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Abstract

This thesis develops mixed quantum-classical methods to model dynamical nonequi-

librium quantum phenomena in condensed phase systems, and also explores proper-

ties of 2-d systems near a quantum critical point using field theoretic techniques and

purely classical simulation.

Mixed quantum-classical methods involve dividing the system into a quantum

sub-system coupled to a classical bath, which is useful for examining the dynamics of

systems in the condensed phase since the full quantum treatment of a large number of

degrees of freedom is often computationally infeasible. Although the bath is treated

classically, its coupling to the quantum system precludes a Newtonian description.

We implement an approach that uses the quantum-classical Liouville equation to

propagate the quantum subsystem density matrix, which results in an ensemble of

surface-hopping trajectories. We test this method on model systems and compare

with a linearized path-integral approach. We also develop a novel approach to prop-

agating the reduced density matrix that incorporates ideas from both methods while

maintaining the ease of implementation of linearized methods.

We study the 2-d spin gap antiferromagnet, piperanzium hexachlorodicuprate

(PHCC) near a quantum critical point, where the spin gap is closed by an applied

magnetic field, and excitations behave like Sz = 1 bosons. Using field theoretic
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techniques, we find that the temperature dependence of the propagating mode energy

is successfully described by a self-consistent Hartree-Fock theory of spin excitations.

We also investigate the thermally excited 2-d dilute Bose gas near a quantum critical

point, which can be used to obtain the dynamic spectrum of PHCC and other 2-d

antiferromagnets. While the pairwise interactions between bosons are weak, we find

that the collective properties pose a strong coupling problem (in contrast to the 3-d

case). We describe these interactions effectively with a classical model.



Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Citations to Previously Published Work . . . . . . . . . . . . . . . . . . . vii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction and structure of thesis 1

2 Quantum dynamics 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Approximate methods . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Mixed quantum-classical approaches and tests on model systems 11
3.1 Wigner-Liouville approach . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Implementation and discussion . . . . . . . . . . . . . . . . . 15

3.2 Linearized quantum-classical method . . . . . . . . . . . . . . . . . . 17
3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Tests on model systems . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Spin-boson Hamiltonian . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Asymmetric spin-boson . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Morse Potential . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Density matrix propagation: an iterative linearized approach 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



Contents vi

4.3.1 Momentum distribution function and state labels . . . . . . . 39
4.3.2 Mapping formalism . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Dimerized Mott insulators and quantum criticality 45
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Phase transitions: classical and quantum . . . . . . . . . . . . . . . . 45
5.3 Dimerized Mott insulators . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Field-induced quantum criticality in PHCC 56
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 PHCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.4 Comparison with Experiment . . . . . . . . . . . . . . . . . . . . . . 61
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Quantum critical dynamics of the two-dimensional Bose gas 65
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.1.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Quantum critical theory . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.1 Numerics: equal time correlations . . . . . . . . . . . . . . . . 77
7.2.2 Dynamic theory . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Quantum-classical Liouville equation 86

B Trotterized Wigner-Liouville approach 89

C Perturbation theory for quantum critical Bose gas 96

Bibliography 99



Citations to Previously Published Work

Portions of Chapter 4 will appear in the following paper:

“Reduced Density Matrix Propagation: An Iterative Scheme for Imple-
menting the Linearized Approach to Nonadiabatic Dynamics in the Map-
ping Representation (ISLAND-Map)”, E. R. Dunkel, S. Bonella, and D.
F. Coker

Portions of Chapter 6 will appear in the following paper:

“Field-induced quantum criticality in a two-dimensional antiferromag-
net”, T. Hong, E. Dunkel, S. Sachdev, M. Kenzelmann, M. Bouloubasis,
M. Stone, C. Broholm, and D. H. Reich.

Chapter 7 has appeared in its entirety in the following paper:

“Quantum critical dynamics of the two-dimensional Bose gas”, S. Sachdev
and E. R. Dunkel, Physical Review B 73, 085116 (2006).

vii



Acknowledgments

I am very grateful to Prof. David Coker for being such a supportive advisor and

mentor. His enthusiasm was contagious. I thank Prof. Subir Sachdev for guiding

me through my first projects and looking out for me during my time as a graduate

student.

Thanks to my collaborators, Dr. Sara Bonella, on quantum-classical methods,

and Tao Hong, who performed neutron scattering experiments. Thanks to Prof. Feng

Wang and Prof. Tom Castonguay for teaching me about molecular dynamics. Thanks

to the Coker group at Boston University for welcoming me into their lab. Thank you

Prof. Melissa Franklin and Prof. Markus Greiner for being on my committee.

I am grateful for all my friends in the Physics Department at Harvard who made

graduate school fun, especially Lisa. I’d also like to thank my boyfriend, Brian, for

all his support.

viii



Dedicated to my mom, Patty

my dad, Darrel

and my brother, Mark

ix



Chapter 1

Introduction and structure of

thesis

While quantum interference between macroscopic states is absent in everyday ex-

perience, such Schrödinger “cat” states have been observed experimentally, at least

transiently. The observation of sustained microsystem coherence despite strong cou-

pling to the environment is a signature of these “cat”-like state. [26] In the limit of zero

coupling, a microsystem prepared in a superposition of states will maintain coherence

indefinitely. Turning on the coupling leads to energy transfer with the environment.

Each microsystem state will launch the bath into a distinct evolution history, and

continued coherence of the microsystem implies bath-bath coherence. Whether this

is macroscopic or not depends upon the number of bath modes involved.

The system becomes decoherent due to either phase damping or the eventual or-

thogonality of the bath over time. This is measured by the decay of the off-diagonal

elements of the reduced density matrix (obtained by taking the trace of the entire
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system density matrix over the environmental degrees of freedom). Although mea-

surements are performed on the microstate, inferences about the environment can be

made due to the entanglement of the microsystem and bath wavefunctions. [57]

Recent experiments by Apkarian et al [59] have demonstrated “cat”-like states

by measuring the vibrational decoherence of impurity molecular iodine coupled to a

solid Kr bath using four-wave mixing. They prepare the impurity in a superposition

of two vibrational states on the B-electronic state and let the system evolve. The

impurity collides with the bath, driving two distinct bath histories. They find that

the coherence of the two states persists for approximately nine vibrational periods,

and since the impurity is strongly coupled to the bath, the bath itself must also be in

a superposition of states during this time. After the nine vibrational periods, there

is complete decoherence, corresponding to the transition between quantum dynamics

and the classical macroscopic world. The ability to simulate systems like this is of

great interest. The large number of degrees of freedom make a full quantum simula-

tion infeasible, and thus we must resort to approximate methods. Mixed quantum-

classical methods are one avenue of approach, in which for this problem, the impurity

molecular iodine is treated quantum mechanically and the solid Kr environment is

treated classically. The development and implementation of mixed quantum-classical

methods is the subject of Chapters 2 - 4 of this thesis.

Chapter 2 provides an overview of mixed quantum-classical methods. In Chap-

ter 3 we build upon an approach developed by MacKernan, Ciccotti and Kapral [29]

that uses the quantum-classical Liouville equation to propagate the quantum system

density matrix, resulting in an ensemble of trajectories that have hops between popu-
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lation and coherences in the representation of the density matrix, or “surface hopping”

trajectories. We implement this on model condensed phase systems and compare re-

sults with a path-integral approach that is linearized in the forward and backward

bath variables, developed and coded previously in the Coker group [7]. In Chapter 4,

in collaboration with Dr. Sara Bonella, we develop a novel approach for propagating

the quantum system density matrix that incorporates ideas from both methods yet

maintains the ease of implementation of linearized methods. The method is based on

a time stepping procedure arising from a Trotter factorization, combining the forward

and backward incremental propagators, and treating sums over quantum states with

a Monte Carlo surface hopping-like procedure. The ability to describe decoherence

in Apkarian’s experiment on B-state molecular iodine motivated the development of

this new method. The linearized approach in the pure dephasing limit has been suc-

cessfully used to describe X-electronic state dynamics [28]. In the B-state, however,

population relaxation must also be included since this state is coupled strongly to

the bath. The B-state system is a highly asymmetric problem, which the linearized

method has difficulties with as shown in Chapter 3. Branching of nuclear trajectories,

which is not included in the linearized approach, may also play an important role in

the B-state decoherence. Thus, Chapter 4 is devoted to the development of a more

accurate method. These chapters were done under the advising of Prof. David Coker.

Chapters 5 - 7 are devoted to the study of quantum phase transitions, which occur

at zero temperature and result from tuning a non-thermal control parameter. In these

transitions order is destroyed by quantum fluctuations rooted in the Heisenberg un-

certainty principle, as opposed to thermal fluctuations in the classical case. Chapter 5
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gives an overview of phase transitions and discusses coupled dimer antiferromagnets

and the bond operator approach. While quantum phase transitions are of great inter-

est, it has been difficult to find systems that are both theoretically tractable and can

be tuned experimentally across a quantum phase transition. In recent experiments,

however, on 2-d insulating spin-gap compounds [40, 58, 79, 68, 67, 22] a transition

was accessible by tuning an applied magnetic field. In these systems the low lying

spin excitations behave like spin Sz = 1 bosons and condensation of these bosons at

a critical magnetic field corresponds to a phase transition. We study one of these

compounds, piperanzium hexachlorodicuprate (PHCC), in Chapter 6. Using data

from neutron scattering experiments by Tao Hong et al [22] we find that the propa-

gating mode energy is successfully described by a self-consistent Hartree-Fock theory

of spin excitations. In Chapter 7 we investigate the thermally excited 2-d dilute Bose

gas near a quantum critical point. In 3-d the quantum critical fluctuations can be

described by the Bose-Einstein theory of non-interacting bosons, but this is not the

case in 2-d. While the pairwise interactions between bosons are weak, we find that

the collective properties pose a strong coupling problem, which can be described by

an effective classical model. This can be applied to obtain the dynamic spectrum of

PHCC. These chapters were done under the advising of Prof. Subir Sachdev.



Chapter 2

Quantum dynamics

2.1 Introduction

The dynamics of quantum particles interacting with more massive particles is an

active field of study [9], from the vibrational dephasing of an impurity molecule in a

lattice discussed in Chapter 1, to proton transfer in solution. The large number of

degrees of freedom in condensed phase systems make exact simulation difficult and

thus the development of approximate methods is a very active area of research in

chemical physics.

2.2 Approximate methods

A variety of approximate methods to simulate large quantum systems have been

developed and can be broadly divided into semiclassical, linearization, and mixed

quantum-classical approaches.

5
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In semiclassical methods [2, 5, 37, 65, 69], all degrees of freedom are treated on the

same footing, while hopefully still capturing the quantum character to a satisfactory

extent. The quantum propagator is expressed as a weighted average of classical tra-

jectories determined by a stationary phase analysis of the path-integral representation

of the propagator. [19, 35] This becomes exact in the limit that S/h̄ → ∞, where S

is the system’s classical action. One advantage of these methods is that the semi-

classical propagator can be obtained by classical simulation techniques. The weights,

however, are a source of numerical instability since one must handle interference ef-

fects between trajectories. In chaotic systems this instability becomes even more

pronounced and requires the use of often expensive filtering techniques [25, 31, 75].

