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Abstract

We study a number of quantum phase transitions, which are exotic in their na-

ture and separates non-trivial phases of matter. Since quantum fluctuations, which

drive these phase transitions, are stronger in low-dimensions, we concentrate on low-

dimensional systems. We consider two di↵erent two-dimensional systems in this thesis

and study their phase transition.

First, we investigate a phase transition in graphene, one of the most famous two-

dimensional systems in condensed matter. For a suspended bilayer graphene in ⌫ = 0

quantum Hall regime, the conductivity data and mean-field analysis suggests a phase

transition from an antiferromagnetic (AF) state to a valence bond solid (VBS) state,

when perpendicular electric field is increased. This AF to VBS phase transition is

reminiscent of deconfined criticality, which is a novel phase transition that cannot

be explained by Landau’s theory of symmetry breaking. We show that in the strong

coupling regime of bilayer graphene, the AF state is destabilized by the transverse

electric field, likely resulting in a VBS state. We also consider monolayer and bilayer

graphene in the large cyclotron gap limit and show that the e↵ective action for the AF

and VBS order parameters have a topological Wess-Zumino-Witten term, supporting

that the phase transition observed in experiments is in the deconfined criticality class.

Second, we study the model systems of cuprate superconductor, which is e↵ec-

tively a two-dimensionalal system in the CuO2 plane. The proposal that the pseu-

dogap metal is a fractionalized Fermi liquid described by a quantum dimer model

is extended using the density matrix renormalization group. Measuring the Friedel

oscillations in the open boundaries reveals that the fermionic dimers have dispersion

minima near (⇡/2, ⇡/2), which is compatible with the Fermi arcs in photoemission.
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Abstract

Moreover, investigating the entanglement entropy suggests that the dimer model with

low fermion density is similar to the free fermion system above the Lifshitz transi-

tion. We also study the phase transition from a metal with SU(2) spin symmetry

to an AF metal. By applying the functional renormalization group to the two-band

spin-fermion model, we establish the existence of a strongly coupled fixed point and

calculate critical exponents of the fixed point.
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Chapter 1

Introduction

A major subject of condensed matter physics is di↵erent phases of matter and

their universal properties. In many cases, we observe that two or more phases are con-

nected by a critical point as we tune the parameters of the theory or experiment. The

critical point between ground states at zero temperature, a quantum critical point,

separates phases that are qualitatively distinct. Quantum fluctuations play a crucial

role in these quantum phase transitions, in contrast to the classical phase transitions

in finite-temperature which is mostly driven by thermal fluctuations. Understand-

ing the nature of phase transition across this quantum critical point is essential to

understanding the phases in the vicinity, and even the phases in the finite temper-

ature region above the quantum critical point, the so-called “quantum-critical-fan”

(Sachdev, 2011). The main theme of this thesis lies in the study of quantum phase

transitions present in various systems in nature.

The study of phase transition has a long history and is a widely studied sub-

ject. Here, we focus on very specific subsets of phase transitions. In the first half

of this thesis, we investigate the subject of “deconfined criticality” (Senthil et al.,

2004a,b). Conventional second order phase transition (or continuous phase transi-

tion) is explained by the Landau-Ginzburg-Wilson paradigm of symmetry breaking

(Wilson and Kogut, 1974; Landau et al., 1980). Deconfined criticality, in contrast, is

a novel class of quantum phase transition, which is not described by this paradigm.
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Chapter 1: Introduction

It exhibits a second order phase transition while the symmetry of one phase is not

a subgroup of the other phase’s symmetry, and has gapless excitation right at the

critical point. We explain more on deconfined criticality later in this chapter.

In the latter half of this thesis, we consider the phase transition between a SU(2)

symmetric Fermi liquid and an antiferromagnetic metal. This consists of two di↵erent

processes: one is the breaking of the SU(2) spin symmetry, and the other is the

Fermi surface reconstruction from a large Fermi surface of area 1 + p (p being the

doping) to small Fermi pockets with area p. Scenarios where these two processes

occur simultaneously and separately are both possible. First, we consider the case

where the Fermi surface reconstructs while the SU(2) spin symmetry is retained.

The intermediate state is the unconventional “fractionalized Fermi liquid” (Senthil

et al., 2003) and possesses fractionalized excitations. We also investigate the direct

phase transition from Fermi liquid to antiferromagnetic metal in detail. This is a

more conventional scheme as the Fermi surface reconstruction immediately occurs as

a result of the spin symmetry breaking.

In the context of the actual system of interest, we consider low-dimensional sys-

tems throughout this thesis – systems in two-dimension to be precise. The dimension-

ality of our system is relevant, since the quantum fluctuation in general gets stronger

in lower dimensions. This means that the mean-field theory results, which is exact

in the infinite dimension limit, becomes more and more inaccurate as we lower the

dimension of our system of interest. Deviation from the expected classical behavior

is beneficial to those who seek novel phases of matter. On the other hand, one-

dimension is very special (Giamarchi, 2004). Interactions in one-dimension plays a

quite di↵erent role, making the system to have a more collective nature. New physics

such as that of Luttinger liquids dominates, which is very distinct from, for example,

the physics of Fermi liquids. Therefore, loosely speaking, two-dimension is as far as

we can get with large quantum fluctuations, without encountering the unique domain

of one-dimensional systems. The two two-dimensional systems we are about to inves-

tigate are graphene (Chapters 2, 3) and cuprate superconductors (Chapters 4, 5). In

the lattice point of view, graphene is a single layer of honeycomb lattice with carbon

2



Chapter 1: Introduction

atoms on each site. Cuprates are complex layered materials, but the common layer

in all cuprates that is responsible for the interesting electronic structure is the CuO2

plane, a square lattice with copper atoms on each lattice and oxygen atoms on each

bond.

We will now briefly review some preliminary facts which are not included in the

main text. The order of the materials follows the order of its appearance in the

remainder of the thesis.

1.1 Electronic properties of graphene

The isolation of graphene, a single sheet of graphite, had a huge impact in the

condensed matter and material science community (Novoselov et al., 2004). It demon-

strated that a single layer of carbon can exist by itself in free space, which was be-

lieved not to be true at the time, in a rather (formally) simple method – peeling

graphite with adhesive tape. Graphene has become a very popular material in part

for its extraordinary mechanical and optical properties, but here we will concentrate

on the unique electronic properties which also make graphene interesting (Geim and

Novoselov, 2007; Castro Neto et al., 2009; Kotov et al., 2012).

The distinct electronic properties of graphene in the many-body physics context

originate from its dispersion. In contrast to the quadratic dispersion near the minima

of common electronic bands, electrons in undoped graphene have linear, Dirac-like

dispersion near the Fermi energy. The Fermi energy lies exactly at the Dirac point,

which is protected by sublattice symmetry, making undoped graphene a semimetal.

Moreover, the linear dispersion leads to vanishing density of states near the Dirac

points. This prevents the mechanism of screening of the long-ranged Coulomb in-

teraction, making the system qualitatively di↵erent from Coulomb-screened Fermi

liquids.

Adding another layer of honeycomb lattice of carbons to graphene, i.e., making

it a bilayer graphene, changes the dispersion of electrons somewhat drastically. The

semimetal behavior persists in bilayer graphene; however the dispersions at the Fermi

3



Chapter 1: Introduction

Figure 1.1: (a) The honeycomb lattice depicting monolayer graphene. The red
and blue dots correspond to di↵erent sublattices. (b) The dispersion of monolayer
graphene, showing only the low energy band. High energy band will be the inversion
to the Ek = 0 plane. At half-filling (undoped graphene) the low energy band is com-
pletely filled and high energy band is completely empty. Note the Dirac points are at
K± = ±( 4⇡

3
p
3
, 0).

points meet quadratically, and not linearly. The quadratic dispersion also leads to a

somewhat enhanced screening compared to monolayer graphene. Detailed derivation

of the dispersion of monolayer and bilayer graphene will follow.

The structure of graphene is a single layer honeycomb lattice of carbon atoms

(Fig. 1.1(a)). Each bond of this honeycomb lattice is a � bond, which is a covalent

bond between the sp2 hybridized orbitals of carbons. The remaining p orbital is

perpendicular to the plane of graphene, and this serves as the itinerant electron of

the system. This p orbital half-fills the ⇡ band, and therefore we consider one particle

per site in undoped graphene.

These facts are well represented in the following tight-binding model.

H = �t
X

r2⇤
A

3X

i=1

a†r br+s
i

+ h.c. (1.1)

Here, ⇤A and ⇤B are the sublattices of the honeycomb lattice, and si’s are the vectors

connecting nearest neighbors from ⇤A. In our coordinate system (Fig. 1.1(a)), we

4



Chapter 1: Introduction

define s1 = (0, 1), s2 = (
p
3
2
,�1

2
), and s3 = (�

p
3
2
,�1

2
) (We set the nearest neighbor

spacing as 1). a†r (ar) and b†r (br) are the fermion creation (annihilation) operators

acting on ⇤A and ⇤B, respectively.

The energy spectrum of this Hamiltonian is shown in Fig. 1.1(b). It consist of

two distinct Dirac points, K± = ±( 4⇡
3
p
3
, 0), and the dispersion is linear at the Dirac

points. We can linearize the spectrum around the Dirac points, k = K±+p, and this

gives the expected linear dispersion of low-energy electrons.

✏p = ± |p| (1.2)

Now we turn to the dispersion of bilayer graphene. Distinguished by the stacking

structure, bilayer graphene exists in AA- and AB-stacked form. In this thesis, we

concentrate on the more common AB-stacked (or Bernal-stacked) form, where only

half of the carbon atoms are on top of each other. The tight-binding Hamiltonian for

the AB-stacked bilayer graphene is,

H = �t
X

r2⇤
A

3X

i=1

a†r br+s
i

� t
X

r2⇤
C

3X

i=1

c†r dr+s
i

� t?
X

r2⇤
A

a†rdr + h.c.. (1.3)

⇤C and ⇤D are the two sublattices in the additional layer, and c†(c), d†(d) are the

fermion creation (annihilation) operators acting on the sublattices. t? is the tight

binding hopping parameter between the layers which we assume is real. Note that

⇤A and ⇤D are the same in the plane of graphene.

After the same procedure as in the monolayer graphene, we obtain the low-energy

dispersion near the K± points. The new dispersion has four bands and now is

quadratic instead of being linear in the monolayer case.

✏p =
1

2
(±t? ±

q
4|p|2 + t2?)

=

8
<

:
± |p|2

t2?
+ O(p3)

±
⇣
t? + |p|2

t2?

⌘
+ O(p3)

(1.4)

Note that in the first line of the above equation, two ±’s can have all four combi-

nations. There are two quadratic touching bands and two high-energy bands with a

gap of order ⇠ t?.

5



Chapter 1: Introduction

Figure 1.2: (Weitz et al., 2010) Conductivity data for suspended AB stacked bi-
layer graphene. Magnetic and electric fields are both perpendicular to the plane of
graphene. The dashed line is added to the original figure and indicates our domain
of interest.

One interesting result of the dispersions calculated above is the anomalous integer

quantum Hall e↵ect seen in monolayer and bilayer graphene. Graphene systems in the

quantum Hall regime and the symmetry breaking of the SU(4) spin-valley symmetry

has been extensively investigated (Zhang et al., 2005; Novoselov et al., 2006; Nomura

and MacDonald, 2006; Bolotin et al., 2009; Weitz et al., 2010; Feldman et al., 2012).

The experimental result which will be the key motivation for Chapters 2 and 3 is also

from graphene in quantum Hall regime. Fig. 1.2 is the conductivity measurement

data in suspended bilayer graphene with both perpendicular magnetic and electric

fields (Weitz et al., 2010). One can see along the constant B-field line (depicted in

red dashed line), there exists an insulator-to-insulator phase transition. This phase

transition will be of the main focus of Chapters 2 and 3.

Finally, it is worth mentioning that graphene physics started a new field of two-

6



Chapter 1: Introduction

dimensional materials. Boron nitride, a cousin of graphene with the same honeycomb

lattice but with boron and nitrogen in the two sublattices, has been extensively stud-

ied after the advent of graphene, as well as transition-metal dichalcogenide monolay-

ers, which are single layer semiconductors. Moreover, the field is evolving into the

research of so-called “Van der Waals heterostructures,” which provides a very rich

arena of stacked two-dimensional materials (Geim and Grigorieva, 2013).

1.2 Deconfined criticality

Deconfined criticality is a critical theory of second order phase transition which is

out of the Landau-Ginzburg-Wilson paradigm (Senthil et al., 2004a,b). One classic

example of this phenomenon is the Néel to valence bond solid (VBS) transition in

square lattice. Néel phase breaks the SU(2) spin symmetry and VBS phase breaks

the translation symmetry. The symmetry of the two phases, together with their order

parameters, have very distinct structures. Therefore, the Landau’s theory of symme-

try breaking will suggest one of the following scenarios: (i) the phase transition is first

order; (ii) there are two second order phase transition, with coexistence region in the

middle; (iii) a single second order phase transition takes place with fine-tuned param-

eters. However, deconfined criticality suggests a direct continuous phase transition

without any fine-tuning of parameters. At the deconfined critical point, the theory

has fractionalized excitations, as well as a gapless ‘photon’ excitation. There is no

direct experimental signature of deconfined criticality yet, but numerical evidences

have been reported (Sandvik, 2007; Block et al., 2013).

The field theory of the Néel to VBS deconfined criticality is described in a CP 1

model. We write the Néel order parameter ~N in the CP 1 parameterization,

~N = z⇤↵~�↵�z�. (1.5)

Here, the z fields are the fractionalized spinon field, and ~� is the spin Pauli matrices.

The CP 1 parameterization has a gauge redundancy for the local phase rotation, and

therefore the spinons are coupled to a compact U(1) gauge field, aµ. The critical

7



Chapter 1: Introduction

theory of this spinon field coupled to the gauge field is written as a CP 1 model:

Lz =
2X

↵

|(@µ � iaµ)z↵|2 + s|z|2 + u(|z|2)2 + (✏µ⌫�@⌫a�)
2. (1.6)

One conceptual route in describing deconfined criticality is through topological

defects (Levin and Senthil, 2004). Let us again consider the example of Néel to VBS

transition in a square lattice. As we approach the critical point starting from the deep

VBS phase, topological defects of the VBS emerge. The topological defects of VBS

are vortices of the Z4 order parameter. An interesting observation is that one cannot

construct a featureless vortex of the VBS order parameter. Whenever one creates a

VBS vortex, there must be a site at the core which is not part of any singlet bond

(Fig. 1.3(a)). This site with the ‘dangling spin,’ is an inevitable feature of the VBS

vortex. This is geometrically due to the elongated geometry of the valance bonds;

the order parameter e↵ectively resides on the bond of the lattice, and not the site.

In contrast, if the system has the Z4 order on every site rather than on the bond; it

is possible to have a featureless vortex of the Z4 order parameter (Fig. 1.3(b)). We

have seen that VBS vortices have spin-1
2
in square lattice. Now as we move very close

to the critical point, these vortices proliferate throughout the system as VBS order

diminishes, and the vortices will condense at the critical point. However, the vortices

have spin quantum number, and the condensation of vortices results in the symmetry

breaking of the SU(2) spin symmetry. This is why Néel order naturally arises as VBS

order disappears, without any fine-tuning.

Therefore, as we write a field theory describing the phase transition between the

VBS and Néel phase, it is not su�cient only to include the order parameters of the

two phases in the theory. Their defects, VBS vortices and spin skyrmions, should also

be included in the field theory. Moreover, it should take into account the intricate

interplay between one phase and the other phase’s defect, and vice versa. This is

achieved by the Wess-Zumino-Witten (WZW) term in the case of the O(5) non-linear

sigma model where the O(5) field consists of the two VBS order parameters and

three Néel order parameters. The existence and implications of this WZW term are

discussed in detail in Chapter 3.

8



Chapter 1: Introduction

Figure 1.3: (a) VBS vortex in a square lattice, figure from Levin and Senthil (2004).
The red arrows are the Z4 order parameter and the blue dashed lines are the domain
boundaries. Note that there is a free-site at the core of the vortex. (b) Vortex of the
Z4 order parameter at each site. In this case, the vortex is featureless.

1.3 Numerical methods in strongly correlated sys-

tems

There are many numerical methods which are widely used in strongly correlated

systems. While we study a number of model systems hoping it contains the important

physics of the much more complex real world, it is often true that we are not even able

to solve the models analytically. For example, even for the Hubbard model, which was

studied extensively for more than 50 years, analytical solutions exist only for the limit

of t/U ⌧ 1 or t/U � 1 (t is the hopping parameter and U is the on-site interaction).

Of course, many analytical methods are developed to investigate the intermediate

region t/U ⇠ 1, but these have a rather limited scope. Numerical methods may

provide “computational experiments” to certain models where analytical approach

is out of reach. Although the method itself usually cannot explain the fundamental

reasoning behind the result, it provides useful guidance and insights on constructing

microscopic theories.

A number of numerical methods stem from the Wilsonian renormalization group

(RG), each of which implements its own e�cient approximation schemes. We will

9



Chapter 1: Introduction

encounter the density matrix renormalization group (DMRG) in Chapter 4, and the

functional renormalization group (fRG) in Chapter 5.

1.3.1 Density matrix renormalization group

DMRG is a numerical method which is invented to e↵ectively calculate the ground

state of a strongly correlated system in one-dimension. In the core of its algorithm, we

use the empirical knowledge that entanglements in many-body Hamiltonian ground

states are relatively small (White, 1992; Schollwöck, 2005, 2011). The renormalization

group in the name DMRG is in the sense of real space RG. However, an alternative

perspective of DMRG as a matrix product state (MPS) calculation is very useful and

can be generalized to other MPS methods such as projected entangled pair states

(PEPS) or multi-scale entanglement renormalization ansatz (MERA).

DMRG is an intrinsically one-dimensional method which is extremely powerful.

Its first result of S = 1 antiferromagnetic Heisenberg chain in White and Huse (1993)

was surprisingly accurate, considering the computing power 20 years ago. However,

the limitation of DMRG also comes from its one-dimensional nature. For its appli-

cations to two-dimensions, one needs to define a one-dimensional path covering the

system, and the calculation is not as e↵ective as in one-dimension. Two-dimensional

calculations are mostly done in cylinder geometry. The amount of computation scales

linearly as we increase the system size in the cylinder direction, but scales exponen-

tially in increasing circumference direction. Therefore, the circumference dimension

is the limiting factor in studying two-dimensional systems, and finite-size scaling is

needed for quantities for thermodynamic limit. Except for systems with very low

entanglement, computing the DMRG in the torus geometry is computationally very

costly. One can instead implement the infinite system DMRG, which performs DMRG

in an e↵ectively infinite cylinder.

DMRG also has much advantage when studying entanglement entropies of a sys-

tem (Laflorencie et al., 2006; Eisert et al., 2010; Jiang et al., 2012; Rodney et al., 2013).

Thanks to the MPS form of the DMRG wavefunction, the calculation of entanglement

entropy (and more generally the n-th Rényi entropy) is relatively straightforward.

10



Chapter 1: Introduction

We will use DMRG extensively in Chapter 4 to obtain the density profile of the

ground state and study the entanglement entropy of the system.

1.3.2 Functional renormalization group

fRG is a collection of methods which systematically approximates the Wilsonian

RG process (Salmhofer et al., 2004; Kopietz et al., 2010; Metzner et al., 2012). In the

center of fRG is the “exact flow equation”, also known as the “Wetterich equation,”

which is as follows,

d

d⇤
�⇤
R[�, �̄] =

1

2
Str

⇢
Ṙ⇤

h
�(2)⇤
R [�, �̄] +R⇤

i�1
�
. (1.7)

Here, � are the fields of the theory; it can be fermions, bosons, or a composite of

both. � is the cuto↵ dependent e↵ective action and it interpolates smoothly between

the bare action and the fully e↵ective action – when the cuto↵ scale (⇤) is at UV,

� is the bare action, and when ⇤ is at IR (⇠ 0), � becomes the e↵ective action.

The (2) in the superscript means it is a second derivative in the fields, and Str is

a supertrace which is same as the normal trace but includes a (�1) factor in the

fermionic sector. R is a cuto↵ which regulates the IR divergence. Among a number

of di↵erent cuto↵ schemes, we will be using an additive Litim cuto↵. Litim cuto↵ has

several advantages including the fact that it distorts the bare green’s function less,

and it is continuous, which is a benefit computation-wise. A detailed expression for

the Litim cuto↵ will be in the main text. This exact flow equation is exact in the

sense that this equation can be obtained by writing down the functional integration

form of the cuto↵ dependent e↵ective action, and di↵erentiating it with the cuto↵

scale.

