + b2)
1
2

− 1

)
−

q/2−1∑
l=0

(
l + 1/2

((l + 1/2)2 + b2)
1
2

− 1

)
. (A.1)

In what follows, we will drop all the corrections to Gq(b
2) that vanish as b−1 or faster.

Thus, simplifying the second term above,

Gq(b
2) =

∞∑
l=0

(
l + 1/2

((l + 1/2)2 + b2)
1
2

− 1

)
+ q/2. (A.2)

Now we utilize the symmetry of the summand under l→ −l − 1, obtaining

Gq(b
2) =

1

2

∞∑
l=−∞

(
|l + 1/2|

((l + 1/2)2 + b2)
1
2

− 1

)
+ q/2. (A.3)

374
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Upon Poisson-resumming the l’s, we have

Gq(b
2) =

1

2

∞∑
n=−∞

(−1)n
∫ ∞
−∞

dl

(
|l|

(l2 + b2)
1
2

− 1

)
e2πinl + q/2

=

∫ ∞
0

dl

(
l

(l2 + b2)
1
2

− 1

)
+

+ 2
∞∑
n=1

(−1)n
∫ ∞

0

dl

(
l

(l2 + b2)
1
2

− 1

)
cos(2πnl) + q/2. (A.4)

As usual, the leading (divergent) contribution in the b → ∞ limit comes from the

n = 0 term in Eq (A.4), which is∫ ∞
0

dl

(
l

(l2 + b2)
1
2

− 1

)
= −b. (A.5)

As for the n ≥ 1 terms, we rotate the contour of integration as follows:∫ ∞
0

dl

(
l

(l2 + b2)
1
2

− 1

)
cos(2πnl) = bRe

∫ ∞
0

dl

(
l

(l2 + 1)
1
2

− 1

)
e2πinbl

= bRe

∫ ∞
0

idy
(
iy(θ(1− y)(1− y2)−

1
2 + θ(y − 1)(y2 − 1)−

1
2 e−iπ/2)− 1

)
e−2πnby

= −b
∫ 1

0

dy
y

(1− y2)
1
2

e−2πnby = −b
(

1

(2πnb)2
+O

(
1

(nb)4

))
. (A.6)

Hence,

2
∞∑
n=1

(−1)n
∫ ∞

0

dl

(
l

(l2 + b2)
1
2

− 1

)
cos(2πnl) ∼ 2

(2π)2b

∞∑
n=1

(−1)n+1 1

n2
∼ O(b−1),

(A.7)

and this can be dropped in the limit b→∞. Therefore,

Gq(b
2) ∼ −b+ q/2 (A.8)
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Repeating this analysis for q-odd and b→∞,

Gq(b
2) =

∞∑
l= q+1

2

(
l

(l2 + b2)
1
2

− 1

)
=
∞∑
l=0

(
l

(l2 + b2)
1
2

− 1

)
−

q−1
2∑
l=0

(
l

(l2 + b2)
1
2

− 1

)

=
1

2

∞∑
l=−∞

(
|l|

(l2 + b2)
1
2

− 1

)
− 1/2 +

q + 1

2
=

1

2

∞∑
l=−∞

(
|l|

(l2 + b2)
1
2

− 1

)
+ q/2

=
1

2

∞∑
n=−∞

∫
dl

(
|l|

(l2 + b2)
1
2

− 1

)
e2πinl + q/2. (A.9)

Comparing Eq. (A.9) to its q-even counterpart Eq. (A.4), we see that the only dif-

ference is the absence of the factor (−1)n in the sum. Recalling that in the b → ∞

limit the only finite contribution came from the n = 0 term in the sum, we obtain

the same result as in the q-even case [Eq. (A.8)].

Now, we proceed to the function Fq. We again begin with the case of q even:

Fq(b
2) =

∞∑
l=0

(
(l + 1/2)((l + 1/2)2 + b2)

1
2 − (l + 1/2)2 − 1

2
b2

)
(A.10)

−
q/2−1∑
l=0

(
(l + 1/2)((l + 1/2)2 + b2)

1
2 − (l + 1/2)2 − 1

2
b2

)
. (A.11)

As before, we drop all the terms decaying as b−1 or faster. Thus,

Fq(b
2) ∼ 1

2

∞∑
l=−∞

(
|l + 1/2|((l + 1/2)2 + b2)

1
2 − (l + 1/2)2 − 1

2
b2

)
(A.12)

+
1

2
b2

q/2−1∑
l=0

1− b
q/2−1∑
l=0

(l + 1/2) +

q/2−1∑
l=0

(l + 1/2)2
. (A.13)
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Poisson-resumming the first sum, we have

Fq(b
2) ∼ 1

2

∞∑
n=−∞

(−1)n
∫ ∞
−∞

dl

(
|l|(l2 + b2)

1
2 − l2 − 1

2
b2

)
e2πinl

+
q

4
b2 − q2

8
b+

1

24
q(q2 − 1)

=

∫ ∞
0

dl

(
l(l2 + b2)

1
2 − l2 − 1

2
b2

)
+ 2

∞∑
n=1

(−1)n
∫ ∞

0

dl

(
l(l2 + b2)

1
2 − l2 − 1

2
b2

)
cos(2πnl)

+
q

4
b2 − q2

8
b+

1

24
q(q2 − 1). (A.14)

As before, the most divergent piece in the b → ∞ limit comes from the n = 0 term

in the Poisson-resummed series, which is∫ ∞
0

dl

(
l(l2 + b2)

1
2 − l2 − 1

2
b2

)
= −1

3
b3

. (A.15)

The integral for the n 6= 0 terms can again be analyzed by rotating the integration

contour:∫ ∞
0

dl

(
l(l2 + b2)

1
2 − l2 − 1

2
b2

)
cos(2πnl)

= b3Re

∫ ∞
0

dl

(
l(l2 + 1)

1
2 − l2 − 1

2

)
e2πinbl

= b3Re

∫ ∞
0

i dy

(
iy(θ(1− y)(1− y2)

1
2 + θ(y − 1)(y2 − 1)

1
2 eiπ/2) + y2 − 1

2

)
e−2πnby

= −b3

∫ 1

0

dy y(1− y2)
1
2 e−2πnby → −b3

(
1

(2πnb)2
+O(

1

(nb)4
)

)
. (A.16)

Here, unlike for the gap equation, we cannot limit ourselves to just the n = 0 term

in the b→∞ limit, and

Fq(b
2) ∼ −1

3
b3 +

2

(2π)2
b

∞∑
n=1

(−1)n+1

n2
+
q

4
b2 − q2

8
b+

1

24
q(q2 − 1) (A.17)

= −1

3
b3 +

q

4
b2 + (

1

24
− q2

8
)b+

1

24
q(q2 − 1). (A.18)
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Performing a similar analysis for q-odd, we find

Fq(b
2) =

∞∑
l=0

(
l(l2 + b2)

1
2 − l2 − 1

2
b2

)
−

(q−1)/2∑
l=0

(
l(l2 + b2)

1
2 − l2 − 1

2
b2

)
∼ 1

2

∞∑
l=−∞

(
l(l2 + b2)

1
2 − l2 − 1

2
b2

)

− 1

4
b2 +

1

2
b2

(q−1)/2∑
l=0

1− b
(q−1)/2∑
l=0

l +

(q−1)/2∑
l=0

l2

=
1

2

∞∑
n=−∞

∫
dl

(
l(l2 + b2)

1
2 − l2 − 1

2
b2

)
e2πinl

+
q

4
b2 − 1

8
(q2 − 1)b+

1

24
q(q2 − 1)

∼ −1

3
b3 − 2

(2π)2
b
∞∑
n=1

1

n2
+
q

4
b2 − 1

8
(q2 − 1)b+

1

24
q(q2 − 1)

= −1

3
b3 +

q

4
b2 + (

1

24
− q2

8
)b+

1

24
q(q2 − 1). (A.19)

which is equal to the result [Eq. (A.18)] we obtained for q-even.

A.2 Comparison to Murthy-Sachdev expression

Murthy and Sachdev[3] have expressed their result for the scaling dimension of

the monopole operator as

∆q

N
= −Ωq + Ξq +

q3

24
+

q

12
, (A.20)

where

Ωq =
q4

4

∞∑
l=q/2

(
1

(
√

(2l + 1)2 − q2 + 2l + 1)2

)
, (A.21)
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and

Ξq = −
∞∑

l=q/2

(2l + 1)

(
((l + 1/2)2 − q2/4)

1
2

− ((l + 1/2)2 − q2/4− αq)
1
2 − αq

2((l + 1/2)2 − q2/4− αq)
1
2

)
. (A.22)

Using the identification αq = −q2/4− a2
q to convert this to the notation used in our

analysis, and summing the last term in Eq. (A.22) using the gap equation Eq. (2.34),

we have

Ξq = 2
∞∑

l=q/2

(
(l + 1/2)

(
((l + 1/2)2 + a2

q)
1
2 − ((l + 1/2)2 − q2/4)

1
2

)
+
αq
2

)
+
q

2
αq .

(A.23)

For Ωq, we can eliminate the irrationality in the denominator to obtain

Ωq = −2
∞∑

l=q/2

(
(l + 1/2)((l + 1/2)2 − q2/4)

1
2 − (l + 1/2)2 +

1

8
q2

)
. (A.24)

Thus, adding Eq. (A.23) and Eq. (A.24),

∆q

N
= 2

∞∑
l=q/2

(
(l + 1/2)((l + 1/2)2 + a2

q)
1
2 − (l + 1/2)2 − 1

2
a2
q

)
− q

2
a2
q −

1

12
q(q2 − 1)

(A.25)

which is identical to our result [Eq. (2.46)].
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Appendix to Chapter 3

B.1 U(1) charge density

Throughout Chapter 2 we have concentrated on computing matrix elements of

uniform and staggered magnetization Qa(x), na(x). However, for the deconfined

critical point, it is also interesting to compute the charge density associated with

the U(1) local symmetry of the CPN−1 model. This charge density is the zeroth

component of the current,

jµ(x) = z†Dµz − (Dµz)†z (B.1)

As we shall see this computation serves as an additional test of our procedure for

projecting onto the single spinon state.

Consider the CPN−1 model coupled to an external current,

S = Szb + i

∫
d3xAµJ

ext
µ (B.2)

As in the rest of the chapter, we set e2 = ∞, so that the gauge field has no bare

380
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kinetic term. Then, by equations of motion,

0 =
δS
δAµ

= i(jµ + Jµ) (B.3)

jµ = −Jext
µ (B.4)

Thus, the dynamical current completely screens (locally!) the external current. Eq.

(B.4) is an operator identity, and should, in particular, hold in the ground state of

the system with a single impurity. Let’s check this statement in the 1/N expansion.

We start from Eq. (3.9), with O(x) = j0(x). We write,

〈α|j0(~x)|β〉 = ρ(~x)δαβ (B.5)

with ρ(~x) = 1
L2

∑
~q ρ(~q)ei~q~x. The Wilson line term in Eq. (3.9) can be incorporated

into the action as coupling to an external current, Jext
µ (~x, τ) = δµ0δ

3(~x)θ(T /2−τ)θ(τ+

T /2). At leading order in 1/N the numerator of Eq. (3.9) is given by diagrams shown

in Fig. B.1, while the denominator is given by the bare propagator D(~x = 0, T ).

×
(

+

)
+

Figure B.1: Diagrams contributing to U(1) charge induced

Thus, we can distinguish two contributions: the disconnected one, ρ1(~q), coming

from the first line in Fig. B.1, and the connected one, ρ2(~q), coming from the second
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line. We note that the scalar loops contributing to ρ1(~q) are precisely the same as

those contributing to the self-energy of Aµ field, thus,

ρ1(~q) = −
∫
dqτ
2π

K0ν(~q, qτ )Dνλ(~q, qτ )Jext
λ (~q, qτ ) (B.6)

Now,

Kµν(q)Dνλ(q) = δµλ −
qµqλ
q2

(B.7)

Thus,

ρ1(~q) = −
∫
dqτ
2π

~q2

qτ 2 + ~q2
Jext(~q, qτ ) (B.8)

Noting, Jext(~q, qτ )
T →∞→ 2πδ(qτ ),

ρ1(~q) = −(1− δ~q,0) (B.9)

For the ~q = 0 part, the order of the limits ~q → 0, qτ → 0 is very important. In our

finite system the ~q = 0 mode is isolated, and, moreover, in our present treatment the

Wilson line is of finite length, so we must take the ~q = 0 limit first and then qτ → 0.

Hence, ρ1(~q = 0) = 0. This is not surprising. In perturbation theory, we start

with the vacuum which has charge 0. Unless we manually project the system into a

finite charge subspace (as we do in our treatment by acting on the vacuum with z, z†

operators), we will never be able to see global screening of charge. Since the diagrams

contributing to ρ1(~q) are disconnected from the external z line, ρ1(~q = 0) = 0.

Now, the connected contribution, simply gives the charge density of one spinon in

the ~k = 0 state,

ρ2(~q) = −δ~q,0 (B.10)

Putting the two contributions together,

ρ(~q) = 1 (B.11)
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ρ(~x) = δ2(~x) (B.12)

as expected by equations of motion (B.4).