Linearized semiclassical initial value representation (LSC-IVR) methods [69, 71, 76]

provide another way to handle the oscillatory integrals in semiclassical methods. The

correlation function expressed as a double phase space average is expanded to linear

order in the difference between phase space variables in the two action integrals. A

drawback of this method is that it is incapable of describing quantum coherence ef-

fects that arise from distinct classical trajectories [71]. A systematic way of going

beyond this is given by the forward-backward initial value representation (FB-IVR)

approach [32, 36, 70], in which the forward and backward time evolution is combined

into one overall semiclassical initial value representation (SC-IVR) propagation. This

partially cancels the oscillatory behavior of the integrals, while maintaining the ability

to capture quantum coherence effects.

Linearization techniques are another approach [44, 45, 60, 61, 62]. In these meth-

ods, the time correlation function is expressed in the Heisenberg representation and
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is linearized with respect to the forward and backward propagated variables. This re-

sults in a set of classical trajectories with initial conditions sampled from the Wigner

transform of the density operator. Calculating the Wigner transform is a difficult

problem for anharmonic systems and efficient approximate methods have been devel-

oped [44, 61]. The formal result obtained by linearization techniques is equivalent

to that obtained by the LSC-IVR approach [60]. While linearized schemes are less

accurate than their full semiclassical counterpart, they are simpler to implement and

provide a valuable tool for simulating systems in the condensed phase.

In mixed quantum-classical methods, on the other hand, the quantum and classical

degrees of freedom are treated in different manners. The system is partitioned into a

quantum and classical part on the basis of relative masses or energy scales, and the

Hamiltonian is of the form:

Ĥ =
P̂ 2

2M
+ ĥqm(R, p̂, r̂) (2.1)

where (r̂, p̂) describe the quantum subsystem and (R,P ) the classical bath. ĥqm is the

quantum sub-system Hamiltonian which depends upon the bath positions. Although

the bath is treated classically, a simple Newtonian description of its evolution no

longer exists due to its coupling to the quantum system. Approaches of this type are

the subject of the next two chapters.

The simplest mixed quantum-classical approach assumes adiabatic dynamics. The

time independent Schrödinger equation is solved for a fixed bath configuration to

obtain the quantum subsystem’s eigenstates and adiabatic energies. This is done

repeatedly over different bath configurations to map out a potential energy surface

as a function of R. The bath molecules are then evolved with Newton’s equations
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subject to the Hellmann-Feynman forces [13] determined from the adiabatic energies.

This approach is only valid when the energy difference between states is large and

the coupling between the quantum and bath degrees of freedom is small, otherwise

motion on a single Born-Oppenheimer surface is no longer valid [72].

Mean field, surface hopping, and quantum-classical linearization methods have

been developed to account for the breakdown of non-adiabaticity. In mean field, or

Ehrenfest methods, the classical particles move over an interaction potential deter-

mined by the average of the quantum subsystem. This approach fails when the mean

potential does not provide an accurate picture of the system. In surface hopping

methods [17, 18, 46, 63], the classical particles are propagated over one of the poten-

tial energy surfaces with stochastic hops between quantum states. These transitions

are handled with an ad hoc procedure that distributes the trajectories to mimic the

population evolution of the quantum subsystem. [9] Surface hopping has proven to

be quite successful in describing condensed phase phenomena [4, 78], although retain-

ing quantum coherence is a limitation of these algorithms, and approximate methods

have been introduced to include decoherence effects [3, 18].

Methods have also been developed based on various approximations to the Li-

ouville equation which evolves the density matrix for the entire system. A common

simple approach in the quantum optics literature [34, 41] for handling system-bath

interactions involves integrating the Liouville equation, tracing over the bath vari-

ables, and making the Markovian approximation which assumes that the bath-bath

correlation decay time is infinitely short. This gives the master equation for the

reduced density operator, and expanding in a basis of coherent states leads to the
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Fokker-Plank equation. In quantum-classical Liouville methods, on the other hand,

the approximation to the Liouville dynamics is made at the beginning. The Liouville

equation is expanded on the basis of relative mass or energy scales of the system

and bath, to give the quantum-classical Liouville equation. This method does not

make the Markovian assumption and can take into account bath coherence effects.

It also treats the bath variables explicitly. Taking a phase space representation for

the bath variables and integrating the quantum-classical Liouville equation gives the

evolution equation for the reduced density matrix. This results in an ensemble of

surface hopping trajectories [12, 24, 30]. In between hops the trajectories can run

on a coherence of states, thus this approach maintains quantum coherence in a more

rigorous way than standard surface hopping or mean field methods. We explore a

quantum-classical Liouville approach in detail in Chapter 3.

Linearization methods [6, 7, 8] are another avenue of approach we explore in

Chapter 3. Like the semiclassical linearization methods discussed above, the time

correlation function is expressed in the Heisenberg representation, but in these meth-

ods the linearization is carried out in the bath variables only. Transitions between

quantum states are handled by the mapping formalism [35, 65] in which the discrete

quantum states are mapped onto continuous degrees of freedom. A limitation of

linearized approaches is that they are accurate only in the short time limit. Correla-

tion functions in condensed phase systems decay rapidly, however, enabling linearized

approaches to yield reliable results.
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2.3 Discussion

In Chapter 3 we build upon the trotterized Wigner-Liouville method developed

by D. MacKernan, G. Ciccotti and R. Kapral [29] and implement this for model

condensed phase systems. We compare the results with a mixed quantum-classical

linearized approach developed and coded previously in the Coker group [7], and find

that the Wigner-Liouville method captures the dynamics more accurately at longer

times and lower temperatures, and for asymmetric problems. The fundamental phys-

ical difference between these two approaches is that nuclear trajectory branching is

included only in the Wigner-Liouville method. Disadvantages of this method are that

it is much more difficult to implement, and also requires the use of filters which are

highly dependent upon system parameters. A disadvantage of the linearized approach

is that the trajectories depend upon the measurement, as is shown when we study the

coupled Morse oscillator system. The method also produces so-called “ghost” trajec-

tories, or trajectories with approximately zero weight. In Chapter 4, in collaboration

with Dr. Sara Bonella, we develop a novel approach that incorporates ideas from

both methods yet maintains the ease of implementation of linearized methods. We

linearize in the short time limit with stochastic hops between density matrix elements.

This approach avoids “ghost” trajectories and forces which depend on the matrix ele-

ment of the observable. This new approach takes into account nuclear branching and

is able to capture bath-bath coherence effects. Both chapters were done under the

advising of Professor David Coker.



Chapter 3

Mixed quantum-classical

approaches and tests on model

systems

3.1 Wigner-Liouville approach

The first approach we implement is based on the Trotter decomposition of the

quantum-classical propagator, developed by Dónal Mac Kernan, Giovanni Ciccotti,

and Raymond Kapral in Ref. [29], which describes the dynamics of a quantum system

coupled to its classical environment. The propagator is divided into small time steps

and quantum transitions are Monte Carlo sampled to yield a surface-hopping type

approach.

11
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3.1.1 Theory

When investigating the dynamics of quantum systems, one is often interested in

the time evolution of the expectation value of some operator, Â. This time evolution

is governed by the Heisenberg equation: ih̄∂Â/∂t = [Ĥ, Â(t)], where Ĥ is the Hamil-

tonian. Conversely, in classical mechanics, an observable is a function of phase space

(R,P ), and its evolution is given by: ∂A/∂t = {H, A(t)}. We would therefore expect

an observable evolved by a mixed quantum-classical approach to have both operator

and phase space character, and the evolution equations to involve both commutators

and Poison brackets. Starting with a full quantum description and expanding to low-

est order in the square root of the quantum to classical mass ratio, µ = (m/M)
1
2 ,

gives the quantum-classical Liouville equation [24]:

∂ÂW

∂t
≈ − i

h̄
[ĤW , ÂW ] +

1

2
({ĤW , ÂW} − {ÂW , ĤW})

≡ iL̂ÂW (t) (3.1)

where L̂ defines the quantum-classical Liouville operator, and the partial Wigner

transform of Â over the bath variables, (R,P ), is given by [72]:

ÂW (R,P ) =
∫

dzeiP ·z〈R− z

2
|Â|R +

z

2
〉 (3.2)

Please see Appendix A for details of the derivation. The quantum classical Liouville

equation is able to describe the dynamics of systems accurately when m << M [23]

or the characteristic energy scale of the quantum subsystem is much higher than

that of the bath. Further, for the spin boson model, the linear order expansion is

exact, so the quantum classical Liouville dynamics is equivalent to a full quantum



Chapter 3: Mixed quantum-classical approaches and tests on model systems 13

description [30]. While the formal solution is simply ÂW (t) = exp(iL̂t)ÂW (0), its

simulation is not an easy task.

Formulating the problem in the adiabatic basis is convenient for a surface-hopping

scheme. The adiabatic eigenfunctions, |α, R〉, are solutions of the eigenvalue problem:

ĥW (R)|α, R〉 = Eα(R)|α,R〉 (3.3)

where ĥW (R) = p̂2/(2m) + V̂W (q̂, R) is the partially Wigner transformed subsystem

Hamiltonian for fixed bath coordinates. The full system Hamiltonian is given by

ĤW = P̂ 2/(2M) + ĥW (R). Small variables refer to the quantum system and large

variables to the bath, and we will assume hat notation where appropriate. Defining

the matrix elements of the operator as: Aαα′
W (R,P ) = 〈α,R|AW |α′, R〉, the quantum-

classical Liouville Equation becomes:

∂Aαα′
W

∂t
(R, P, t) =

∑

ββ′
iLαα′ββ′A

ββ′
W (R,P, t) (3.4)

Taking wαα′(R) = (Eα(R)−E ′
α(R))/h̄, gives the following expression for the quantum-

classical Liouville super-operator that propagates the system [30]:

−iLαα′ββ′ = (−iwαα′ − iLαα′)δαβδα′β′ + Jαα′ββ′

≡ iL0
αα′δαβδα′β′ + Jαα′ββ′ (3.5)

Where the classical Liouville operator is defined by:

iLαα′ =
P

M
· ∂

∂R
+

1

2
(Fαα

W + Fα′α′
W ) · ∂

∂P
(3.6)

and F αα
W = −〈α, R|∂VW (q, R)/∂R|α,R〉, which is the Hellmann-Feynman force that

governs the motion on the adiabatic surface corresponding to |α, R〉.
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The Jαα′ββ′ super-operator accounts for non-adiabatic transitions and the resulting

momentum transfer to and from the bath:

Jαα′ββ′ = − P

M
· dαβ(1 +

1

2
Sαβ · ∂

∂P
)δα′β′ − P

M
· d∗α′β′(1 +

1

2
S∗α′β′ ·

∂

∂P
)δαβ (3.7)

where Sαβ = (Eα − Eβ)dαβ( P
M
· dαβ)−1 and the coupling matrix element is dαβ =

〈α,R|∇R|β, R〉.