The exact flow equation has a neat compact form, but it cannot be solved without

approximation. We have a number of approximation schemes to proceed. The first

is the vertex expansion. This procedure expands the e↵ective action in powers of the

field. As a result, we will get one flow equation for all field combinations and they

will compose an infinite hierarchy. Since it is impossible to solve the infinite sets of

equations, we truncate this hierarchy at some point. Although we have eliminated
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infinite numbers of flow equations, the remaining equations are still very complicated.

This is because self-energy and vertex functions have momentum and frequency de-

pendence. The second approximation, derivative expansion, can be used to simplify

the each flow equations. Derivative expansion is expanding the self-energy and vertex

functions in powers of momenta and frequency, and keeping the most relevant terms

which are the lowest powers in the expansion. This gives a minimal and e�cient

scheme for obtaining critical exponents. Another popular alternative is to use a mo-

menta or frequency grid, and solving order of thousands of coupled flow equations

(Halboth and Metzner, 2000; Zanchi and Schulz, 2000; Honerkamp and Salmhofer,

2001).

One great advantage of fRG is that it is capable of considering every possible

instability in equal footing. Moreover, since the approximation scheme is very sys-

tematic, one can control the approximation relatively easily. The method of fRG will

be the central method of computation in Chapter 5.

1.4 Organization of the thesis

Starting from the next chapter, we will present a detailed study on novel quantum

phase transitions in graphene and cuprates, building upon the materials from this

chapter. The remainder of the thesis is organized as follows.

In Chapter 2 we propose that bilayer graphene can provide an experimental re-

alization of deconfined criticality. Current experiments indicate the presence of Néel

order in the presence of a moderate magnetic field. The Néel order can be destabilized

by application of a transverse electric field. The resulting electric field induced state

is likely to have valence bond solid order, and the transition can acquire the emergent

fractionalized and gauge excitations of deconfined criticality.

In Chapter 3 we consider the interplay between the antiferromagnetic and Kekulé

valence bond solid orderings in the zero energy Landau levels of neutral monolayer

and bilayer graphene. We establish the presence of Wess-Zumino-Witten terms be-

tween these orders: this implies that their quantum fluctuations are described by

12



Chapter 1: Introduction

the deconfined critical theories of quantum spin systems. We present implications

for experiments, including the possible presence of excitonic superfluidity in bilayer

graphene.

In Chapter 4 we study a recently proposed quantum dimer model for the pseudo-

gap metal state of the cuprates. The model contains bosonic dimers, representing a

spin-singlet valence bond between a pair of electrons, and fermionic dimers, represent-

ing a quasiparticle with spin-1/2 and charge +e. By density matrix renormalization

group calculations on a long but finite cylinder, we obtain the ground state density

distribution of the fermionic dimers for a number of di↵erent total densities. From

the Friedel oscillations at open boundaries, we deduce that the Fermi surface consists

of small hole pockets near (⇡/2, ⇡/2), and this feature persists up to doping density

1/16. We also compute the entanglement entropy and find that it closely matches

the sum of the entanglement entropies of a critical boson and a low density of free

fermions. Our results support the existence of a fractionalized Fermi liquid (FL*) in

this model.

In Chapter 5 we present a functional renormalization group analysis of a quantum

critical point in two-dimensional metals involving Fermi surface reconstruction due

to the onset of spin-density wave order. Its critical theory is controlled by a fixed

point in which the order parameter and fermionic quasiparticles are strongly coupled

and acquire spectral functions with a common dynamic critical exponent. We obtain

results for critical exponents and for the variation in the quasiparticle spectral weight

around the Fermi surface. Our analysis is implemented on a two-band variant of

the spin-fermion model which will allow comparison with sign-problem-free quantum

Monte Carlo simulations.

13



Chapter 2

Deconfined criticality in bilayer

graphene

2.1 Introduction

Undoped graphene, in both its monolayer and bilayer forms, is nominally a semi-

metal. However, upon application of a moderate magnetic field, it turns into an

insulator (Checkelsky et al., 2009) (in the quantum Hall terminology, this state has

filling fraction ⌫ = 0). Evidence has been accumulating from recent experiments

(Weitz et al., 2010; Freitag et al., 2012; Velasco et al., 2012; Young et al., 2012;

Maher et al., 2013; Freitag et al., 2013; Young et al., 2014) that the insulator has

symmetry breaking due to the appearance of antiferromagnetic long-range order.

Because of the applied magnetic field, the antiferromagnetic order is expected to lie

in the plane orthogonal to the magnetic field, along with a ferromagnetic “canting”

of the spins along the direction of the magnetic field: this state is therefore referred

to as a canted antiferromagnet (CAF). For the case of bilayer graphene, experiments

(Weitz et al., 2010; Freitag et al., 2012; Velasco et al., 2012; Maher et al., 2013; Freitag

et al., 2013) have also induced what appears to be a quantum phase transition out

of the CAF state. This is done by applying an electric field transverse to the layers,

leading to states with layer polarization of electric charge, but presumably without
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Chapter 2: Deconfined criticality in bilayer graphene

(a) (b) (c)

Figure 2.1: (a) Top view of AB stacked bilayer graphene. ⇤a and ⇤b are the sublattices
of layer A of graphene, which is the dashed red line in the figure; the sites of ⇤b are
colored blue, and ⇤c and ⇤d are the sublattices of layer B, which is the dashed blue
line; the sites of ⇤c are colored red. The sites of ⇤a and ⇤d are present at the same r
in the plane of graphene. ⇤b and ⇤c also makes a honeycomb lattice, which is depicted
as the thick black line. This is the e↵ective honeycomb lattice where the Néel and
VBS order reside. (b) Néel order in the e↵ective honeycomb lattice. (c) One of the
three VBS states in the e↵ective lattice. The black oval depicts the singlet bonds.
Note that 1/3 of the hexagons in the VBS state have no valence bonds, and so this
state can also be viewed as having “plaquette” order on these hexagons.

antiferromagnetic order.

Theoretically, the CAF is expected to be stable in bilayer graphene over a range

of microscopic parameters (Nandkishore and Levitov, 2010; Cvetkovic et al., 2012;

Zhang et al., 2012). Studying the instability of the CAF in a Hartree-Fock analysis,

Kharitonov (Kharitonov, 2012a,b,c,d) proposed phase diagrams that apply to the ex-

perimental configurations: he found that upon application of an electric field, the CAF

state undergoes a quantum phase transition into a state with partial-layer-polarization

(PLP) and a distinct broken symmetry: the PLP state preserves spin rotation invari-

ance, but breaks lattice symmetries in the Kekulé pattern (see Fig. 2.1(c)). The

insulating CAF and PLP states, and the transition between them, will be the focus

of our present study. There is no direct experimental evidence yet for the Kekulé

broken symmetry in the PLP state, but we hope this will be the focus of future
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experiments.

From the perspective of symmetry, we are therefore investigating the quantum

phase transition between two insulating states in an electronic model that has spin

rotation symmetry and the space group symmetries of the honeycomb lattice. One

insulator breaks spin rotation symmetry by the appearance of antiferromagnetic long-

range order in the two-sublattice pattern shown in Fig. 2.1(b): we will henceforth

refer to this insulator as the Néel state. The second insulator breaks the space group

symmetry alone in the Kekulé pattern of Fig. 2.1(c). A direct quantum phase tran-

sition between two insulators with precisely the same symmetries was first discussed

some time ago in Read and Sachdev (1990) in the very di↵erent context of correlated

electron models inspired by the cuprate high-temperature superconductors. In these

models, the Kekulé state is referred to as a valence bond solid (VBS), as the space

group symmetry is broken by singlet valence bonds between spins on the sites of the

honeycomb lattice; we include the “plaquette” resonating state within the class of

VBS states, and it breaks the honeycomb lattice symmetry in the same pattern.

More recently, the Néel-VBS transition has been identified (Senthil et al., 2004a,b)

as a likely candidate for “deconfined criticality.” In this theory, the low-energy exci-

tations in the vicinity of the transition are described by neutral excitations carrying

spin S = 1/2 (“spinons”) coupled to each other by the “photon” of an emergent U(1)

gauge field. The quantum transition itself is either second order or weakly first order;

in either case, there is evidence for the presence of the emergent gauge excitations

(Sandvik, 2007; Block et al., 2013).

In the present chapter, we will apply a strong coupling perspective to models on

the bilayer honeycomb lattice linked to the physics of bilayer graphene. Our analysis

therefore complements that of Kharitonov, who perturbatively examined the e↵ect of

interactions after projecting to the lowest Landau level. We also note other theoretical

studies by Roy and collaborators (Roy, 2013, 2014; Roy et al., 2014), which do not

project to the lowest Landau level. Our perspective is more suited to addressing the

nature of quantum fluctuations near the quantum phase transition, and for describing

the possible emergence of exotic varieties of fractionalization. We will discuss some
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of the experimental consequences of this new perspective in Chapter 2.8.

We will introduce our lattice model on the bilayer honeycomb lattice in Chap-

ter 2.2. We assume that the strongest coupling in the model is the on-site Hubbard

repulsion U , and perform a traditional 1/U expansion to obtain an e↵ective spin model

on the same lattice. In Chapter 2.3, we examine this spin model in a spin-wave ex-

pansion, and determine regimes where the Néel order is suppressed. An alternative

e↵ective spin model, related to those examined in recent numerical work, is studied

in Chapter 2.4. We study the geometric phases between the Néel and VBS orders in

Chapters 2.5 and 2.6, and comment on the structure of vortices in the VBS order in

Chapter 2.7.

2.2 The strong coupling model

We start our analysis from the extended Hubbard model for AB stacked bilayer

graphene in the strong coupling limit. A top view of AB stacked bilayer graphene is

shown in Fig. 2.1(a). In our coordinate system, we set the lattice constant to 1 and

define s1 = (1, 0), s2 = (�1/2,p3/2), and s3 = (�1/2,�p3/2):
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!
(2.1)

Here c† (c) is the fermion creation (annihilation) operator and n = c†c is the number

operator. tk and Vk are the tight-binding hopping parameter and the nearest-neighbor

interaction within the plane, t? and V? are those between the planes, and U is the

on-site interaction. We label each layer of graphene as A and B: layer A consists of
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sublattices ⇤a and ⇤b, and layer B consists of sublattices ⇤c and ⇤d. Only one of

the sublattices in each layer has common in-plane coordinate in AB stacked bilayer

graphene, and we set those to be ⇤a and ⇤d. Elsewhere in the literature, the site

labels a, b, c, and d are often referred to as A1, B1, A2, and B2, respectively,

meaning sublattice A(B) or layer 1(2). However, we find it more convenient to use

the compact notation a, b, c, d. Hopping and interaction between the layers only

occurs between these sublattices. We also include an electric field transverse to the

plane of graphene, pointing from layer A to layer B. The electric field is minimally

coupled to the density of the fermions with coupling E. We assume that E is also

smaller than U , and so both layers will be half-filled at leading order in 1/U , and the

e↵ective Hamiltonian can be expressed only in terms of spin operators on the sites.

The subleading 1/U corrections will induce terms in the e↵ective Hamiltonian, but

also induce a polarization in the layer density when computed in terms of the bare

electron operators.

Our Hamiltonian does not explicitly include the influence of an applied magnetic

field. Such a field will modify H in two ways, via a Peierls phase factor on the

hopping terms tk,?, and a Zeeman coupling. In the context of our strong coupling

expansion, the influence of the Peierls phases will only be to modify the coe�cients of

ring-exchange terms in the e↵ective spin Hamiltonian. However, such ring-exchange

terms only appear at sixth order in tk, and this is higher order than our present

analysis; so we can safely drop the Peierls phases. The Zeeman term commutes with

all other terms in H, and so does not modify the analysis below, and can be included

as needed in the final e↵ective Hamiltonian.

From this Hamiltonian, we work on the strong coupling limit, where tk, t? ⌧
U, V , and perform the t/U expansion up to O(t4/U3) order. In this expansion we

assume both tk and t? are much smaller than U , although this is not well satisfied

in the experiment (also, there is a significant di↵erence in the values of the hopping

parameters from Zhang et al. (2008), tk ⇠ 3.0 eV, t? ⇠ 0.40 eV). There are numerous

works on the t/U expansion of the Hubbard model in various lattices, including the

classic work of MacDonald et al. (1988) and Takahashi (1977) in square lattice. Extra
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care is needed while dealing the similar procedure with the above model since we have

included nearest neighbor interaction and the lattice structure is more complicated.

First, we organize the Hamiltonian in Eq. (2.1) as H = HU +Ht, where HU is the

interaction term and Ht is the kinetic term. We consider Ht as the perturbation and

rearrange it by the change of interaction energy through the hopping process,

Ht =
X

�

[T� + T��] . (2.2)

T� is the sum of all hopping terms that increases the interaction energy by �U . For

notational convenience, we restrict � to be positive and collect the decreasing energy

processes to T�� with an explicit negative sign.

By systematically performing the unitary transformation, we may obtain the e↵ec-

tive Hamiltonian H(n), which contains terms up to the order of tn+1/Un for arbitrary

n (MacDonald et al., 1988; Takahashi, 1977). We present the result of H(3) for the

system in the ground-state manifold at half-filling without long derivation:
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T��1T��2T�3T�4 . (2.3)

The above expression is a general result for a Hubbard-type Hamiltonian and will

hold for any bipartite lattice regardless of the dimension.

Applying Eq. (2.3) to our specific case of bilayer graphene, we obtain a spin
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Hamiltonian that contains every term up to the order of t4/U3,
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with the exchange couplings as,
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and,
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We have additionally defined t1 = s2 � s3, t2 = s3 � s1, and t3 = s1 � s2. Without

the electric field, the lattice symmetry guarantees the J⇥ coupling in ~S(a)
r · ~S(c)

r�s
i

and ~S(d)
r · ~S(b)

r+s
i

to be the same. However, when the field is turned on, the layer

symmetry breaks and the two J⇥ values become di↵erent. Here, we take the average

value for simplicity. This will not change the qualitative behavior unless E is very

large. Di↵erent exchange couplings defined in Eq. (2.4) are shown schematically

in Fig. 2.2. We work in the parameter range where all four exchange couplings
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Figure 2.2: Top and side views of the AB stacked bilayer graphene. Exchange cou-
plings Jk, J?, J2, and J⇥ are shown in the figure. The top view can be considered the
same as in Fig. 2.1(a), without the e↵ective honeycomb lattice depicted in thick black
line. Layers A and B are the red and blue lattices as in Fig. 2.1. In the side view, the
black lines depict the lattice sites connected by the t? hopping parameter in Eq. (2.1).
The dashed lines are guide to the eye showing that the horizontal coordinates are the
same for the two views. As we can see from the figure, Jk is between nearest neighbors
within one layer, J? is between nearest neighbors of di↵erent layers, J2 is between
next nearest neighbors within one layer, and J⇥ is between next nearest neighbors of
di↵erent layers.

are antiferromagnetic. This can be made compatible with the experimental data of

hopping parameters (Zhang et al., 2008). Moreover, in most of the parameter regime

where Jk and J? are antiferromagnetic, we find J2 and J⇥ to be positive as well.

Therefore, we have enough parameter space to explore with this model and do not

have to fine-tune the parameters.
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2.3 Spin-wave expansion

Previous studies of the bilayer antiferromagnet have focused on the square lattice

(Hida, 1990; Sandvik et al., 1995; Chubukov and Morr, 1995; Millis and Monien, 1996;

Wang et al., 2006) where the sites are stacked directly on top of each other. In these

models, as the interlayer coupling is increased, there is eventually a transition from

the Néel state to a “trivial” paramagnet in which the ground state is approximately

the product of interlayer valence bonds between superposed spins. However, here we

are considering a staggered stacking, in which no such trivial one-to-one identifica-

tion of spins between the two layers is possible. Any pairing of spins must break a

lattice symmetry, and this is a simple argument for the appearance of a VBS state.

Nevertheless, it is useful to apply the spin-wave expansion used for the square lattice

(Hida, 1990; Chubukov and Morr, 1995), and study how the intra- and inter-layer

couplings modify the staggered magnetization. This will help us determine the pa-

rameter regime over which the Néel order decreases, and a possible VBS state can

appear. However, a description of the transition to, and structure of, the VBS state

is beyond the regime of applicability of the spin-wave expansion.

Among the four exchange couplings listed in Eqs. (2.5) and (2.6), only J? and J⇥

depend on the electric field strength, E. The electric field breaks the layer symmetry,

so it is reasonable that E is only included in the exchange coupling between di↵erent

layers. We start from the Néel phase and calculate the staggered magnetization of

the bilayer graphene as a function of either J?, J⇥, or E. Since our starting point is

an SU(2) symmetry broken state, we use the Holstein-Primako↵ representation.

Starting from the e↵ective spin Hamiltonian derived in Eq. (2.4), we perform

the 1/S expansion (where S is the magnitude of the spin, and we are interested

in S = 1/2) about the antiferromagnetically ordered state by expressing the spin
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operators in terms of bosons, a, b, c, d:
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c

3X

i=1

⇣
S2 + S(�c†rcr � c†r+t

i

cr+t
i

+ c†rcr+t
i

+ c†r+t
i

cr)
⌘

+ J2
X

r2⇤
d

3X

i=1

⇣
S2 + S(�d†rdr � d†r+t

i

dr+t
i

+ d†rdr+t
i

+ d†r+t
i

dr)
⌘

+ J⇥
X

r2⇤
a

3X

i=1

⇣
S2 + S(�a†rar � c†r�s

i

cr�s
i

+ a†rcr�s
i

+ c†r�s
i

ar)
⌘

+ J⇥
X

r2⇤
d

3X

i=1

⇣
S2 + S(�d†rdr � b†r+s

i

br+s
i

+ d†rbr+s
i

+ b†r+s
i

dr)
⌘
.

(2.8)

We write this in momentum space as,

H = �3NS(S + 1)(2Jk + J?/3� 4J2 � 2J⇥) + S
X

k

 †
kM(k) k, (2.9)
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where N is the number of sites in ⇤a,  k is the boson spinor  k = (ak, ck, b
†
�k, d

†
�k),

and

M(k) =

0

BBBBB@

J̃(k) + J? J⇥�(�k) Jk�(k) J?

J⇥�(k) J̃(k) 0 Jk�(k)

Jk�(�k) 0 J̃(k) J⇥�(�k)
J? Jk�(�k) J⇥�(k) J̃(k) + J?

1

CCCCCA
,

with

J̃(k) = Jk + J2�(k)� 3J⇥,

�(k) =
3X

i=1

eik·si ,

�(k) = �6 + 2
3X

i=1

cos (k · ti) .

The Hamiltonian can be diagonalized by a bosonic version of the Bogoliubov trans-

formation (which is not a unitary transformation) as described in Sachdev (1992).

Now the staggered magnetization of the bilayer graphene can be obtained from the

diagonalized Hamiltonian. The expression for the magnetization is very complicated

with all four exchange couplings, and hard to write down in a closed form. Therefore

we present numerical values for a selected set of parameters. Fig. 2.3 shows the

calculated magnetization as a function of J? and J⇥ for parameters Jk/U = 0.089,

J2/U = 0.0095, J⇥/U = 0.0018, and J?/U = 0.028 (unless one is the variable for the

graph). These correspond to tk/U = 0.1, t?/U = 0.07, Vk/U = 0.4, and V?/U = 0.3

for the parameters in the extended Hubbard model. Since the sublattices ⇤a(⇤d) and

⇤b(⇤c) are not symmetric in AB-stacked bilayer graphene, they will in general have

di↵erent magnetization, and therefore are plotted separately (for example, sites in

⇤a(⇤d) has coordination number of 4, whereas the sites in ⇤b(⇤c) has 3). As depicted

in Fig. 2.1, the Néel and VBS states of interest reside in ⇤b and ⇤c. We are therefore

more interested in the magnetization of ⇤b than ⇤a.

We observe that the magnetization in each sublattice decreases as J⇥ increases.

This is reasonable in the sense that antiferromagnetic J⇥ increases frustration of the
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Figure 2.3: Magnetization of each sublattice in bilayer graphene as a function of
J? (left) and J⇥ (right). We used Jk/U = 0.089, J2/U = 0.0095 for both plots,
J⇥/U = 0.0018 for the left plot, and J?/U = 0.028 for the right plot.

Néel phase. However, when J? increases, the magnetization of ⇤b increases while that

of ⇤a decreases. This is mainly because J⇥ frustrates all four sublattices, but J? only

gives frustration to ⇤a and ⇤d. That is, the Néel phase in ⇤b and ⇤c is not directly

e↵ected by J?. We will explore again, in the next section, the influence of J? to ⇤b

and ⇤c in the subleading order in a perturbation theory in large J?. The result is an

antiferromagnetic coupling between spins in ⇤b and ⇤c, and a ferromagnetic coupling

between spins within ⇤b or ⇤c. This suggests a “layer-polarized antiferromagnet”

state where, for example, every spin in ⇤b is polarized up, and every spin on ⇤c is
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polarized down. So the increased magnetization of ⇤b can be explained in this manner.