Thus, we have been able to check exact screening of external charge, which follows

from equation of motion (B.4), to leading order in 1/N . We see that local and global

parts of the screening charge come from very different Feynman diagrams.
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Appendix to Chapter 4

C.1 Electric field in the free theory

We wish to use eq. (4.78) to compute the electric field in the free theory. We start

from the equation for the propagator (4.61) and promote the ω integral to run over

D − 2 dimensions, as discussed in section 4.3.3, obtaining

D(r, θ) =
Γ(2−D/2)

(4π)(D−2)/2

∑
l

eilθ

2π

∫
du uD−3J|l|(ur)

2 (C.1)

=
Γ((3−D)/2)

(4π)(D−1)/2

1

rD−2

∑
l

eilθ

2π

Γ(|l|+D/2− 1)

Γ(|l| −D/2 + 2)
(C.2)

We see that the prefactor diverges for D = 3. However, at D = 3 the sum over

angular momenta becomes
∑

l
eilθ

2π
= δ(θ). So, we have to first perform the sum over

angular momenta and then take the limit D → 3. The sum over angular momenta

384
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can be performed in terms of hypergeometric functions, giving for 0 < Q < 1,

D(r, θ) =
Γ((3−D)/2)

2Dπ(D+1)/2

e−iQθ

rD−2

(
eiθ

Γ(D/2−Q)

Γ(3−D/2−Q)

× F ({1, D/2−Q}, {3−D/2−Q}, eiθ)

+
Γ(D/2− 1 +Q)

Γ(2−D/2 +Q)
F ({1,−1 +D/2 +Q}, {2−D/2 +Q}, e−iθ)

)
(C.3)

where F denotes the Barnes extended hypergeometric function. One can check that

for D = 3 the expression in brackets in (C.3) vanishes, cancelling the pole in the

prefactor. Now, differentiating with respect to θ,

−i∂θD(r, θ) =
Γ((3−D)/2)

2Dπ(D+1)/2

e−iQθ

rD−2

((1−Q)Γ(D/2−Q)

Γ(3−D/2−Q)
eiθ

× F ({1, D/2−Q}, {3−D/2−Q}, eiθ)

+
Γ(D/2 + 1−Q)

Γ(4−D/2−Q)
e2iθF ({2, D/2−Q+ 1}, {4−D/2−Q}, eiθ)

− QΓ(D/2− 1 +Q)

Γ(2−D/2 +Q)
F ({1, D/2− 1 +Q}, {2−D/2 +Q}, e−iθ)

− Γ(D/2 +Q)

Γ(3−D/2 +Q)
e−iθF ({2, D/2 +Q}, {3−D/2 +Q}, e−iθ)

)
(C.4)

According to (4.78), to compute the electric field we need to take the limit as θ → 0

of (C.4). Strictly speaking this limit does not exist as the hypergeometric functions

blow up as θ → 0 (that is when the last argument goes to 1). However, we note that

only the imaginary part of (C.4) becomes infinite as θ → 0, while the real part has a

well-defined limit. The expectation value of electric field 〈−iEr〉 = −〈−iFθ〉 should

be real. Thus, we can drop the infinite imaginary part. Moreover, the imaginary part

is antisymetric under θ → −θ, so the “symmetrized” limit of (C.4) exists. It turns
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out that this symmetrized limit can be obtained by the formal summation formulas,

F ({1, a}, {b}, 1) =
1− b

a− b+ 1
(C.5)

F ({2, a}, {b}, 1) =
(b− 1)(b− 2)

(a− b+ 1)(a− b+ 2)
(C.6)

So, taking θ → 0, plugging (C.5) into (C.4) and performing a few manipulations,

−i∂θD(θ = 0, r) =
(2Q− 1)Γ((1−D)/2)

2D+2π(D+1)/2

Γ(D/2 +Q− 1)

Γ(1−D/2 +Q)

×
(

sin(π(D/2 +Q))

sin(π(D/2−Q))
− 1

)
1

rD−2
(C.7)

Taking the limit D → 3,

−i∂θD(θ = 0, r) = − 1

32πr
(2Q− 1)2 tan(πQ) (C.8)

Finally, plugging into (4.78) we recover (4.43) with

C(Q) =
1

8
(1− 2Q)2 tan(πQ), 0 < Q < 1 (C.9)

We remind the reader that all the manipulations above have been performed for

0 < Q < 1. The function C(Q) can then be extended to other values of Q by

periodicity. In particular, extending to the range |Q| < 1,

C(Q) =
1

8
(1− 2|Q|)2 tan(πQ), |Q| < 1 (C.10)

C.2 Integral form of the twisted propagator

In this section we review the derivation of the integral form of the twisted prop-

agator (4.81) given in Ref. [152]. We use this integral form to compute the electric

field (4.78) and show that it is in agreement with the result obtained using spectral
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representation of the propagator (see Appendix C.1). We also indicate how the free

twisted propagator should be modified in the strongly interacting M =∞ theory.

Recall the free massive propagator in 2D (without any twisted b.c.) obeys,

(−∂2 +m2)D(~x, ~x′) = δ(~x− ~x′) (C.11)

and is given by,

D2(~x, ~x′) =
1

2π
K0(m|~x− ~x′|) =

1

2π2

∫ ∞
−∞

dνKiν(mr)Kiν(mr
′)eπνe−ν|θ−θ

′| (C.12)

where the integral representation is valid for |θ − θ′| < 2π. The BesselK functions of

imaginary argument satisfy the equation,(
−1

r

d

dr

(
r
d

dr

)
− ν2

r2
+m2

)
Kiν(mr) = 0 (C.13)

Hence the functions Kiν(mr)e
±νθ are in the kernel of the operator −∂2

2 + m2 =

−1
r
∂
∂r

(r ∂
∂r

)− 1
r2

∂2

∂θ2
+m2. Applying this operator to D2(~x, ~x′) we learn,

1

π2r2

∫ ∞
−∞

dννKiν(mr)Kiν(mr
′)eπν =

1

r
δ(r − r′) (C.14)

This identity will be useful to us later.

Now, we want to modify the propagator (C.12) in such a way that it satisfies

the twisted boundary conditions (4.42). Let’s first symmetrize equation (C.12) with

respect to ν by noting Kiν = K−iν . Then,

D2(r, r′, θ − θ′) =
1

2π2

∫ ∞
−∞

dνKiν(mr)Kiν(mr
′) cosh(ν(π − |θ − θ′|)) (C.15)

Now, we can generalize,

D2(r, r′, θ, Q) =
1

2π2

∫ ∞
−∞

dνKiν(mr)Kiν(mr
′) sinh(πν)Uν(θ) (C.16)
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where

Uν(θ) =
cosh(ν(π − |θ|))

sinh(πν)
+ c(ν)eνθ − c(−ν)e−νθ (C.17)

D2(r, r′, θ, Q) still satisfies eq. (C.11) since, as noted above, the functionsKiν(mr)e
±νθ

are in the kernel of −∂2
2 +m2. It remains to find c(ν) such that the propagator (C.16)

obeys boundary conditions (4.42). After a few manipulations one arrives at,

Uν(θ) =
e−2πiQsgn(θ) sinh(ν|θ|) + sinh(ν(2π − |θ|))

cosh(2πν)− cos(2πQ)
(C.18)

Next, one uses the identity,

sinh(πν)Kiν(mr)Kiν(mr
′) =

π

2

∫ ∞
ξ2

du J0

(
m(2rr′)

1
2 (cosh(u)− cosh ξ2)

1
2

)
sin(νu)

(C.19)

where ξ2 > 0 is defined by,

cosh ξ2 =
r2 + r′2

2rr′
(C.20)

Substituting this into (C.16),

D2(r, r′, θ, Q) =
1

2π

∫ ∞
ξ2

du J0

(
m(2rr′)

1
2 (cosh(u)− cosh ξ2)

1
2

) ∫ ∞
0

dν Uν(θ) sin(νu)

(C.21)

We are mostly interested in the propagator with r = r′,

D2(r = r′, θ, Q) =
1

2π

∫ ∞
0

du J0

(
mr
√

2(coshu− 1)
1
2

) ∫ ∞
0

dν Uν(θ) sin(νu) (C.22)

In principle, it is possible to perform the integral over ν analytically in (C.21) (see

Ref. [152]). This, however, will not be very benificial for our purposes. Instead, let’s

proceed directly to the three-dimensional massless propagator, obtained by integrat-

ing over the mass parameter of the two dimensional propagator (4.61),

D(r, θ) =
1

2π2r
√

2

∫ ∞
0

du
1

(coshu− 1)
1
2

∫ ∞
0

dν Uν(θ) sin(νu) (C.23)
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where we have computed only the 3 dimensional propagator with r = r′, τ = τ ′.

Now, performing the integral over u,

D(r, θ) =
1

4πr

∫ ∞
0

dν tanh(πν)Uν(θ) (C.24)

To find the electric field we again use eq. (4.78),

−i∂θD(r, θ) = − 1

4πr

∫ ∞
0

dν ν tanh(πν)
( sin(2πQ) cosh(νθ)

cosh(2πν)− cos(2πQ)

+ isgn(θ)
(cos(2πQ) cosh(νθ)− cosh(ν(2π − |θ|)))

cosh(2πν)− cos(2πQ)

)
(C.25)

Again, the real part of −i∂θD(r, θ) has a well-defined limit as θ → 0, while the

imaginary part is antisymmetric under θ → −θ and diverges as θ → 0. So the

“symmetrized” limit is given by,

−i∂θD(r, θ = 0) = − 1

4πr

∫ ∞
0

dν ν
sin(2πQ) tanh(πν)

cosh(2πν)− cos(2πQ)
= − 1

32πr
(2|Q|−1)2 tan(πQ)

(C.26)

in agreement with an earlier computation (C.8) based on spectral decomposition.

Thus, C(Q) is again given by expression (4.79).

Now we generalize the above derivation of the twisted propagator to the strongly

interacting M = ∞ theory. The strongly interacting theory differs from the free

theory by the aditional space-varying potential 〈iλ(~x, τ)〉, so that the propagator

satisfies,

(−∂2 +
a(Q)

|~x|2 )D(x, x′, Q) = δ(x− x′) (C.27)

We again rewrite D(x, x′, Q) in terms of the two dimensional massive propagator

D2(~x, ~x′,m2, Q) as in eq. (4.61). The two dimensional propagator satisfies,(
−1

r

∂

∂r
(r
∂

∂r
)− 1

r2

∂2

∂θ2
+
a

r2
+m2

)
D2(r, r′, θ, θ′) = δ(~x− ~x′) (C.28)
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We need to generalize the two-dimensional, massive, twisted, free propagator (C.16)

so that it obeys the above equation. We observe that the function Uν(θ) (C.17),

(C.18) satisfies,

∂2Uν
∂θ2

= ν2Uν(θ)− 2νδ(θ) (C.29)

Now combining eqs. (C.13), (C.14) and (C.29), we find that,

D2(r, r′, θ, Q) =
1

π2

∫ ∞
0

dνKiν(mr)Kiν(mr
′) sinh(πν)

ν√
ν2 + a

U√ν2+a(θ) (C.30)

satisfies (C.28) as needed. Proceeding as above from two to three dimensional prop-

agator, and setting r = r′, τ = τ ′

D(r, θ) =
1

4πr

∫ ∞
0

dν tanh(πν)
ν√

ν2 + a
U√ν2+a(θ) (C.31)
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Appendix to Chapter 5

D.1 Eigenfunctions of Bogoliubov quasiparticles

First, we define for fixed energy λ, u

v

 =
1√
2λ

 −√1 + λ

√
1− λ

 (D.1)

Now, the eigenstates can be expressed as,

Normalizable solution:

λ =
1√
2
| sin ky|, −π/2 < ky < π/2

φ(jx) = c1

 u

v

 e−s1jx + c2

 −u
v

 (−1)jxe−s2jx

es1 = (
√

2 + 1)(
√

1 + cos2 ky − cos ky)

es2 = (
√

2 + 1)(
√

1 + cos2 ky + cos ky)
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 c1

c2

 =
2−

3
4 (
√

2− 1)| sin ky|√
1− | sin ky|

√
1 + cos2 ky

 es2
√

1− λ−
√

1 + λ

es1
√

1− λ−
√

1 + λ

 (D.2)

Continuum solutions:

γ =
1

2
(cos(kx) + cos(ky)), λ =

√
1− γ2, 0 < kx < π − |ky|, −π/2 < ky < π/2

(D.3)

Branch 1: 0 < kx < cos−1(1− 2 cos ky)

φ(jx) =
1

|α|

 (αeikxjx + α∗e−ikxjx − (−1)jxe−sjx)u

(αeikxjx + α∗e−ikxjx + (−1)jxe−sjx)v


s = cosh−1(cos kx + 2 cos ky)

α = − 1

2λ

(
γes − 1− i

sin kx

((γ cos kx − 1)es + γ − cos kx)