The evolution operator can be written in a Dyson type form:

(e−iLt)αα′ββ′ = e−iL0
αα′ tδαβδα′β′ +

∑

γγ′

∫ t

0
dt′e−iL0

αα′ (t−t′)Jαα′γγ′(e
−iLt′)γγ′ββ′ (3.8)

and can be iterated in powers of the perturbation J .

Trotter factorizing into N steps of interval δ = t/N , and using the fact that L0 is

diagonal in the adiabatic basis, gives the short time propagator [30]:

(eiLδ)αα′ββ′ ≈ (eiL0δ/2)αα′αα′(e
−Jδ)ααββ′(e

iL0δ/2)ββ′ββ′ +O(δ3) (3.9)

So, we see that the full propagator consists of free propagation with intermittent hops

between ”surfaces”. These surfaces do not correspond to a single adiabatic surface in

the usual sense in surface hopping methods [17, 18, 46, 63], but instead consists of two

adiabatic surfaces (for the bra and ket states). Hops take place between populations

and coherences in the representation of the quantum subsystem density matrix.

The expectation value of an observable is given by:

〈A(t)〉 = Tr′
∫

dRdPeiLtAW (R, P, 0)ρW (R,P, 0) (3.10)

where Tr′ is the trace over the quantum subsystem. Solutions can be represented in

terms of an ensemble of surface-hopping trajectories sampled from the initial density

and propagated by the Liouville super-operator.
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Figure 3.1: A trajectory starts on state (1, 1) and is propagated by L11. A transition
to state (1, 2) occurs due to the perturbation J and a quantum coherence is created.
Propagation continues by L12, followed by a transition to state (2, 2).

3.1.2 Implementation and discussion

Here we make some comments about the procedure, with details given in Appen-

dix B.

Figure 3.1 gives an example of a single trajectory. This trajectory starts on the

ground potential energy surface, and is propagated by the classical Liouville operator,

L11. The observable during this time is diagonal, A11. A nonadiabatic transition from

state (1, 1) to state (1, 2) occurs stochastically due to the J perturbation. The energy

gap and coupling vectors restrict the nature of these hops (please see Appendix B

for more detail). The transition is accompanied by a change in the bath momenta

in such a way as to conserve the total energy of the system. The system is now

in a coherent state, and the observable is given by the off-diagonal matrix element,

A12. The trajectory is propagated by L12 and accumulates a phase factor given
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by the time integral of w12. A second stochastic transition occurs, this time from

state (1, 2) to state (2, 2), and the observable during this time is diagonal, A22. The

final observable, A, is constructed from an ensemble of trajectories, with stochastic

quantum transitions.

One of the approximations made in the algorithm was dividing the propagator

into small time steps and trotter factorizing into terms involving L0 and J . This

introduces an error of O(δ3). Secondly, a jump approximation was made, valid to

O(δ2). Branching of each trajectory into three trajectories occurs with each applica-

tion of exp(−Jδ), that is (R,P ) → (R,P ) or (R, P − δP ) or (R, P + δP ), and leads

to exponential growth in the number of trajectories. This branching was eliminated

by taking a small time step expansion yielding an energy conserving single trajectory.

A limitation of this is that it does not allow for the possibility of tunneling.

We represent our adiabatic energy surfaces for two state systems using mixing

angles to avoid numerical instabilities, discussed in Appendix B (for an arbitrary

number of states, the eigenvectors would need to be solved numerically). Finally,

filters were used to limit the maximum number of hops and maximum value of the

observable, which fluctuates largely when the hopping probability is high (please see

Appendix B for more detail). These fluctuations exacerbate the sign problem that

comes from the evolution phase factors and makes it difficult to obtain accurate Monte

Carlo estimates. A filter is therefore used to eliminate these fluctuations that should

not contribute to the average.

In summary, the equations of motion are obtained by taking a Wigner transform

over the bath degrees of freedom of the Liouville equation, which describes the full



Chapter 3: Mixed quantum-classical approaches and tests on model systems 17

quantum system, and expanding in the mass ratio of the quantum to classical par-

ticles. The series solution of the resulting quantum-classical Liouville equation leads

to an ensemble of surface hopping trajectories, where hops between quantum states

are selected stochastically. This method is different from traditional surface-hopping

schemes in that it contains segments of coherent evolution, as opposed to simply

moving on a single adiabatic surface between quantum transitions.

3.2 Linearized quantum-classical method

This section outlines the linearized approach developed and coded previously in

the Coker group [6, 7, 8]. It involves partial linearization of the full quantum path-

integral expression for the time correlation function, and uses the mapping formalism

in which the discrete quantum states are represented in terms of continuous harmonic

oscillator degrees of freedom.

3.2.1 Theory

The correlation function of two operators in the Heisenberg representation is given

by:

〈ÂB̂(t)〉 = Tr[ρ̂ÂeiĤtB̂e−iĤt] (3.11)

Ĥ is the full system Hamiltonian: Ĥ = P̂ 2/(2M)+ĥqm(R), where ĥqm is the quantum

subsystem Hamiltonian and (R,P ) refer to the bath variables. ρ̂ is the initial system

density operator. We work in units where h̄ = 1 and will assume hat notation where

appropriate.
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The correlation function can be written in a basis set, |R,α〉 = |R〉|α〉, chosen as

the tensor product of the bath degrees of freedom and the diabatic electronic basis

(the diabatic representation is used since the evolution equations obtained are much

simpler than in the adiabatic basis [9]). Inserting resolutions of the identity into

Eq. (3.11) gives:

〈AB(t)〉 =
∑

αβα′β′

∫
dR0dRNdR̃0〈R0α|ρA|R̃0α

′〉

×〈R̃0α
′|eiHt|RNβ′〉〈R̃Nβ′|B|RNβ〉〈RNβ|e−iHt|R0α〉 (3.12)

This can be read as propagation of the initial state, |R0α〉, forward in time followed by

a B measurement that may put the system in a different bath or quantum state. The

evolution then continues backward in time. The trace is completed by evaluating

the corresponding matrix element of A with the density operator. This is shown

in Figure 3.2. Note that transitions between quantum states can occur during the

evolution.

The n diabatic states are represented using the mapping formalism [33, 37, 64, 66]

where they are mapped onto n oscillators:

|α〉 → |mα〉 = |01, ..., 1α, ..0n〉 (3.13)

where there is at most one quantum of excitation in a specific oscillator. The discrete

quantum states are thus represented by continuous mapping variables given by classi-

cal harmonic oscillator position and momentum of the forward and backward states,

(qα, pα) and (q̃α′ , p̃α′).

The quantum subsystem Hamiltonian, hqm, is replaced with the mapping Hamil-
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Figure 3.2: Path structure for measurement of the correlation function. |R0, α〉 is
propagated forward in time and |R̃0, α

′〉 is propagated backward in time, and are
connected by a B measurement.

tonian:

hm(R) =
1

2

∑
η

hη,η(R)(q2
η + p2

η − h̄) +
1

2

∑

η,η′
hη,η′(R)(qη′qη + pη′pη) (3.14)

where hη,η′ = 〈η|hqm|η′〉. The forward and backward mapping variables can be

evolved independently with Hamilton’s equations. For a more detailed development

of the mapping formulation in a slightly different context we direct the reader to

Section 4.3.2 below.

The kinetic and potential terms of the propagator are trotter factorized, and the

bath degrees of freedom are represented in path integral form. The mapping vari-

ables are represented in terms of coherent states, and integrals involving the mapping

variables are sampled with focused initial conditions obtained by a steepest descent

analysis [6]. For details, please see Reference [7].
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A change of variables in the bath degrees of freedom is performed:

R̄k =
Rk + R̃k

2

∆Rk = Rk − R̃k

and likewise in P, so the bath paths now appearing in the calculation are the mean

and difference of the original forward and backward paths. Expanding to linear order

in ∆R leads to the final expression for the correlation function:

〈AB(t)〉 ∼ ∑

αβ,α′β′

∫
dR̄0dq0dp0dq̃0dp̃0

∫ N∏

k=1

dR̄k
dP̄k

2πh̄
(ρA)α,α′

W (R̄0, P̄1)

×(B)β′,β
W (R̄N , P̄N)r0αeiθ0,α r̃0α′e

−iθ̃0,α′

×rt,β({R̄k})r̃t,β′({R̄k})e−iε
∑N

k=1
(θβ(R̄k)−θ̃β′ (R̄k))

×
N−1∏

k=1

δ

(
P̄k+1 − P̄k

ε
− F β,β′

k

)
N∏

k=1

δ

(
P̄k

M
− R̄k − R̄k−1

ε

)
(3.15)

where we have left out some constants. r and θ describe the mapping variables in

polar representation. The force is given by:

F β,β′
k = −1

2

{
∇R̄k

hβ,β(R̄k) +∇R̄k
hβ′,β′(R̄k)

}

−1

2

∑

λ 6=β

∇R̄k
hβ,λ(R̄k)

{
(pβkpλk + qβkqλk)

(p2
βk + q2

βk)

}

−1

2

∑

λ 6=β′
∇R̄k

hβ′,λ(R̄k)

{
(p̃β′kp̃λk + q̃β′kq̃λk)

(p̃2
β′k + q̃2

β′k)

}
(3.16)

We see that the delta functions cause the mean bath particles to follow a simple

classical evolution, albeit with complicated forces. These forces are determined by

the gradient of the quantum system potential energy, as well as the mapping variables.

The forces also depend upon the matrix element of the observable, which can be seen

from the force labels in Eq. (3.15). These superscripts are identical to the superscripts
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Figure 3.3: The correlation function is obtained by summing over contributions from
trajectories representing different matrix elements of the observable, as can be seen
from Eq. (3.16). This picture shows a sample trajectory for a system where the off
diagonal Hamiltonian matrix elements are independent of R, and the measurement
made is of the form B11. In this case, the forces felt by the nuclear trajectory come
only from h11, A measurement that is non-diagonal,B12 for example, will have forces
determined by both surface 1 and 2, as well as the forward and backward mapping
variables.

on the Wigner transform of the B measurement. A measurement of the form B11,

for example, will involve forces on surface h11 and possibly h12, but not h22 as can

be seen from Eq. (3.16). See Figure 3.3 for a sample trajectory. Bath-bath coherence

effects are not included in this approach since a single initial bath condition gives rise

to a single trajectory. This method also produces “ghost” trajectories, or trajectories

of approximately zero weight, since quantum labels are summed over without taking

into account the r amplitude. The evolution of the mapping variables are obtained

from Hamilton’s equations which depend upon the position of the bath, and thus we

see that the evolution of the bath and quantum system are coupled.
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3.2.2 Discussion

The linearization in this mixed quantum classical approach was carried out in

the bath variables only and thus differs from linearization techniques proposed by a

number of authors [44, 60, 62], which linearize in all variables. This full linearization

leads to a set of classical trajectories with initial conditions sampled from the Wigner

transform of the density operator, and is equivalent to that obtained by the linearized

LSC-IVR [60, 69, 71, 76] approach, which uses the semiclassical propagator. A draw-

back of these method is that they are incapable of describing quantum coherence

effects arising from distinct classical trajectories [71]. The forward-backward initial

value representation (FB-IVR) semiclassical approach [32, 36, 70], on the other hand,

has the ability to capture these quantum coherence effects by combining the forward

and backward time evolution into one overall semiclassical initial value representation

(SC-IVR) propagation. This method is more difficult to implement than the other

linearized approaches.