This is not the scenario we expect in the Néel to VBS phase transition, because the

Néel order is becoming stronger with an increase of J?. However, there will not be

a case where J? increases alone because J⇥ coupling will also increase as we increase

the electric field. This J⇥ gives frustration to the layer-polarized order, which will

result in the decrease of the staggered magnetization. Note that, in any case, the

magnetization is smaller for ⇤a than ⇤b, which contradicts our usual intuition that

a larger coordination number agrees better with the mean-field result. However, this

result is in accordance with Lang et al. (2012), where they find the same behavior

by quantum Monte Carlo simulation for a Heisenberg model with only Jk and J?

couplings, but in a wide range of J?.

To obtain the staggered magnetization for more realistic states, including the

ones in experiments, we need to consider the change of J? and J⇥ in a consistent

manner. This is done by tuning a single parameter E, the coupling of electric field.

Using the expressions in Eqs. (2.5) and (2.6), we can find the magnetizations for each

sublattice as a function of E. As for the previous results, we only show numerical

results for selected parameters. Fig. 2.4 shows the result for the same parameters as

in Fig. 2.3, tk/U = 0.1, t?/U = 0.07, Vk/U = 0.4, and V?/U = 0.3. We observe

the magnetization of ⇤a decrease drastically from E ⇠ 0.50U and that of ⇤b starts

to decrease from E ⇠ 0.55U , although we cannot see a significant decrease in ⇤b

before the Holstein-Primako↵ theory breaks down. However, from the two plots in

Fig. 2.3 where the magnetization of ⇤b saturates as increasing J? and vanishes as

increasing J⇥, we can argue that when both J?, J⇥ are increasing the magnetization

will decrease eventually, and Fig. 2.4 is showing the onset of the decrease. This result

shows explicitly how the Néel order decreases as the electric field increases.

2.4 J1-J2 model

The fact that the magnetization of ⇤a and ⇤d decreases faster than that of ⇤b and

⇤c in the previous section can be taken as evidence that, in the phase transition we
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Figure 2.4: Magnetization as a function of electric field coupling, E. Parameters used
are tk/U = 0.1, t?/U = 0.07, Vk/U = 0.4, and V?/U = 0.3. According to Eqs. (2.5)
and (2.6), these parameters match the exchange coupling values used in Fig. 2.3.

are concerned with, it is su�cient to consider sublattices ⇤b and ⇤c in the e↵ective

theory, i.e., the e↵ective single layer honeycomb depicted in Fig. 2.1. The spins in ⇤a

and ⇤d will form singlets, while ⇤b and ⇤c still remain in the Néel phase and remain

the important degrees of freedom.

So now we want to directly study an e↵ective model for only the sites in sublattices

⇤b and ⇤c. Following again the strong coupling limit, the resulting theory will also

become a spin model. We write the J1-J2 spin model for the e↵ective honeycomb

lattice. That is,

H = J1

3X

i=1

X

r2⇤
b

~S(b)
r · ~S(c)

r+s
i

+ J2

3X

i=1

"
X

r2⇤
b

~S(b)
r · ~S(b)

r+t
i

+
X

r2⇤
c

~S(c)
r · ~S(c)

r+t
i

#
. (2.10)

The J2 coupling is t4/U3 order in the perturbation in Sec. 2.2, and is calculated in

Eq. (2.5). However, from the lattice structure in Fig. 2.1, one can see that J1 is in

t6/U5 order in the same perturbation theory. Calculating perturbation in two extra

orders is a straightforward but tedious task, so we seek an alternative way to compute

J1. We do this by assuming J? � Jk, and perform the perturbation expansion in
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Jk/J?. Admittedly, because tk is actually significantly smaller than t? in graphene,

this perturbation expansion is rather far from the experimental situation; however,

the regime Jk � J? o↵ers a tractable limit for studying the phase transition using

existing results so seems worthwhile to explore. In the opposite limit of J? ⌧ Jk,

qualitatively, the magnetization of ⇤a and ⇤b will be the same although they may be

small. Therefore our assumption of J? � Jk will be true in regions where hS(b)
z i �

hS(a)
z i. In Fig. 2.4, this is the case when E/U > 0.55. This means that the large J?

limit is more valid near the phase transition, and thus suits our purpose of studying

the vicinity of the transition point.

The Jk/J? expansion has two contributions to the e↵ective honeycomb lattice in

the order of J2
k/J?, one to the J1 term and the other to the J2 term. The contributions

from the Jk/J? expansion follows from the e↵ective Hamiltonian method (Cohen-

Tannoudji et al., 1992),

J1 =
J2
k

J?
=

4 t4k
t2?

U � V? �
⇣

E2

U�V?

⌘

⇣
U � Vk �

⇣
V 2
?

U�Vk

⌘⌘2 ,

J2 = �
J2
k

2J?
= �2 t4k

t2?

U � V? �
⇣

E2

U�V?

⌘

⇣
U � Vk �

⇣
V 2
?

U�Vk

⌘⌘2 . (2.11)

From our assumption that Jk and J? are antiferromagnetic, it follows that the contri-

bution to J1 is antiferromagnetic and J2 is ferromagnetic. For a complete description

for the J1 � J2 model in the e↵ective honeycomb lattice up to the desired order, we

need to add the J2 contributions from the t/U expansion and Jk/J? expansion. The
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final J1 � J2 model will be Eq. (2.10) with exchange couplings of

J1 =
4 t4k
t2?

U � V? �
⇣

E2

U�V?

⌘

⇣
U � Vk �

⇣
V 2
?

U�Vk

⌘⌘2 ,

J2 =
4 t4k

(U � Vk)2 � V 2
?

 
2(U � Vk)

�
(U � Vk)2 + V 2

?
�

�
(U � Vk)2 � V 2

?
�2 � 1

U

!

� 2 t4k
t2?

U � V? �
⇣

E2

U�V?

⌘

⇣
U � Vk �

⇣
V 2
?

U�Vk

⌘⌘2 . (2.12)

The ground state of the above J1-J2 model can only be solved numerically. How-

ever, qualitative behaviors can be studied from the E dependence of J1 and J2. Di-

rectly from Eq. (2.12), one can see that J1 decreases and J2 increases as E increases.

Since the first term of J2 in Eq. (2.12) is positive, we always have a window of E where

both J1 and J2 are positive. Inside that window, the ratio of J2/J1 will increase as E

increases, until J1 decreases to 0. We know that for J2/J1 ⌧ 1 the ground state will

be a Néel state, including when J2 < 0, where J2 supports the Néel state. However, a

positive J2 starts to frustrate the Néel phase as J2/J1 increases. This will eventually

destroy the Néel state at a critical value of J2/J1, and a phase transition will occur.

Numerically, the J1-J2 model in a honeycomb lattice has recently been investigated

via a variety of methods (Clark et al., 2011; Albuquerque et al., 2011; Ganesh et al.,

2013; Zhu et al., 2013; Gong et al., 2013), and related models have been studied in

Pujari et al. (2013) and Lang et al. (2013). These studies all find a transition out of

the Néel state to a Kekulé VBS state (or the closely related plaquette state, which

has the same pattern on symmetry breaking on the honeycomb lattice). Ganesh et al.

(2013), Zhu et al. (2013), and Gong et al. (2013) tune J2/J1, and find evidence for

an apparent second-order phase transition from Néel state at small J2/J1 to VBS

state at larger J2/J1, where the critical value J2/J1 ⇠ 0.22—0.26. The studies can

be therefore considered as the numerical analysis of our J1-J2 model in the window

of E where J1, J2 > 0. Since the critical value of J2/J1 in the DMRG study can be

always reached in our model through a certain value of E, we may argue that the

same phase transition from Néel to VBS happens in the bilayer graphene system as
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well, when tuning the electric field. So the J1-J2 model in the e↵ective honeycomb

lattice not only supports the Néel to VBS phase transition in the bilayer graphene,

but also provides indirect evidence that the transition is in the deconfined category.

2.5 Geometric phases

Our analysis so far has examined the potential instability of the Néel phase to

a “quantum disordered” phase, which preserves spin rotation invariance. General

arguments were made in Read and Sachdev (1990) that any such phase in a model

with the symmetry of the honeycomb lattice must have VBS order: these arguments

relied on Berry phases of “hedgehog” tunneling events in the Néel order. In Fu

et al. (2011) (see also Yao and Lee (2010)), these arguments were recast in terms of

geometric phases associated with skyrmion textures, which led to a coupling in the

action between the temporal derivative of the VBS order and the skyrmion density

in the Néel order. This section will obtain a similar term for the case of the bilayer

antiferromagnet. This term will be obtained in a weak coupling model, and we will

comment on the relationship to the strong coupling results at the end of the present

section.

Since we already know the ground states around the critical point are Néel and

VBS states, we write a weak coupling Hamiltonian and later include interaction e↵ects

and the electric field as a Néel and VBS mean-field order parameter. The weak

coupling Hamiltonian in a bilayer honeycomb lattice is merely a tight-binding model.

Using the parameters and operators defined as in Sec. 2.2, this is

Hw =� tk
X

r2⇤
a

3X

i=1

c(a)†r c(b)r+s
i

� tk
X

r2⇤
d

3X

i=1

c(d)†r c(c)r�s
i

� t?
X

r2⇤
a

c(a)†r c(d)r � t2
X

r2⇤
b

3X

i=1

c(b)†r c(c)r+s
i

+ h.c.. (2.13)

One extra term is added to Eq. (2.1), which is the t2 term describing the direct

hopping between sublattice ⇤b and sublattice ⇤c. Although t2 is very small compared

to tk and t? in realistic systems as we ignored in the previous calculations, we keep the
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t2 term in the current section to use it as a parameter interpolating between bilayer

and monolayer graphene (McCann and Fal’ko, 2006).

The band structure of this Hamiltonian consists of four bands where two of them

quadratically touch at the two K points, which we label them as K± = ±(0, 4⇡
3
p
3
). At

half-filling, the Fermi level is right at the touching points, and the low-energy physics

is govern by the K± points of the quadratically touching bands. Also at the K±

points, the band gap between the quadratically touching bands and the remaining

bands is t?. Therefore, by considering energies much smaller than t? near the K±

points, we write a low-energy e↵ective theory,

He↵
w =

X

p

 †(p)

v2

t?

��
p2x � p2y

�
sx + (2pxpy) ⇢zsy

�
+ v2 (pxsy + py⇢zsx)

�
 (p),

(2.14)

where v = 3tk/2 and v2 = 3t2/2. Here, px and py are the momentum components

measured from the K± points, and ⇢ and s are the Pauli matrices in valley and layer

space, respectively. Only sublattices ⇤b and ⇤c remain in the e↵ective theory, and

 (p) is a four-component spinor with each component from two sublattices and two

K± points. ⇤b and ⇤c also form a honeycomb lattice and we again see that the

e↵ective low-energy theory of a bilayer honeycomb lattice lives in a single honeycomb

lattice.

Now, we impose that the system is in the Néel phase. In the ordered state, we

may choose the Néel order parameter to be in z-direction, and we can simply add

HN
z

= m�zsz to the e↵ective Hamiltonian, where � are the spin Pauli matrices. The

Néel order opens up a gap of size 2m at the K± points. H0 = He↵
w + HN

z

is the

final e↵ective Hamiltonian for the system in the Néel phase and will serve as the

unperturbed Hamiltonian.

As the system approaches the critical point, the Néel order and VBS order fluc-

tuations become larger. Therefore, as in Fu et al. (2011), both fluctuations should

be taken into account for a proper study of the system near the critical point. We

treat these two as a perturbation. Let us write the fluctuating Néel order parameter

as ~m = m(nx, ny, 1) and the complex VBS order parameter as V = Vx + iVy. The
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Hamiltonian of nx, ny is HN
xy

= msz (nx�x + ny�y). Recalling that the Kekulé type

of bond order can be written as a modulation on the tight binding hopping parameter,

(Hou et al., 2007, 2010)

HV = �
X

r2⇤
b

3X

i=1

�tr,i c
(b)†
r c(c)r+s

i

+ h.c., (2.15)

�tr,i = V eiK+·s
iei(K+�K�)·r/3 + c.c.,

we find HV = �sx (Vx⇢x � Vy⇢y) as the Hamiltonian for the VBS order parameter. So

the perturbation H1 is H1 = HN
xy

+HV and now we can write the full Hamiltonian,

H =H0 +H1

=

✓
v2

t?

��
p2x � p2y

�
sx + (2pxpy) ⇢zsy

�
+ v2 (pxsy + py⇢zsx) +m�zsz

◆

+ (m (nx�x + ny�y) sz � (Vx⇢x � Vy⇢y) sx) . (2.16)

Note that the terms proportional to the antiferromagnetic order, m, anti-commute

with all the terms in Eq. (2.14), indicating they will open up a gap in the electronic

spectrum. On the other hand, the terms proportional to the VBS order anti-commute

only with the v2 term, but not with the v2/t? term, indicating that VBS order alone

does not open a gap in the purely quadratic-band-touching spectrum.

Writing in a specific basis,  †(p) = (c(b)†p+ , c(b)†p� , c(c)†p+ , c(c)†p� ), where ± corresponds

to the K± points the momentum is measured from

H =
0

BBBBB@

~m · ~� 0 � v2

t?
⇡2 + v2⇡† �Vx � iVy

0 ~m · ~� �Vx + iVy � v2

t?
⇡† 2 � v2⇡

� v2

t?
⇡† 2 + v2⇡ �Vx � iVy �~m · ~� 0

�Vx + iVy � v2

t?
⇡2 � v2⇡† 0 �~m · ~�

1

CCCCCA
. (2.17)

Here, ⇡ = ipx + py is defined for notational convenience. Now, it is more apparent

that v2 = 0 gives the Hamiltonian for bilayer graphene and v = 0 gives that of

the monolayer graphene with opposite chirality. Therefore, we may tune v2/v to

interpolate between monolayer and bilayer graphene.
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Note that the electric field E in Eq. (2.1) is not included in this final form of

the Hamiltonian. However, it is encoded in the order parameters as we have seen

in the previous sections how electric field tunes the Néel to VBS transition. The

electric field has other e↵ects as well, as changing the energy gap of the VBS phase

for example, but this will have only quantitative e↵ects in the calculation. The result

of the calculation with explicit electric field will be presented in the following section.

From Eq. (2.16), we integrate out the fermions to get an e↵ective theory for the

fluctuating order parameters. The coupling between the Néel and VBS order pa-

rameters appears at fourth order of one-loop expansion. For notational simplicity,

we follow Fu et al. (2011) and combine the four real order parameters to a multi-

component bosonic field, Aµ(x, y, ⌧) = (Vx/m, Vy/m, nx, ny). µ = 0, 1, 2, 3 label the

di↵erent fields in Aµ and are not Lorentz indices. In momentum space, the four point

couplings between the bosonic fields are,

S1 =
X

µ,⌫,�,�

Z 3Y

i=1

dpiK
µ⌫�;�
p1p2p3

Aµ(p1)A⌫(p2)A�(p3)

⇥A�(�p1 � p2 � p3). (2.18)

Among this bosonic coupling, we are most interested in the topological term,

Stop = i

Z
dxdyd⌧

�
KjN⌧ jV⌧ +K 0jNx jVx +K 0jNy jVy

�
, (2.19)

which is the coupling term between the skyrmion current jN↵ and VBS current jV� :

jN↵ ⌘ ✏↵��✏abcn
a@�n

b@�n
c,

jV� ⌘ Vx@�Vy � Vy@�Vx. (2.20)

This topological term is of interest to us because it provides an argument that the

system is in VBS phase in the disordered side; as mentioned in the beginning of this

section, this is analogous to arguments in Read and Sachdev (1990) and Fu et al.

(2011).

As explained in detail in Fu et al. (2011), we can extract the couplings K and K 0
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from Kµ⌫�;�
p1p2p3

in Eq. (2.18). The final expression for K is as follows:

8K = K234;1
⌧xy +K243;1

⌧yx +K342;1
xy⌧ +K324;1

x⌧y +K423;1
y⌧x +K432;1

yx⌧

� �
K243;1

⌧xy +K234;1
⌧yx +K432;1

xy⌧ +K423;1
x⌧y +K324;1

y⌧x +K342;1
yx⌧

�

� �
K134;2

⌧xy +K143;2
⌧yx +K341;2

xy⌧ +K314;2
x⌧y +K413;2

y⌧x +K431;2
yx⌧

�

+K143;2
⌧xy +K134;2

⌧yx +K431;2
xy⌧ +K413;2

x⌧y +K314;2
y⌧x +K341;2

yx⌧ , (2.21)

where K 0 can also be written in a similar way. Here, Kµ⌫�;�
↵�� are defined as the

coe�cient of the term linear in p1p2p3:

Kµ⌫�;�
p1p2p3

= · · · +Kµ⌫�;�
↵�� p↵1p

�
2p

�
3 + · · · . (2.22)

The lowest order contribution to S1 arises from the one-loop expansion, when we

integrate out the fermion loop. Therefore, the calculation of Kµ⌫�;�
↵�� eventually boils

down to calculating box diagrams, as in Fig. 2.5. Note that in Eq. (2.16), the vertex

functions between bosonic fields and fermions have no momentum dependence and

therefore the p↵1 , p
�
2 , p

�
3 dependence comes from the propagator.

After evaluating a number of diagrams and substituting Kµ⌫�;�
↵�� ’s to Eq. (2.21) and

its K 0 analog, we obtain the topological couplings K and K 0 of the system. First, we

consider the bilayer limit of v2/v = 0. The integral expressions for K and K 0 are,

K =
1

8⇡3

Z
dk0dkxdky

8m5t6?v
4
�
k2
x + k2

y

�
�
(k2

0 +m2)t2? + (k2
x + k2

y)
2v4

�4 ,

K 0 =
1

8⇡3

Z
dk0dkxdky

4m5t6?v
4
�
3(k2

x � k2
y)(k

2
0 +m2)t2? � (k2

x + k2
y)

2(13k2
x + 3k2

y)v
4
�

�
(k2

0 +m2)t2? + (k2
x + k2

y)
2v4

�5

=
1

8⇡3

Z
dk0dkxdky

4m5t6?v
4
�
3(�k2

x + k2
y)(k

2
0 +m2)t2? � (k2

x + k2
y)

2(3k2
x + 13k2

y)v
4
�

�
(k2

0 +m2)t2? + (k2
x + k2

y)
2v4

�5 .

(2.23)

The first expression for K 0 is the coupling of jNx jVx and the second is of jNy jVy . They

map to each other by the transformation kx $ ky, which gives the same value when

integrated on a region which has kx $ ky symmetry as well. We can obtain the K

and K 0 of the e↵ective theory by integrating kx and ky in the whole space (Abanov
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Figure 2.5: The box diagram needed for the calculation of K and K 0. The p↵1p
�
2p

�
3

coe�cient of this box diagram givesKµ⌫�;�
↵�� , whichK, K 0 consist of. The exact relation

between K and Kµ⌫�;�
↵�� is given in Eq. (2.21). Note that every momentum dependence

comes from the propagator.

and Wiegmann, 2000). In zero temperature, performing the k0, kx, and ky integral

gives K = �1/16⇡ and K 0 = 1/16⇡. This is a quantized value that does not depend

on microscopic parameters m, t?, or v.

Next, we consider the monolayer limit of v2/v � 1. This can be integrated

analytically and gives K = K 0 = 3/32⇡. They are quantized as well as in the bilayer

limit, and the values are consistent with the result from Senthil and Fisher (2006).

We also compute K and K 0 as a function of v2/v and observe how it changes in

the intermediate regime of monolayer and bilayer. The result in Fig. 2.6 shows the

aforementioned limiting values of K = K 0 = 3/32⇡ for monolayer and K = �K 0 =

�1/16⇡ for bilayer, and a continuous interpolation in-between. K and K 0 of the

intermediate regime does not remain quantized, and thus depends on the parameters

of the theory. Through a number of numerical calculations, we observe that the

intermediate values at a given v2/v depend on a single parameter m/t?. Starting

from the bilayer (v2/v = 0), the convergence to the single layer limit occurs more
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Figure 2.6: The topological couplings K and K 0 as a function of v2/v. We assume
tk = t? = m, and the y-axis is in the unit of 1/16⇡. In the bilayer limit of v2/v = 0,
the couplings are K = �1/16⇡ and K 0 = 1/16⇡. Both K and K 0 approaches 3/32⇡
in the monolayer limit of v2/v � 0.

rapidly for smaller values of m/t?.