)
(D.4)

Branch 2: cos−1(1− 2 cos ky) < kx < π − |ky|

k̃x = π − cos−1(cos(kx) + 2 cos(ky)), π − |ky| < k̃x < π

φ1(jx) = A

c11 cos(kx(jx + 1/2))

 u

v

+ c12 cos(k̃x(jx + 1/2))

 −u
v




φ2(jx) = A

c21 sin(kx(j + 1/2))

 u

v

+ c22 sin(k̃x(jx + 1/2))

 −u
v




A = (sin kx)
1
2 (sin((kx + k̃x)/2) + γ sin((kx − k̃x)/2))−

1
2

c11 = (1 + γ)
1
2

(
2 cos k̃x/2

cos kx/2

) 1
2

, c12 = (1− γ)
1
2

(
2 cos kx/2

cos k̃x/2

) 1
2

c21 = (1− γ)
1
2

(
2 sin k̃x/2

sin kx/2

) 1
2

, c22 = (1 + γ)
1
2

(
2 sin kx/2

sin k̃x/2

) 1
2

(D.5)
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The division of the continuum spectrum into two branches is clear when we look at

a plot of λ(kx) (D.3) for ky fixed. For
√

1− cos4(ky/2) < λ <
√

1− sin4(ky/2) there

is only one corresponding value of kx in the range 0 < kx < π (there is always a

solution with opposite kx, as well). This is our branch 1. On the other hand, for√
1− sin4(ky/2) < λ < 1 there are two solutions with 0 < kx < π, which we label

by kx and k̃x. These two solutions are mixed by the edge and form the two linearly

independent eigenstates φ1, φ2 in branch 2.
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Appendix to Chapter 6

E.1 Decoupling of non-collinear momenta

In this section we will argue that the fluctuations of the order parameter at non-

collinear momenta effectively decouple. We focus for simplicity on the case of an

Ising-nematic transition. We follow the standard Hertz approach, integrating out the

fermions to obtain an effective action for φ,

S[φ] =
∞∑
n=2

1

n!

∫
dDx1 . . . d

DxnΓn(x1, x2, . . . xn)φ(x1)φ(x2) . . . φ(xn) (E.1)

The n-point effective vertex Γn is given by,

Γn(q1, q2, . . . qn) =
N

n
fn(q1, q2, . . . qn) + permutations of q1, q2, . . . qn (E.2)

with

fn(q1, q2, . . . qn) =

∫
dkτd

2k

(2π)3

n−1∏
i=0

[
G(k + li)d~k+

~li+
~li+1
2

]
(E.3)

where li =
∑i

j=1 qj. For now we work with “undressed” propagators,

G(ω,~k) =
1

−iω + vF (θ)k
(E.4)

394
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with k - the distance to the Fermi surface and vF (θ) - the local Fermi velocity. As is

well-known, for ω � vF |~q| and |~q| � kF the two-point vertex has a Landau-damped

form,

Γ2(ω, ~q) = N

[
γ(q̂)
|ω|
|~q| +

~q2

e2
+ r

]
(E.5)

where the coefficient of the non-analytic term γ(q̂) = Kd2/(2πv2
F ) with the Fermi-

surface curvature radius K, Fermi-velocity vF and form-factor d evaluated at the

point on the Fermi surface to which ~q is tangent. On the other hand, the coefficients

of the analytic terms r and 1/e2 come from the entire Fermi-surface.

If we truncate the series (E.1) at the quadratic order,

S2 =
N

2

∫
dωd2~q

(2π)3

[
γ(q̂)
|ω|
|~q| +

~q2

e2
+ r

]
|φ(~q, ω)|2 (E.6)

then at the critical point r = 0 the action (E.6) is invariant under the scale transfor-

mation,

φ(~x, τ)→ s3/2φ(s~x, s3τ) (E.7)

Note that here, in contrast to Eq. (6.14), all components of ~q are scaled in the same

way as we are not studying the effects of fluctuations with collinear wave-vectors. We

can regard the terms in Eq. (E.1) with n > 2 as perturbations to the Hertz action

(E.6). Hertz noted that if the effective vertices Γn possess a regular expansion in

frequencies and momenta, such that the corresponding operators can be represented

as polynomials in the order parameter φ and its derivatives, then the perturbations

with n > 2 are irrelevant due to the large effective dimensionality, Deff = d+ z = 5,

with d = 2 - spatial dimension and z = 3 - the dynamical critical exponent. Indeed,

the perturbation
∫
d2~xdτφn(x) scales as s3n/2−5 under (E.7) (in the special case n = 3,
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the operator φ3 is actually prohibited by the 90◦ lattice rotation symmetry. The lowest

dimension local operators with three powers of φ that are allowed by symmetry are

φ((∂xφ)2 − (∂yφ)2) in the dx2−y2 case and φ∂xφ∂yφ in the dxy case, which scale as

s3/2).

However, due to the presence of low-energy excitations on the Fermi-surface there

is no reason to expect that the effective vertices Γn would possess a regular expansion

in momenta. Indeed, we have already seen that the two-point vertex has the non-

analytic Landau-damped form (E.5). As we now show, similar non-analyticities occur

in the higher order vertices.

Let us estimate the vertices (E.2) when the external frequencies and momenta

obey the Hertz scaling (E.7), ω ∼ |~q|3, ~q → 0. In this regime,

fn(q1, q2, . . . qn) =

∫
dkτdkdθ

(2π)3

∣∣∣∣∣d~kFdθ
∣∣∣∣∣ d(θ)n

n−1∏
i=0

1

−i(kτ + liτ ) + vF (θ)(k + v̂F (θ) ·~li)
(E.8)

Let us perform the integral over k. Observe that if |kτ | > Ω, with Ω = maxi |liτ |

then the integral vanishes as all the poles of the integrand are in the same half-plane.

Thus, the range of the internal frequency is limited by the external ones. With this

in mind,

fn(q1, q2, . . . qn) = i

∫
|kτ |<Ω

dkτ
2π

∫
dθ

2π

∣∣∣∣∣d~kFdθ
∣∣∣∣∣ d(θ)n

vF (θ)

×
n−1∑
j=0

ϑ(kτ + ljτ )
n−1∏

i=0,i 6=j

1

−i(liτ − ljτ ) + v̂F (θ) · (~li −~lj)
,

(E.9)

where we have used the symbol ϑ for the step function, to avoid confusion with the

angular variable θ. Now, since qτ ∼ |~q|3/(γe2)� vF |~q|, for general θ we can ignore the
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frequency dependence in the denominator of Eq. (E.9). Then the angular integration

yields a factor of O(1) and the integral over kτ yields a factor of external frequency,

so that

Γn(q1, q2, . . . qn) ∼ qτ
|~q|n−1

(E.10)

Note that the momentum dependence in Eq. (E.10) is far from analytic. Also, note

that for n = 2 the result is consistent with the standard Landau damping.

The only possible caveat to the estimate (E.10) is associated with regions of angu-

lar integration where v̂F (θ) · (~li −~lj)→ 0, i.e some combination of external momenta

becomes tangent to the Fermi surface. Then the angular integration acquires poles

just off the real axis, with the imaginary parts of the poles provided by the frequency

dependence in the denominator of Eq. (E.9). As long as the real parts of the poles

do not coalesce, i.e no two momenta ~li − ~lj and ~li′ − ~lj are collinear, the angular

integration still yields a factor of O(1) and the estimate (E.10) remains correct. This

is the regime that we are considering in the present appendix. The rest of the paper

is devoted to the opposite limit, where all the external momenta are nearly collinear

and the angular integral in Eq. (E.9) is dominated by the vicinity of two antipodal

points on the Fermi surface to which the external momenta are tangent. This obser-

vation motivates the introduction of the two patch theory in Section 6.2 and all the

subsequent development of the present work.

Returning to the non-collinear regime, upon combining Eq. (E.10) with the Hertz

scaling (E.7), we conclude that the n-th term in the series (E.1) scales as sn/2−1.

Therefore, all terms with n > 2 represent non-local irrelevant perturbations, which

confirms that the fluctuations with non-collinear momenta decouple.
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We would like to point out that the argument above still holds if one dresses

the fermion propagator by the one-loop self-energy, Σ(ω, k) ∼ −isgnω|ω|2/3. This

modifies the frequency dependence in the denominator of Eq. (E.9) via, −i(liτ−ljτ )→

Σ(kτ+liτ )−Σ(kτ+ljτ ). However, since Σ(ω)� vF |~q| for typical ω ∼ |~q|3, the estimate

(E.10) is still correct.

E.2 Computations of Feynman diagrams

Here we provide some details of the computations of the diagrams in Section 6.5.

E.2.1 Boson self-energy

We begin by evaluating the two-loop polarization correction in Fig. 6.4,

δ2Π(q) = N
∑
s

∫
dpτd

2p

(2π)3

dlτd
2l

(2π)3
D(l)Gs(p)Gs(p+ q)Gs(p− l)Gs(p+ q − l) (E.11)

The contributions to the integral from the two patches are equal. Thus, integrating

over px, lx we obtain,

δ2Π(q) = 2N

∫
dpτdpy
(2π)2

dlτdly
(2π)2

D(l)
θ(pτ )− θ(pτ + qτ )

icf
N

({p} − {p+ q}) + 2qypy + qx + q2
y

× θ(lτ − pτ )− θ(lτ − pτ − qτ )
icf
N

({l − p− q} − {l − p}) + 2qy(py − ly) + qx + q2
y

(E.12)

where here and below we use the notation {p} = sgn(pτ )|pτ |2/3. We observe that the

poles of the py integral are always in the same half-plane. Thus, δ2Π(q) = 0. This is

consistent with Ref. [205], which found that the two loop corrections to Eq. 6.10 are

suppressed by factors of |ω|2/3 or |ω|/|qy| ∼ |ω|2/3.
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Now, let us proceed to compute the Aslamazov-Larkin diagrams, Fig. 6.6. We

begin by evaluating the three point-function fs(q, l,−(l+ q)) in Eq. (6.81). Note that

f−(q, l,−(l + q)) = f+(Pxq, Pxl,−Px(l + q)) where Px(k0, kx, ky) = (k0,−kx, ky). The

calculation of f is simplified when qτ = 0. Then, performing the integral over px and,

subsequently, py, in Eq. (6.81),

f+(q, l,−(l + q))
qτ=0
=

∫
dpτdpy
(2π)2

i(θ(pτ + lτ )− θ(pτ ))
icf
N

({p+ l} − {p})− lx − 2lypy − l2y
× 1

icf
N

({p+ l} − {p})− qx − lx − 2(qy + ly)py + q2
y − l2y

=
1

2qy

∫
dpτ
2π

|θ(pτ + lτ )− θ(pτ )|(θ(ly)− θ(qy + ly))
−icf
N

({p+ l} − {p}) + lx − qx
qy
ly + ly(qy + ly)

(E.13)

Thus,

δ3Π(qτ = 0, ~q) =
λ+λ−N

2

4q2
y

∫
dlτd

2~l

(2π)3

dpτ
2π

dp′τ
2π

D(l)D(l + q)

× |θ(pτ + lτ )− θ(pτ )||θ(p′τ + lτ )− θ(p′τ )||θ(ly)− θ(ly + qy)|
−icf
N

({p+ l} − {p}) + lx − qx
qy
ly + ly(qy + ly)

×
(

1
−icf
N

({p′ + l} − {p′})− lx + qx
qy
ly − ly(qy + ly)

− 1
−icf
N

({p′ + l} − {p′})− lx + qx
qy
ly + ly(qy + ly)

)
+ (q → −q)

(E.14)
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Finally, integrating over lx,

δ3Π(qτ = 0, ~q) =
λ+λ−N

2

4q2
y

∫
dlτdly
(2π)2

dpτ
2π

dp′τ
2π

D(l)D(l + q)

× isgn(lτ )|θ(pτ + lτ )− θ(pτ )||θ(p′τ + lτ )− θ(p′τ )||θ(ly)− θ(ly + qy)|

×
(

1
−icf
N

({p+ l} − {p}+ {p′ + l} − {p′})

− 1
−icf
N

({p+ l} − {p}+ {p′ + l} − {p′}) + 2ly(qy + ly)

)
+ (q → −q)

(E.15)

The integral is invariant under q → −q. Moreover, the integrals in the regions l0 > 0

and l0 < 0 are related by complex conjugation. Thus,

δ3Π(qτ = 0, ~q) = −λ+λ−N

q2
y

∫ ∞
0

dlτ
2π

∫ lτ

0

dpτ
2π

∫ lτ

0

dp′τ
2π

∫ |qy |
0

dly
2π

1

cb
lτ
ly

+
l2y
e2

1

cb
lτ

|qy |−ly + (|qy |−ly)2

e2

×
(

1

cf ((l − p)2/3
τ + p

2/3
τ + (l − p′)2/3

τ + p
′2/3
τ )

− cf ((l − p)2/3
τ + p

2/3
τ + (l − p′)2/3

τ + p
′2/3
τ )

c2
f ((l − p)

2/3
τ + p

2/3
τ + (l − p′)2/3

τ + p
′2/3
τ )2 + 4N2l2y(|qy| − ly)2

)
Notice that the integral over ly is bounded by the external momentum qy. This leads

to a violation of the naive power counting, which would predict that each diagram in

Fig. 6.6 has a superficial degree fo divergence Λ2
y ∼ Λ

2/3
τ . Instead, we find that for

lτ →∞, the two diagrams behave as,

δ3aΠ(0, ~q) = −δ3bΠ(0, ~q) ∼ −λ+λ−N |qy|
(

Λτ

e4

)1/3

(E.16)

(In reality, the divergence is cut once we exit the two patch regime where the mo-

mentum lx � ly. This occurs when lx ∼ l
2/3
τ becomes of order ly. However, for
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the Aslamazov-Larkin diagrams the internal momentum ly is controlled by external

momentum qy. Hence, Λτ ∼ q
3/2
y and δ3aΠ = −δ3bΠ ∼ q

3/2
y , as found in Ref. [186]).