In summary, the linearized approach we explored involves linearizing in the differ-

ence between forward and backward bath paths, and leads to classical evolution of the

bath particles. The quantum system was represented by fictitious harmonic degrees

of freedom evolved with Hamilton’s equations. Unlike semiclassical approaches, the

system is no longer described by a single Hamiltonian, but by coupled sets of classical

Hamiltonians.
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3.3 Tests on model systems

3.3.1 Spin-boson Hamiltonian

The spin-boson model [27, 77] is one of the most popular for testing simulation

methods of many-body quantum dynamics since exact results are available [73]. It

describes the dynamics of a two level system, with states | ↑〉 and | ↓〉, bilinearly

coupled to its environment. This is a simple model for which we can measure quantum

coherence and dissipation to the environment. The bath is represented by a set of

N harmonic oscillators with masses Mj and frequencies ωj. A popular choice for the

spectral density is Ohmic:

J(ω) = ξωe−ω/ωc (3.17)

In dimensionless variables [30], the spin-boson Hamiltonian can be written as:

H = −Ωσx +
N∑

j=1

[
P 2

j

2
+

1

2
ω2

j R
2
j − cjRjσ̂z

]
(3.18)

where σz and σx are the Pauli spin matrices and 2Ω is the energy gap between levels

in the bare system. We work in units where h̄ = 1 and all frequencies have been

scaled by the cutoff frequency, ωc. In reduced units, the strength of the system-bath

coupling is:

cj = ωj

√
ξω0 (3.19)

The observable we calculate is the time dependent average population difference,

〈σz(t)〉. We assume that the bath and subsystem are initially uncorrelated, and take

the subsystem to be in state | ↑〉 and the bath in thermal equilibrium. The initial
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Figure 3.4: 〈σz(t)〉vs. Ωt for spin boson model, with parameters: Ω = 0.4, ξ = 0.09,
1/T = 12.5. (x):Exact, (-):Linearized Approach, (*):Wigner-Liouville with jump
approximation.

system density matrix is thus:

ρsb = ρ(R0,P0)| ↑〉〈↑ | (3.20)

where the Wigner transformed bath density is given by:

ρW (R0,P0) =
N∏

j=1

tanh (βωj/2)

π
e
−

tanh(βωj/2)
ωj

(
P2

j0
2

+
ω2

j
R2

j0
2

)

(3.21)

The system will experience a range of behaviors from coherent oscillation with a period

determined by the energy gap, to overdamped relaxation. The behavior depends on

the temperature and value of the Kondo parameter, ξ, which determines the strength

of the system-bath coupling. We present results for a range of parameters, using both

the Wigner-Liouville and linearized method.

Both approaches do quite well compared to exact results. We would expect the

linearized approach to be most reliable at higher temperatures, where the density is



Chapter 3: Mixed quantum-classical approaches and tests on model systems 25

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Figure 3.5: 〈σz(t)〉 vs. Ωt for spin boson model, with parameters: Ω = 0.4, ξ =
0.13, 1/T = 1.0. (x):Exact, (-):Linearized Approach, (*):Wigner-Liouville with jump
approximation.
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Figure 3.6: 〈σz(t)〉 vs. Ωt for spin boson model, with parameters: Ω = 1.2, ξ = 2.0,
1/T = 0.25. (x):Exact, (-):Linearized Approach, (*):Wigner-Liouville with jump
approximation.



Chapter 3: Mixed quantum-classical approaches and tests on model systems 26

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

Figure 3.7: 〈σz(t)〉 vs. Ωt for spin boson model, with parameters: Ω = 0.333, ξ =
0.5, 1/T = 3.0. (x):Exact, (-):Linearized Approach, (*):Wigner-Liouville with jump
approximation.

dominated by diagonal terms and thus the linearization in forward and backwards

paths is more reasonable. Also, the linearized method becomes exact in the limit

of vanishing friction. We see in Figure 3.7 that at high friction and intermediate

temperature, the linearized approach has started to break down. This approach also

breaks down for longer times since the differences between forward and backward

paths grow.

The Wigner-Liouville approach gives more consistent results than the linearized

approach for the range of parameters we probed. For the spin-boson problem, the

Quantum-Classical Liouville equation is in fact exact [30] so the error comes from

the simulation scheme as opposed to the assumptions that underlie the method. The

trotter and jump approximations, and Monte Carlo sampling contribute to the error.

Like the linearized approach, the reliability decreases at longer times.

A large advantage the linearized approach has over the Wigner-Liouville approach
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is that the algorithm is much simpler to implement. It also does not require the use of

filters and requires at least an order of magnitude fewer trajectories to converge; for

these problems it required around 500 trajectories as opposed to 104 for the Wigner-

Liouville method. In the rest of this chapter we will look at other model systems to

test the reliability of these methods.

3.3.2 Asymmetric spin-boson

In this section, we look at the asymmetric spin-boson model:

H = −Ωσx +
N∑

j=1

[
P 2

j

2
+

1

2
ω2

j R
2
j − ωj

√
ξω0Rjσz

]
+

Ω

2
σz (3.22)

in which the minima of the two wells have an energy difference, Ω.

We calculate the average population difference, 〈σz(t)〉, and start the quantum

subsystem in the higher energy state, | ↑〉, and the bath in thermal equilibrium.

For the system studied in Figure 3.8, the equilibrium value of 〈σz〉 should be

negative. We see that while the population difference obtained with the Wigner-

Liouville method approaches a negative value, the linearized approach gives equal

population in both states.

The linearized approach will in fact always give equal population at long times

for the asymmetric spin-boson model, due to the nature of the trajectories in this

approach. The trajectories depend upon the measurement being made, as can be

seen from Eq. (3.16), in which the contributing force matrix elements are determined

by the nature of the observable. In the spin-boson problem, the off-diagonal terms in

the Hamiltonian are independent of R, and thus for diagonal measurements (such as

the population difference), the trajectories will run entirely on either surface one or
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Figure 3.8: 〈σz(t)〉 vs. Ωt for asymmetric spin-boson model with parameters: Ω = 0.4,
ξ = 0.13, 1/T = 1.0. The statistical limit equilibrium value is: 〈σz〉 = −0.36. (-
):Linearized Approach, (*):Wigner-Liouville with jump approximation.

two, and the population of the two surfaces at long times will be independent of the

energy difference. This is a limitation of the linearized approach, which we overcome

in Chapter 4 by incorporating hopping between density matrix elements.

3.3.3 Morse Potential

This last problem we consider is meant to model the situation following molec-

ular photo-excitation, which involves non-adiabatic electronic relaxation coupled to

nuclear vibrational dynamics. Our model consists of two diabatic Morse oscillator

electronic surfaces with Gaussian coupling centered at the crossing bond length. The

potential is shown in Figure 3.9.

The electronic Hamiltonian matrix elements are given by:

Hel
kk(R) = Dk(1− e−ak(R−bk))2 + Ek
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Figure 3.9: This figure shows the diabatic Hamiltonian matrix elements. The left
Morse potential is H11 and the shallower right Morse potential is H22. The Gaussian
centered at the crossing bond length of the two surfaces is H12

Hel
12(R) = Ae−c(R−Rx)2 (3.23)

where k = 1, 2. Working in atomic units, the parameters for surface 1 are: D1 =

2.278E − 2, a1 = 0.675, b1 = 1.890, E1 = 0, and surface 2 is given by: D2 =

1.025E − 2, a2 = 0.453, b2 = 3.212, E2 = 3.8E − 3. Coupling parameters are:

A = 6.337E − 3, c = 1.12, Rx = 2.744. The initial nuclear configuration involves a

Gaussian wavepacket of the form:

χ1(R, t = 0) =
(

2α

π

)1/4

e−α(R−R0)2− i
h̄

P0(R−R0) (3.24)

with α = 5, R0 = 6, P0 = −5 that is excited high on the left hand Morse well (surface

1). Surface 2 is initially unpopulated.

This system is challenging because the diabats are anharmonic, and nonadiabatic

effects are significant since the wave packet travels back and forth through the coupling

region.
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Figure 3.10: Re(〈R(0)σx(0)R(t)σx(t)〉) vs. t in atomic units, for the two coupled
diabatic Morse surfaces. (x):Exact, (-):Linearized Approach.

In Figure 3.10, we show the real part of 〈R(0)σx(0)R(t)σx(t)〉 as a function of

time, calculated with the linearized approach. This correlation function involves

off-diagonal electronic operators as well as the nuclear position operator. The high-

frequency oscillations are due to the coherent electronic dynamics, while the low

frequency modulation is from the nuclear motion. We see that the linearized approach

provides reliable results for about two nuclear periods.

In Figure 3.11, we show 〈σz(t)〉 as a function of time calculated with the linearized

method and see that the behavior is captured only for very short times. It is surprising

that this approach works well for the previous correlation function and so poorly for

this one. This is due to the fact that the trajectories depend on the observable, as

discussed previously.
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Figure 3.11: 〈σz(t)〉 vs. t for the two coupled diabatic Morse surfaces. (x):Exact,
(-):Linearized Approach

3.4 Summary

Both approaches provide reliable results for the symmetric spin-boson model,

which describes a two level system coupled to a harmonic environment. For the

asymmetric spin-boson model, the Wigner-Liouville approach implemented with the

jump approximation gives an average population that goes to the correct well, while

the linearized approach will always produce equal state population at long times. The

reliability of the linearized approach depends on the matrix element of the observable,

as shown with the diabatic Morse surfaces.

An advantage of the linearized approach is that it much simpler to implement

than the Wigner-Liouville surface hopping method. It also requires at least an order

of magnitude fewer trajectories to converge, and does not require the use of filters.

The linearized approach, however, is unable to capture bath coherence effects as it

does not include nuclear trajectory branching.
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In the next chapter, we develop a novel approach for propagating the reduced

density matrix, that combines ideas from both methods to remedy some of the short-

comings of the linearized approach while maintaining its ease of implementation.



Chapter 4

Density matrix propagation: an

iterative linearized approach

4.1 Introduction

This chapter presents a new approach to propagating the reduced density ma-

trix based on a time stepping procedure arising from a Trotter factorization and

combining the forward and backward incremental propagators. The sums over inter-

mediate states of the discrete quantum subsystem are implemented by a Monte Carlo

surface hopping-like procedure, while the integrals over the continuous variables are

performed using a linearization in the difference between the forward and backward

paths of these variables leading to classical-like equations of motion with different

forces determined by the quantum subsystem state hopping.