The presence of these non-zero terms supports the proposal that the general struc-

ture of the coupling between the Néel and VBS orders is the same as that in the single

layer honeycomb lattice. But the values of the geometric phases di↵er in the weak

coupling theory, although we expect them to coincide in the strong coupling theory

(by the arguments of Read and Sachdev (1990)). This di↵erence suggests that the

weak coupling analysis points to a first-order Néel-VBS transition, while deconfined

criticality is preferred at strong coupling.

2.6 Geometric phases in electric field

We revisit the geometric phase calculation in Sec. 2.5 including the electric field

to the Hamiltonian. As in Eq. (2.26), electric field couples to the layer space as an
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extra �Esz term. The modified Hamiltonian is,

H =

✓
v2

t?

��
p2x � p2y

�
sx + (2pxpy) ⇢zsy

�
+ v2 (pxsy + py⇢zsx)

+m�zsz
⌘
+ (m (nx�x + ny�y) sz � (Vx⇢x � Vy⇢y) sx)� Esz. (2.24)

The details of the calculation are the same as in Sec. 2.5, where the only di↵erence

comes from the new Hamiltonian. The couplings K and K 0 as a function of v2/v

in the presence of electric fields E = 0.3m and E = 0.4m are shown in Fig. 2.7(a),

together with the E = 0 case already in Fig. 2.6.

K and K 0 in electric field both show qualitatively similar behavior to the zero-

electric-field situation. However, one should notice that the quantitative values are

di↵erent not only in the intermediate region, but also at the v2/v = 0 and v2/v � 0

limits, where we found that the values at E = 0 were quantized. The reason for

this deviation is that the coupling matrices of the Néel order parameter (�isz) and

of the electric field (sz) commute, and as a result, the Néel state and the electric

field induce gapped states that can mix with each other. Although they have similar

dispersion in the weak coupling theory, the two states have very di↵erent topological

features. For example, the gapped state by electric field does not have topological

defects as skyrmions, whose geometric phase leads to nonzero K and K 0 coupling

terms. Explicit calculation also confirms K = K 0 = 0 when there is only electric field

and no Néel order parameter in the theory.

We also calculate K and K 0 in the bilayer (v2/v = 0) and monolayer (v2/v � 1)

limits for various values of E. In Fig. 2.7(b), we see that K 0 of the bilayer limit

increases as electric field increases up to E/m = 1. E = m is the fine tuned value of

E where the energy gap vanishes. Both K and K 0 diverge at this gapless point. Also,

the ratios of K and K 0 can be written in a simple formula. Let us write K(v2/v) and

K 0(v2/v) as a function of v2/v for notational convenience. First, the K(0) and K 0(0)

are related as,

K(0)

K 0(0)
= �1� 2

✓
E

m

◆2

, (2.25)
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Figure 2.7: (a) A plot of K and K 0 with di↵erent values of electric field, as a function
of v2/v. We assume tk = t? = m and thus the graph with E = 0 is identical to
Fig. 2.6. With the nonzero electric field values, the graph shows similar behavior but
di↵erences in the exact values. (b) The value of K 0 in the bilayer limit (v2/v = 0) as
we increase the electric field. The value monotonically increases as we increase the
electric field. The gap closes at E = m and K 0, K diverges at this point.
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when E < m. This gives the correct limiting value for the E = 0 case, where

K(0) = �K 0(0) = �1/16⇡. Also, as one can check roughly in Fig. 2.7(a), K(1) =

K 0(1) = 1.5K 0(0) strictly holds as in the E = 0 limit.

2.7 Zero mode in VBS vortex

Another approach to the theory of deconfined criticality is via the structure of

vortices in the VBS order parameter. Levin and Senthil (2004) presented general

arguments that each such vortex must carry spin S = 1/2. In some case, this fact is

already apparent by the presence of zero modes in a weak coupling theory of the VBS

state: this is the case in monolayer graphene (Hou et al., 2007, 2010). We present a

corresponding computation for the bilayer case, and do not find such zero modes. We

view this as a feature of the weak coupling approach, rather than the inapplicability

of the general strong coupling arguments of Read and Sachdev (1990).

We start in the deep VBS phase and may ignore the Néel order for now. Therefore

we adapt the Hamiltonian (2.16) with m = 0. In this section we return to t2 = 0,

and set the Fermi velocity v = 3tk/2 equal to one. VBS order parameter, V (r) =

Vx(r) + iVy(r), now has a nonzero expectation value, and let us allow it to fluctuate

over space. We will assume the fluctuation is in a much longer length scale than the

lattice constant, which is set to 1, so we can treat the order parameter as a constant

during Fourier transform. Moreover, we include the electric field explicitly as this

will open up an energy gap of the system. The Hamiltonian in the VBS phase is,

H =
1

t?

�
p2x � p2y

�
sx +

1

t?
(2pxpy) ⇢zsy

� (Vx(r)⇢x � Vy(r)⇢y) sx � Esz, (2.26)

where ⇢ and s are the Pauli matrices in valley and layer space, respectively. Note that

in the bilayer graphene, the Kekulé VBS order does not open up a gap but create

nodal lines which form a circle in the Brillouin zone. The nodal line is protected

by the layer symmetry of the system. Discussing zero modes in a gapless system

is meaningless, however, the transition is at a nonzero electric field. Electric field
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couples di↵erently with the density of the electrons in di↵erent layers and breaks the

layer symmetry. This opens up a gap at the nodal line and it is now legitimate to

discuss zero modes of the system.

As in Sec. 2.5, choosing a specific basis,  †(p) = (c(b)†p+ , c(b)†p� , c(c)†p+ , c(c)†p� ), we can

represent the Hamiltonian as a 4⇥ 4 matrix:

H =

0

BBBBBB@

�E 0 � 1
t?
⇡2 � V (r)

0 � E � V (r) � 1
t?
⇡† 2

� 1
t?
⇡† 2 � V (r) E 0

�V (r) � 1
t?
⇡2 0 E

1

CCCCCCA
. (2.27)

Changing to the real basis,  †(r) = (u†
b(r), v

†
b(r), u

†
c(r), v

†
c(r)), where for example,

ub(r) =
1p
N

P
p e

ip·rbp+ and vb(r) =
1p
N

P
p e

ip·rbp�,

H = � 1

t?

0

BBBBBB@

E 0 4@2z V (r)

0 E V (r) 4@2z̄

4@2z̄ V (r) � E 0

V (r) 4@2z 0 � E

1

CCCCCCA
. (2.28)

Here, we included t? into the definition of V (r) and E for notational convenience and

used a complex coordinate z = x+ iy for 2@z = e�i✓(@r � i
r
@✓).

Now we assume that the VBS order parameter contains a vortex, V (r) = V0(r)ei✓.

Jackiw and Rossi (1981) provides an analytical method of obtaining the zero modes

when the fermions are Dirac-like. They count the number of zero modes by matching

the two asymptotic behaviors of the solutions of H  (r) = 0. The quadratic dis-

persion of fermions can be easily implemented into this scheme, however, including

the electric field ruins the argument and we cannot follow the same step. Alterna-

tively, we have solved the problem numerically. We consider a bilayer honeycomb

lattice with 3600 sites with the corresponding lattice Hamiltonian (2.26), and in-

troduce a vortex at the center of the lattice. Open boundary condition is imposed

to deal with the vortex without including any Dirac strings. Introducing a vortex

and anti-vortex pair will also resolve the issue, but it will also e↵ectively decrease
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the system size. With the open boundary condition, we turn on a small potential

at the boundary to eliminate zero-energy states arising from boundary e↵ects. We

then numerically diagonalize the system and search for zero-energy eigenvalues. We

also check the eigenfunctions of the states while moving the vortex center around to

confirm whether the wavefunctions are actually localized at the vortex. The result

clearly showed no zero modes in the presence of a vortex. As we noted earlier, we

believe this result is a feature of the weak coupling method, and that the needed zero

mode will appear in the strong coupling limit as argued in Levin and Senthil (2004).

We also mention previous reports about zero modes in vortices of bilayer graphene

(Moon, 2012; Lu and Herbut, 2012). In these works, the authors claim there are two

zero modes for a single vortex of valley ferromagnet order. Note that this order

breaks time reversal symmetry and is di↵erent from the Kekulé VBS phase we have

considered above. In the notation of Eq. (2.26), the valley ferromagnet order will be

written as (Vx⇢y + Vy⇢x)sy, which anti-commutes with the kinetic energy terms. Lu

and Herbut (2012) concentrates in regions near the vortex and uses the method of

Jackiw and Rossi (1981) in momentum space. However, this is potentially danger-

ous because, as mentioned before, the number of zero modes is determined by the

matching of the asymptotic behavior of near-vortex and far-vortex regions. Indeed,

without the matching procedure, and only looking in the near-vortex region one can

find an infinite number of zero modes. However, by numerically diagonalizing the

lattice Hamiltonian as above, we indeed find two zero modes for their system with

valley ferromagnet order.

2.8 Conclusions

This chapter has examined the strong coupling limit of an extended Hubbard

model appropriate for undoped bilayer graphene. The results of our analyses are

that the application of a transverse electric field does indeed destabilize the Néel

insulator, and that resulting “quantum disordered” state is likely to have VBS order,

which breaks the space group symmetry of the lattice. These results are in accord with
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the weak coupling analysis (Kharitonov, 2012b), and our strong coupling arguments

indicate that the Néel-VBS quantum phase transition in bilayer graphene can be in

the deconfined universality class (Senthil et al., 2004a,b).

On the experimental side, there is now good evidence for the Néel state in bilayer

graphene (Maher et al., 2013; Freitag et al., 2013), and also for a quantum transition

out of this state upon application of a transverse electric field (Weitz et al., 2010;

Freitag et al., 2012; Velasco et al., 2012). It would be of great interest to devise

experiments to measure the translational symmetry breaking associated with the VBS

order. The transition to the VBS state should exhibit quantum-critical scaling, and

this may be detected by a careful study of the temperature dependence of the influence

of the transverse electric field on conductance across the transition, and looking for a

“quantum-critical fan” (Sachdev and Keimer, 2011) in the electric-field/temperature

plane.

For experimental applications, the fundamental new idea that a “deconfined-

critical” perspective brings is that the transition out of the Néel state occurs as a

consequence of condensation of low-energy skyrmions in the Néel order (Senthil et al.,

2004a,b); so such low-energy skyrmions should be present in bilayer graphene near

the transition. In the presence of ferromagnetic order, a crucial feature of skyrmions

in the quantum Hall regime is that they carry electric charge (Lee and Kane, 1990;

Sondhi et al., 1993). In the present bilayer case, each layer has intra-layer ferromag-

netism in the Néel state, with opposite orientation in the two layers, and so we can

expect that the layers carry opposite charges in the presence of a skyrmion. With the

application of an electric field, the layer-exchange symmetry is broken, and then a

skyrmion current will carry a net electrical current. It is notable that the experiments

show enhanced conductivity in the region of the transition, (Weitz et al., 2010) and

this could be explained by the presence of low-energy skyrmions in the deconfined-

critical theory. In our present strong-coupling analysis, the orbital magnetic field

e↵ects have been suppressed, and so we have not accounted for the electrical nature

of the skyrmions: an extension of our analysis to include the physics of Landau levels

is required, and is being undertaken. On the experimental side, the opposite layers
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charges carried by the skyrmion could be studied by driving currents in opposite

directions in the two layers. Also, optical experiments can detect the spin-chirality

fluctuations (Lee and Nagaosa, 1992) linked to the collective gauge excitations of de-

confined criticality; however, it will be necessary for the light to couple selectively to

one layer (i.e., one sublattice of the antiferromagnet).
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Wess-Zumino-Witten terms in

graphene Landau levels

3.1 Introduction

A number of recent experimental (Weitz et al., 2010; Freitag et al., 2012; Velasco

et al., 2012; Young et al., 2012; Maher et al., 2013; Freitag et al., 2013; Young et al.,

2014) and theoretical (Herbut, 2007; Jung and MacDonald, 2009; Nandkishore and

Levitov, 2010; Cvetkovic et al., 2012; Zhang et al., 2012; Kharitonov, 2012a,b,c,d;

Lee and Sachdev, 2014; Wu et al., 2014; Dhochak et al., 2015) works have focused

on the presence of antiferromagnetism in neutral monolayer and bilayer graphene

in an applied magnetic field. It has also been argued that a nonmagnetic state

with lattice symmetry breaking in the Kekulé valence bond solid (VBS) pattern (see

Fig. 3.1) is proximate to the antiferromagnetic (AF) state (Kharitonov, 2012a,b; Lee

and Sachdev, 2014; Wu et al., 2014). Bilayer graphene o↵ers a particularly attractive

area for studying the interplay between the AF and VBS order because it may be

possible to tune between them by applying a transverse electric field (Weitz et al.,

2010; Kharitonov, 2012b; Lee and Sachdev, 2014).

The presence of the competing AF and VBS orders sets up the possibility (Lee

and Sachdev, 2014) of novel quantum criticality between these orders, similar to
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that found in insulating quantum spin models (Read and Sachdev, 1990; Senthil

et al., 2004a,b; Clark et al., 2011; Albuquerque et al., 2011; Ganesh et al., 2013; Zhu

et al., 2013; Block et al., 2013; Gong et al., 2013; Pujari et al., 2013; Lang et al.,

2013). However, these quantum spin models apply in the limit of very large on-site

Coulomb repulsion between the electrons, and this is not the appropriate parameter

regime for graphene. Here we examine a complementary limit of large magnetic

field and moderate interactions, so that it is permissible to project onto an e↵ective

Hamiltonian acting only on the zero energy Landau levels. Such a limit has been

widely used with considerable success in describing the properties of graphene. (Note,

however, that we are still in the regime where the cyclotron gap is still smaller than

the tight-binding hopping parameters, with magnetic fields smaller than 10 T.) Our

main new result is that the Landau level projected e↵ective action for the AF and

VBS orders has a topological Wess-Zumino-Witten (WZW) term (Wess and Zumino,

1971; Witten, 1983; Abanov and Wiegmann, 2000) for both the monolayer and bilayer

cases.

The WZW term has a quantized coe�cient, and it computes a Berry phase linking

together spatial and temporal textures in the AF and VBS orders. It can be viewed

as a higher dimensional generalization of the Berry phase of a single spin S degree

of freedom, which is equal to S times the area enclosed by the spin worldline on the

unit sphere. Similarly, the WZW term here measures the area on the surface of the

sphere in the five-dimensional AF and VBS order parameter space. The presence

of this term implies (Tanaka and Hu, 2005; Senthil and Fisher, 2006; Grover and

Senthil, 2008) that the field theories of deconfined criticality (Senthil et al., 2004a,b)

apply to graphene. Such theories describe the quantum phase transition not in the

conventional Landau terms of fluctuating order parameters, but using fractionalized

degrees of freedom coupled to emergent gauge fields. We will also discuss experimental

implications of these results.
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Figure 3.1: AF (left) and Kekulé VBS states of bilayer graphene. The blue (red)
lines indicate the honeycomb lattice of the top (bottom) layer. The ellipses in the
VBS state denote the links between the top and bottom layers which are equivalently
distorted with respect to the parent lattice.

3.2 Model and results

We begin by directly stating the Hamiltonian of the low energy graphene bands

(see, e.g., Kharitonov (2012d), Lee and Sachdev (2014) for details)

H = v

 
0 aq

a†q 0

!
, (3.1)

where v is a Fermi velocity, a = px � ipy � (e/c)(Ax � iAy) with (px, py) the electron

momentum, (Ax, Ay) is the vector potential of the applied magnetic field, the matrix

acts on the graphene sublattice index, and q = 1 for monolayer graphene, while q = 2

for the bilayer case. For bilayers, the sublattice index coincides with the layer index.

For both monolayers and bilayers, there is an additional twofold valley degeneracy,

along with the usual twofold spin degeneracy (in the absence of a Zeeman coupling).

The a, a† obey commutation relations proportional to those of the ladder operators

of a harmonic oscillator, and so it is easy to diagonalize H. In this manner we obtain

q zero energy Landau levels, which are spanned by the orthonormal eigenfunctions

 `(r), where ` = 1, . . . , qN�, with N� the number of flux quanta. So we write the
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electron annihilation field operator projected to the zero energy Landau levels as

 (r) =
qN�X

`=1

 `(r)c`, (3.2)

where c` is canonical fermion annihilation operator. In the zero energy Landau levels,

the valley, sublattice, and layer indices all coincide; henceforth we will refer to this as

a valley index, and it can take two values. The fermion operators also carry a spin

index with two possible values, and we do not explicitly display the spin or valley

indices.

We now introduce Pauli matrices �x,y,z which acts on the spin space, and a sec-

ond set ⇢x,y,z which act on the valley space (here we follow the conventions of Lee

and Sachdev (2014)). In terms of these matrices, the three-component AF order

is measured by (⇢z�x, ⇢z�y, ⇢z�z) while the two-component VBS order parameter is

(⇢x, ⇢y).

It is convenient to write the above matrices as

�1 = ⇢z�x , �2 = ⇢z�y , �3 = ⇢z�z , �4 = ⇢x , �5 = ⇢y

and to notice that the 5 �a matrices anticommute and square to unity; indeed these

are the 5 Dirac gamma matrices. Their 10 products i�a�b (a 6= b) realize the Lie

algebra of SO(5), and the 15 matrices �a and i�a�b realize the Lie algebra of SU(4).

Next, we introduce a five-component unit vector na(r, ⌧), where r = (x, y) are

the spatial coordinates and ⌧ is imaginary time, representing the combined spacetime

fluctuations of the AF and VBS orders. Then the imaginary time Lagrangian of the

electrons projected to the zero energy Landau levels is

L =
qN�X

`=1

c†`
@c`
@⌧
� �

Z
d2r na(r, ⌧) 

†(r, ⌧)�a (r, ⌧) , (3.3)

where � is the coupling of the electrons to the AF and VBS orders, and there is an

implicit sum of a over five values, and also over the spin and valley indices. The � term

arises from a decoupling of the electron-electron interactions specified in Kharitonov

(2012a), Lee and Sachdev (2014), and Wu et al. (2014).
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Now we can state our primary result. We integrate over the the c` electrons in L
and obtain an e↵ective action for unit vector na(r, ⌧). Apart from the usual terms

of the O(5) nonlinear sigma model considered in Wu et al. (2014) (and anisotropies

due to the Zeeman coupling, electron-electron interactions, and a possible transverse

electric field for bilayers), the e↵ective action has a topological WZW term at level q,

SWZW = 2⇡iq W [na], (3.4)

W [na] =
3

8⇡2

Z 1

0

du

Z
d2rd⌧✏abcdena@xnb@ync@⌧nd@une.

Here we have introduced the extra coordinate u, and na(r, ⌧, u) is any function which

smoothly extrapolates from the physical na(r, ⌧) at u = 1 to a fixed value (say)

na = (1, 0, 0, 0, 0) at u = 0. The choice of the extrapolation can only change W [na]

by integers, and so e2⇡iqW is well defined.

In the case of graphene in zero magnetic field and weak interactions, the same

WZW term between the Néel and VBS orders is also present (Fu et al., 2011). How-

ever, for the experimentally important case of bilayer graphene, there is no such WZW

term for the AF and VBS orders at zero field and weak interactions (Moon, 2012; Lee

and Sachdev, 2014) (although, E.-G. Moon has noted such a term for the quantum

spin Hall order (Moon, 2012)); so, in this case the zero energy Landau level projection

is crucial for obtaining the topological coupling.

Such a WZW term has a strong impact in the interplay between the order param-

eters. As we will review below, it topologically links AF order to defects of the VBS

order, and vice versa.

3.3 Derivation

We provide two derivations of Eq. (3.4).

First, pick any three of the five na components, say a = u, v, w, and set the other

two to zero. Then we have unit 3-vector field ~N = (nu, nv, nw). Now consider a static

Skyrmion texture in ~N(r). Then by a computation parallel to that in Section III.B

of Moon et al. (1995) (and its generalization to q = 2 (Abanin et al., 2009)), the
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Skyrmion acquires a “charge.” In the present situation the charge is measured by

i�u�v�w and its spatial density is

⌦
 †(r) i�u�v�w (r)

↵
=

q

2⇡
~N · (@x ~N ⇥ @y ~N), (3.5)

where the angular brackets represent the expectation value over the occupied states

in the zero energy Landau level perturbed by the texture in ~N as in L. (A similar

relationship has been noted in monolayer graphene in zero magnetic field from Herbut

et al. (2012); however, no such relationship applies to bilayer graphene in zero field.)