However, as expected for problems involving a boson field coupled to the charge

sector of the Fermi-surface, the divergence cancels when we add the two diagrams.

In fact, for N � 1, the divergence is cut-off at
cf
N
l
2/3
τ ∼ q2

y, i.e.

lτ ∼ N3/2q3
y/e

2 (E.17)

so that

δ3Π(0, ~q) ∼ −λ+λ−N
3/2
q2
y

e2
(E.18)

Note that the result is parameterically larger in the large-N limit than the bare

boson polarization, Eq. (6.7) (although it has the same scaling as the bare term).

Also observe that the sign of the contribution (E.18) is positive for the spin-liquid

and negative for the Ising-nematic transition.

One may ask whether the enhancement in (E.18) is an artifact of taking qτ = 0.

However, since the integral in Eq. (E.18) is saturated in the region (E.17), we expect

the result (E.18) to be valid for, qτ � N3/2q3
y/e

2, which is certainly satisfied by the

typical bosonic momenta qτ ∼ q3
y/e

2.

We can compute the proportionality factor in Eq. (E.18) in the large-N limit.

Changing variables to lτ =
(
N
cf

)3/2

|qy|3l̄τ , pτ = lτx, p′τ = lτx
′, ly = |qy|y,

δ3Π(0, ~q) = Cλ+λ−
q2
y

e2
(E.19)

C = −25/233/4N3/2

π

∫ ∞
0

dl̄τ

∫ 1

0

dx

∫ 1

0

dx′
∫ 1

0

dy

l̄
4/3
τ y3(1− y)3

(l̄τ +
(

2
N
√

3

)3/2

y3)(l̄τ +
(

2
N
√

3

)3/2

(1− y)3)

1

A(A2l̄
4/3
τ + 4y2(1− y)2)
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with,

A = x2/3 + (1− x)2/3 + x′2/3 + (1− x′)2/3 (E.20)

For N � 1, the integral over l̄τ is saturated in the region l̄τ ∼ 1, so,

C ≈ −25/233/4N3/2

π

∫ ∞
0

dl̄τ

l̄
2/3
τ

∫ 1

0

dx

∫ 1

0

dx′
∫ 1

0

dy
y3(1− y)3

A(A2l̄
4/3
τ + 4y2(1− y)2)

(E.21)

After a change of variables, z = Al̄
2/3
τ /(2y(1− y)),

C ≈ −37/4N3/2

π

∫ ∞
0

dz

z1/2(z2 + 1)

∫ 1

0

dy y3/2(1− y)3/2

∫ 1

0

dx

∫ 1

0

dx′
1

A3/2

=
311/4πN3/2

215/2

∫ 1

0

dx

∫ 1

0

dx′
1

A3/2
(E.22)

The integral over x, x′ can be evaluated numerically,∫ 1

0

dx

∫ 1

0

dx′
1

A3/2
= 0.269653 (E.23)

so that

C ≈ −0.09601N3/2, N →∞ (E.24)

We may also compute the constant C in Eq. (E.19) for the physical value N = 2,

C ≈ −0.04455 (E.25)

E.2.2 Fermion self-energy

We next compute the three loop corrections to the fermion self-energy in diagrams

Fig. 6.10 b), c):

δ3bΣ(pτ = 0, ~p) = Nλ3
+λ

3
−

∫
dkτd

2k

(2π)3

dl1τd
2l1

(2π)3

dl2τd
2l2

(2π)3
G+(p− l1)G+(p− l2)G−(k)

× G−(k + l1)G−(k + l2)D(l1)D(l2)D(l1 − l2) (E.26)
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δ3cΣ(pτ = 0, ~p) = Nλ3
+λ

3
−

∫
dkτd

2k

(2π)3

dl1τd
2l1

(2π)3

dl2τd
2l2

(2π)3
G+(p+ l1)G+(p+ l2)G−(k)

× G−(k + l1)G−(k + l2)D(l1)D(l2)D(l1 − l2) (E.27)

Integrating over l1x and l2x we obtain,

δ3bΣ(pτ = 0, ~p) = −Nλ+λ−

∫
dkτd

2k

(2π)3

dl1τdl1y
(2π)2

dl2τdl2y
(2π)2

D(l1)D(l2)D(l1 − l2)

× 1

− icf
N
k

2/3
τ + δ−k

θ(l1τ + kτ )− θ(−l1τ )
− icf

N
((l1 + k)

2/3
τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y − δ+

p

× θ(l2τ + kτ )− θ(−l2τ )
− icf

N
((l2 + k)

2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y − δ+

p

(E.28)

δ3cΣ(pτ = 0, ~p) = −Nλ+λ−

∫
dkτd

2k

(2π)3

dl1τdl1y
(2π)2

dl2τdl2y
(2π)2

D(l1)D(l2)D(l1 − l2)
1

− icf
N
k

2/3
τ + δ−k

× θ(l1τ + kτ )− θ(−l1τ )
− icf

N
((l1 + k)

2/3
τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y + 2l21y + δ+

p

× θ(l2τ + kτ )− θ(−l2τ )
− icf

N
((l2 + k)

2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y + 2l22y + δ+

p

(E.29)

where δ±p = ±px+p2
y. Note the cancellation of the fermi-surface curvature terms l21y,2y

in the “planar graph” δ3bΣ.

We can reduce the integration range to kτ > 0, as the region kτ < 0 is related

by complex conjugation. There are then four different kinematic regimes: i) l1τ >

0, l2τ > 0, ii) l1τ < −kτ , l2τ > 0, iii) l1τ > 0, l2τ < −kτ , iv) l1τ < −kτ , l2τ < −kτ .

The integral over kx in the regime i) vanishes as all the poles are in the same half-
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plane. The regimes ii) and iii) are related by l1 ↔ l2. Thus,

δ3bΣ(pτ = 0, ~p) = −Nλ+λ−

[
− 2

∫ ∞
0

dkτ
2π

∫
d2k

(2π)2

∫ ∞
kτ

dl1τ
2π

∫ ∞
0

dl2τ
2π

∫
dl1ydl2y
(2π)2

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
k

2/3
τ + δ−k

× 1
icf
N

((l1 − k)
2/3
τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y − δ+

p

× 1

− icf
N

((l2 + k)
2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y − δ+

p

+

∫ ∞
0

dkτ
2π

∫
d2k

(2π)2

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫
dl1ydl2y
(2π)2

D(l1)D(l2)D(l1 − l2)
1

− icf
N
k

2/3
τ + δ−k

× 1
icf
N

((l1 − k)
2/3
τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y − δ+

p

× 1
icf
N

((l2 − k)
2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y − δ+

p

]
+ h.c. (E.30)

δ3cΣ(pτ = 0, ~p) = −Nλ+λ−

[
− 2

∫ ∞
0

dkτ
2π

∫
d2k

(2π)2

∫ ∞
kτ

dl1τ
2π

∫ ∞
0

dl2τ
2π

∫
dl1ydl2y
(2π)2

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N
k

2/3
τ + δ−k

× 1
icf
N

((l1 − k)
2/3
τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y + 2l21y + δ+

p

× 1

− icf
N

((l2 + k)
2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y + 2l22y + δ+

p

+

∫ ∞
0

dkτ
2π

∫
d2k

(2π)2

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫
dl1ydl2y
(2π)2

D(l1)D(l2)D(l1 − l2)
1

− icf
N
k

2/3
τ + δ−k

× 1
icf
N

((l1 − k)
2/3
τ + l

2/3
1τ ) + δ−k + 2(k + p)yl1y + 2l21y + δ+

p

× 1
icf
N

((l2 − k)
2/3
τ + l

2/3
2τ ) + δ−k + 2(k + p)yl2y + 2l22y + δ+

p

]
+ h.c.

(E.31)
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Integrating over kx and shifting ky → ky − p,

δ3bΣ(pτ = 0, ~p) = −Nλ+λ−

[
2i

∫ ∞
0

dkτ
2π

∫
dky
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
0

dl2τ
2π

∫
dl1ydl2y
(2π)2

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)
1

− icf
N

(k
2/3
τ + (l1 − k)

2/3
τ + l

2/3
1τ )− 2kyl1y + δ+

p

× 1

− icf
N

((l1 − k)
2/3
τ + l

2/3
1τ + (l2 + k)

2/3
τ + l

2/3
2τ ) + 2ky(l2 − l1)y

+ i

∫ ∞
0

dkτ
2π

∫
dky
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫
dl1ydl2y
(2π)2

D(l1)D(l2)D(l1 − l2)

× 1
icf
N

(k
2/3
τ + (l1 − k)

2/3
τ + l

2/3
1τ ) + 2kyl1y − δ+

p

× 1
icf
N

(k
2/3
τ + (l2 − k)

2/3
τ + l

2/3
2τ ) + 2kyl2y − δ+

p

]
+ h.c. (E.32)

δ3cΣ(pτ = 0, ~p) = −Nλ+λ−

[
2i

∫ ∞
0

dkτ
2π

∫
dky
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
0

dl2τ
2π

∫
dl1ydl2y
(2π)2

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)

× 1

− icf
N

(k
2/3
τ + (l1 − k)

2/3
τ + l

2/3
1τ )− 2kyl1y − 2l21y − δ+

p

× 1

− icf
N

((l1 − k)
2/3
τ + l

2/3
1τ + (l2 + k)

2/3
τ + l

2/3
2τ ) + 2ky(l2 − l1)y + 2(l22y − l21y)

+ i

∫ ∞
0

dkτ
2π

∫
dky
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫
dl1ydl2y
(2π)2

D(l1)D(l2)D(l1 − l2)

× 1
icf
N

(k
2/3
τ + (l1 − k)

2/3
τ + l

2/3
1τ ) + 2kyl1y + 2l21y + δ+

p

× 1
icf
N

(k
2/3
τ + (l2 − k)

2/3
τ + l

2/3
2τ ) + 2kyl2y + 2l22y + δ+

p

]
+ h.c. (E.33)

The integration regions l1y > 0 and l1y < 0 give the same contribution. So, integrating
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over ky,

δ3bΣ(pτ = 0, ~p) = Nλ+λ−

[
2

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
0

dl2τ
2π

∫ ∞
0

dl1y
2π

∫ ∞
l1y

dl2y
2π

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)

× 1

− icf
N

(l2y((l1 − k)
2/3
τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 + k)

2/3
τ + l

2/3
2τ − k2/3

τ )) + (l2 − l1)yδ+
p

+

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫ ∞
0

dl1y
2π

∫ ∞
0

dl2y
2π

D(l1)D(l2)D(l1τ − l2τ , l1y + l2y)

× 1

− icf
N

(l2y((l1 − k)
2/3
τ + l

2/3
1τ + k

2/3
τ ) + l1y((l2 − k)

2/3
τ + l

2/3
2τ + k

2/3
τ )) + (l1 + l2)yδ+

p

]
+ h.c. (E.34)

δ3cΣ(pτ = 0, ~p) = Nλ+λ−

[
2

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
0

dl2τ
2π

∫ ∞
0

dl1y
2π

∫ ∞
l1y

dl2y
2π(

− icf
N

(l2y((l1 − k)2/3
τ + l

2/3
1τ + k2/3

τ ) + l1y((l2 + k)2/3
τ + l

2/3
2τ − k2/3

τ ))

+ 2l1yl2y(l2 − l1)y − (l2 − l1)yδ
+
p

)−1

D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)

+

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫ ∞
0

dl1y
2π

∫ ∞
0

dl2y
2π(

− icf
N

(l2y((l1 − k)2/3
τ + l

2/3
1τ + k2/3

τ ) + l1y((l2 − k)2/3
τ + l

2/3
2τ + k2/3

τ ))

− 2l1yl2y(l1 + l2)y − (l1 + l2)yδ
+
p

)−1

D(l1)D(l2)D(l1τ − l2τ , l1y + l2y)

]
+ h.c.