33
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4.2 Theory

The basic approach we develop here involves applying strings of short time propa-

gators on the right and left of some initial density operator to advance it in time. For

example, advancing the initial density operator ρ̂(0) of the full system by two steps,

each of duration ε, is accomplished as follows:

ρ̂(2ε) = e−
i
h̄

Ĥεe−
i
h̄

Ĥερ̂(0)e
i
h̄

Ĥεe
i
h̄

Ĥε (4.1)

We suppose the full system Hamiltonian can be conveniently represented in terms of

some continuous variables, (R,P ), and some discrete quantum states labeled n, so

that:

Ĥ = P̂ 2/2M +
∑
n

∑
m

|n〉hnm(R)〈m| (4.2)

where we work in the diabatic basis, given by |Rn〉 = |R〉|n〉. Inserting resolutions

of the identity written as
∫

dR0
∑

n0
|R0n0〉〈R0n0| = 1̂ between each of the operators

in Eq. (4.1), labeling states according to time increasing as we move outward from

ρ̂(0), and using unprimed labels for propagating forward and primed for propagating

backward, we obtain:

〈R2n2|ρ̂(2ε)|R′
2n
′
2〉 =

∫
dR1

∑
n1

∫
dR0

∑
n0

∫
dR′

1

∑

n′1

∫
dR′

0

∑

n′0

×〈R2n2|e− i
h̄

Ĥε|R1n1〉〈R1n1|e− i
h̄

Ĥε|R0n0〉〈R0n0|ρ̂(0)|R′
0n
′
0〉

×〈R′
0n
′
0|e

i
h̄

Ĥε|R′
1n
′
1〉〈R′

1n
′
1|e

i
h̄

Ĥε|R′
2n
′
2〉 (4.3)

Each matrix element can be represented in terms of path integrals, and a di-

agramatic realization of this evolution in terms of these paths is displayed in Fig.

4.1.
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Figure 4.1: Diagramatic representation of the reduced density matrix propagation for
two time steps.

Using a hybrid momentum-coordinate representation for the bath variables, we can

approximate the short time incremental propagator matrix elements as follows [44]:

lim
ε→∞〈R1n1|e− i

h̄
Ĥε|R0n0〉 =

∫ dP1

(2πh̄)d
e−

i
h̄

εP 2
1 /2Me

i
h̄

P1(R1−R0)〈n1|e− i
h̄

ĥ(R0)ε|n0〉 (4.4)

where a complete set of eigenstates of P̂ has been introduced to evaluate the short

time kinetic part of the propagator, and we have used the fact that hnm is diagonal in

the bath coordinate representation. A similar expression in primed variables for the

backward propagators is obtained. The vectors describing the continuous “nuclear”

variables here are d-dimensional.

Using the above short time approximate propagator and transforming to mean

and difference path variables defined as

R̄i = (Ri + R′
i)/2
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∆Ri = (Ri −R′
i)

with similar expressions for the P̄i and ∆Pi variables, and after some straightforward

manipulations, we can readily rewrite the time stepping expression in Eq. (4.3) as

follows:

〈R̄2 +
∆R2

2
n2|ρ̂(2ε)|R̄2 − ∆R2

2
n′2〉 = (2πh̄)2d

∫
dP̄2

∫
dR̄1

∫
dP̄1

∫
dR̄0

∑
n1

∑

n′1

×e
i
h̄

P̄2∆R2δ(P̄2ε/M − (R̄2 − R̄1))Fn2,n′2,n1,n′1(P̄2, R̄1, P̄1, ε)

×δ(P̄1ε/M − (R̄1 − R̄0))ρ
W
n1n′1

(R̄0, P̄1) (4.5)

In the above expression we have defined the following quantity:

ρW
n1,n′1,n0,n′0

(R̄0, P̄1) =
∫

d∆R0〈R̄0 +
∆R0

2
n0|ρ̂(0)|R̄0 − ∆R0

2
n′0〉e−

i
h̄

P̄1∆R0

×〈n′0|e
i
h̄

ĥ(R̄0−∆R0/2)ε|n′1〉〈n1|e− i
h̄

ĥ(R̄0+∆R0/2)ε|n0〉 (4.6)

= ρW
n0n′0

(R̄0, P̄1)δn′0n′1δn1n0

In the limit of ε → 0 the propagators in the matrix elements of the second line in the

above expression become unit operators, so the matrix elements become Kronecker

δ’s in the state labels and ρW
n0n′0

(R̄0, P̄1) is the Wigner transform of the reduced density

matrix. These δ’s are used to kill the initial state sums in Eq. (4.3) and arrive at the

expression in Eq. (4.5).

Integrals over ∆P have been performed using:

∫
d∆P1e

− i
h̄
[P̄1ε/M−(R̄1−R̄0)]∆P1 = (2πh̄)dδ(P̄1ε/M − (R̄1 − R̄0)) (4.7)

and we have defined the function Fn2,n′2,n1,n′1 as follows:

Fn2,n′2,n1,n′1(P̄2, R̄1, P̄1, ε) =
∫

d∆R1〈n2|e− i
h̄

ĥ(R̄1+∆R1/2)ε|n1〉

×〈n′1|e
i
h̄

ĥ(R̄1−∆R1/2)ε|n′2〉e−
i
h̄
(P̄2−P̄1)∆R1 (4.8)
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which is essentially the Wigner transform of the product of the forward and backward

diabatic incremental transition matrix elements.

Finally, we note that the expectation value of some operator Ô at t = 2ε is:

〈Ô〉2ε =
∫

dR2

∫
dR′

2

∑
n2

∑

n′2

〈R2n2|ρ̂(2ε)|R′
2n
′
2〉〈R′

2n
′
2|Ô|R2n2〉 (4.9)

and can be expressed using mean and difference variables and substituting in Eq. (4.5).

The last phase factor, e
i
h̄

P̄2∆R2 , in Eq. (4.5) is absorbed in the definition of the operator

Wigner transform:

ÔW
n′2,n2

(R̄2, P̄2) =
∫

d∆R2〈R̄2 − ∆R2

2
n′2|Ô|R̄2 +

∆R2

2
n2〉e i

h̄
P̄2∆R2 (4.10)

Giving:

〈Ô〉2ε = (2πh̄)2d
∫

dR̄2

∫
dP̄2

∫
dR̄1

∫
dP̄1

∫
dR̄0

∑
n2

∑

n′2

∑
n1

∑

n′1

ÔW
n′2,n2

(R̄2, P̄2)

×δ(P̄2ε/M − (R̄2 − R̄1))Fn2,n′2,n1,n′1(P̄2, R̄1, P̄1, ε)

×δ(P̄1ε/M − (R̄1 − R̄0))ρ
W
n1n′1

(R̄0, P̄1) (4.11)

For completeness, the expectation value of the operator at a time t = Nε is given

by:

〈Ô〉Nε = (2πh̄)2Nd
∫

dR̄0

N∏

ξ=1

{ ∫
dR̄ξ

∫
dP̄ξ

∑
nξ

∑

n′
ξ

}
ÔW

n′N ,nN
(R̄N , P̄N)

×
N∏

ξ=1

{
δ(P̄ξε/M − (R̄ξ − R̄ξ−1))

}
Fnξ,n′

ξ
,nξ−1,n′

ξ−1
(P̄ξ, R̄ξ−1, P̄ξ−1, ε)

×ρW
n1n′1

(R̄0, P̄1) (4.12)
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4.3 Implementation

One could imagine implementing Eq. (4.12) or the generalization of Eq. (4.5) by

first sampling a point (R̄0, P̄1) in the phase space of the continuous variables from the

initially occupied, Wigner transformed reduced density matrix element ρW
n1n′1

(R̄0, P̄1).

Substituting this initial phase space point into the first δ-distribution on the far

right enables us to perform the integral over R̄1 and obtain a single value of R̄1

deterministically thus performing the “kinetic” part of the first propagation step ε.

The final or “potential” part of the first time step involves treating the function

F in the same way as we treated the δ-distribution in the first part of the step,

that is, we regard it as a distribution for P̄2 which depends on the already specified

values of (R̄1, P̄1), there are, however, two complicating features of this interpretation:

First, the function F is not, in general, a δ-distribution which means that we must

integrate over the distribution of P̄2 values leading to a probabilistic implementation

of this part of the time step. The second complicating factor is analogous to the

first in that, in fact we have multiple distributions delineated by the state labels

(n2, n
′
2) over which we must sum resulting in a dispersion in quantum state label

space similar to the dispersion in P̄2 outlined above. The momentum dispersion gives

rise to “nuclear” quantum tunneling and zero point effects in the continuous variables,

while the sums over different endpoint states accounts for discrete quantum subsystem

state transitions.

In order to proceed we need to make an approximation based on which of these

effects are most important for a realistic treatment of the problem of interest. Mixed

quantum-classical approaches take the momentum distribution function, which is



Chapter 4: Density matrix propagation: an iterative linearized approach 39

Fn2,n′2,n1,n′1 in our case, as some form of a δ-distribution enabling P̄2 to be obtained

uniquely, and deterministically from (R̄1, P̄1) provided we have some specification for

the endpoint state labels (n2, n
′
2). These methods thus suppose that the dispersion in

state label space is important to capture quantum subsystem transition effects, but

that momentum dispersion in the continuous variables can be sacrificed to give an

implementable algorithm.

4.3.1 Momentum distribution function and state labels

The simplest form to assume for Fn2,n′2,n1,n′1 to obtain deterministic dynamics for

the nuclear momentum is:

Fn2,n′2,n1,n′1(P̄2, R̄1, P̄1, ε) = An2,n′2,n1,n′1(R̄1)δ((P̄2 − P̄1)/ε− fn2,n′2,n1,n′1(R̄1)) (4.13)

which is the same form as that obtained by linearizing in the difference between

forward and backward nuclear variables. Inverse Fourier transforming both sides

readily gives expressions for the “forces” and amplitudes of the form:

fn2,n′2,n1,n′1(R̄1)) = lim
ε→0

lim
η→0

h̄

εη
Im

{
log〈n2|e− i

h̄
ĥ(R̄1+η/2)ε|n1〉

+ log〈n′1|e
i
h̄

ĥ(R̄1−η/2)ε|n′2〉 − log(An2,n′2,n1,n′1/(2πh̄)d)
}

(4.14)

An2,n′2,n1,n′1(R̄1) ∼ 〈n2|e− i
h̄

ĥ(R̄1)ε|n1〉〈n′1|e
i
h̄

ĥ(R̄1)ε|n′2〉 (4.15)

Provided we have the end point state labels (n2, n
′
2) we can use Eq. (4.14) to

determine the end point P̄ given the conditions at the previous step. To obtain

(n2, n
′
2) we use Monte Carlo sampling, choosing the end point labels with probabil-

ity An2,n′2,n1,n′1(R̄1)/
∑

η |Aη,η′,n1,n′1(R̄1)|, thus maintaining the dispersion in the state
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label space. Transition matrix elements such as 〈n2|e− i
h̄

ĥ(R̄1)ε|n1〉 can be obtained by

inserting a complete set of eigenstates between the operator and state vector and eval-

uating, however this will be nontrivial for systems in many dimensions, thus we make

use of the mapping Hamiltonian formalism [33, 37, 64, 66] to aid in our calculation.