A detailed derivation of Eq. (3.5) is provided in the next paragraph. Now consider a

VBS vortex, i.e., a 2⇡ vortex in (n4, n5) applied to L. For a two-component order, the

core of the vortex has a singularity, but this can be relieved by orienting na in a third

direction, say (±1, 0, 0, 0, 0). Now the VBS vortex is equivalent to a half-Skyrmion

in ~N = (n1, n4, n5), and after integrating Eq. (3.5) over all space, this vortex has

h�xi = ±q. Similarly, vortex cores in the directions (0,±1, 0, 0, 0) and (0, 0,±1, 0, 0)

yield h�yi = ±q and h�zi = ±q. So we reach the important conclusion that the VBS

vortex has total spin S = q/2, and has an associated (q + 1)-fold degeneracy. For

q = 1, note that this is precisely the situation considered in Levin and Senthil (2004)

for quantum spin models (see also Hou et al. (2010)). Alternatively, we can examine

the fate of SWZW in the presence of such VBS vortices: following a computation by

Grover and Senthil (Grover and Senthil, 2008), we find that the WZW term reduces

to the quantum Berry phase of a single spin with S = q/2. From this we conclude

that Eq. (3.5) implies Eq. (3.4).

Now we give a detailed derivation of Eq. (3.5). We work in Landau gauge and

separate the quantum number l in Eq. (3.2) into n and X, where n is the Landau level

index and X is the center of the magnetic oscillator. Recall for monolayer graphene

(q = 1) n is 0, and for bilayer graphene (q = 2) n is over 0 and 1. There are N� of X

labels, so the total number of states in the zero energy Landau level is qN�.

The spatial wavefunction  n,X(r) in Eq. (3.2) is:

 n,X(r) = eiXy'n,X(x), (3.6)
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where 'n,X(x) are the n-th harmonic oscillator eigenfunction:

'0,X(x) =
1

⇡1/4
e�(x�X)2/2,

'1,X(x) =

p
2(x�X)

⇡1/4
e�(x�X)2/2. (3.7)

Note that we work in the unit where the magnetic length lB = 1. We also set the

volume of the system as 1 to avoid volume factors in Fourier transform.

Now we can write the Hamiltonian in cn,X basis.

H = ��
Z

d2r na(r) 
†(r)�a (r)

= ��
Z

d2r d2q e�iq·rna(�q)
X

n,X,n0,X0

c†n,X'n,X(x)e
�iXy �a e

iX0y'n0,X0(x)cn0,X0

= ��
Z

d2q na(�q)
X

n,n0,X

e�iq
x

Xc†n,X�q
y

/2 �a cn0,X+q
y

/2Fn,n0(q) (3.8)

The form factors Fn,n0(q) are calculated as,

F00(q) = e�q2/4,

F01(q) =
(�iqx � qy)p

2
e�q2/4,

F10(q) =
(�iqx + qy)p

2
e�q2/4,

F11(q) = (1� q2/2)e�q2/4. (3.9)

The di↵erence in Eq. (3.8) between q = 1 and q = 2 case comes from the summation

limit of n and n0.

Let us define the operator Oa(q) to be the last part of Eq. (3.8),

Oa(q) =
X

n,n0,X

e�iq
x

Xc†n,X�q
y

/2 �a cn0,X+q
y

/2Fn,n0(q). (3.10)

We can calculate the commutator of two Oa operators to the lowest order in momen-
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tum. In this derivation, we concentrate on the case of bilayer graphene, q = 2.

[Oa(q),Ob(k)]

=
X

n,n0,m,Z

e�i(q
x

+k
x

)Zei(qxky�q
y

k
x

)/2Fnm(q)Fmn0(k)c†n,Z�(q
y

+k
y

)/2 �a�b cn0,Z+(q
y

+k
y

)/2

� (q $ k, a$ b)

=
X

Z

e�i(q
x

+k
x

)Zc†1,Z�(q
y

+k
y

)/2

✓
�a�b + �b�a

2

◆
c1,Z+(q

y

+k
y

)/2

⇥ �
2i(kyqx � kxqy) + O(q,k)2

�

+
X

n,Z

e�i(q
x

+k
x

)Zc†n,Z�(q
y

+k
y

)/2

✓
�a�b � �b�a

2

◆
cn,Z+(q

y

+k
y

)/2 ⇥ (2 + O(q,k))

(3.11)

For the 3-vector field ~N(r) defined previously, we assume nw ! 1 as r !1, i.e.,

~N(r ! 1) = (0, 0, 1) ⌘ ~N0. This choice is arbitrary and may be rotated by any

SO(3) transformation. If we denote |GSi to be the ground state with ~N(r) = ~N0,

the expectation value of  †(r)�w (r) will be,

hGS| †(r)�w (r)|GSi = 4

2⇡
. (3.12)

We impose a Skyrmion texture to the ground state by rotating the spinors by an

operator O,

O =
X

r

~⌦(r) ·
 
 †(r)

~�

2
 (r)

!

=
X

q

~⌦(�q)
2

~ON(q), (3.13)

where ~⌦(r) = ~N0 ⇥ ~N(r), ~� = (�u,�v,�w), and ~ON = (Ou,Ov,Ow). The Skyrmion

state is now e�iO|GSi. Let us also define the Fourier transform of the operator

 †(r)i�u�v�w (r) to be O�(k).

Now we follow the derivation from Moon et al. (1995).

hO�(k)i = hGS|eiOO�(k)e
�iO|GSi � hGS|O�(k)|GSi

= ihGS|[O,O�(k)]|GSi � 1

2
hGS| [O, [O,O�(k)]] |GSi+ · · · (3.14)
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The first term vanishes and we ignore the higher order terms in O since we consider a

smooth texture. The derivation boils down to calculating the ground state expectation

value of [O, [O,O�(k)]].

First, we compute [O,O�(k)] using Eq. (3.11).

[O,O�(k)] =
X

q

⌦a(�q)
2

[Oa
N(q),O�(k)]

=
X

q

⌦a(�q)
2

(�kyqx + kxqy) ✏acd

⇥
X

Z

e�i(q
x

+k
x

)Zc†1,Z�(q
y

+k
y

)/2 �c�d c1,Z+(q
y

+k
y

)/2. (3.15)

a = u, v, w is the vector index and repeated indices are summed implicitly. Since

[�a,�u�v�w] = 0 for all a, we considered only the symmetric term in Eq. (3.11). The

anti-symmetric tensor is ordered as ✏uvw = 1.

Now we calculate [O, [O,O�(k)]].

[O, [O,O�(k)]] =
X

p

⌦b(�p)
2

⇥Ob
N(p), [O,O�(k)]

⇤

=
X

p,q

⌦a(�q)⌦b(�p)
4

(�kyqx + kxqy) ✏acd

⇥
"
X

n,n0,X

e�ip
x

Xc†n,X�p
y

/2 �b cn0,X+p
y

/2Fn,n0(p),

X

Z

e�i(q
x

+k
x

)Zc†1,Z�(q
y

+k
y

)/2 �c�d c1,Z+(q
y

+k
y

)/2

#
(3.16)

We have assumed the ground state is uniform, ~N(r) = ~N0. Therefore, the expectation

value of the above expression is nonzero only when �p = q+k. When this condition is

satisfied, the last commutator simplifies to
P

Z c†1,Z [�b,�c�d]c1,Z , to the lowest order of
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momentum. Also using ✏acd[�b,�c�d] = 4✏abc�c, we obtain the expression for hO�(k)i.

hO�(k)i =
X

q

✏abc (kyqx � kxqy)
⌦a(�q)⌦b(q + k)

2

X

Z

hGS|c†1,Z �c c1,Z |GSi

=
X

q

✏ab (kyqx � kxqy)
⌦a(�q)⌦b(q + k)

2

X

Z

hGS|c†1,Z �w c1,Z |GSi

=
1

2⇡

X

q

✏ab (kyqx � kxqy)⌦a(�q)⌦b(q + k)

=
1

2⇡

X

q

✏ab (�iq⌦a(�q))⇥ (i(k + q)⌦b(q + k)) · ẑ (3.17)

The second equality make use of the expectation value being nonzero only when

�c = �w in the defined ground state. The new anti-symmetric tensor has indicies

a, b = u, v, and ✏uv = 1. Note that the expectation value is half of Eq. (3.12) since

only n = 1 contributes in the above equation. We obtain the final result by Fourier

transforming back to real space.

h †(r)i�u�v�w (r)i = 1

2⇡
✏ab (r⌦a(r)⇥r⌦b(r)) · ẑ

=
2

2⇡
~N ·

⇣
@x ~N ⇥ @y ~N

⌘
(3.18)

This is Eq. (3.5) for q = 2. The simpler q = 1 case follows from the exactly same

procedure.

For a second derivation of the WZW term from Eq. (3.3), we examine a dia-

grammatic expansion of L. Consider a situation where na is polarized near, say,

(0, 0, 0, 0, 1). Then, we can write na = (⇡1, ⇡2, ⇡3, ⇡4, 1) where |⇡i|⌧ 1 for i = 1, . . . , 4.

Then to zeroth order in the ⇡i, the c` operators in L have the Green’s function

G = (i! + ��5)
�1 (3.19)

where ! is the frequency of the electron propagator. We now proceed to integrate

out the electrons, and derive an e↵ective action for the ⇡i. At fourth order in the ⇡i,

we consider the box diagram in Fig. 3.2; this can be evaluated by methods similar to

those Sec. 2.5, but with the G above, and the vertices contributing the factors implied

by Eq. (3.3).

53



Chapter 3: Wess-Zumino-Witten terms in graphene Landau levels

Figure 3.2: Box diagram leading to S⇡. The full lines are the Green’s function in
Eq. (3.19) at the labeled frequencies, and the vertices are the � term in Eq. (3.3).

Substituting na = (⇡1, ⇡2, ⇡3, ⇡4, 1) to Eq. (3.8) we get the Hamiltonian,

H = H0 +H⇡

= ��
X

n,X

c†n,X�5cn,X � �
4X

i=1

Z
d2q ⇡i(�q)

X

n,n0,X

e�iq
x

Xc†n,X�q
y

/2�i cn0,X+q
y

/2Fn,n0(q).

(3.20)

From the above equation, we integrate out the fermions to get an e↵ective theory

for the fluctuating order parameters. The coupling between the order parameters

appear at fourth order of one-loop expansion. In momentum space, the four point

coupling between the order parameter fields are,

S1 =

Z 3Y

↵=1

dp↵K
jkm;i
p1p2p3

⇡j(p1)⇡k(p2)⇡m(p3)⇡i(�p1 � p2 � p3). (3.21)

Among these terms, we are most interested in the topological term,

S⇡ = iK

Z
d2rd⌧✏ijkm⇡i@x⇡j@y⇡k@⌧⇡m. (3.22)
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To extract the coe�cient K from S1 we expand Kjkm;i
p1p2p3

in powers of momenta

and frequency, and consider the terms linear in p1p2p3:

Kjkm;i
p1p2p3

= · · · +Kjkm;i
↵�� p↵1p

�
2p

�
3 + · · · . (3.23)

Here, ↵, �, � are spacetime indices ⌧, x, y. In real space, these terms correspond to

the derivative expansion.

S1 = · · · + i
4X

i,j,k,m=1

Kjkm;i
↵��

Z
d2rd⌧⇡i@↵⇡j@�⇡k@�⇡m + · · · . (3.24)

Comparing Eq. (3.22) with Eq. (3.24), we obtain the expression for K in terms of

Kjkm;i
↵�� ’s.

24K = ✏↵��✏ijkmK
jkm;i
↵�� . (3.25)

Note the summation of repeated indices are implicit, and thus the right-hand side of

the above equation consists of 144 terms.

Now we only need to calculateKjkm;i
↵�� to obtainK. This can be done by calculating

the box diagrams in Fig. 3.2. The kinetic energy of fermions are quenched, and

the propagators are momentum independent. Therefore, the momentum dependence

comes from the vertices and frequency dependence comes from the propagator.

Recalling Eq. (3.20), the inverse Green’s function is written as G�1 = �i! +H0,

where ! is the Matsubara frequency of the fermions. The e↵ective action of order ⇡4

in perturbation theory, which is of our interest according to Eq. (3.24), is:

S[⇡4] =
1

4
tr (GH⇡GH⇡GH⇡GH⇡) . (3.26)

Considering the momentum flow in Fig. 3.2, we obtain the expression for Kjkm;i
↵�� .

Kjkm;i
↵�� =

1

4

⇣
@p↵1 @p�2

@p�3 tr
�
G(k)Hj

⇡(p1)G(k + p1)H
k
⇡(p2)G(k + p1 + p2)

⇥Hm
⇡ (p3)G(k + p1 + p2 + p3)H

i
⇡(�p1 � p2 � p3)

����
p1=p2=p3=0

.

(3.27)

We used a shorthand notation Ha
⇡ for Ha

⇡ = H⇡(⇡i=a = 1, ⇡i 6=a = 0).
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We get the value of K by calculating Eq. (3.27). In zero temperature, the fre-

quency integral can be done analytically,

K =
1

2⇡

Z
d!

X

X

2q�5

(!2 + �2)3

=
X

X

3q

8

=
3q

16⇡
. (3.28)

The individual diagram is independent of X, merely reflecting momentum conser-

vation. Therefore the X summation is just multiplying N�, which equals (sample

area)/(2⇡). This yields the following contribution to the action:

S⇡ =
i3q

16⇡

Z
d2rd⌧✏ijkm⇡i@x⇡j@y⇡k@⌧⇡m . (3.29)

It can be checked that Eq. (3.4) reduces to S⇡ for na = (⇡1, ⇡2, ⇡3, ⇡4, 1), and so SWZW

is the explicitly SO(5) invariant form of S⇡.

3.4 Theoretical consequences

We now turn to a discussion of the theoretical consequences of the WZW term for

the vicinity of the AF-VBS transition. For q = 1, it has been demonstrated in Levin

and Senthil (2004), Grover and Senthil (2008), Senthil and Fisher (2006) that the

O(5) nonlinear sigma model with O(3)⇥O(2) anisotropy and a level 1 WZW term is

equivalent to the CP1 model in 2+1 dimensions. This is the same model appearing in

the AF-VBS transition of SU(2) quantum spin models (Senthil et al., 2004a,b), and is

a relativistic field theory with a U(1) gauge field and a two-component complex scalar

z↵. In terms of these fields, the AF order is z⇤↵�
s
↵�z�, with s = x, y, z; so the vector

AF order has been “fractionalized” into spinons z↵. Alternatively, we can also view

the z↵ quanta as representing the vortices or antivortices in the VBS order (Levin

and Senthil, 2004) which, as we have just seen, carry spin S = 1/2.

Presently, the experimentally accessible case of the AF-VBS transition is in bilayer

graphene, so we focus now on the q = 2 case. With a level 2 WZW term, the VBS
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vortices carry spin S = 1, and therefore we need complex scalar fields with three

components: we write these as Zs, with s = x, y, z. The field theory of the Zs

quanta is now the CP2 model with anisotropic quartic terms; such a field theory was

considered in Grover and Senthil (2007) in a di↵erent context:

Lcp = |(@µ � iAµ)Zs|2 + g|Zs|2 + u1(|Zs|2)2 + u2(Z
2
s )(Z

⇤2
t ).

Here µ is a spacetime index, Aµ is the emergent U(1) gauge field, g is the coupling

which tunes the AF to VBS transition, and u1,2 are quartic couplings. In terms of the

degrees of freedom in Lcp, the three-component AF order parameter is now i✏stuZ⇤
t Zu,

while the complex VBS order h⇢x + i⇢yi ⇠ ei✓ is the monopole operator in the U(1)

gauge field (Read and Sachdev, 1990; Senthil et al., 2004b).

For both the CP1 and CP2 models mentioned above, both first and second order

transitions are possible between the AF and VBS states. A recent numerical study

(Wu et al., 2014) on a single layer model indicates a first order transition for the

parameters studied.

3.5 Experimental implications

Finally, we turn to experimental consequences for bilayer graphene. The defining

characteristic of deconfined criticality is the presence of a gapless “photon” excitation

of an emergent U(1) gauge field (Senthil et al., 2004a). This is associated with the Aµ

above, and can also be interpreted as a “spin-wave” excitation involving fluctuations

of the angle ✓. Our definition of ✓ shows that it is the angular phase associated

with o↵-diagonal-long-range order (ODLRO) in valley space. The valley anisotropy

terms in graphene are very small (Kharitonov, 2012a; Wu et al., 2014), because it is

suppressed by powers of the lattice spacing to the magnetic length; so we expect a

nearly gapless ✓ spin-wave mode to be present (and most of the remarks below to

also apply) even in the case of a first-order transition.

Now recall the fact, noted earlier, that in the zero energy Landau levels the valley

index coincides with the layer index of bilayer graphene (and also the sublattice
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index). So ODLRO in valley space is accompanied by ODLRO in the layer space;

i.e., ✓ is also the angular phase of interlayer excitonic superfluidity. Signatures of

excitonic superfluidity have been observed in quantum Hall states in GaAs bilayers

(Eisenstein, 2014). However, in the GaAs bilayers there is negligible tunneling of

electrons between the layers, and this crucial to the emergence of a U(1) symmetry

which is broken by the excitonic condensate. So it might seem surprising that a

similar superfluidity can be present in graphene bilayers, in the presence of very

strong tunneling between the layers. The resolution is the identification of the layer

and valley indices in the zero energy Landau levels of bilayer graphene: in the absence

of intervalley scattering by impurities, and the irrelevancy of valley anisotropy terms

to be presented below, there is also an emergent interlayer U(1) symmetry in bilayer

graphene.

The counterflow electrical current can be written in terms of the gauge field

Jtµ � Jbµ =
4e

2⇡
✏µ⌫�@⌫A� (3.30)

where Jt and Jb are the currents in the top and bottom layers, and e is the charge

of the electron. The factor of 4 is deduced from Eq. (3.5), which shows that a

AF Skyrmion in (n1, n2, n3) has excitonic charge density h⇢zi = 4 for q = 2. The

counterflow conductivity can be computed from Eq. (3.30) using Lcp; at the g = gc

deconfined quantum critical point this implies a universal value of order, the quantum

unit of conductance e2/h.

For g > gc, in the VBS state, the conductivity should be computed using an

e↵ective action for ✓ which includes the influence of monopoles. Now the current is

Jtµ � Jbµ = 4e⇢s@µ✓ (3.31)

where ⇢s is the sti↵ness of the excitonic superfluidity appearing the e↵ective La-

grangian density

L✓ =
⇢s
2
(@µ✓)

2 � y3 cos(3✓), (3.32)

with y3 the fugacity of tripled monopoles which are allowed by the threefold rotational

symmetry of the underlying honeycomb lattice (Read and Sachdev, 1990). The sti↵-

ness vanishes as ⇢s ⇠ (g � gc)⌫ by the Josephson relation, where ⌫ is the correlation
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length exponent. Away from the critical point, the bare value y03 is proportional to

the very small threefold valley anisotropy term (Kharitonov, 2012a; Wu et al., 2014);

y3 has a further suppression (Chubukov et al., 1994; Senthil et al., 2004b) from the

critical fluctuations of Lcp leading to y3 = y03(g � gc)⌫�, where � is the scaling di-

mension of the tripled monopole operator. So the e↵ective “interlayer tunneling”

term, y3, is highly suppressed near the deconfined quantum critical point. We also

note that numerical studies on square lattice antiferromagnets have provided strik-

ing evidence for the emergent U(1) symmetry due to the suppression of monopoles

(Sandvik, 2007), and there is direct evidence for the suppression of monopoles on the

honeycomb lattice in the work of Block et al. (2013).

In GaAs bilayers (Eisenstein, 2014), the excitonic superfluidity is most directly

observed in counterflow experiments, where electric currents flow in the opposite di-

rection in the two layers. This would be technically more di�cult in bilayer graphene,

given the close spacing of the layers, but experiments of this type would be ideal. In

the bilayer graphene experiments of Weitz et al. (2010), there is a Zeeman coupling

to the magnetic field (whose consequences have been studied earlier in Senthil et al.