(E.35)

Expanding the self-energy in δ+
p and performing a change of variables l1τ = kτx1,

l2τ = kτx2, l1y = (cbe
2kτ )

1/3y1, l2y = (cbe
2kτ )

1/3y2,

δ3bΣ+(pτ = 0, ~p) = λ+λ−(J1 + J2)δ+
p

∫ ∞
0

dkτ
kτ

(E.36)

δ3cΣ+(pτ = 0, ~p) = δ3cΣ+(pτ = 0, ~p = 0) + λ+λ−(J3 + J4)δ+
p

∫ ∞
0

dkτ
kτ

(E.37)
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where

J1 =
6

π2

∫ ∞
1

dx1

∫ ∞
0

dx2

∫ ∞
0

dy1

∫ ∞
y1

dy2
y1y2(y2 − y1)2

(x1 + y3
1)(x2 + y3

2)(x1 + x2 + (y2 − y1)3)

× 1

(y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 + 1)2/3 + x

2/3
2 − 1))2

(E.38)

J2 =
3

π2

∫ ∞
1

dx1

∫ ∞
1

dx2

∫ ∞
0

dy1

∫ ∞
0

dy2
y1y2(y1 + y2)2

(x1 + y3
1)(x2 + y3

2)(|x1 − x2|+ (y1 + y2)3)

× 1

(y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 − 1)2/3 + x

2/3
2 + 1))2

(E.39)

J3 =
6

π2N2

∫ ∞
1

dx1

∫ ∞
0

dx2

∫ ∞
0

dy1

∫ ∞
y1

dy2
y1y2(y2 − y1)2

(x1 + y3
1)(x2 + y3

2)(x1 + x2 + (y2 − y1)3)

× 3y2
1y

2
2(y2 − y1)2 − 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 + 1)2/3 + x

2/3
2 − 1))2

(3y2
1y

2
2(y2 − y1)2 + 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 + 1)2/3 + x

2/3
2 − 1))2)2

(E.40)

J4 =
3

π2N2

∫ ∞
1

dx1

∫ ∞
1

dx2

∫ ∞
0

dy1

∫ ∞
0

dy2
y1y2(y1 + y2)2

(x1 + y3
1)(x2 + y3

2)(|x1 − x2|+ (y1 + y2)3)

× 3y2
1y

2
2(y1 + y2)2 − 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 − 1)2/3 + x

2/3
2 + 1))2

(3y2
1y

2
2(y1 + y2)2 + 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 − 1)2/3 + x

2/3
2 + 1))2)2

(E.41)

Cutting off the UV divergence in (E.36), (E.37) at kτ = Λτ ∼ Λ3
y/e

2, we obtain to

logarithmic accuracy,

δ3bΣ+(pτ = 0, ~p) = λ+λ−(J1 + J2)δ+
p log

Λ3
y

|δ+
p |3/2

(E.42)

δ3cΣ+(pτ = 0, ~p) = δ3cΣ+(pτ = 0, ~p = 0) + λ+λ−(J3 + J4)δ+
p log

Λ3
y

|δ+
p |3/2

(E.43)

which is equivalent to Eqs. (6.86), (6.87) with Jb = 3(J1 + J2), Jc = 3(J3 + J4). Note
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that J1 and J2 are constants independent of N ,

J1 ≈ 0.01276 (E.44)

J2 ≈ 0.02264 (E.45)

On the other hand, the constants J3 and J4 are N dependent. In the large-N limit we

can evaluate these constants analytically to leading logarithmic accuracy by setting

N =∞ in the integrand.

J3 ≈
2

π2N2

∫ ∞
1

dx1

∫ ∞
0

dx2

∫ ∞
0

dy1

∫ ∞
y1

dy2

1

y1y2(x1 + y3
1)(x2 + y3

2)(x1 + x2 + (y2 − y1)3)
(E.46)

The above integral diverges logarithmically when y1, y2, x2 → 0. Hence,

J3 ≈
2

π2N2

∫ ∞
1

dx1

x2
1

∫ 1

0

dx2

∫ 1

0

dy1

∫ 1

y1

dy2
1

y1y2(x2 + y3
2)

≈ 2

π2N2

∫ 1

0

dy2

y2

log(y−3
2 )

∫ y2

0

dy1

y1

(E.47)

Inspecting the original integral (E.40), we observe that the logarithmic divergence in

(E.47) is cut-off when y1(y2 − y1) ∼ 1
N

. Hence,

J3 ≈
2

π2N2

∫ 1

N−
1
2

dy2

y2

log(y−3
2 )

∫ y2

(Ny2)−1

dy1

y1

≈ 1

4π2N2
log3N (E.48)

Similarly,

J4 ≈
1

π2N2

∫ ∞
1

dx1

∫ ∞
1

dx2

∫ ∞
0

dy1

∫ ∞
0

dy2

1

y1y2(x1 + y3
1)(x2 + y3

2)(|x1 − x2|+ (y1 + y2)3)

≈ 4

π2N2

∫ ∞
1

dx1

x2
1

∫ 1

0

dy2

y2

∫ y2

0

dy1

y1

log((y1 + y2)−3) (E.49)
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Inspecting Eq. (E.41), we see that the logarithmic divergence in (E.49) is cut-off

when y1y2 ∼ 1
N

. Writing, y1 = y2z,

J4 ≈ −
12

π2N2

∫ 1

N−
1
2

dy2

y2

∫ 1

(Ny22)−1

dz

z
(log y2 + log(1 + z)) ≈ 1

2π2N2
log3N (E.50)

We note that expressions (E.48), (E.50) do not include subleading polynomial correc-

tions in logN . We can also calculate the constants J3, J4 numerically for N = 2,

J3 ≈ −0.004491 (E.51)

J4 ≈ −0.008158 (E.52)

Finally, we compute the insertion of the φ2 operator into the fermion two-point

function, which determines the renormalization of the chemical potential δ away from

criticality. The UV contribution at three loop order comes from the diagrams in Figs.

6.10 b) c) and can be obtained by expanding the bosonic propagators in Eqs. (E.34),

(E.35) to linear order in r. This yields,

δ3b∂Σ

∂r
UV
= −N

[
2

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
0

dl2τ
2π

∫ ∞
0

dl1y
2π

∫ ∞
l1y

dl2y
2π

(D(l1) +D(l2) +D(l1τ + l2τ , l1y − l2y))D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)

×
(
−icf
N

(l2y((l1 − k)2/3
τ + l

2/3
1τ + k2/3

τ ) + l1y((l2 + k)2/3
τ + l

2/3
2τ − k2/3

τ ))

)−1

+

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫ ∞
0

dl1y
2π

∫ ∞
0

dl2y
2π

(D(l1) +D(l2) +D(l1τ − l2τ , l1y + l2y))D(l1)D(l2)D(l1τ − l2τ , l1y + l2y)

×
(
−icf
N

(l2y((l1 − k)2/3
τ + l

2/3
1τ + k2/3

τ ) + l1y((l2 − k)2/3
τ + l

2/3
2τ + k2/3

τ ))

)−1 ]
+ h.c. (E.53)
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δ3c∂Σ

∂r
UV
= −N

[
2

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
0

dl2τ
2π

∫ ∞
0

dl1y
2π

∫ ∞
l1y

dl2y
2π

(D(l1) +D(l2) +D(l1τ + l2τ , l1y − l2y))D(l1)D(l2)D(l1τ + l2τ , l1y − l2y)

×
(
− icf
N

(l2y((l1 − k)2/3
τ + l

2/3
1τ + k2/3

τ ) + l1y((l2 + k)2/3
τ + l

2/3
2τ − k2/3

τ ))

+ 2l1yl2y(l2 − l1)y

)−1

+

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫ ∞
0

dl1y
2π

∫ ∞
0

dl2y
2π

(D(l1) +D(l2) +D(l1τ − l2τ , l1y + l2y))D(l1)D(l2)D(l1τ − l2τ , l1y + l2y)

×
(
− icf
N

(l2y((l1 − k)2/3
τ + l

2/3
1τ + k2/3

τ ) + l1y((l2 − k)2/3
τ + l

2/3
2τ + k2/3

τ ))

− 2l1yl2y(l1 + l2)y

)−1]
+ h.c. (E.54)

We observe that the contribution from the diagram in Fig. 6.10 b) vanishes, while

the diagram in Fig. 6.10 c) gives upon switching to dimensionless variables,

δ3∂Σ

∂r
UV
= Jre

2 log Λy (E.55)

with

Jr = − 36

π2N2

∫ ∞
1

dx1

∫ ∞
0

dx2

∫ ∞
0

dy1

∫ ∞
y1

dy2
y2

1y
2
2(y2 − y1)2

(x1 + y3
1)(x2 + y3

2)(x1 + x2 + (y2 − y1)3)(
y1

x1 + y3
1

+
y2

x2 + y3
2

+
y2 − y1

x1 + x2 + (y2 − y1)3

)
1

3y2
1y

2
2(y2 − y1)2 + 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 + 1)2/3 + x

2/3
2 − 1))2

+
18

π2N2

∫ ∞
1

dx1

∫ ∞
1

dx2

∫ ∞
0

dy1

∫ ∞
0

dy2
y2

1y
2
2(y1 + y2)2

(x1 + y3
1)(x2 + y3

2)(|x1 − x2|+ (y1 + y2)3)(
y1

x1 + y3
1

+
y2

x2 + y3
2

+
y1 + y2

|x1 − x2|+ (y1 + y2)3

)
1

3y2
1y

2
2(y1 + y2)2 + 1

N2 (y2((x1 − 1)2/3 + x
2/3
1 + 1) + y1((x2 − 1)2/3 + x

2/3
2 + 1))2

(E.56)

Evaluating the above integral, we obtain Eq. (6.95).
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Appendix to Chapter 7

F.1 RG computations

In this appendix we give the details of our calculations in Sections 7.2 and 7.3.

F.1.1 RPA polarization

We begin with the RPA polarization bubble,

Πab(q) = 2Nδab
∑
`

∫
dlτd

2~l

(2π)3
(G`

1(l + q)G`
2(l) +G`

2(l + q)G`
1(l)) (F.1)

The two terms in brackets come from the two graphs in Fig. 7.4 with different

directions of the particle flow. As discussed in Section 7.2 such graphs are equal by

the emergent particle-hole symmetry. Thus, focusing on the contribution from ` = 1,

Π`=1(q) = 2N

∫
dlτd

2~l

(2π)3

1

(iη(lτ + qτ )− ~v1 · (~l + ~q))(iηlτ − ~v2 ·~l)
+ (q → −q) (F.2)
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We change variables to l1 = v̂1 · (~l+ ~q), l2 = v̂2 ·~l, and take the limit η → 0 using the

relation,

1

x+ iη
=
P

x
− πisgn(η)δ(x) (F.3)

which yields,

Π`=1(q) =
N

vxvy

∫
dlτd

2~l

(2π)3

(
P

l1
+ πisgn(lτ + qτ )δ(l1)

)(
P

l2
+ πisgn(lτ )δ(l2)

)
+(q → −q)

(F.4)

Evaluating the integrals over l1, l2,

Π`=1(q) = − N

8πvxvy

∫
dlτ sgn(lτ + qτ )sgn(lτ ) + (q → −q) (F.5)

Here, we’ve taken the principal value integral to be zero, as it would be if we used

a particle-hole symmetric regularization. Otherwise, one can check that any terms

generated by the pv integral are of the form iqτ and are cancelled by the (q → −q)

term of Eq. F.5. Now, subtracting the value of the polarization bubble at q = 0, we

obtain,

Π`=1(q)− Π`=1(q = 0) = − N

8πvxvy

∫
dlτ (sgn(lτ + qτ )sgn(lτ )− 1) + (q → −q)

=
N

2πvxvy
|qτ | (F.6)

which, taking into account contributions from the other hot spots, gives,

Π(q) = Π(q = 0) +
Nn

2πvxvy
|qτ | (F.7)
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F.1.2 Fermion self energy

We next proceed to the self-energy of fermion ψ`=1
1 , Fig. 7.5,

Σ1,σσ′(p) = τaσρτ
a
ρσ′

∫
dlτd

2~l

(2π)3
G2(p− l)D(l)

=
3

N
δσσ′

∫
dlτd

2~l

(2π)3

1

iη(pτ − lτ )− ~v2 · (~p−~l)
1

γ|lτ |+~l2
(F.8)

We take the limit η → 0 and use Eq. (F.3). Moreover, we change variables, so that

l⊥ = v̂2 · ~l and l‖ is the momentum component along the Fermi surface of ψ2 (i.e.

perpendicular to v̂2). Then,

Σ1(p) =
3

N |~v|

∫
dlτdl⊥dl‖

(2π)3

(
P

l⊥ − v̂2 · ~p
+ πisgn(lτ − pτ )δ(l⊥ − v̂2 · ~p)

)
1

γ|lτ |+ l2⊥ + l2‖
(F.9)

Thus, the imaginary part of Σ is given by,

ImΣ1(p) =
3

N |~v|

∫
dlτ
8π

sgn(lτ − pτ )
1√

γ|lτ |+ |v̂2 · ~p|2
(F.10)

where we have performed the integral over l⊥, l‖. Since, ImΣ(pτ = 0) = 0,

ImΣ1(p) =
3

N |~v|

∫
dlτ
8π

(sgn(lτ − pτ )− sgn(lτ ))
1√

γ|lτ |+ |v̂2 · ~p|2

= − 3

2πN |~v|γ sgn(pτ )
(√

γ|pτ |+ (v̂2 · ~p)2 − |v̂2 · ~p|
)

(F.11)

On the other hand, the real part of Σ is given by,

ReΣ1(p) = −3v̂2 · ~p
2N |~v|

∫
dlτdl‖
(2π)2

1√
γ|lτ |+ l2‖

1

γ|lτ |+ l2‖ + (v̂2 · ~p)2
(F.12)

Changing variables to u =
√
γlτ + l2‖,

ReΣ1(p) = − 3(v̂2 · ~p)
2π2Nγ|~v|

∫
dl‖

∫ ∞
|l‖|

du
1

u2 + (v̂2 · ~p)2

= − 3(v̂2 · ~p)
2π2Nγ|~v|

∫
dl‖
|v̂2 · ~p|

tan−1

( |v̂2 · ~p|
|l‖|

)
(F.13)
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The integral over l‖ is ultra-violet divergent. Cutting off the integral at |l‖| = Λ, we

obtain to logarithmic accuracy,

ReΣ1(p) = − 3v̂2 · ~p
π2N |~v|γ log

Λ

|v̂2 · ~p|
(F.14)

Combining eqs. (F.11), (F.14) we obtain the self-energy (7.45).