4.3.2 Mapping formalism

The main idea of the mapping formalism is to replace the evolution of the quantum

subsystem with the evolution of a system of fictitious oscillators. The state mapping

is given by:

|η〉 → |mη〉 = |01, ..., 1η, ..0n〉 (4.16)

where the n diabatic states are mapped onto n oscillators with a maximum of one

quantum of excitation in a single oscillator. The projection operators in the system

Hamiltonian, Eq. (4.2), are replaced with creation and annihilation operators of the

mapping oscillator excitation:

|η〉〈η′| → â†ηâη′ (4.17)

which obey bosonic commutation rules, [âη′ , â
†
η] = δη′,η, and can be expressed in terms

of the positions and momenta operators:

âη′ =
1√
2h̄

(q̂η′ + ip̂η′) (4.18)

The nuclear propagation is unaffected by this mapping, and the entire system Hamil-

tonian becomes:

Ĥ → Ĥm = P̂ 2/2M + ĥm(R) (4.19)
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where

ĥm(R̂) =
1

2

∑
η

hη,η(R̂)(q̂2
η + p̂2

η − h̄) +
1

2

∑

η,η′
hη,η′(R̂)(q̂η′ q̂η + p̂η′ p̂η) (4.20)

The quantum subsystem Hamiltonian is now a function of position and momenta of

oscillators that move in a time dependent field due to the motion of the bath. Their

motion is governed by Hamilton’s equations:

dqβ

dt
= hβ,β(R)pβ +

∑

λ 6=β

hβ,λ(R)pλ (4.21)

dpβ

dt
= −hβ,β(R)qβ −

∑

λ 6=β

hβ,λ(R)qλ

The quantum state transition amplitudes can be obtained exactly due to the quadratic

nature of the mapping Hamiltonian. Using the Herman-Kluk representation [20],

which uses coherent states, and simplifying the expression using Hamilton’s equations

gives [7]:

〈mηi
|e− i

h̄
εĥm(Ri)|mηi−1

〉 =
∫

dq0dp0rt,ηi
(Ri)e

−iθtηi (Ri)r0ıi−1
eiθ0,ηi−1G0 (4.22)

where the mapping variables have been written in polar representation

rηi
(Ri) =

√
q2
ηi

(Ri) + p2
ηi

(Ri) (4.23)

θη(Ri) = tan−1

(
pηi

(Ri)

qηi
(Ri)

)
(4.24)

and G0 = e−
1
2

∑
λ
(q2

0,λ+p2
0,λ). The integral over the initial conditions in Eq. (4.22)

can be simplified using focused initial conditions [6] obtained by a steepest descent

analysis. With focused conditions, occupied states are initialized with r on the unit

circle, unoccupied states are initialized to zero, and the transition amplitude is easily

obtained by evolving the state variables with Hamilton’s equations.
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The end point state labels (n2, n
′
2) can now be Monte Carlo sampled using prob-

abilities given by the r values as defined in Eq. (4.23). State label n2 is chosen with

probability r2(R)/
∑

η rη(R) , and n′2 is chosen independently by a similar equation

for the backward propagated variables. Multiplying these two probabilities gives the

same result as for An2,n′2,n1,n′1 in Eq. (4.15). Once the end states have been chosen, P̄

at the end point is determined by Eq. (4.14) and Eq. (4.13).

4.4 Algorithm

The expectation value of an observable is given by Eq. (4.12) and we outline our

algorithm for computing this result below:

1. Choose η0, η′0, and sample (R̄0, P̄1) from the Wigner transform of the initial

density matrix.

2. Evolve the mapping variables using Hamilton’s equations, Eqs. (4.21).

3. Calculate the transition matrix elements An2,n′2,n1,n′1 given by Eq. (4.15) and

Eq. (4.22).

4. Choose the end state label (n2, n
′
2) with probability

An2,n′2,n1,n′1(R̄1)/
∑

η |Aη,η′,n1,n′1(R̄1)|.

5. Determine the force fn2,n′2,n1,n′1(R̄0) given by Eq. (4.14).

6. Advance the nuclear position R̄ using R̄1 = R̄0 + εP̄1/M + fn2,n′2,n1,n′1(R̄0)ε
2/M .

7. Advance the nuclear momentum using: P̄2 = P̄1 + εfn2,n′2,n1,n′1(R̄1)/2, which is

the first half step of a velocity Verlet implementation for updating the momenta.
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8. Determine the force fn2,n′2,n1,n′1(R̄2) at the new position.

9. Advance the nuclear momentum using: P̄2 = P̄1 + εfn2,n′2,n1,n′1(R̄2)/2, which is

the second half velocity Verlet step.

10. Accumulate weights and phases and iterate from 2. until the final time is

reached.

11. Iterate from 1. until convergence.

4.5 Discussion

We now have a method, which we call ISLAND-Map (Iterative Scheme for imple-

menting the Linearized Approach for Nonadiabatic Dynamics in the Mapping Hamil-

tonian representation), to propagate the reduced density matrix forward in time that

is based on a time stepping procedure combining forward and backward incremental

propagators. The continuous variables are evolved deterministically with classical-like

equations as can be seen from Eqs. (4.12) and (4.13), while the sums over quantum

states are handled by a Monte Carlo surface hopping-like procedure with probabilities

determined by the mapping variable evolution. Retaining the appropriate weights and

phases for a given trajectory using Eq. (4.12), and summing over trajectories gives

the expectation value of a given operator.

This method combines elements from both the Wigner-Liouville [29] and linearized

method [6, 7, 8] discussed in Chapter 3. Like the Wigner-Liouville method, it prop-

agates the entire reduced density matrix and selects the state labels through Monte

Carlo sampling. One benefit is that it is much easier to implement and we expect
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will not require the use of filters. Like the linearized approach, ISLAND-Map uses

mapping variables to describe the quantum state and combines forward and backward

propagators. ISLAND-Map, however, uses an effective linearization in the short time

limit, where it is expected to be reliable, as opposed to linearization for all time. It

also uses mapping variable transition amplitudes to determine the state label. This

avoids “ghost” trajectories, or trajectories of approximately zero weight, as well as

an observable dependent force, both of which occur in the linearized approach.

There is also a fundamental difference in the types of realistic phenomena that can

be described with ISLAND-Map as compared with the linearized procedure discussed

in Chapter 3. In particular, with the linearized method, a given initial condition of the

nuclear degrees of freedom results in only a single unique trajectory. The decoherence

then results from interference between different initial conditions. In general this

is only part of the story and an unrealistic description. In our new approach, a

single initial condition for the nuclear variables may branch stochastically into many

different alternatives which can interfere with each other, giving an additional source

of decoherence. Thus, ISLAND-Map is able to model the decoherence associated

with a single initial condition, as well as the decoherence arising from different initial

conditions. We are currently testing this method on model condensed phase systems.

In the next chapter, we turn to the study of quantum phase transitions. We will

use field theoretic techniques and purely classical simulation.



Chapter 5

Dimerized Mott insulators and

quantum criticality

5.1 Introduction

The remainder of this thesis explores properties of 2-d systems near a quantum

critical point, and this chapter contains background material. We discuss phase

transitions, coupled dimer antiferromagnets, and the bond operator approach.

5.2 Phase transitions: classical and quantum

Phase transitions are a common occurrence in every day life, from the boiling of

water to the melting of ice. Transitions occur by tuning some control parameter, such

as temperature or pressure, and involve a qualitative change in the physical properties

of the system. For these examples, the order is destroyed by thermal fluctuations;

45
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hydrogen bonds are broken as water boils, the crystal structure of ice is destroyed

upon melting. A less common example is a metal’s transition to a superconducting

state as the temperature is lowered. Again, thermal fluctuations destroy the order.

Recently, a different kind of phase transition, a quantum phase transition [51],

has become a topic of great interest. These transitions take place at zero tempera-

ture, and are accessed by tuning a non-thermal control parameter, such as doping,

pressure, or magnetic field. Order is destroyed by quantum fluctuations rooted in the

Heisenberg uncertainty principle, as opposed to thermal fluctuations. Even though

quantum phase transitions occur at zero temperature, the quantum critical behavior

can influence properties at a range of temperatures. Quantum fluctuations are quite

different from thermal fluctuations, and thus new theories are needed to describe

these transitions. [74]

Phase transitions are traditionally classified as either first or second order. At a

first order transition, the two phases co-exist. Examples include water boiling and ice

melting. Second order (or continuous) transitions, on the other hand, do not have co-

existing phases, and are usually characterized by an order parameter that is zero in the

disordered phase and non-zero in the other. The order parameter in a ferromagnet, for

example, is spin. Starting in the ordered state, a phase transition occurs upon heating

when the thermal fluctuations destroy the ordering of the magnetic moments. This

transition is continuous in the sense that the magnetization vanishes continuously. [16]

In what follows, we consider second order, or continuous, transitions.

The transition point of a second order phase transition is also called the critical

point. Close to the critical point, these systems have diverging correlation lengths, and
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can be described by field theories. [16, 80] In the disordered phase, the thermodynamic

average of the order parameter is zero but its fluctuations are non-zero. Near the

critical point, the correlation length ξ of the order parameter diverges as

ξ ∼ |t|−ν (5.1)

where ν is the critical exponent for the correlation length and t is a dimensionless

measure of the distance from the critical point. There are also long-range correlations

in time which diverge as

τc ∼ ξz (5.2)

where z is the dynamical critical exponent. Close to the critical point the only length

and time scales are ξ and τc, and the system behavior is characterized entirely by

the critical exponents. The physical properties of the system are thus unchanged if,

for example, all lengths in the system are rescaled and at the same time the external

parameters are adjusted so the correlation length remains unchanged, giving scaling

laws.

Whether quantum mechanics is important or not depends on the relative energy

scale of the quantum fluctuations to the thermal energy. Since the time scale goes to

infinity near the critical point, the frequency scale goes to zero as

h̄ωc ∼ |t|ξz (5.3)

and quantum mechanics will be important as long as this energy scale is larger than

kBT . [74]
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5.3 Dimerized Mott insulators

Mott insulators undergo a continuous quantum phase transition between a para-

magnetic state and an ordered state by tuning a control parameter such as pressure or

magnetic field. A number of insulators have been studied near the quantum critical

point, including C4H12N2Cu2Cl6 (PHCC) which we will discuss in Chapters 6 and 7.

Dimerized Mott insulators have an even number of S = 1/2 spins per unit cell,

and have a gap to all spin excitations. They can be described by the bond operator

method [52].