(2004b)), and an electric field is applied transverse to the layers. The electric field

provides a small breaking of the layer-exchange symmetry. In the presence of such

a symmetry breaking, there is a coupling between the counterflow and parallel cur-

rent modes, and a vestige of the counterflow superfluidity would also be present in a

measurement of the total current in both layers. Weitz et al. (2010) observe a phase

transition out of the (presumed) AF state, signaled by the enhancement of the con-

ductivity. We propose that this enhancement is due to the coupling to counterflow

superfluidity.
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Electronic quasiparticles in the

quantum dimer model:

density matrix renormalization

group results

4.1 Introduction

A recent paper (Punk et al., 2015) has proposed a simple quantum dimer model

for the pseudogap metal state of the hole-doped cuprates. The objective of this model

is to describe a metal with electron-like quasiparticles, carrying spin 1/2 and charge

e, but with a Fermi volume which violates the Luttinger theorem for a Fermi liquid

(FL). In particular, doping a density of p holes away from a half-filled insulator should

yield, in Fermi liquid theory, a hole Fermi surface of size 1+ p. And indeed, just such

a Fermi surface is observed at large p (Platé et al., 2005). However, for p ⇡ 0.1,

in the pseudogap metals, many physical properties are well described by a model of

electron-like quasiparticles with a Fermi surface of size p (Sachdev and Chowdhury,

2016). Such a Fermi surface can be obtained in a ‘fractionalized Fermi liquid’ (FL*)

(Senthil et al., 2003, 2004). The model of Punk et al. (2015) was designed to yield a
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= (|" �i + |� "i) /
p

2

= (|"#i � |#"i) /
p

2

Figure 4.1: A state in the Hilbert state of the dimer model. The blue dimers are
bosons representing a spin-singlet pair of electrons. The green dimers are spin 1/2
fermions representing an electron in a bonding orbital between a pair of sites.

FL* state with a Fermi surface of size p using ingredients that are appropriate for a

single-band model of cuprate physics.

This chapter will present density matrix renormalization group (DMRG) results on

the dimer model. The exact diagonalization results in Punk et al. (2015) were limited

to a lattice size of 8 ⇥ 8 and a single fermionic dimer. Here we study significantly

larger systems with up to 8 fermions, and obtain results on the density distribution

of the fermionic dimers and the entanglement entropy. As we shall see below, all of

our results are consistent with the appearance of a FL* metal in this dimer model.

4.2 Model and DMRG Setup

The quantum dimer model of Punk et al. (2015) has bosonic dimers and spin 1/2

fermionic dimers, which close pack a square lattice with an even number of sites: see

Fig. 4.1. The bosonic sector of this model is identical to the original study of Rokhsar

and Kivelson (RK) (Rokhsar and Kivelson, 1988), with potential and resonating term

for dimers within a plaquette. In addition, fermionic dimers may move via hopping

terms whose form will be specified below. Interaction between the fermionic dimers
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can in principle be present, but are not expected to be important when the density

of fermions is low; we will not include fermion-fermion in interactions here.

Now we state the Hamiltonian for this model. Let us first define the operators

creating (annihilating) bosonic and fermionic dimers as D†
ix(Dix) and F †

ix↵(Fix↵), re-

spectively. The extra indices i and x(y) indicates the created or annihilated dimer

resides on the link between i = (ix, iy) and i+x̂(ŷ), where x̂ = (1, 0) and ŷ = (0, 1) are

unit vectors and ↵ =", # is spin index. Note that we set the lattice spacing as 1. In

the language of the t-J model, D and F operators have the following correspondence

to the electron creation and annihilation operators c†, c,

D†
i⌘ ⇠

(�1)ip
2

⇣
c†i"c

†
i+⌘̂,# + c†i#c

†
i+⌘̂,"

⌘
,

F †
i⌘↵ ⇠

(�1)ip
2

⇣
c†i↵ + c†i+⌘̂,↵

⌘
. (4.1)

(�1)i is due to a gauge choice which we follow from Rokhsar and Kivelson (1988).

We can observe that the quantum numbers of states D†
i |0i and F †

i↵|0i are the same

as c†i"c
†
i#|0i and c†i↵|0i, setting aside the fact that the degrees of freedom of the former

lives between two sites (i and i+ ⌘̂) and the latter resides on each site. This fact will

be useful in our DMRG setup. We can now write the Hamiltonian for the model in

terms of dimer creation and annihilation operators (Punk et al., 2015),

H = HRK +H1

HRK =
X

i

h
�J D†

ixD
†
i+ŷ,xDiyDi+x̂,y + 1 term

+V D†
ixD

†
i+ŷ,xDixDi+ŷ,x + 1 term

i

H1 =
X

i,↵

h
�t1 D†

ixF
†
i+ŷ,x↵Fix↵Di+ŷ,x + 3 terms

�t2 D†
i+x̂,yF

†
iy↵Fix↵Di+ŷ,x + 7 terms

�t3 D†
i+x̂+ŷ,xF

†
iy↵Fi+x̂+ŷ,x↵Diy + 7 terms

�t3 D†
i+2ŷ,xF

†
iy↵Fi+2ŷ,x↵Diy + 7 terms

i
. (4.2)
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The terms we have not explicitly written down are connected with the previous term

through a symmetry transformation of the square lattice. HRK is the pure bosonic

sector mentioned above; J is the coupling for the resonant term, and V is the coupling

for the potential term. H1 contains the hopping terms of the fermionic dimers; t1, t2,

and t3 correspond to three distinct types of hoppings.

In our DMRG calculation, we consider a lattice with geometry of a finite cylinder.

The circumference of the cylinder consists of four lattice sites, and the length of

the cylinder is up to 32 sites. In the second part of this chapter, we also compute

entanglement entropies in 64 ⇥ 2 cylinder to observe one-dimensional e↵ects. We

repeat our calculation in di↵erent fermionic dimer densities, from one to 8 fermionic

dimers. Note that in our lattice configuration, 8 fermionic dimers correspond to 1/16

doping in the typical cuprate phase diagram. We use two sets of parameters for

the couplings in Eq. (4.2). One is the parameters which is relevant to the physical

model for the cuprates in the pseudogap regime: t1 = �1.05J , t2 = 1.95J , and

t3 = �0.6J , at the RK point (J = V ). The other is the parameter which we choose

for comparison: t1 = t2 = t3 = J , at the RK point (J = V ). Single fermion

study in Punk et al. (2015) suggests the di↵erent hopping parameters change the

dispersion of the fermionic dimer: the Fermi surface consists of four hole pockets near

(±⇡/2, ±⇡/2) in the former parameter regime, and a single Fermi surface centered

at (0, 0) in the latter. We will confirm this behavior in our DMRG calculation below,

while studying a multiple fermion system.

The fact that we are interested in observing the hole pockets, is closely related

to the reason we chose the circumference as four lattice site for the first part of our

calculation. The center of the four hole pockets are at ~k ⇠ (±⇡/2, ±⇡/2), and the

minimum number of sites in y-direction needed to get information about ky = ±⇡/2
is four. This is why we could not choose two sites in the circumference when our

focus is in the fermion dispersion. Later when we concentrate on the one-dimensional

scaling properties of the entanglement entropies, we compute the case of a cylinder of

two sites along the circumference, which allows us to calculate much longer system.

Now we comment on the topological sectors of the Hamiltonian. The Hilbert

63



Chapter 4: Electronic quasiparticles in the quantum dimer model: DMRG results

space we are considering consists of closely packed configurations of dimers. For each

configuration, we can define an integer quantity

wx =
N

xX

i
x

=1

(�1)ix(D†
(i

x

,i
y

)yD(i
x

,i
y

)y + F †
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x

,i
y

)y↵F(i
x

,i
y

)y↵), (4.3)

for any 1  iy  Ny, where Nx(Ny) is the number of sites in the x(y) direction and

the spin ↵ implicitly summed. One can observe that every term in Eq. (4.2) preserves

this quantity, so the possible configurations of the dimers spanning the Hilbert space

can be divided in di↵erent sectors with di↵erent values of wx. The integer wx serves

as the topological winding number in the x direction in our model, similar to that

of the RK model on a torus (Rokhsar and Kivelson, 1988). The integer wy can be

defined in an analogous manner, but it is not meaningful since we do not have periodic

boundary condition in x-direction. In principle, we would like to restrict ourselves

in the zero winding number sector, wx = 0. However, this is not a local constraint

and thus we cannot prevent DMRG from accessing other topological sectors. Right

at the RK point, J = V , each topological sector has a unique ground state, which is

an equal superposition of all configurations (Rokhsar and Kivelson, 1988). Since the

number of configurations are largest at wx = 0, sectors with large absolute value of

wx have lower entanglement and will be preferred by DMRG. Therefore to force our

calculation within the wx = 0 sector, we tune V to be slightly smaller than J and

penalize states moving away from wx = 0. In all of our calculation, we have used

V = 0.9J .

Each bond in the square lattice can have four states: occupied by a bosonic dimer,

occupied by a spin up or down fermionic dimer, or empty. As mentioned previously,

one useful observation is that the quantum numbers of the bonds are the same as

the quantum numbers of the sites in a spin-half fermion model, with the bosonic

dimer occupied state corresponding to the filled (spin up and down) state. Therefore

we can map our dimer model to a fermion Hubbard model on the links, with dimer

constraints. The dimer constraint is to ensure each site is part of only one dimer, and

this is achieved in our DMRG as an additional potential term. We use a potential of

⇠ 20J to penalize overlapping dimers.

64



Chapter 4: Electronic quasiparticles in the quantum dimer model: DMRG results

All DMRG calculations in this chapter were performed with the ITensor library

(http://itensor.org/). We kept up to ⇠ 6000 states to keep the truncation error

per step to be ⇠ 10�12. The number of states needed to be increased as we increased

the fermionic dimer density.

4.3 Density Modulation

Now we show the results of the DMRG calculations where we can observe the

change in dispersions with di↵erent hopping parameters, and especially the existence

of a dispersion with Fermi pockets centered near ~k = (±⇡/2,±⇡/2). Extracting mo-

mentum information from DMRG is not trivial since it is a real-space calculation

(There are more recent schemes for DMRG in mixed real and momentum space pro-

posed in Motruk et al. (2016)). However, we may observe Friedel oscillations from

the open boundaries of our system, and these will reveal information of the fermionic

dimer’s momentum in the cylinder direction.

First we check whether the Friedel oscillation observed in the case of a single

fermionic dimer is consistent with Punk et al. (2015). Fig. 4.2 is the density profile of

the fermionic dimers when a single fermionic dimer is present among bosonic dimers

on a 16 ⇥ 4 lattice, for the two parameter sets we use. From Fig. 4.2(a), which is

the parameter set expected to have hole pockets, we can observe an oscillation of the

profile starting from the open boundary to the x-direction. This is especially clear

when looking at the vertical dimers. The period of the oscillation is roughly two

lattice sites. Since the Friedel oscillation has a wavevector of 2kF , this indicates that

the fermionic dimer in the ground state has crystal momentum of kx ⇠ ⇡/2. This fact

is consistent with the exact diagonalization study in Punk et al. (2015), which found

the energy minima of the single fermion spectrum to be near ~k = (⇡/2, ⇡/2). On the

other hand, Fig. 4.2(b) does not show any prominent oscillation near the boundary.

This calculation has been done with the parameters which is expected to have a single

band with the dispersion minima at ~k = (0, 0), so the absence of Friedel oscillation is

expected. We have performed the same calculation for a single fermionic dimer while
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Figure 4.2: The log scale density of fermionic dimers on a 16⇥4 lattice. The configu-
ration consists with a single fermionic dimer and 31 bosonic dimers. The dashed line
indicates the periodic boundary condition in the y-direction; the top dashed line is
identified to the bottom solid line. The hopping parameters used are (a) t1 = �1.05J ,
t2 = 1.95J , t3 = �0.6J ; (b) t1 = t2 = t3 = J . In (a), one can observe the density
oscillation with period of roughly two lattice sites, which corresponds to crystal mo-
menta of ⇡/2. Note that the Hilbert space is closely packed dimer configuration, and
sites without fermionic dimers are occupied by bosonic dimers.
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increasing the x-direction of lattice size, up to 32 ⇥ 4 lattice and observed the same

behavior, in both cases with dispersion minima at kx = ⇡/2 (Fig. 4.2(a)) and kx = 0

(Fig. 4.2(b)). A more quantitative analysis for the 32⇥4 lattice by Fourier transform

will follow below, together with the higher density calculation.

Note that Fig. 4.2(a) seems to break the translation symmetry in y-direction.

However, this is just a spontaneous symmetry breaking between the two degenerate

ground states; one being Fig. 4.2(a) and the other being Fig. 4.2(a) translated by

one lattice site in the y-direction. One can check this by computing the ground state

multiple times and obtaining both states. The fact that Fig. 4.2(b) does not break

the symmetry is also in accordance with our claim. Since the state of Fig. 4.2(b) has

only one Fermi surface centered at ~k = (0, 0), there are no degeneracy in the ground

state.

We would like to study the Friedel oscillation more quantitatively and verify

whether this feature survives when we increase the number of fermionic dimers, n. We

keep the lattice size as 32⇥4 and increase n up to 8, which corresponds to 1/16 doping.

Since the ‘defects’ of the system are the open boundaries, the Friedel oscillation is in

the cylinder direction. From the density profile ⇢(x, y), we define ⇢x(x) =
P

y ⇢(x, y)

and perform Fourier transformation. The result is shown in Fig. 4.3. Note that we

have normalized the data by 1/n, and the magnitude 1 peak at kx = 0 indicates the

total density is n. Other than the kx = 0 peak, we can observe that there is a peak

at kx = 7⇡/8 in Fig. 4.3(a), where the parameter set used is the same as Fig. 4.2(a).

This peak is due to the Friedel oscillation, and indicates that kx = 7⇡/16 at the Fermi

level. Punk et al. (2015) showed the energy minimum is at ~k = (q, q) for q slightly

less than ⇡/2, and this is in good agreement with our result. Our calculation cannot

resolve the value of ky, but based on experiments and previous works one can argue

the energy minimum should be either at the origin (~k = (0, 0)) or along the diagonal

(~k = (q, q)). Therefore, we can conclude the dispersion of the dimer model in our

cylinder will have a minimum at ~k = (7⇡/16, ⇡/2), and in the large system limit this

will converge to a diagonal point ~k = (q, q) with 7⇡/16  q  ⇡/2.

For Fig. 4.3(b), which used the same parameter set as Fig. 4.2(b), there is no peak
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Figure 4.3: Fourier transform of the density of fermionic dimers with various total
densities. n denotes the number of fermionic dimers in the system. Note that in our
32 ⇥ 4 lattice, n = 8 corresponds to 1/16 doping. The hopping parameters used are
(a) t1 = �1.05J , t2 = 1.95J , t3 = �0.6J ; (b) t1 = t2 = t3 = J . In (a), there is a
consistent peak at 7⇡/8 which indicates the fermionic dimer with kx = 7⇡/16 is at
the Fermi level, which is a feature missing in (b). The central peak at 0 is due to the
total density and is normalized to 1.

at kx = 7⇡/8 for any n. This is in accordance with our expectation that the state

has dispersion minimum at ~k = (0, 0), and also with the qualitative result we have

seen in Fig. 4.2(b). There is a signal at kx = ⇡, however the origin of this signal

is not the Friedel oscillation. Fig. 4.4 shows the density of the fermionic dimer as a

function of x. The plotted one-dimensional density ⇢(x) =
P

y ⇢(x, y) is the Fourier

transform of ⇢(kx), which is the quantity plotted in Fig. 4.3. The x-axis of the plot is

the position in the unit of lattice constant. Integer values are for the vertical bonds

and half-integers are for the horizontal bonds. Looking at only the vertical bonds

does not show any modulation in the density and looks very much like a particle in a

box. On the other hand, the horizontal bond shows some modulation with two lattice

sites. This density modulation clearly has a wavevector of ⇡, and is the reason of the

signal at kx = ⇡ in Fig. 4.3(b). Although the precise reason for this oscillation is

unclear, we can clearly see that this modulation is present throughout the bulk and

the signal at kx = ⇡ does not indicate Friedel oscillation from kF = ⇡/2: it appears

to be simply a lattice commensuration e↵ect.
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Figure 4.4: One dimensional plot for fermionic dimer density (⇢(x) =
P

y ⇢(x, y)) as a
function of distance in x direction, when n = 1. The x-axis unit is the lattice constant.
Vertical bonds have integer x and colored yellow; horizontal bonds have half-integer
x and colored blue. Notice the modulation is only present in the horizontal dimers.
The system is a 32⇥ 4 cylinder with parameters t1 = t2 = t3 = J .

Note that we have not included the data obtained for n which mod (n, 4) = 2.

The calculations with such n had a stronger tendency towards wx 6= 0 topological

sector, and we had to decrease V further to keep the state in wx = 0 (For n = 2,

we needed V < 0.8). This seems to be an artifact of our system which is e↵ectively

one-dimensional and can only have four values of ky.

4.4 Entanglement entropy

We present the result for the computation of Rényi entropy to gain more infor-

mation about the ground state of the dimer model. First recall the definition of the

↵-th Rényi entanglement entropy:

S↵ =
1

1� ↵ ln [Tr ⇢
↵
A] . (4.4)

Here, ⇢A is the reduced density matrix of partition A, i.e. ⇢A = TrB ⇢, where A[B is

the total system. Note that ↵-th Rényi entropy becomes the von Neumann entropy

in the ↵! 1 limit.
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Figure 4.5: von Neumann entropy of the pure RK model, calculated on a 64 ⇥ 2
cylinder. The red solid line is not the interpolation of the data points, but the exact
CFT result of Eq. (4.5) with c = 1 and g + c0↵ = 1.

In a one-dimensional gapless system, conformal field theory (CFT) has a result for

the scaling of the Rényi entropy (Calabrese and Cardy, 2004; Calabrese et al., 2010):

S↵ =
c

12

✓
1 +

1

↵

◆
ln

✓
2L

⇡
sin

⇡l

L

◆
+ g + c0↵. (4.5)

This is the case for a finite system of length L with open boundary condition, divided

into two pieces which length of one piece is l. g is the boundary entropy (A✏eck and

Ludwig, 1991), and c0↵ is a non-universal constant. Considering our system as quasi-

1D, we can extract the central charge c, of the system from this equation. For the

entanglement entropy calculation, we consider both 32⇥ 4 and 64⇥ 2 cylinder to see

any scaling behavior as the system approaches to one-dimension. Moreover, now we

concentrate on the parameters which gives a single Fermi surface, t1 = t2 = t3 = J .

The results for the other parameter are expected to be four copies of the presented

results, in the thermodynamic limit. However, the convergence of the wavefunction

was not good enough to compute the entanglement entropies.

First we show the comparison of the von Neumann entropy of the pure RK model,

with n = 0 fermions, with the CFT result (4.5) in Fig. 4.5. An excellent fit is found
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Figure 4.6: von Neumann entropy of the FL* phase with di↵erent fermionic dimer
densities. The system is a 64 ⇥ 2 cylinder with parameters t1 = t2 = t3 = J . L is
the length of the system, and l is the length of the subsystem. In the case of n = 0,
which is a pure bosonic dimer model near the RK point, we get a nice fit to Eq. (4.5)
with central charge 1.

for c = 1. The fermion-free dimer model is dual to a sine-Gordon model (Fradkin and

Kivelson, 1990; Read and Sachdev, 1990), and in 1+1 dimension this has a gapless

phase described by a massless relativistic boson with c = 1. The results of Fig. 4.5

are in accord with this expectation.

Turning to the case with fermions, the von Neumann entropy with dispersion

expected to have a single Fermi surface near ~k = (0, 0) is shown in Fig. 4.6. The

results are for 64⇥2 lattice. Data for 32⇥4 lattice are not shown, but are very similar

to the presented data (32⇥4 results are included in Fig. 4.7). We also include the data

from Fig. 4.5 for the case without any fermions. It is clear that these is an additional

contribution from the presence of the fermions, but it cannot be accounted for by

changing the central charge of the CFT. Fermions at non-zero density in an infinite

system should form a Fermi surface, and in the quasi-one dimensions geometry, each

Fermi point should yield an additional contribution of c = 1/2 of a chiral fermion. It

is clear that the data in Fig. 4.6 are not of this form.

Instead, we found that an excellent understanding of Fig. 4.6 is obtained by think-

ing about the limit of a very low density of fermions at the bottom of a quadratically
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Figure 4.7: Fermion contribution to von Neumann entropy of the dimer model and the
Lifshitz transition. �S1 equals S1(n = 1)�S1(n = 0) in the left, S1(n = 3)�S1(n = 0)
in the right, where n is the number of fermionic dimers. The system is 64 ⇥ 2 and
32 ⇥ 4 cylinder with parameters t1 = t2 = t3 = J for the dimer model, and free
fermions on a 200 site chain for the Lifshitz transition. The n = 1 and n = 3 cases
for Lifshitz transition corresponds to the number of occupied state in the new band.

dispersing band. This is the case of a “Lifshitz” transition in one dimension, when the

chemical potential crosses the bottom of a band. Rodney et al. (2013), studied the

entanglement entropy near such a Lifshitz transition. In their Fig. 11, they present

the entanglement entropy of a half-filled free fermion system with 200 sites, as the

next-nearest hopping t is tuned to go across the Lifshitz transition (The Hamiltonian

used is H = �Pi(c
†
ici+1 + tc†ici+2) + h.c.). Di↵erent graphs are labeled by di↵erent

values of t, but basically what is changing is the number of occupied states above

the Lifshitz transition. For example, when t = 0.5, only the large Fermi surface is

occupied; when t = 0.51, the system has just gone through Lifshitz transition and one

state is occupied from the new band; when t = 0.52, two states are occupied above the

Lifshitz transition. The number of modulations in the entanglement entropy exactly

matches the number of states filled above the Lifshitz transition.