F.1.3 Boson-fermion vertex

Proceeding to the first correction in 1/N to the boson-fermion vertex, Fig. 7.6,

δΓaσσ′(p, q) = (τ bτaτ b)σσ′

∫
dlτd

2~l

(2π)3
G2(l + p)G1(l + p+ q)D(l) (F.15)

Evaluating the matrix product,

δΓ(p, q) = − 1

N

∫
dlτd

2~l

(2π)3

1

~v2 · (~l + ~p)− iη(lτ + pτ )

1

~v1 · (~l + ~p+ ~q)− iη(lτ + pτ + qτ )

× 1

γ|lτ |+~l2
(F.16)

The integral (F.16) is logarithmically divergent in the UV. To extract this divergence,

we may set all external momenta to zero:

δΓ(p, q)
UV
= − 1

N

∫
dlτd

2~l

(2π)3

1

(−vxlx + vyly − iηlτ )(vxlx + vyly − iηlτ )
1

γ|lτ |+ l2x + l2y
(F.17)

The poles in ly coming from the two fermion propagators in Eq. (F.17) are in the

same half-plane; we may choose to close the ly integration contour in the opposite

half-plane, picking up the pole from the bosonic propagator:

δΓ(p, q)
UV
= − 1

N

∫
dlτdlx
(2π)2

1

−vxlx − ivysgn(lτ )
√
γ|lτ |+ l2x

× 1

vxlx − ivysgn(lτ )
√
γ|lτ |+ l2x

1

2
√
γ|lτ |+ l2x

(F.18)
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Changing variables to u =
√
γ|lτ |+ l2x,

δΓ(p, q)
UV
=

2

Nγ

∫ ∞
−∞

dlx
2π

∫ ∞
|lx|

du

2π

1

v2
xl

2
x + v2

yu
2

(F.19)

We now go to polar coordinates, vxlx + ivyu = |~v|ρeiθ,

δΓ(p, q)
UV
=

1

Nπ(2πvxvyγ)

∫ ∞
0

dρ

ρ

∫ π−tan−1 α

tan−1 α

dθ (F.20)

The integral over ρ is logarithmically divergent in the UV ; cutting off the integral at

ρ ∼ Λ,

δΓ(p, q)
UV
=

2

πnN
tan−1 1

α
log Λ (F.21)

F.1.4 Boson self energy

We now proceed to the 1/N corrections to the boson self-energy, Fig. 7.7. We

first analyze the contribution of diagrams a),b) and c), which we label δΠI . Utilizing

the expression (7.15) for the fermion induced quartic coupling, we obtain,

δΠab
I (q) =

1

2

∫
dlτd

2~l

(2π)3
Γabcc(q,−q, l,−l)D(l)

=

∫
dlτd

2~l

(2π)3
(fabcc(q,−q, l,−l) + faccb(q, l,−l,−q) + facbc(q, l,−q,−l))D(l)

(F.22)

The first two terms in Eq. (F.22) vanish (these terms correspond to the diagrams in

Fig. 7.7 a),b) ). Thus, only the diagram in Fig. 7.7 c) contributes,

δΠI(qτ , ~q) = |qτ |A(qτ , ~q) +B(qτ , ~q) (F.23)
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with

A(qτ , ~q) = − N

πvxvy

∑
`

∫
dlτd

2~l

(2π)3
G`

1(l − q)G`
2(l + q)D(l) (F.24)

B(qτ , ~q) =
N

πvxvy

∑
`

∫
dlτd

2~l

(2π)3
|lτ |G`

1(l − q)G`
2(l + q)D(l) (F.25)

The quantity A(qτ , ~q) is logarithmically divergent in the UV . The coefficient of the

divergence may be extracted by setting the external momenta and r to zero. Then,

from Eq. (F.16), we recognize,

A(qτ , ~q)
UV
=

N

πvxvy

∑
`

δΓ(p, q) =
4γ

nπ
tan−1 1

α
log Λ (F.26)

Now, let us evaluate B. We temporarily keep only the contribution from the hot spot

pair ` = 1.

B`=1(qτ , ~q) =
1

πvxvy

∫
dlτd

2~l

(2π)3

1

(vxlx + vyly − ~v1 · ~q − iη(lτ − qτ ))

× 1

(−vxlx + vyly + ~v2 · ~q − iη(lτ + qτ ))

|lτ |
(γ|lτ |+ l2x + l2y + r)

.

(F.27)

Note that the region |lτ | < |qτ | does not contain any UV divergences. Thus, to

compute the UV divergent part, we can confine our attention to the region |lτ | > |qτ |.

In this case, the two poles in ly coming from the fermion propagators in Eq. (F.27)

lie in the same half-plane; we may choose to close the ly integration contour in the

opposite half-plane, picking up the pole from the bosonic propagator:

B`=1(qτ , ~q)
UV
=

1

πvxvy

∫
|lτ |>|qτ |

dlτdlx
(2π)2

1

vxlx − ivysgn(lτ )
√
γ|lτ |+ l2x + r − ~v1 · ~q

× 1

−vxlx − ivysgn(lτ )
√
γ|lτ |+ l2x + r + ~v2 · ~q

|lτ |
2
√
γ|lτ |+ l2x + r

(F.28)



Appendix F: Appendix to Chapter 7 417

Note that we may extend the integration over lτ in Eq. (F.28) back to the whole real

line without influencing the UV part of the result. Thus,

B`=1(qτ , ~q)
UV
= − 1

πvxvy

∫ ∞
0

dlτ
2π

∫ ∞
−∞

dlx
2π

1

(vxlx − ivy
√
γlτ + l2x + r − ~v1 · ~q)

× 1

(vxlx + ivy
√
γl0 + l2x + r − ~v2 · ~q)

lτ

2
√
γlτ + l2x + r

+ c.c.

(F.29)

It is convenient to change variables to u =
√
γ|lτ |+ l2x + r,

B`=1(qτ , ~q)
UV
= − 1

πvxvyγ2

∫ ∞
−∞

dlx
2π

∫ ∞
√
l2x+r

du

2π

u2 − l2x − r
(vxlx − ivyu− ~v1 · ~q)(vxlx + ivyu− ~v2 · ~q)

+ c.c. (F.30)

The r in the lower limit of the integral over u may be dropped without influencing

the UV behaviour. We now go to polar coordinates, vxlx + ivyu = |~v|ρeiθ,

B`=1(qτ , ~q)
UV
= − 1

π(2πvxvyγ)2

|~v|2
vxvy

∫
ρdρ

∫ π−tan−1 α

tan−1 α

dθ
ρ2( 1

α
sin2 θ − α cos2 θ)− vxvy

|~v|2 r

(ρeiθ − v̂2 · ~q)(ρe−iθ − v̂1 · ~q)
+ c.c. (F.31)

The integral over ρ is quadratically divergent. Expanding the divergent part in ~q and

r,

B`=1(qτ , ~q)
UV
= − 2

πn2

|~v|2
vxvy

∫
ρdρ

∫ π−tan−1 α

tan−1 α

dθ

[(
1

α
sin2 θ − α cos2 θ

)
×

(
1 +

1

ρ
(v̂1 + v̂2) · ~q cos θ

+
1

ρ2

(
(v̂1 · ~q)(v̂2 · ~q) + ((v̂1 · ~q)2 + (v̂2 · ~q)2) cos 2θ

))
− vxvy
|~v|2

r

ρ2

]
(F.32)

As usual, the term constant in ~q corresponds to a shift in the position of the critical

point and will be dropped below. The term linear in ~q vanishes under θ → π− θ, i.e.
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lx → −lx (more rigorously, this term must vanish by symmetry, once the contributions

from all 4 pairs of hot spots are summed). Finally, the term quadratic in ~q and the

term linear in r give logarithmic divergences. Cutting off the integral over ρ at ρ ∼ Λ,

B`=1(qτ , ~q)
UV
=

4

πn2
log Λ

[
q2
x

α2

(
tan−1 1

α
+

α

1 + α2

)
+ α2q2

y

(
tan−1 1

α
− α

1 + α2

)
+ r tan−1 1

α

]
(F.33)

Now, summing over the four pairs of hot spots, we restore rotational invariance,

B(qτ , ~q) =
2

πn

[
1

α
− α +

(
1

α2
+ α2

)
tan−1 1

α

]
~q2 log Λ +

4

πn
tan−1 1

α
r log Λ

(F.34)

We now compute the diagram in Fig. 7.7 d), which we label δΠII . This diagram is

present already in the Hertz-Millis theory and, being momentum independent, leads

only to a renormalization of r,

δΠII(q) = 5u

∫
dlτd

2~l

(2π)3
D(l)

UV
= − 5

N
ur

∫
dlτd

2~l

(2π)3

1

(γ|lτ |+~l2)2
= − 5ur

πNγ

∫
d2~l

(2π)2

1

~l2

= − 5

2π2N
ũr log Λ (F.35)

Now combining Eqs. (F.23), (F.26), (F.34), (F.35) we obtain the UV part of the

correction to the boson propagator, Eq. (7.53).

F.2 Violatations of large-N counting

F.2.1 Boson-fermion vertex correction at three loops

In this section we compute the vertex correction in Fig. 7.9. As shown in section

7.4, an attempt to evaluate this graph directly with bare fermion propagators results
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in infra-red divergences. To cure this problem, we dress the fermion propagators by

the one-loop self-energy (7.45). For simplicity, we include only the imaginary part

of the self-energy responsible for the dynamics. The frequency independent real part

responsible for the logarithmic running of the velocity v will be ignored here. Thus,

we use,

G`
i(ω,

~k) =
1

−i cf
N
g(ω, v̂`

ī
· ~k) + ~v`i · ~k

(F.36)

where 1̄ = 2, 2̄ = 1 and

g(ω, k) = sgn(ω)(
√
γ|ω|+ k2 − |k|), cf =

3

2π|~v|γ (F.37)

Then, the diagram in Fig. 7.9 is given by,

δΓφψ2ψ
†
1

= −28N

∫
d3k

(2π)3

d3l1
(2π)3

d3l2
(2π)3

G−1
1 (k)G−1

2 (k − l1)G−1
1 (k − l2)G−1

2 (k)

×G1
2(l1)G1

1(l2)D(l1)D(l2)D(l2 − l1) (F.38)

The external fermions are taken to have hot spot index ` = 1, while the fermions in

the loop are taken to have `′ = −1. As discussed in section 7.4, the contributions from

`′ = 2 and `′ = 4 are not enhanced in N , while `′ = 1 contributes a UV finite term

of O(1) when the external fermion momenta are chosen to lie on the Fermi surface.

As we are mainly interested in corrections to mean-field scaling, we only retain UV

divergent contributions below. Hence, all the external momenta of the diagram have
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been set to 0. Substituting the one-loop corrected propagators (F.36), we obtain,

δΓφψ2ψ
†
1

= −28N

∫
d3k

(2π)3

d3l1
(2π)3

d3l2
(2π)3

1

−i cf
N
g(kτ , v̂1 · ~k)− ~v2 · ~k

× 1

−i cf
N
g(kτ , v̂2 · ~k)− ~v1 · ~k

1

−i cf
N
g(kτ − l1τ , v̂1 · (~k −~l1))− ~v2 · (~k −~l1)

× 1

−i cf
N
g(kτ − l2τ , v̂2 · (~k −~l2))− ~v1 · (~k −~l2)

1

−i cf
N
g(l1τ , v̂1 ·~l1) + ~v2 ·~l1

× 1

−i cf
N
g(l2τ , v̂2 ·~l2) + ~v1 ·~l2

D(l1)D(l2)D(l1 − l2)

(F.39)

We may divide the spatial momenta into two groups: v̂1 ·~k, v̂2 ·~k, v̂2 ·~l1, v̂1 ·~l2 and v̂1 ·~l1,

v̂2 ·~l2. The singular manifold of the diagram is given by setting the momenta in the

first group to zero and can be parameterized by the two variables in the second group.