Coupled dimer antiferromagnet

We will consider a simple two-dimensional model of a Heisenberg antiferromagnet

consisting of spins of S = 1/2. The coupled dimer Hamiltonian is given by [15]:

Hd = J
∑

<ij>εA

Si · Sj + λJ
∑

<ij>εB

Si · Sj (5.4)

where J > 0 and 0 ≤ λ ≤ 1. The Sj are spin-1/2 operators on the lattice sites. The

A links form dimers, and the B links couple the dimers. This is shown in Fig 5.1. We

will see that the system can be tuned across a quantum phase transition by adjusting

the control parameter λ.

Phases

When λ = 1, all links are equivalent and Hd is equal to the square lattice an-

tiferromagnet, which has long range Néel order in the ground state. Spin rotation

symmetry is broken, and the spins have nonzero expectation value at each lattice
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Figure 5.1: Coupled dimer antiferromagnet with spins on the lattice sites. A links
are solid lines, and B links are dotted lines.

point with alternating sign, given by

〈Sj〉 = ηjN0n (5.5)

where n is a fixed unit vector, ηj is ±1, and N0 is the Néel order parameter. [49] This

case is shown in Fig 5.2.

The low lying excitations above the ground state are spin waves. These excitations

can carry arbitrarily low energy (the phase is “gapless”).

On the other hand, when λ = 0, the A links are decoupled from each other. Hd

describes decoupled dimers, and the spins in each dimer pair into singlet states. This

leads to a paramagnetic state which preserves spin rotation symmetry. This is shown

in Fig 5.3. Excitations are formed by breaking a valence bond and forming an S = 1

excitation, shown in Fig 5.4. Unlike spin waves, these excitations are gapped. [49]

When λ = 0, the broken bond is localized since the A links are decoupled from

each other. When λ is finite, however, it can hop from site to site, forming a S = 1/2

excitation [56]. See Fig 5.5. The spinons are connected by a string of weaker bonds,
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Figure 5.2: Néel order. A and B links are equivalent.

Figure 5.3: Paramagnetic state, made up of spin singlets. The A links are completely
decoupled from one another.
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Figure 5.4: S = 1 excitation of the paramagnetic state.

which leads to confinement.

The distinct symmetries between the λ = 1 and λ = 0 cases mean that the two

cannot be continuously connected. A phase transition occurs at an intermediate value

of λ = λc [15]. The spin gap vanishes as λ is increased from 0, while the Néel order

parameter vanishes as λ is decreased from 1.

Bond operators

The bond operator method can be used to develop a continuum description of the

low energy excitations near the critical point, λc [52]. The coupled dimer Hamiltonian,

Hd, is rewritten using bosonic operators that reside on the centers of the A links. The

four different states which can reside on an A link are | ↑↑ 〉, | ↓↓ 〉, | ↑↓ 〉, | ↓↑ 〉. The

singlet s and triplet t bosons are given by:

s†|0〉 = (| ↑↓ 〉 − | ↓↑ 〉)/
√

2

t†z|0〉 = (| ↑↓ 〉+ | ↓↑ 〉)/
√

2
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Figure 5.5: Separation of S = 1 excitation into two S = 1/2 spinons. This can only
occur for a non-zero value of λ, since at λ = 0 the A links are completely decoupled.

t†+|0〉 = −| ↑↑ 〉

t†−|0〉 = | ↓↓ 〉 (5.6)

where |0〉 is a reference vacuum state. The states are constrained to be either singlets

or triplets: s†s + t†αtα = 1, where α = x, y, z.

The spin operators S on the ends of the links are then given by:

S1α =
1

2
(s†tα + t†αs− iεαβγt

†
βtγ)

S2α =
1

2
(−s†tα − t†αs− iεαβγt

†
βtγ) (5.7)

which can be obtained by considering matrix elements such as 〈s|S1|tα〉 etc. We use

the Einstein convention, and ε is the antisymmetric tensor. These spin operators can

be inserted into Eqn. 5.4 to give Hd in terms of bond bosons. In all phases the s

boson is condensed, so we only need to consider the t bosons to obtain a description

of the system, and the condensation of the t bosons corresponds to the quantum phase

transition between the paramagnetic and Néel phases. [52]

Near this critical point, the t bosons can be expanded about the wavevector cor-
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responding to the minimum energy to obtain an effective action. This action can

be rewritten by decomposing t into real and imaginary parts, tα ∼ ϕα + iπα, and

integrating out the imaginary parts. Please see Reference [49] for the details. Here

we present the form of the result:

Seff =
∫

d2rdτ(
1

2
{(∂τϕα)2 + c2

x(∂xϕα)2 + c2
y(∂yϕα)2 + rϕ2

α}+ u(ϕ2
α)2) (5.8)

where the coefficients are associated with the lattice couplings. ϕα is the order para-

meter, and u is a dimensionless coupling constant which describes the self-interactions

of the fluctuations. r is the bare “mass” of the order parameter fluctuations used to

tune the system across a transition. When r < 0 the system is in the ordered phase

since < ϕα > 6= 0 ∝ N0, where N0 is the Néel order parameter. We see that the

system is described by an effective φ4 field theory.

Applied magnetic field

An applied magnetic field can be used to tune the system through a phase tran-

sition, and we look at its effects. The Hamiltonian becomes:

Hd → Hd −
∑

j

B · Sj (5.9)

where B is the applied magnetic field, which breaks the spin rotation symmetry of

the system. Strong fields may also lead to broken translational symmetry. [49] We

consider weak fields where B is less than the energy gap and translational symmetry

is preserved.

The ground and excited state wavefunctions remain insensitive to B since the

added term commutes with the original Hamiltonian. The energy of the excited
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Figure 5.6: In a magnetic field, the ordered state has canted order.

states, however, are Zeeman split:

εk → εk −mB (5.10)

with m = 0,±1 The action remains unchanged except for [1]:

(∂τϕα)2 → (∂τϕα + iεαβγBβϕγ)
2 (5.11)

which looks like Bloch precession in a magnetic field.

In a magnetic field, the paramagnetic state is the same as the B = 0 case. The

ordered state, with m = 1 triplon condensation, however, now has canted order. See

Fig 5.6.

From Eq. (5.10) we see that the lowest energy triplet has positive energy as long as

B is less than the minimum energy gap, εk=min. This is required for the paramagnetic

state to be stable. When B equals the minimum energy gap, the paramagnetic state

becomes unstable and a quantum phase transition occurs, corresponding to Bose

condensation of the m = 1 triplons. [49] See Fig 5.7.
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Figure 5.7: This is a plot of the excited state energy as a function of magnetic field,
where the zero in energy corresponds to the ground state energy. At B = 0 the ground
state is the paramagnetic state, and the triplet states are higher in energy. Increasing
the magnetic field decreases the energy of the m = 1 triplet, does not affect the energy
of the m = 0 triplet, and increases the energy of the m = −1 triplet. At Bc, the
m = 1 triplet energy is equal to the paramagnetic state energy and Bose condensation
of m = 1 triplons occurs. This corresponds to a quantum phase transition from the
paramagnetic to the ordered state.

5.4 Discussion

In this chapter, we saw that coupled dimer antiferromagnets in an applied mag-

netic field can be described by an effective φ4 quantum field theory. At the critical

point, bose condensation of triplons occurs. We will explore these ideas further in

Chapters 6 and 7, and also apply them to PHCC. These sections were done under the

advising of Professor Subir Sachdev, and in collaboration with experimentalist Tao

Hong and others [22].



Chapter 6

Field-induced quantum criticality

in PHCC

6.1 Introduction

The past decade has seen much progress in the study of spin gap insulators in

dimensions greater than one. Particular attention has been focused on the quantum

phase transition at which the spin gap is closed by an applied magnetic field. In

the vicinity of this transition, the low lying spin excitations behave like spin Sz = 1

canonical bosons. Measurements in the compounds KCuCl3 [40], BaCuSi2O6 [58],

and NiCl2-4SC(NH2)2 [79], have been successfully modelled by the text-book theory

of non-interacting bosons in three dimensions.

This chapter presents results of neutron scattering measurements on the two-

dimensional spin gap compound piperazinium hexachlorodicuprate (PHCC),

(C4H12N2)Cu2Cl6 [68]. The temperature dependent evolution of the spectrum in the

56
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vicinity of the field-induced quantum critical point is obtained. The non-interacting

Bose gas does not display a Bose condensation transition in two dimensions, and so

interactions between the bosons play an essential role in the interpretation of the

experiments (unlike the situation in three dimensions). We find that the energy

and damping of the Bose excitations is strongly temperature (T ) dependent in the

quantum critical region. We also present a self-consistent Hartree-Fock theory of

strongly-interacting spin excitations at quantum criticality; these theoretical results

provide a good description of the measured T dependence of the excitation energies.

6.2 PHCC

PHCC has a triclinic crystal structure, with space group P 1̄, and is made up of

Copper-Chlorine sheets in the a-c plane separated by piperazinium dication rings.

The magnetic properties are dominated by Cu-Cu interactions within each sheet,

mediated by Cu-Cl-Cl-Cu contacts and Cu-Cl-Cu superexchange. [68] See Figure 6.1

for a picture of a single sheet [68].

T. Hong, M. Kenzelmann, M. Stone, M. Bouloubasis, C. Broholm and D. Re-

ich were involved in the neutron scattering experiments to map out the magnetic

excitation spectrum of PHCC [22]. Measurements were taken in the vicinity of the

quantum critical point at which the spin gap is closed by an applied magnetic field.

They measured the energy and damping of the propagating mode above the spin gap,

which becomes strongly temperature dependent at the critical field.
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Figure 6.1: A single a-c plane of PHCC, displaying four unit cells.

6.3 Theory

We now turn to a description of our theoretical computations. In zero applied

field, the primary excitation is a charge zero, S = 1 quasiparticle, often referred to

as the ‘triplon’. Stone et al. provided an accurate determination of the dispersion of

this triplon over the entire Brillouin zone; their result appears in the function E(Q)

in Eq. (9) of Ref. [68], and we will use this function in our analysis below. We are

interested here in the temperature and field dependent renormalization of the triplon

spectrum, in the vicinity of the quantum critical point at H = Hc. This renormal-

ization clearly has its origin in the self-interactions of the triplons. In the spirit of

the O(3) non-linear sigma model representation of antiferromagnets, we model this

by a simple contact term. Let Sα(Q, τ) (α = x, y, z) be the spin at wavevector Q

and imaginary time τ ; then, this reasoning leads to the following effective action for



Chapter 6: Field-induced quantum criticality in PHCC 59

quantum fluctuation in the presence of a field Hα:

S =
1

2

∫
dτ

∑

Q

(
|∂τSα(Q, τ) + iεαβγHβSγ(Q, τ)|2

+E2(Q)|Sα(Q, τ)|2
)

+
u0

2

∫
dτ

∑

R

(
(Sα(R, τ))2

)2
(6.1)

where Sα(R, τ) is the spin on lattice site R, and we have absorbed the factor of gµB

into the definition of the field strength. We see that this is an effective φ4 quantum

field theory, as discussed in Chapter 5. The overall normalization of Sα has been

modified to make the co-efficient of the τ derivative term above equal to unity. The

self-interaction is represented by the bare quartic coupling u0. The non-linear sigma

model limit corresponds to u0 → ∞, and we will therefore be interested in the limit

of large u0.