We reproduced the data of Fig. 11 in Rodney et al. (2013) to compare with the

behavior of the entanglement entropy with our own system of fermionic and bosonic

dimers. Fig. 4.7 shows the fermionic contribution �S1 of the entanglement entropy.

This is obtained by subtracting the entanglement entropy of n = 0, which was shown

in Fig. 4.5 to be due to a c = 1 boson field. To compare with the case of Lifshitz
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transition, we also subtract the entanglement entropy of the system with only one

large band occupied, which is t = 0.50 in the specific model, from the system with

one (three) state(s) occupied in the new band, corresponding to t = 0.51 (0.53); in

this case, the gapless fermions from the occupied large band contribute as a c = 1

field. As seen in Fig. 4.7, �S1 for n = 1 is nearly identical to the corresponding

entanglement entropy for the Lifshitz transition for free fermions with two di↵erent

lattice sizes. For n = 3, the value of �S1 decreases slightly as the length of the system

decreases, but the qualitative features remain the same. Note that in these data, only

the total length of the system was scaled to unity.

The above results provide strong evidence that the dimer model can be viewed as

two approximately independent systems: a background c = 1 boson corresponding

to the resonance between the dimers (both blue and green (Patel et al., 2016)), and

a dilute gas (of density p) of free fermions. These are precisely the characteristics

of the FL* state, which has an emergent gauge field (represented here by the c = 1

boson) and a Fermi surface of electron-like quasiparticles.

4.5 Outlook

The combination of our results on the density distribution and the entanglement

entropy confirm the expected appearance of a FL* state in the dimer model of Punk

et al. (2015). By general arguments (Senthil et al., 2004; Paramekanti and Vish-

wanath, 2004), the violation of the Luttinger theorem for a Fermi liquid requires that

the emergent gauge fields appear in the spectrum of the theory. Our results on the

entanglement entropy in a quasi-one-dimensional geometry are in accord with this

requirement, showing a background c = 1 boson that is expected from the gauge

theory of the dimer model (Fradkin and Kivelson, 1990; Read and Sachdev, 1990);

the boson represents the modes associated with the “resonance” between the dimers

around a plaquette. Above this gauge field background, we obtained evidence for a

gas of nearly-free fermions of density p, both in the density modulations and in the

entanglement entropy: in particular, the fermionic contribution to the entanglement
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entropy closely matched that of a dilute gas of free fermions near the bottom of a

quadratically dispersing band.

One possible direction to extend our work is to use the infinite-DMRG (iDMRG).

By using iDMRG we will be able to compute correlation functions of all length scales,

and can obtain momentum distribution and quasiparticle residue of Fermionic dimers.

Still, our momentum resolution in ky will be restricted by Ny.

Another approach is to use the recent proposal of DMRG in mixed real and

momentum space (Motruk et al., 2016). By this method we will be able to determine

ky more directly, which can be evidence of the existence of the hole pockets. Moreover,

Motruk et al. (2016) claims the computation time is reduced by more than an order

of magnitude, so this may allow us to include more sites in y-direction (in this case,

equivalently, more ky points).
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Chapter 5

Quantum criticality of

reconstructing Fermi surfaces

5.1 Introduction

Quantum phase transitions between two Fermi liquids, one of which spontaneously

breaks translational symmetry and so reconstructs its Fermi surface, have been of

longstanding theoretical and experimental interest. Important new examples of ex-

perimental realizations have emerged in the past years, (Taillefer, 2010; Helm et al.,

2010; Nakai et al., 2010; Doiron-Leyraud and Taillefer, 2012) and so a full theo-

retical understanding is of some urgency. Next to immediate relevance for a class

of strongly correlated electron materials, the spin-fermion model has evolved into a

minimal model for itinerant lattice electrons with strong, commensurate magnetic

fluctuations that are believed to destroy the Fermi liquid behavior when tuned to the

critical point. How the compressible electron liquid, without Lorentz symmetry and

without particle-hole symmetry, behaves when its correlations become singular, could

provide some direction in the search for new universality classes beyond, for example,

the better-known Gross-Neveu model of Dirac fermions which enjoys more symme-

tries. However, despite several decades of theoretical work, key questions remain open

especially in the important case of two spatial dimensions.
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Early theories (Overhauser, 1962; Hertz, 1976; Millis, 1993; Sachdev et al., 1995;

Abanov et al., 2003; Moriya, 2012) for such quantum phase transitions focused on

e↵ective models for the quantum fluctuations of the order parameter, while treating

the Fermi surface reconstruction as an ancillary phenomenon. However, it has since

become clear (Abanov and Chubukov, 2000, 2004) that such an approach is inad-

equate, and the Fermi surface excitations are primary actors in the critical theory.

Metlitski and Sachdev (2010b) postulated a critical theory for Fermi surface recon-

struction, in which the Fermi surface excitations and the bosonic order parameter

were equally important and both acquired anomalous dimensions. These excitations

were strongly coupled to each other by a “Yukawa” coupling of universal strength,

and their correlators scaled with a common dynamic critical exponent, z. Explicit

computations were performed in the context of a 1/N expansion, where the physical

number of fermion flavors is generalized to N . Taking N large, one can formally reor-

ganize Wick’s theorem in powers of 1/N and then extrapolate results to the physical

number of fermion flavors. For the hot-spot field theory at the onset of spin-density

wave order, no such critical theory appeared at the two-loop level. Indeed, it was

pointed out that at higher loops (Lee, 2009; Metlitski and Sachdev, 2010a,b) there is

a breakdown of the 1/N expansion, and so it remained unclear whether the postulated

fixed point existed.

Here we address the problem of Fermi surface reconstruction at the onset of spin-

density wave order by an analysis based on a formally exact functional renormalization

group (fRG) approach. (Berges et al., 2002; Metzner et al., 2012) This RG approach

allows a computation of correlation function as a function of a continuous cuto↵ scale

⇤; from the “UV” at energies of the order of the bandwidth down to “infrared”

excitations at and in the vicinity of the Fermi surface. Nonuniversal quantities and

crossover scales can be extracted from the same solution which also yields the critical

exponents in the limit ⇤! 0. Combined with the potential to resolve the momentum

(and frequency) dependence or correlators along the Fermi surface, the fRG o↵ers

much more than the field theoretic RG or conventional ✏ expansion which is typically

used to extract the leading singularities only.
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In this chapter, we solve a set of coupled flow equations which treats the electrons

on equal footing to the collective, order-parameter fluctuations. We truncate the flow

equations to a set of discrete points on the Fermi surface. When projecting our cor-

relators onto the hot spot as a function of momenta, we establish the existence of a

fixed point with the scaling structure postulated in Metlitski and Sachdev (2010b),

describing the quantum phase transition between two Fermi liquids: from the metal

with preserved SU(2) spin symmetry to the metallic antiferromagnet which sponta-

neously breaks spin symmetry. A significant feature of our truncation is that it ties

the parameters controlling the order parameter fluctuations to those associated with

the fermion excitations, and this is important for a proper description of the scaling

structure. We present numerical estimates for the critical exponents of the boson and

fermion spectral functions, and for the variation in the fermionic quasiparticle residue

around the Fermi surface. During our computations, we keep the shape of the Fermi

surface fixed. In principle, one would have to allow for a flowing Fermi surface and

consequently a flowing hot spot. In such a truncation, the singular manifold becomes

a “moving target” and this significantly complicates the analysis.

The rest of our results are presented in Chapter 5.5. In Chapter 5.2, we introduce

the recently developed two-band spin-fermion model that has the additional appeal-

ing feature that it does not su↵er from the sign problem in quantum Monte Carlo

simulations. (Berg et al., 2012) In Chapter 5.3, we present the functional RG setup,

the truncation, and the cuto↵ functions. In Chapter 5.6, we conclude and suggest

interesting future directions resulting from this chapter.

5.2 Model

Our computation will be carried in the context of the “spin-fermion” model of

antiferromagnetic fluctuations in a Fermi liquid. (Abanov et al., 2003) This involves

a spin-density wave order parameter ~� at wave vector K = (⇡, ⇡) coupled to fermions

 moving on a square lattice. The analytic analyses have focused on the vicinity of

the “hot spots” on the Fermi surface: These are the eight points on the Fermi surface
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which can generically be connected to each other by K. The fermion dispersions were

linearized and truncated around the hot spots. However a complete analysis requires

that we avoid the spurious singularities associated with truncated Fermi surfaces and

deal only with continuous Fermi surfaces. Here, we choose the Fermi surface config-

urations of a recent analysis (Berg et al., 2012) which allowed Monte Carlo studies

without a sign problem. The present work may be seen as complementary to Berg

et al. (2012): Here we especially focus on the universality class and critical properties.

This paves the way for an eventual comparison of our renormalization group results

with Monte Carlo. Our present method applies also to general Fermi surfaces and

provides access to real-time spectral functions which are not easily obtainable from

imaginary-time Monte Carlo.

The model of Berg et al. (2012) contains fermions in two bands, or two flavors,  ↵,

↵ = 1, 2 (although our present method can also be applied to single band models),

coupled to ~� in the e↵ective action

�⇤UV

h
 ̄, , ~�

i
=

Z

k

X

↵=1,2

 ↵(k)

 
�ik0 + ⇠k,↵ 0

0 �ik0 + ⇠k,↵

!
 ↵(k)

+

Z

q

1

2
~�(�q) �q2 + r

�
~�(q) (5.1)

+

Z

k,q

� ~�(q)
�
 1(k + q)~� 2(k) + 2(k + q)~� 1(k)

�
,

where
R
k
represents integrals over spatial momenta k = (kx, ky) over the Brillouin

zone, and frequencies k0. The fermion spinors are defined by ↵(k) =
�
 ̄↵,"(k)  ̄↵,#(k)

�
,

↵ = 1, 2. We already introduce here the cuto↵ ⇤ along which we later integrate our

renormalization group flow toward ⇤ ! 0. With ⇤ = ⇤UV we have the bare lattice

action. The boson quadratic term consists of the control parameter r and a spatial

gradient squared to account for spatial variations of the order parameter field ~�. The

quantum dynamics of ~� will be generated in the RG flow; putting a q20 term into

Eq. (5.1) does not change our results. The fermion dispersions for nearest-neighbor

hopping are

⇠k,↵ = �2t↵,xcoskx � 2t↵,ycosky � µ↵. (5.2)
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Figure 5.1: Reconstructing Fermi surfaces (⇠k,1 = 0, black dashed line; ⇠k,2 = 0, blue
solid line for Eq. (5.2)) from the paramagnetic phase (a) to the zeros of the quasi-
particle energies in the antiferromagnetic (SDW) phase (b). Gaps open at the “hot
spots,” that is, where the Fermi surfaces of the two flavors intersect. In this chap-
ter, we focus on the SDW transition that is the singular point right when the Fermi
surfaces reconstruct. The C4 lattice symmetry of the original fermions is preserved.

A consistent mapping to “physical” fermions can be achieved with an anisotropic

choice of hoppings, (Berg et al., 2012) t> = 1, t< = 0.5, µ↵ = �0.5, and t1,x = t>,

t2,x = �t<, t1,y = t<, t2,y = �t> yielding the Fermi surfaces shown in Fig. 5.1.

An important distinction of this chapter compared to the previous work (Altshuler

et al. (1995); Abanov and Chubukov (2000, 2004); Abanov et al. (2003); Lee (2009);

Metlitski and Sachdev (2010a,b)) is that we do not truncate the Fermi surface as

patch models around hot spots.

A mean-field analysis of Eq. (5.1) predicts an antiferromagnetic spin-density wave

(SDW) ground state at r = 1.34 which spontaneously breaks the spin SU(2) sym-

metry of Eq. (5.1). The Fermi surface topology “reconstructs” and gaps open at

the hot spots, as shown in Fig. 5.1. On a mean-field level, the SDW transition at

zero temperature of Eq. (5.1) is first order, as was also found in related single-band

models for electronic antiferromagnets. (Altshuler et al., 1995; Reiss et al., 2007) At

present, it is not clear which e↵ects such as fluctuations or competing instabilities

could potentially drive the transitions continuous or even change the ground state.
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The same is true for the formation of SDWs with periods incommensurate with the

underlying lattice. In the present chapter, we ignore these complications and focus

our attention on continuous SDW transitions at zero temperature.

5.3 Functional Renormalization Group

Our RG analysis is based on the (formally exact) flow equation for the e↵ective

action �⇤
R

h
 ̄, , ~�

i
, the generating functional for one-particle irreducible correlation

functions in the form derived by Wetterich. (Berges et al., 2002; Metzner et al.,

2012) The regulator R introduces a cuto↵ dependence into the e↵ective action so

that �⇤
R smoothly interpolates between the bare action, Eq. (5.1), at the ultraviolet

scale �⇤=⇤UV
R

h
 ̄, , ~�

i
= �⇤UV

h
 ̄, , ~�

i
and the fully renormalized e↵ective action

in the limit of vanishing cuto↵: lim⇤!0 �⇤
R

h
 ̄, , ~�

i
= �

h
 ̄, , ~�

i
. The Wetterich

equation has a one-loop structure and in a vertex expansion the � functions for the

n-point correlators are determined by (cuto↵ derivatives of) one-particle irreducible

one-loop diagrams with fully dressed propagators and vertices. Upon self-consistent

integration of the coupled set of � functions, contributions of arbitrary high loop order

are generated. As we explain below, we truncate the e↵ective action to the full fermion

two-point function (including a fermion self-energy ⌃⇤
f (k0,k)), the full bosonic two-

point function (including a bosonic self-energy ⌃⇤
b (q0,q)), and the Yukawa coupling

�⇤.

Our results are obtained from the renormalization group flow of the action Eq. (5.1)

at the quantum-critical point (r = 0) under the formally exact evolution equation

(Metzner et al., 2012)

d

d⇤
�⇤
R [�, �̄] =

1

2
Str

⇢
Ṙ⇤

h
�(2)⇤
R [�, �̄] +R⇤

i�1
�

. (5.3)

�(2)⇤
R is the second derivative with respect to the fields defined below. R⇤ is a matrix

containing ⇤-dependent cuto↵ functions that regularizes the infrared singularities

of the fermion and boson propagators. The dot is shorthand notation for a scale

derivative Ṙ⇤ = @⇤R⇤. Both sides of this equation are projected onto a “super”-field
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basis �, �̄ containing fermionic and bosonic entries:

�(k) =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

�x(k)

�y(k)

�z(k)

 1,"(k)

 1,#(k)

 ̄1,"(k)

 ̄1,#(k)

 2,"(k)

 2,#(k)

 ̄2,"(k)

 ̄2,#(k)

1

CCCCCCCCCCCCCCCCCCCCCCCCA

(5.4)

and its conjugate-transposed �(k). Str is a “super” trace over frequency, momenta,

and internal indices and installs an additional factor of �1 for contributions from

the purely fermionic sector of the trace of Grassmann-valued matrices. We solve

Eq. (5.3) in a vertex expansion truncating any generated vertices beyond the Yukawa

vertex. The flowing fermion self-energy ⌃⇤
f (k0,k) and the boson self-energy ⌃⇤

b (q0,q)

are parametrized in a derivative expansion keeping the Fermi surfaces fixed.

The cuto↵ matrix in Eq. (5.3) is given by

R⇤ = diag
⇣
R⇤

b

b,x, R
⇤
b

b,y, R
⇤
b

b,z, R
⇤
f

f1,", R
⇤
f

f1,#,�R⇤
f

f1,",�R⇤
f

f1,#, R
⇤
f

f2,", R
⇤
f

f2,#,�R⇤
f

f2,",�R⇤
f

f2,#
⌘
,

(5.5)

where one is, in principle, free to choose the fermion and boson cuto↵ scales ⇤b and ⇤f

and associated regulator functions Rb,f independently. (Schütz et al., 2005; Drukier

et al., 2012) The corresponding “flow trajectories” in cuto↵ space (in the plane of

Fig. 5.2) from the bare action (red dot) to renormalized, e↵ective action (green dot)

will be di↵erent. We choose the trajectory along the arrows illustrated in Fig. 5.2; that

is, we take ⇤f ! 0 and Rf ! 0 before integrating out order parameter fluctuations

which are excluded for momenta smaller than ⇤b. The fermions are, however, not

discarded as in the Hertz theory, (Hertz, 1976) but coupled self-consistently into the
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Bare action 

Renormalized, 
effective action 

Figure 5.2: Illustrative flow trajectory in cuto↵ space. At each step �⇤b of the
integration over bosonic momenta along the vertical axis the entire range of fermionic
momenta is swept over (gray-striped box).

flow for all ⇤ 2 {⇤UV
b , 0}, thereby imposing important boundary conditions for the

integration of order parameter fluctuations down the vertical axis in Fig. 5.2. This

makes the flow nonlocal in the cuto↵ scale in that the purely fermionic contractions

with Yukawa vertices are treated as a total scale derivative that also acts on the self-

energy on the internal lines and the Yukawa vertices. This is similar in spirit to the

Katanin scheme, where this can be shown to lead to the inclusion of higher n-point

vertices in the flow. (Salmhofer et al., 2004)

For the bosons, we use a Litim cuto↵ for momenta,

R⇤
b

b,x = R⇤
b

b,y = R⇤
b

b,z = R⇤
b = A⇤

b

��q2 + ⇤2
�
✓
�
⇤2 � q2

�
, (5.6)

where A⇤
b is bosonic momentum renormalization factor to be specified below. In the

following, we set ⇤b = ⇤. The fermionic entries in Eq. (5.5) are zero.

The fermionic matrix elements of the generalized matrix propagator
h
�(2)⇤
R [�, �̄] +R⇤

i�1
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occurring in Eq. (5.3) become

G⇤
f1,�(k) = �h 1,�(k) ̄1,�(k)iR

= �
" �!

�

��(k1)
�⇤
R[�,�]

 �
�

��(k2)
+R⇤

#�1

f1,�
�=�=0
k1=k2=k

=
�1

�ik0 + ⇠k,1 + ⌃⇤
f1(k0,k)

, (5.7)

and analogously for the other flavor and spin components.

The explicitly cuto↵-dependent boson spin fluctuation propagators are

DR(q) ⌘ DR
x (q) = �h�x(q)�x(�q)iR

= �
" �!

�

��(q1)
�⇤
R[�,�]

 �
�

��(q2)
+R⇤

#�1

b,x
�=�=0
q1=q2=q

=
�1

q2 + r + ⌃⇤
b (q0,q) +R⇤

b

=

8
<

:

�1
q2+r+⌃⇤

b

(q0,q)
|q| > ⇤

�1
⇤2+r+⌃⇤

b

(q0,⇤)
|q| < ⇤

, (5.8)

and analogously for the other spin projections y, z. The functional derivatives are

evaluated at zero fields here, as we approach the QCP from the paramagnetic phase.

The flow equation for the fermion self-energy (depicted diagrammatically in Fig. 5.3(a))

is

@⇤⌃
⇤
f1[k0,k] = 3

�
�⇤
�2
Z

q,R

G⇤
f2(k + q)DR

b (q) , (5.9)

and similarly for flavor 2 upon interchanging 1 $ 2. We use a shorthand notation

encapsulating frequency, momentum integrations, and a cuto↵ derivative with respect

to the bosonic cuto↵ function:
R
q,R

b

=
R

dq0
2⇡

R
d2q
(2⇡)2

h
�Ṙ⇤

b @R⇤
b

i
.

The prefactors and signs of the flow equations are computed by comparing coe�-

cients between the left- and right-hand sides of Eq. (5.3) as outlined in Sec.II of Gies

and Wetterich (2002). The 11⇥11 Grassmann-valued (super-) matrices are evaluated
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Figure 5.3: Diagrammatic representation of the flow equation for the fermion self-
energy ⌃⇤

f (k0,k) (a) and the Yukawa coupling (b). Straight lines denote Fermi prop-
agators of flavors 1 and 2; wiggly line boson propagators are endowed with a regulator
R⇤. Intersections of wiggly with straight lines represent the Yukawa coupling. The
cuto↵ derivative with respect to R⇤ is implicit. All propagators and vertices are
“dressed” self-consistently and are functions of ⇤.

using the GrassmannOps.m package in Mathematica. How to take a supertrace can

be found in Wegner (1998).