We begin by integrating over the first set of variables, picking up the contribution from

the poles of the fermion propagators. As this integration is saturated at momenta

of O(1/N), we can neglect the dependence of the boson propagators and fermion

self-energies on these momenta. We then obtain the result in terms of an integral

over the singular manifold.

Due to the symmetry, G(l) = −G(−l), the contributions to the integral from

kτ > 0 and kτ < 0 are equal. Now, changing momentum variables to v̂1 · ~p, v̂2 · ~p, and
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integrating over v̂2 ·~l1, v̂1 ·~l2,

δΓφψ2ψ
†
1

= −7N
|~v|4

(vxvy)3

∫ ∞
0

dkτ
2π

∫
d(v̂1 · ~k)d(v̂2 · ~k)d(v̂1 ·~l1)d(v̂2 ·~l2)

(2π)4[∫ ∞
kτ

−
∫ 0

−∞

]
dl1τ
2π

[∫ ∞
kτ

−
∫ 0

−∞

]
dl2τ
2π

D(l1)D(l2)D(l1 − l2)

∣∣∣∣
v̂1·~l2=v̂2·~l1=0

× 1

−i cf
N

(g(l1τ , v̂1 ·~l1)− g(kτ − l1τ , v̂1 · (~k −~l1))) + ~v2 · ~k

× 1

−i cf
N

(g(l2τ , v̂2 ·~l2)− g(kτ − l2τ , v̂2 · (~k −~l2))) + ~v1 · ~k

× 1

i
cf
N
g(kτ , v̂1 · ~k) + ~v2 · ~k

1

i
cf
N
g(kτ , v̂2 · ~k) + ~v1 · ~k

(F.40)

Now, performing the integral over v̂1 · ~k, v̂2 · ~k,

δΓφψ2ψ
†
1

= −7N3 |~v|2
(vxvy)3c2

f

∫ ∞
0

dkτ
2π

∫ ∞
kτ

dl1τ
2π

∫ ∞
kτ

dl2τ
2π

∫
d(v̂1 ·~l1)d(v̂2 ·~l2)

(2π)2

1

g(kτ , 0) + g(l1τ ) + g(l1τ − kτ , v̂1 ·~l1)

× 1

g(kτ , 0) + g(l2τ ) + g(l2τ − kτ , v̂2 ·~l2)
D(l1)D(l2)D(l1 − l2)

∣∣∣∣
v̂1·~l2=v̂2·~l1=0

Changing variables to l1,2τ = kτx1,2, l1,2y =
√
γkτy1,2,

δΓφψ2ψ
†
1

=
1

2
X(α)

∫ ∞
0

dkτ
kτ

= X(α) log Λy (F.41)

with

X(α) = − 7

18π2n

(
1

α
+ α

)2 ∫ ∞
1

dx1

∫ ∞
1

dx2

∫ ∞
−∞

dy1

∫ ∞
−∞

dy2

1√
x1 + y2

1 +
√
x1 − 1 + y2

1 − 2|y1|+ 1

1

x1 + 1
4
( 1
α

+ α)2y2
1

× 1√
x2 + y2

2 +
√
x2 − 1 + y2

2 − 2|y|2 + 1

1

x2 + 1
4
( 1
α

+ α)2y2
2

× 1

|x1 − x2|+ 1
4
( 1
α

+ α)2(y2
1 + y2

2)− 1
2
( 1
α2 − α2)y1y2

(F.42)
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F.2.2 Quartic vertex

In this section we evaluate the five loop correcton to the boson four-point func-

tion shown in Fig. 7.18. We recall that by the particle-hole symmetry of our theory,

diagrams with a reversed direction of the two fermion loops have the same value. We

focus only on the diagrams where the fermions in the two loops come from opposite

hot spots as these give a result, which is of O(N3) and logarithmically divergent.

To identify the coefficient of the logarithmic divergence we may set all the external

momenta to zero. Then by rotational invariance each hot spot pair gives the same

contribution. Moreover, we can also consider the diagram as in Fig. 7.18 but with

fermions 1 and 2 interchanged. By reflection symmetry, this has the same UV diver-

gence. Finally, we should be able to absorb the UV divergence into the coefficient of

the quartic vertex ~φ2
2
, which specifies the spin structure,

δΓa1a2a3a44
UV
=

1

3
(δa1a2δa3a4 + δa1a3δa2a4 + δa1a4δa2a3)δΓ3333

4 (F.43)

and

δΓ3333
4 = −4 · 6 · 2 · n · S ·N2

∫
d3p1d

3p2d
3l1d

3l2d
3l3

(2π)15
D(l1)D(l3)D(l1 − l2)D(l2 − l3)

× G1
1(p1)G1

2(p1)2G1
1(p1 − l1)G1

2(p1 − l2)G1
1(p1 − l3)

× G−1
1 (p2)G−1

2 (p2)2G−1
1 (p2 − l1)G−1

2 (p2 − l2)G−1(p2 − l3) (F.44)

with

S = tr(τ 3τ 3τaτ bτ cτ d)tr(τ 3τ 3τaτ bτ cτ d) = 84 (F.45)

We will used the same strategy for evaluating the integral (F.44) as for computing

the vertex correction in section F.2.1. The singular manifold in the present case is
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specified by vanishing ~p1, ~p2, v̂1 · ~l1, v̂2 · ~l2, v̂1 · ~l3 and can be parameterized by the

three momenta v̂2 · ~l1, v̂1 · ~l2, v̂2 · ~l3. We will integrate explicitly over the first set of

momenta and leave the result as an integral over the later three momenta.

Let us call I(p1τ , p2τ ) the result of integrating over all momenta and frequen-

cies in Eq. (F.44), except p1τ and p2τ . Then, using the particle-hole symmetry,

G(p) = −G(−p), and the inversion symmetry, G−1(pτ , ~p) = G1(pτ ,−~p), we obtain

I(p1τ , p2τ ) = I(−p1τ ,−p2τ ) and I(p1τ , p2τ ) = I(p2τ , p1τ ). Thus,

δΓ3333
4 = −210 · 32 · 7 ·N2

( |~v|2
2vxvy

)5 ∫ ∞
0

dp1τ

2π

∫ p1τ

−p1τ

dp2τ

2π

∫
dl1τdl2τdl3τ

(2π)3∫
d(v̂1 ·~l1)d(v̂2 ·~l1)d(v̂1 ·~l2)d(v̂2 ·~l2)d(v̂1 ·~l3)d(v̂2 ·~l3)

(2π)6∫
d(v̂1 · ~p1)d(v̂2 · ~p1)d(v̂1 · ~p2)d(v̂2 · ~p2)

(2π)4

1

−i cf
N
g(p1τ , 0) + ~v1 · ~p1

× 1

(−i cf
N
g(p1τ , 0) + ~v2 · ~p1)2

1

−i cf
N
g(p1τ − l1τ , v̂2 ·~l1) + ~v1 · (~p1 −~l1)

× 1

−i cf
N
g(p1τ − l2τ , v̂1 ·~l2) + ~v2 · (~p1 −~l2)

1

−i cf
N
g(p1τ − l3τ , v̂2 ·~l3) + ~v1 · (~p1 −~l3)

× 1

−i cf
N
g(p2τ , 0)− ~v1 · ~p2

1

(−i cf
N
g(p2τ , 0)− ~v2 · ~p2)2

× 1

−i cf
N
g(p2τ − l1τ , v̂2 ·~l1)− ~v1 · (~p2 −~l1)

1

−i cf
N
g(p2τ − l2τ , v̂1 ·~l2)− ~v2 · (~p2 −~l2)

× 1

−i cf
N
g(p2τ − l3τ , v̂2 ·~l3)− ~v1 · (~p2 −~l3)

D(l1)D(l3)D(l1 − l2)D(l2 − l3)

Integrating over v̂1 ·~l1, v̂2 ·~l2, v̂1 ·~l3,

δΓ3333
4 = −i210 · 32 · 7 ·N2 |~v|7

(2vxvy)5

∫ ∞
0

dp1τ

2π

∫ p1τ

−p1τ

dp2τ

2π[∫ ∞
p1τ

−
∫ p2τ

−∞

]
dl1τ
2π

[∫ ∞
p1τ

−
∫ p2τ

−∞

]
dl2τ
2π

[∫ ∞
p1τ

−
∫ p2τ

−∞

]
dl3τ
2π∫

d(v̂1 · ~p1)d(v̂2 · ~p1)d(v̂1 · ~p2)d(v̂2 · ~p2)d(v̂2 ·~l1)d(v̂1 ·~l2)d(v̂2 ·~l3)

(2π)7



Appendix F: Appendix to Chapter 7 424

1

−i cf
N
g(p1τ , 0) + ~v1 · ~p1

1

(−i cf
N
g(p1τ , 0) + ~v2 · ~p1)2

× 1

−i cf
N
g(p2τ , 0)− ~v1 · ~p2

1

(−i cf
N
g(p2τ , 0)− ~v2 · ~p2)2

× 1

−i cf
N

(g(p1τ − l1τ , v̂2 ·~l1) + g(p2τ − l1τ , v̂2 ·~l1)) + ~v1 · (~p1 − ~p2)

× 1

−i cf
N

(g(p1τ − l2τ , v̂1 ·~l2) + g(p2τ − l2τ , v̂1 ·~l2)) + ~v2 · (~p1 − ~p2)

× 1

−i cf
N

(g(p1τ − l3τ , v̂2 ·~l3) + g(p2τ − l3τ , v̂2 ·~l3)) + ~v1 · (~p1 − ~p2)

× D(l1)D(l3)D(l1 − l2)D(l2 − l3)|v̂1·~l1=v̂2·~l2=v̂1·~l3=0 (F.46)

Now, integrating over v̂1 · ~p1, v̂2 · ~p1,

δΓ3333
4 = −i210 · 32 · 7 ·N2 |~v|5

(2vxvy)5

∫ ∞
0

dp1τ

2π

∫ p1τ

−p1τ

dp2τ

2π

∫ ∞
p1τ

dl2τ
2π∫

d(v̂1 · ~p2)d(v̂2 · ~p2)d(v̂2 ·~l1)d(v̂1 ·~l2)d(v̂2 ·~l3)

(2π)5(
−icf
N
g(p2τ , 0)− ~v1 · ~p2

)−1 (
−icf
N
g(p2τ , 0)− ~v2 · ~p2

)−2

×
(
−icf
N

(g(p1τ , 0) + g(l2τ − p1τ , v̂1 ·~l2) + g(l2τ − p2τ , v̂1 ·~l2)) + ~v2 · ~p2

)−2

×
[∫ ∞

p1τ

dl1τ
2π

∫ ∞
p1τ

dl3τ
2π

(
i
cf
N

(g(p1τ , 0) + g(l1τ − p1τ , v̂2 ·~l1) + g(l1τ − p2τ , v̂2 ·~l1))

− ~v1 · ~p2

)−1 (
i
cf
N

(g(p1τ , 0) + g(l3τ − p1τ , v̂2 ·~l3) + g(l3τ − p2τ , v̂2 ·~l3))− ~v1 · ~p2

)−1

+

∫ ∞
p1τ

dl1τ
2π

∫ p2τ

−∞

dl3τ
2π

(
− icf

N
(g(p1τ , 0) + g(l1τ − p1τ , v̂2 ·~l1) + g(l1τ − p2τ , v̂2 ·~l1))

+ ~v1 · ~p2

)−1(
− icf

N
(g(l1τ − p1τ , v̂2 ·~l1) + g(l1τ − p2τ , v̂2 ·~l1)

+ g(p1τ − l3τ , v̂2 ·~l3) + g(p2τ − l3τ , v̂2 ·~l3))

)−1
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+

∫ p2τ

−∞

dl1τ
2π

∫ ∞
p1τ

dl3τ
2π

(
− icf

N
(g(p1τ , 0) + g(l3τ − p1τ , v̂2 ·~l3) + g(l3τ − p2τ , v̂2 ·~l3))

+ ~v1 · ~p2

)−1(
− icf

N
(g(p1τ − l1τ , v̂2 ·~l1) + g(p2τ − l1τ , v̂2 ·~l1)

+ g(l3τ − p1τ , v̂2 ·~l3) + g(l3τ − p2τ , v̂2 ·~l3))

)−1
]

×D(l1)D(l3)D(l1 − l2)D(l2 − l3)|v̂1·~l1=v̂2·~l2=v̂1·~l3=0 (F.47)

Observe that under l1 ↔ l3 the first term in the square brackets is invariant, while

the second and third terms map into each other. Utilizing this fact and integrating

over v̂1 · ~p2, v̂2 · ~p2,

δΓ3333
4 = −212 · 32 · 7 ·N7 |~v|3

(2vxvycf )5

∫ ∞
0

dp1τ

2π

∫ p1τ

0

dp2τ

2π

∫ ∞
p1τ

dl1τ
2π

∫ ∞
p1τ

dl2τ
2π∫

d(v̂2 ·~l1)d(v̂1 ·~l2)d(v̂2 ·~l3)

(2π)3

(
g(p1τ , 0) + g(p2τ , 0) + g(l1τ − p1τ , v̂2 ·~l1)

+ g(l1τ − p2τ , v̂2 ·~l1)
)−1(

g(p1τ , 0) + g(p2τ , 0) + g(l2τ − p1τ , v̂1 ·~l2)

+ g(l2τ − p2τ , v̂1 ·~l2)
)−3
[∫ l1τ

p1τ

dl3τ
2π

(
g(p1τ , 0) + g(p2τ , 0)

+ g(l3τ − p1τ , v̂2 ·~l3) + g(l3τ − p2τ , v̂2 ·~l3)
)−1

+

∫ p2τ

−∞

dl3τ
2π

(
g(l1τ − p1τ , v̂2 ·~l1)

+ g(l1τ − p2τ , v̂2 ·~l1) + g(p1τ − l3τ , v̂2 ·~l3) + g(p2τ − l3τ , v̂2 ·~l3
)−1
]

×D(l1)D(l3)D(l1 − l2)D(l2 − l3)|v̂1·~l1=v̂2·~l2=v̂1·~l3=0 (F.48)

We now introduce dimensionless variables, p2τ = xp1τ , liτ = yip1τ , v̂2 · ~l1 =
√
γp1τz1,

v̂1 ·~l2 =
√
γp1τz2, v̂2 ·~l3 =

√
γp1τz3. Then,

δΓ3333
4 =

1

2
N3Y (α)γ

∫ ∞
0

dp1τ

p1τ

= N3Y (α)γ log Λ (F.49)



Appendix F: Appendix to Chapter 7 426

with

Y (α) = − 56

27π2

(
1

α
+ α

)4 ∫ 1

0

dx

∫ ∞
1

dy1

∫ ∞
1

dy2

∫ ∞
−∞

dz1

∫ ∞
−∞

dz2

∫ ∞
−∞

dz3(
1 +
√
x+

√
y1 − 1 + z2

1 +
√
y1 − x+ z2

1 − 2|z1|
)−1

×
(

1 +
√
x+

√
y2 − 1 + z2

2 +
√
y2 − x+ z2

2 − 2|z2|
)−3

[∫ y1

1

dy3

(
1 +
√
x+

√
y3 − 1 + z2

3 +
√
y3 − x+ z2

3 − 2|z3|
)−1

+

∫ x

−∞
dy3

(√
y1 − 1 + z2

1 +
√
y1 − x+ z2

1 +
√

1− y3 + z2
3

+
√
x− y3 + z2

3 − 2|z1| − 2|z3|
)−1
](
y1 +

1

4
(

1

α
+ α)2z2

1

)−1

×
(
|y3|+

1

4
(

1

α
+ α)2z2

3

)−1(
|y1 − y2|+

1

4
(

1

α
+ α)2(z2

1 + z2
2) +

1

2
(α2 − 1

α2
)z1z2

)−1

×
(
|y2 − y3|+

1

4
(

1

α
+ α)2(z2

2 + z2
3) +

1

2
(α2 − 1

α2
)z2z3

)−1

(F.50)

F.2.3 Pairing vertex

This appendix will describe the direct evaluation of the pairing vertex correc-

tion in Eq. (7.89). We first attempt to perform the calculation using bare fermion

propagators,

δΓV ψ†ψ† =
−3µ

N |~v|2
∫
dlτdl⊥dl‖

(2π)3

1

γ|lτ |+ l2⊥ + l2‖

1

l⊥ − v̂2 · ~k1 − i
η

|~v|(lτ − k1τ )

× 1

l⊥ + v̂2 · ~k−1 + i
η

|~v|(lτ + k−1τ )

where we’ve introduced variables l⊥ = v̂2 · ~l, l‖ = εij(v̂2)ilj. For simplicity, let us

choose k1τ = k−1τ = ω > 0. We now perform the integral over l⊥. For |lτ | < ω

both poles in the fermion propagators are in the same half-plane and we can pick up
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just the pole from the bosonic propagator. In the opposite regime, |lτ | > ω, we get

contributions from both the bosonic and fermionic poles. Thus,

δΓV ψ†ψ† = − 3µ

N |~v|2

[
−
∫ ∞

0

dlτ
2π

∫
dl‖
2π

1√
γlτ + l2‖

1√
γlτ + l2‖ + iv̂2 · ~k1

× 1√
γlτ + l2‖ − iv̂2 · ~k−1

(F.51)

+
|~v|
2η

∫ ∞
ω

dlτ
2π

∫
dl‖
2π

(
1

lτ − i~v2η · (~k1 + ~k−1)

1

γlτ + l2‖ + (v̂2 · ~k1)2
(F.52)

+
1

lτ + i~v2
η
· (~k1 + ~k−1)

1

γlτ + l2‖ + (v̂2 · ~k−1)2

)]
(F.53)

The contribution from the bosonic pole in Eq. (F.51) gives an expected logarithmic

divergence,

δbosΓV ψ†ψ† ∼
3µ

Nπ2γ|~v|2 log
Λ

|v̂2 · ~k|
(F.54)

On the other hand, the contribution from the fermionic poles in Eqs. (F.52),(F.53)

gives a much stronger infra-red singularity. If we set the total momentum of the

fermion pair ~k1 + ~k−1 to zero, then

δferΓV ψ†ψ† ∼ −
3µ

4πNη|~v2 · ~k1|
f

(
γ|ω|
|v̂2 · ~k1|2

)
(F.55)

with

f(a) =

∫ ∞
a

dx
1

x

1√
x+ 1

(F.56)

If the total pair momentum is non-vanishing, in particular, if γ
η
|~v2 · (~k1 + ~k−1)| �

(v̂2 · ~k1)2, γω, then,

δferΓV ψ†ψ† = − 3µ

4N |~v|√2γη

1√
|~v2 · (~k1 + ~k−1)|

(F.57)
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As usual, we cure the strong infra-red divergences by using a one-loop dressed

fermion propagator (F.36). Then,

δΓV ψ†ψ†(k1, k−1) = − 3µ

N |~v|2
∫

d3l

(2π)3

1

v̂2 · (~l − ~k1)− i cf
N |~v|g(lτ − k1τ , v̂1 · (~l − ~k1))

× 1

v̂2 · (~l + ~k−1) + i
cf
N |~v|g(lτ + k−1τ , v̂1 · (~l + ~k−1))

1

γ|lτ |+~l2

For simplicity, we take the external fermion momenta to lie at the hot spots, ~k1 =

~k−1 = 0. Moreover, as before, we choose the external frequencies, k1τ = k−1τ =

ω > 0. Switching to variables, l⊥, l‖, we perform the integral over l⊥. As we saw

above, the contribution from the pole in the bosonic propagator could be calculated

without dressing the fermion Green’s function and was of O(1/N) - we drop this piece

below. On the other hand, as we will see the contribution from the poles in fermionic

propagators is of O(1) in N . Moreover, since l⊥ ∼ O(1/N) at these poles, we may

ignore the dependence of the fermion self-energy on l⊥, which gives, v̂1 · ~l = 2α
α2+1

l‖.

In this manner, we obtain,

δΓV ψ†ψ† = − 6µ

cf |~v|

∫ ∞
ω

dlτ
2π

∫
dl‖
2π

1

γlτ + l2‖

× 1

g(lτ − ω, 2α
α2+1

l‖) + g(lτ + ω, 2α
α2+1

l‖)
(F.58)

We now perform the integral over lτ . This integral is convergent in the ultra-violet.

However, when ω → 0, it is logarithmically divergent in the infra-red. This infra-red

divergence comes from the region γlτ � l2‖. Changing variables to γlτ = xl2‖, we
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obtain,

δΓV ψ†ψ† = − 3µ

π2γ|~v|cf

∫ ∞
0

dl‖
l‖

∫
γω

l2‖

dx

x+ 1

1√
x+ ( 2α

α2+1
)2 − γω

l2‖
+
√
x+ ( 2α

α2+1
)2 + γω

l2‖
− 4α

α2+1

(F.59)

For l2‖ � γω, performing the integral over x to logarithmic accuracy,

δΓV ψ†ψ† ≈ −
6µα

π2γ|~v|cf (α2 + 1)

∫ ∞
√
γω

dl‖
l‖

log

(
l2‖
γω

)
= − µα

π(α2 + 1)
log2

(
Λ2

γω

)
(F.60)

F.2.4 Density vertex

In this appendix, we compute the one-loop renormalization of the density-wave

vertex, shown in Fig. 7.20b),

δΓOψψ†(k1, k−1) = 3µ

∫
d3l

(2π)3
D(l)G1

2(k1 − l)G−1
2 (k−1 − l). (F.61)

If we ignore the effects of Fermi-surface curvature, G(l) = −G(−l), and Eq. (F.61)

reduces to its counterpart in the superconducting channel with k−1 → −k−1. In the

present calculation, we will keep the effects of the Fermi-surface curvature using a

propagator,

G`
i(l) =

1

− icf
N
g(lτ , v̂`ī ·~l) + ~v`i ·~l + (n̂`‖,i ·~l)2

(F.62)

Here, we ignore any dressing of the curvature by the interactions.

For simplicity, we set external momenta to zero and choose k1τ = −k−1τ = ω > 0.

As in Appendix F.2.3, we introduce variables l⊥ = v̂2 · ~l, l‖ = εij(v̂2)ilj. Proceeding

as in Section 7.5, we keep only the contribution to the integral (F.61) from the Fermi
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liquid regime, γlτ � l2‖. Then,

δΓOψψ† =
3µ

N

∫
dl‖
2π

∫
γ|lτ |.l2‖

dlτ
2π

∫
dl⊥
2π

1

l2‖

1

iZ−1(l‖)(lτ − ω)− |~v|l⊥ − 1
2m
l2‖

1

iZ−1(l‖)(lτ + ω) + |~v|l⊥ − 1
2m
l2‖

(F.63)

Performing the integral over l⊥,

δΓOψψ† = − 3µ

N |~v|

∫
dl‖
2π

∫ l2‖/γ

ω

dlτ
2π

Z(l‖)

l2‖

lτ

l2τ +

(
Z(l‖)l

2
‖

2m

)2 (F.64)

Notice that the Fermi-surface curvature is present in the denominator of Eq. (F.64).

This is in contrast to the corresponding calculation in the superconducting channel,

where the Fermi-surface curvature drops out. Performing the integral over lτ ,

δΓOψψ† = − 3µ

2πN |~v|

∫ ∞
√
γω

dl‖
2π

Z(l‖)

l2‖
log

l4‖

(γω)2 +

(
γZ(l‖)l

2
‖

2m

)2 (F.65)

where we have ignored terms subleading in l‖ in the numerator of the logarithm.

Recall, Z(l‖) ∼ N |~v|l‖. Hence, for l‖ � (mω/N |~v|)1/3 the lτ integral is cut-off

in the infrared by the external frequency and the Fermi surface curvature may be

neglected. On the other hand, for l‖ � (mω/N |~v|)1/3 the integral is cut-off by the

curvature. By comparison, in the superconducting channel the integral is cut-off by

the external frequency in both regimes resulting in a stronger enhancement. Notice

that the cross-over scale (mω/N |~v|)1/3 is much larger than the infra-red cut-off of the

l‖ integral
√
γω. Evaluating the integral over l‖ to leading logarithmic accuracy,

δΓOψψ† = − µα

3π(α2 + 1)
log2

(
Λ2

γω

)
(F.66)
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[4] K. H. Höglund and A. W. Sandvik, Phys. Rev. B 79, 020405 (2009)

[5] J. A. Hertz, Phys. Rev. B 14, 1165 (1976)

[6] P. Calabrese and J. L. Cardy, J.Stat.Mech. 0406, P06002 (2004)

[7] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 60, 1057
(1988)

[8] D. Haug, V. Hinkov, Y. Sidis, P. Bourges, N. B. Christensen, A. Ivanov, T. C.
Keller, T. Lin, and B. Keimer, New. J. Phys. 12, 105006 (2010)

[9] V. Hinkov, D. Haug, B. Fauqu, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard,
C. T. Lin, and B. Keimer, Science 319, 597 (2008)

[10] Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005
(2002)

[11] R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choinire, F. Lalibert, N. Doiron-
Leyraud, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer,
Nature 463, 519 (2010)

[12] Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri,
M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, Science
315, 1380 (2007)

[13] M. J. Lawler, K. Fujita, J. Lee, A. Schmidt, Y. Kohsaka, C. K. Kim, H. Eisaki,
S. Uchida, J. Davis, J. Sethna, and E.-A. Kim, Nature 466, 347 (2010)

431



Bibliography 432

[14] M. Fujita, H. Goka, K. Yamada, J. M. Tranquada, and L. P. Regnault, Phys.
Rev. B 70, 104517 (2004)
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Rev. B 76, 140505 (2007)
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