The boson self-energy is determined self-consistently from the particle-hole bubble

(Fig. 5.4) at all stages of the flow:

⌃⇤
b (q0,q) = �

�
⇧⇤(q0,q)� ⇧⇤(0,0)

�
(5.10)

= 2
�
�⇤
�2
Z

k

h �
G⇤

f1(k + q)�G⇤
f1(k)

�
G⇤

f2(k)

+G⇤
f1(k)

�
G⇤

f2(k + q)�G⇤
f2(k)

� i
.

The following ansatz captures the leading frequency and momentum-dependence of

the particle-hole bubble:

⌃⇤
b (q0,q) = Z⇤

b |q0| + (A⇤
b � 1)q2 . (5.11)

At the yellow dot in Fig. 5.2, the Fermi propagators are still Fermi-liquid like (⌃⇤UV
f↵ =

0) because we have not yet integrated out any order parameter fluctuations which,

by Fig. 5.3(a), generate a finite fermion self-energy. At that point, the coe�cients

Z⇤UV
b , A⇤UV

b take finite numerical values. At all stages of the flow, when integrating
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Figure 5.4: Particle-hole bubbles used for the flow of the boson self-energy in
Eq. (5.11). All propagators and vertices are “dressed” self-consistently and depend
on ⇤.

the flow down the vertical axis of Fig. 5.2, the bosonic Z and A factor are determined

self-consistently according to the prescription

Z⇤
b = �⇧

⇤(q0,0)� ⇧⇤(0,0)

q0

���
q0=⇤

,

A⇤
b = 1� ⇧

⇤(0,q)� ⇧⇤(0,0)

q2

���
q
x

=⇤,q
y

=0
. (5.12)

This allows them to pick up potentially singular renormalizations during the flow.

The boson momentum factor is isotropic in momentum space; interchanging qx $ qy

delivers the same value for A⇤
b .

The flow equation as per Fig. 5.3(b) for the Yukawa coupling is

@⇤�
⇤ = � ��⇤�3

Z

q,R

G⇤
f1(k + q)G⇤

f2(k + q)DR
b (q)

���
k0=0,k=kHS

. (5.13)

The explicit expressions of the flow equations and the numerical parameter used

are given in the next chapter.
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5.4 Explicit form of flow equations

We here give the explicit expressions of the flow equations (5.9), (5.10), (5.13).

To that end, it is convenient to use the rescaled variables Z̃⇤
b =

Z⇤
b

⇤
, ⇠̃k,1 =

⇠k,1
⇤

as well

as rescaled momenta: k̃0 =
k0
⇤
, q̃0 =

q0
⇤
, q̃x = q

x

⇤
, and q̃y =

q
y

⇤
.

For the the fermionic frequency exponent, there is

⌘Z
f1

=3
⇣
�̃⇤
⌘2q

|�⇤f1| |�⇤f2|
Z 1

�1

dq̃y
2⇡

Z +
p

1�q̃2
y

�
p

1�q̃2
y

dq̃x
2⇡

Z 1

�1

dq̃0
2⇡

⇥

2

642A⇤
b

1
⇣
iq̃0 � |�⇤f2|⇠̃kHS+q̃,2

⌘2

1
⇣
Z̃⇤

b |q̃0| + A⇤
b

⌘2

3

75 , (5.14)

and similarly (1 $ 2) for flavor 2. The frequency integral over q̃0 can be performed

analytically so that at each step of the flow, two-dimensional integrations over q̃x

and q̃y have to be performed numerically. The Yukawa anomalous exponent contains

fermion propagators of both flavors:

⌘yuk =�
⇣
�̃⇤
⌘2q

|�⇤f1| |�⇤f2|
Z 1

�1

dq̃y
2⇡

Z +
p

1�q̃2
y

�
p

1�q̃2
y

dq̃x
2⇡

Z 1

�1

dq̃0
2⇡

⇥

2

642A⇤
b

1

iq̃0 � |�⇤f1|⇠̃kHS+q̃,1

1

iq̃0 � |�⇤f2|⇠̃kHS+q̃,2

1
⇣
Z̃⇤

b |q̃0| + A⇤
b

⌘2

3

75 . (5.15)

For the flow of the fermionic momentum factors we use the projected kx and ky

derivatives of Eq. (5.9),

@⇤A
⇤
f1,x = nk

x

,1@k
x

@⇤⌃
⇤
f1[k0,k]

���
k0=0,k=kHS

,

@⇤A
⇤
f1,y = nk

y

,1@k
y

@⇤⌃
⇤
f1[k0,k]

���
k0=0,k=kHS

, (5.16)

with the initial conditions A⇤UV

f1,x = A⇤UV

f1,y = 1. The Fermi surface normal projector is

(similarly for flavor 2)

nk
x/y

,1 =
2t1,x/ysinkx/yq�

2t1,xsinkx/y
�2

+ (2t1,ysinky)
2
. (5.17)
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The flow equations for the rescaled variables are Ã⇤
f1,x =

A⇤
f1,x

Z⇤
f1

, Ã⇤
f1,y =

A⇤
f1,y

Z⇤
f1

. With

⌘Z
f1

given in Eq. (5.14), these take the form

⇤@⇤Ã
⇤
f1,x =

�
⌘Z

f1
� ⌘A

f1,x

�
Ã⇤

f1,x,

⇤@⇤Ã
⇤
f1,y =

�
⌘Z

f1
� ⌘A

f1,y

�
Ã⇤

f1,y , (5.18)

with the exponents ⌘A
f1,x

= �d lnA⇤
f1,x

d ln⇤
, ⌘A

f1,y
= �d lnA⇤

f1,y

d ln⇤
.At every step of the flow,

we compute then per Eq. (5.25)

|�⇤f1| =

r⇣
Ã⇤

f1,x

⌘2

+
⇣
Ã⇤

f1,y

⌘2

|r⇠1,k|k=kHS

. (5.19)

Expressions for the exponents:

⌘A
f1,x

=� nkHS,x,1 3
⇣
�̃⇤
⌘2q

|�⇤f1| |�⇤f2|
|�⇤f2|
Ãf1,x

⇥
Z 1

�1

dq̃y
2⇡

Z +
p

1�q̃2
y

�
p

1�q̃2
y

dq̃x
2⇡

Z 1

�1

dq̃0
2⇡

2A⇤
b

2t2xsin (kHS,x + q̃x⇤)⇣
iq̃0 � |�⇤f2|⇠̃kHS+q̃,2

⌘2

1
⇣
Z̃⇤

b |q̃0| + A⇤
b

⌘2 ,

⌘A
f1,y

=� nkHS,y,1 3
⇣
�̃⇤
⌘2q

|�⇤f1| |�⇤f2|
|�⇤f1|
Ãf1,y

⇥
Z 1

�1

dq̃y
2⇡

Z +
p

1�q̃2
y

�
p

1�q̃2
y

dq̃x
2⇡

Z 1

�1

dq̃0
2⇡

2A⇤
b

2t2ysin (kHS,y + q̃y⇤)⇣
iq̃0 � |�⇤f2|⇠̃kHS+q̃,2

⌘2

1
⇣
Z̃⇤

b |q̃0| + A⇤
b

⌘2 .

(5.20)

Finally, the (rescaled) boson frequency factor and momentum factor are self-

consistently determined from

Z̃⇤
b =2

⇣
�̃⇤
⌘2q

|�⇤f1| |�⇤f2|
Z ⇡

�⇡

dkx
2⇡

Z ⇡

�⇡

dky
2⇡

1

⇤2

⇥
Z 1

�1

dk̃0
2⇡

" 
1

i(k̃0 + 1)� |�⇤f1|⇠k,1
� 1

ik̃0 � |�⇤f1|⇠k,1

!
1

ik̃0 � |�⇤f2|⇠k,2
+ (1$ 2)

#
,

Ã⇤
b =2

⇣
�̃⇤
⌘2q

|�⇤f1| |�⇤f2|
Z ⇡

�⇡

dkx
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Z ⇡

�⇡

dky
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1

⇤2

⇥
Z 1

�1

dk̃0
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" 
1

ik̃0 � |�⇤f1|⇠k+q
x

,1

� 1

ik̃0 � |�⇤f1|⇠k,1

!
1

ik̃0 � |�⇤f2|⇠k,2
+ (1$ 2)

#

q
x

=⇤

.

(5.21)
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Equations (5.22), (5.14), (5.15), and (5.18)–(5.21) are solved numerically as a

function of flow parameter ⇤ = ⇤UVe�s so that s = 0 corresponds to the UV (⇤UV =

1). The hot spot coordinates are kHS,x = 1.0472, kHS,y = 2.0944. As initial conditions,

we choose �⇤UV = 0.25, Z⇤UV
f1 = Z⇤UV

f2 = 1, and A⇤UV
f1 = A⇤UV

f2 = 1. The initial values

for the boson propagator are Z̃⇤UV
b = 0.052 and Ã⇤UV

b = 1.011.

5.5 Results

We now describe the key results obtained from a solution of the flow equations. (i)

We find an infrared strong-coupling fixed point for the Yukawa-coupling �⇤ which gov-

erns the RG flow of the coupled Fermi-Bose action down to the lowest scales ⇤! 0.

This induces scaling relations among the anomalous exponents for the Fermi velocity,

the quasiparticle weight, and the Yukawa vertex. (ii) Both the quasiparticle weight

and the Fermi velocity vanish as a power law when scaling the momenta toward the

hot spot; the Fermi velocity slower than the quasiparticle weight. (iii) The (quantum)

dynamical scaling of the electronic single-particle and collective spin fluctuations fol-

lows from an emergent dynamical exponent, attaining the same (fractional) value for

both fermions and bosons.

The centerpiece of our analysis is the flow equation for the Yukawa coupling:

⇤@⇤�̃
⇤ =

✓
1

4

�
⌘Z

f1
+ ⌘Z

f2
+ ⌘A

f1
+ ⌘A

f2

�� ⌘yuk � 1

2

◆
�̃⇤ , (5.22)

where
⇣
�̃⇤
⌘2

=
�
�⇤
�2

/(⇤
q

Z⇤
f1Z

⇤
f2

q
A⇤

f1A
⇤
f2) is rescaled by the frequency (Z⇤

f1) and

momentum (A⇤
f1) derivatives of the fermion self-energy generated under the RG flow

as per Fig. 5.3(a). The power-law divergences as well as all other nonuniversal con-

tributions to the flow of the two fermion self-energy factors and the Yukawa coupling

itself are absorbed into the anomalous exponents:

⌘Z
f1

= �d lnZ⇤
f1

d ln⇤
, ⌘A

f1
= �d lnA⇤

f1

d ln⇤
, ⌘yuk = �d ln�⇤

d ln⇤
. (5.23)

⌘yuk is driven by the direct contribution to the flow of �⇤ exhibited in Fig. 5.3(b).

All couplings are projected to zero fermionic frequency, a discrete set of fermionic
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momenta on the Fermi surfaces, and zero bosonic frequency and momenta. This is

where the most singular renormalizations occur.

Specifically, the inverse quasi-particle weight is computed from the flowing self-

energy by (Honerkamp and Salmhofer, 2003)

Z⇤
f1 = 1� @

@ik0
⌃⇤

f1(k0,k)|k0=0,k=kF
, (5.24)

where kF is a momentum on the Fermi surface and the initial condition is Z⇤UV

f1 = 1.

The momentum renormalization factor is obtained from a momentum gradient of the

fermion self-energy,

A⇤
f1 = 1 +

|nk,1 ·r⌃⇤
f1(k0,k)|

|r⇠k,1|
���
k0=0,k=kF

, (5.25)

with the initial condition A⇤UV

f1 = 1. Here, r =
�
@k

x

, @k
y

�
and nk,1 is unit normal

vector onto the Fermi surface of flavor 1. We see below that the momentum gradient

scales di↵erently than the frequency derivative at the quantum critical point. In a

di↵erent context, for Fermi systems with van Hove singularities, this asymmetry was

established to all orders in perturbation theory by Feldman and Salmhofer. (Feldman

and Salmhofer, 2008) Necessary conditions to discover this are (i) the codimension

of the Fermi surface manifold is greater than zero (it is zero in a one-dimensional

Fermi systems) and (ii) one includes the additional, relevant transversal momentum

direction parallel to the Fermi surface into the analysis.

With these definitions, the scale-dependent “dressed” fermion propagator which

occurs self-consistently in all RG equations becomes

G⇤
f1(k) =

�1
�ik0 + ⇠k,1 + ⌃⇤

f1(k0,k)
=

Z⇤
f1

ik0 � |�⇤f1|⇠k,1
, (5.26)

with Z⇤
f1 = 1/Z⇤

f1 resembling the quasiparticle weight at low energies and the e↵ective

modulus of the Fermi velocity |�⇤f1| =
A⇤

f1

Z⇤
f1
.

A self-consistent numerical solution of the flow equations for the Yukawa vertex

�⇤, the fermion self-energy ⌃⇤
f (k0,k), and the boson self-energy ⌃⇤

b (q0,q) is attracted

toward an infrared strong-coupling fixed point. As can be read o↵ from Fig. 5.5, the
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Figure 5.5: Quantum critical RG flows of the Yukawa coupling and the anomalous
exponents at the hot spot kHS. The fixed-point values are �̃⇤ = 2.38, ⌘Z

f

= 0.78,
⌘A

f

= 0.44, and ⌘yuk = 0.11. The scaling plateaus for s & 6 depicted over ⇠ 4 orders
of magnitude would be attained indefinitely but are limited by the numerics only.
The infrared is to the right of the plot (⇤ = ⇤UVe�s).

� function for the Yukawa coupling, Eq. (5.22), vanishes for s & 6, resulting in a

scaling relation for the fermion and Yukawa anomalous exponents:

d ln �̃⇤

d ln⇤
= 0 , 1

2

�
⌘Z

f

+ ⌘A
f

�
= ⌘yuk +

1

2
, (5.27)

where we dropped the flavor index as they become degenerate at the hot spot. Simi-

lar strong-coupling fixed-point and scaling relations (without singular vertex correc-

tions) have recently been obtained at the QCP of a Dirac cone toy model between a

semimetal and a superfluid. (Strack et al., 2010; Obert et al., 2011)

The numerical values of the exponents (see Fig. 5.5) determine the scaling behavior

of the fermion propagator, Eq. (5.26), and the associated dynamical exponent zf . The

Yukawa vertex diverges as a power law,

�⇤!0 ⇠ 1

⇤⌘yuk
=

1

⇤0.11
. (5.28)

⇤ can be associated with the momentum distance from the hot spot; at ⇤ = 0 the

hot spots are resonantly connected by the ordering wave vector K of the incipient
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Figure 5.6: Infrared values of the momentum resolved inverse quasiparticle weights
Z⇤!0

f1 [k0 = 0, kx, ky] non-self-consistently computed from Eq. (5.24) along the Fermi
surface. Figure 5.7 exhibits flows of the corresponding exponents for the six data
points closest to the maximum/hot spot on the right flank. Here the hot spot is
located at kHS,y = 2.0944 and kHS,x = 1.0472.

SDW. At the hot spot, the fermionic quasiparticle weight vanishes as a power law,

Z⇤!0
f ⇠ ⇤⌘

Zf = ⇤0.78, (5.29)

destroying the Fermi liquid character of fermionic quasiparticle excitations. In a non-

self-consistent calculation we can also compute the fermion self-energy from Eq. (5.24)

away from the hot spot by solving the flow equations evaluated at general fermionic

momenta k. The result for a momentum cut along the Fermi surface is exhibited in

Fig. 5.6. The renormalization of the quasiparticle weight is strongly peaked around

the intersection of the Fermi surfaces at the hotspot. Away from the hot spot, the

suppression of the quasiparticle weight is less pronounced, leading to asymptotically

vanishing anomalous exponents in the infrared ⇤ ! 0 (Fig. 5.7). Nevertheless, in

the vicinity of the hot spot, magnetic fluctuations are still very strong, leading to

sizable non-Fermi liquid scaling regimes at intermediate scales with the maximum

progressively approaching the hot-spot value ⌘Z
f1
(k0 = 0, kx = kHS,x, ky = kHS,y) =

0.78 for momenta closer to it.
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Figure 5.7: Non-Fermi liquid regimes at intermediate scales of the anomalous ex-
ponent for the quasiparticle weight ⌘Z

f1
(k0 = 0, kx, ky) for six choices of momenta

progressively approaching the hot spot (corresponding to the six data points closest
to the maximum/hot spot on the right flank of Fig. 5.6). The momentum k6 is fur-
thest from the hot spot and k1 is closest to it. The infrared is to the right of the plot
(⇤ = ⇤UVe�s).

In the numerics for Fig. 5.6, we stopped the flow at s = 7 (recall that ⇤ = ⇤UVe�s),

leading to finite (but very large) values of Zf1 even at the hot spot. We used a

momentum cut of 100 points producing for each grid point in Fig. 5.6 the scale-

resolved flows shown in Fig. 5.7.

The Fermi velocity vanishes as well but with a smaller exponent,

|�⇤!0
f | ⇠ ⇤⌘

Zf

�⌘
Af = ⇤z

f

�1 = ⇤0.34 , (5.30)

so that the dynamical exponent for the fermions is

zf = 1 + ⌘Z
f

� ⌘A
f

= 1.34 . (5.31)

An important ingredient to the scaling laws above is the self-consistently flowing

boson propagator, Eqs. (5.8) and (5.11). The asymptotic static and dynamic scaling

of the spin fluctuation propagator is given by

lim
⇤!0

⇥
DR(q0,q)

⇤�1 ⇠ ⇤⌘
Z

b |q0| + q2 ⇠ |q0|1.66 + q2 , (5.32)
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with ⌘Z
b

= 0.66. Remarkably, the boson dynamical exponent,

zb = 2� ⌘Z
b

= 1.34 = zf , (5.33)

takes the same value as the fermion dynamical exponent. It is a distinguishing fea-

ture of this infrared fixed-point of electrons in metals at a SDW transition that the

dynamical exponent attains fractional value di↵erent from 1 (which is the exact value

for quantum-critical fermion systems with Lorentz-symmetry; see Janssen and Gies

(2012) and references therein) and di↵erent from 2 (which is the mean-field value of

the Hertz theory (Hertz, 1976)). Our fermion anomalous dimensions and z can be

mapped to those of Metlitski and Sachdev (2010b) for values of the Fermi velocity-

anisotropy in a range around ↵ ⇡ 0.5 and upon ignoring the marginal RG flow of ↵

(which is implicitly assumed in (5.25)); our boson anomalous dimension renormaliz-

ing the q2 term in the propagator is essentially zero, and we trace this to di↵erences

in the RG scheme from Metlitski and Sachdev (2010b).

5.6 Conclusion

This chapter was dedicated to the critical behavior of compressible, electronic

quantum matter in two-dimensional lattices interacting with self-generated, singular

antiferromagnetic fluctuations. We generalized previous hot-spot theories to full “UV-

completed” Fermi surfaces free of spurious edge singularities in a model that can

also be analyzed with quantum Monte Carlo. This should enable a cross-fertilizing

comparison of results obtained with di↵erent methods for this problem. We provided

first quantitative estimates for the critical exponents of the single-particle and spin

fluctuations correlators which deviate strongly from the Hertz-Millis values. The

solution of our RG equations was attracted toward a stable, strong-coupling fixed

point, resulting in a common dynamic exponent for the fermions and the bosons.

It would be interesting to classify all relevant operators to our fixed point and

investigate the stability of our strong-coupling fixed point further. As a first simple

step in this direction, we have extended the truncation for the fermion dispersions to
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allow for changes in the Fermi surface curvature (keeping the position of the hot spot

fixed). A scale-dependent ↵̃⇤ that modifies the hoppings, t1,x/y ! t1,x/y + ↵̃⇤ and

t2,x/y ! t2,x/y � ↵̃⇤, does the job. We found only relatively small, finite renormaliza-

tions of ↵̃⇤. However, a proper self-consistent investigation of a flowing Fermi surface

with the full dispersion used in this paper requires an advanced truncation and likely

also a self-consistent determination also of the position of the Fermi surfaces and

the hot spots as a function of ⇤. Potential tendencies toward magnetic ordering at

incommensurate wave vectors might also be captured that way. Such a state-of-the-

art truncation was recently presented for self-energy flows in the repulsive Hubbard

model close to van Hove filling. (Giering and Salmhofer, 2012)

Other promising future directions are the inclusion of (d-wave) superconductivity,

(Sedeki et al., 2012) an extension to the quantum-critical regime at finite tempera-

tures, and the exploration of the antiferromagnetic phase with broken symmetry close

to the quantum critical point. The latter can be achieved, for example, by generaliz-

ing Strack et al. (2008) from the superfluid O(2) case to the staggered O(3) case for

the spin-fermion model.
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