We analyzed S in a self-consistent Hartree-Fock theory. Choosing Hα to be

along the z direction, we take the independent components of S as Sz and ψ =

(Sx + iSy)/
√

2. The two-point correlators of these components are the dynamic spin

susceptibilities, and we write these as

χz =
1

E(Q)2 + Σz − ω2
(6.2)

χ+− = 2χψ =
2

E(Q)2 + Σψ − (ω + H)2
(6.3)

χ−+ =
1

E(Q)2 + Σψ − (ω −H)2
. (6.4)

Here Σz and Σψ are the H and T dependent self energies which we will compute below.

At one-loop order, these self energies are independent of momentum and frequency.

Given the susceptibilities above, we can determine the positions of the resonance

in the longitudinal and transverse susceptibilities from the location of the poles. We

focus here on the minimum of the triplon dispersion, which occurs at T = 0 and
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H = 0 at the wavevector (π, π) at the spin gap ∆0 ≡ E(π, π). This triplet resonance

is renormalized at finite H and T by the self energies, leading now to poles at

∆z(H, T ) =
√

∆2
0 + Σz(H, T )

∆ψ(H, T ) =
√

∆2
0 + Σψ(H, T )−H. (6.5)

We obtain the self energies to first order by computation of one-loop graphs:

�
Summing over frequencies, we obtain the following expressions for the self energies:

Σz =
Σψ

2
+ 20u0

∑

Q

(n
(√

E2(Q) + Σz

)
+ 1

2√
E2(Q) + Σz

− 1

2E(Q)

)

Σψ =
Σz

3
+

40u0

3

∑

Q

(n
(√

E2(Q) + Σψ + H
)

+ 1
√

E2(Q) + Σψ

+
n

(√
E2(Q) + Σψ −H

)
√

E2(Q) + Σψ

− 1

E(Q)

)
(6.6)

where n is the Bose function

n(ω) =
1

eω/T − 1
. (6.7)

We have assumed that the measured dispersion E(Q) already contains the self-energy

renormalizations at T = 0; this leads to a renormalization that is included in the

expressions above, and ensures that Σz = Σψ = 0 at T = 0.
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Figure 6.2: Values of ∆ψ as a function of T and H for u0 = 1, 10, 100. All parameters
are in meV.

By solving Eqs (6.6) and plugging into Eqs (6.5) we obtain the energy gaps as

a function of H and T . Figure 6.2 shows a plot of ∆ψ for several values of u0 as a

function of both field and temperature. Note that once u0 becomes large enough, the

results are quite insensitive to the value of u0.

6.4 Comparison with Experiment

Finally, we turn to a comparison between theory and experiments. For conve-

nience, the unit of temperature T in all figures is chosen to be meV . The theoretical
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Figure 6.3: Experimental and theoretical values of ∆ψ as a function of T at the
quantum critical field H = ∆0. Solid lines are model predictions. Data points are
the locations of the peak positions measured experimentally.

values of ∆ψ from Fig 6.2 are compared with the experimental measurements of the

energy of the peak neutron scattering intensity at H = ∆0 in Fig 6.3.

We also attempted to described the full neutron scattering structure factor. To

obtain a direct comparison with experimental results, we augmented the response

functions in Eqs. (6.2-6.4) by a phenomenological damping term: a first principles

computation of this damping will be given in Chapter 7.

The dynamic structure factor, which determines the neutron scattering cross-

section, is related to the susceptibilities by the fluctuation dissipation theorem:

Szz(Q, w) =
2A

1− e−w/T
Imχz

S+−(Q, w) =
2A

1− e−w/T
Imχ+−

S−+(Q, w) =
2A

1− e−w/T
Imχ−+

S(Q, w) = A[Szz +
1

4
(S+− + S−+)] (6.8)

where A is a prefactor to best fit the experimental data to the model.
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The main contribution to the dynamic structure factor comes from the transverse

component, 1
4
(S+− + S−+), due to the energy range probed in the experiment. The

theory is presented for a range of u0 values, and is optimized at 3.8meV 3, however,

the results are fairly insensitive to this value.

The results are shown in Fig. 6.4. The right column shows the model calculations

of S(Q, w) at u0 = 3.8meV 3 convoluted with the experimental resolution function.

The top, middle, and bottom rows are for the calculation at T = 40mK, 3K, and 8K

respectively. Due to the repulsive interaction between bosons and their finite lifetime,

the excitation spectrum is shifted to the higher energy side with increasing T . This is

consistent with the observed neutron scattering intensity, shown in the left column.

6.5 Discussion

In summery, we studied the two-dimensional spin gap antiferromagnet PHCC near

the critical point using field-theoretic techniques and comparison to experimental

data. We found that the temperature dependence of the Sz = 1 mode is successfully

described by a self-consistent Hartree-Fock theory of interacting spin excitations. In

Chapter 7 we will explore the 2-d Bose gas near a quantum critical point and can

apply these results to obtain the dynamic spectrum of PHCC in the continuum and

classical limits [54].
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Figure 6.4: Left Column: Neutron scattering intensity measured from neutron scat-
tering in the (h, 0, `) plane, where ` = −1.35 − 0.3h at H = ∆0 = 7.5T. Right
Column: Model predictions. Top row: T = 8K, u0 = 5. Middle row: T = 3K, u0 =
2.5. Bottom row: T = 40mK, u0 = 1.



Chapter 7

Quantum critical dynamics of the

two-dimensional Bose gas

7.1 Introduction

Despite the widespread recent theoretical and experimental interest in quantum

phase transitions, a direct quantitative confrontation between theory and experiment

has been difficult to achieve for systems in two and higher spatial dimensions. A

major obstacle is that it is often difficult to tune system parameters over the range

necessary to move across a quantum critical point. Furthermore, for many examples

where such tuning is possible, the theory for the quantum critical point is intractable.

Consequently, the analysis of the data is often limited to the testing of general scaling

ansatzes, without specific quantitative theoretical predictions.

A class of quantum phase transitions have recently been exceptionally well charac-

terized in a variety of experiments. These experiments study the influence of a strong

65



Chapter 7: Quantum critical dynamics of the two-dimensional Bose gas 66

applied magnetic field on insulating spin-gap compounds [40, 58, 79, 68, 67, 22]. The

low lying spin excitations behave like spin Sz = 1 canonical Bose particles, and the en-

ergy required to create these bosons vanishes at a critical field H = Hc, which signals

the position of a quantum phase transition [55] with dynamic critical exponent z = 2.

In spatial dimensions d = 3, the quantum critical fluctuations are well described by

the familiar Bose-Einstein theory of non-interacting bosons, and no sophisticated the-

ory of quantum criticality is therefore necessary to interpret the experiments. The

upper-critical dimension of the quantum critical point is d = 2, and the boson-boson

interaction vanishes logarithmically at low momenta. So naively, one expects that

the d = 2 case is also weakly coupled, and no non-trivial quantum critical behavior

occurs.

The primary purpose of this chapter is to show that the above expectation for the

quantum-criticality of d = 2 Bose gas is incorrect. While the pairwise interactions

between the bosons are indeed weak, the collective properties of the finite-density,

thermally excited Bose gas pose a strong-coupling problem. We will demonstrate here

that an effective classical model, which can be readily numerically simulated, provides

a controlled description of this problem. This will allow us to present predictions for

the evolution of the dynamic spectrum of the d = 2 Bose gas across the quantum

critical point at non-zero temperatures.

Our results can be applied to two-dimensional spin-gap antiferromagnets, in the

vicinity of the gap-closing transition induced by an applied magnetic. Recent experi-

ments [68, 67, 22] on piperazinium hexachlorodicuprate (PHCC), (C4H12N2)Cu2Cl6,

will be compared with our results in Section 7.3. These experiments are able to easily
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access the finite temperature quantum-critical region, which we will describe by our

theory of the dilute Bose gas in d = 2; this Bose gas is in a regime of parameters

which is typically not examined in the context of more conventional atomic Bose gas

systems [43, 14].

Results similar to those presented here [42] also apply to other quantum critical

points with upper-critical spatial dimension d = 2 i.e. while the zero temperature

properties can be described in a weak-coupling theory, all non-zero temperature ob-

servables require solution of a strong-coupling problem. A prominent example of such

a quantum-critical point is the Hertz theory of the onset of spin-density-wave order in

a Fermi liquid [21]. Results for the thermodynamic and transport properties can be

obtained by the methods presented here [42]. We maintain that such results are neces-

sary for understanding experiments, and that previous theoretical results [21, 39, 38]

are inadequate for a quantitative analysis.

Our results will be presented in the context of the phase diagram of the d = 2

Bose gas shown in Fig. 7.1 as a function of the boson chemical potential, µ, and

temperature, T . At T = 0, there is a quantum critical point at µ = 0. For µ < 0,

the ground state is simply the vacuum with no bosons, while for µ > 0, there is

a finite density of bosons in the ground state. In the spin gap antiferromagnets,

µ = gµB(H − Hc), where H is the applied field, Hc is the critical field, g is the

gyromagnetic ratio, and µB is the Bohr magneton.

Fig. 7.1 presents results in terms of contours with equivalent physical properties,

up to an overall energy scale (R) whose T and µ dependence will be explicitly pre-

sented below, as will the equations determining the shape of the contours. One of
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Figure 7.1: Density plot of the value of the dimensionless ratio U/R as a function of
the chemical potential µ and the temperature T of a dilute Bose gas in two spatial
dimensions. The energy scale U , defined in Eq. (7.3), is a measure of the pair-
wise interaction between the atoms, while R, defined in Eq. (7.4), is an energy scale
controlling collective excitations. The physical properties of systems with the same
value of U/R are the same, apart from the change in the value of the energy scale
R. The Kosterlitz-Thouless transition occurs at the contour labelled TKT at [50, 47]
U/R ≈ 34, and the superfluid phase is present for larger U/R. The contours shown
are for equal spacings of values of R/U , with the region on the lower right including
values R/U → 0. Our primary results here are in the quantum critical region, with
intermediate values of U/R at µ = 0 and T > 0.
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the contours is the position of the Kosterlitz-Thouless (KT) transition of the d = 2

Bose gas, which is present only for µ > 0. We are primarily interested here in the

quantum-critical region, [55] which is roughly the region with kBT ≥ |µ|. In particu-

lar, we will be able to quantitatively examine the signature relaxation rate ∼ kBT/h̄

of the quantum-critical regimes: the “Bose molasses” dynamics. Our results and

methods also describe the crossover to the KT transition, as well as (in principle) the

region with T < TKT.

7.1.1 Summary of results

We summarize here the universal aspects of our results of the quantum-critical

Bose dynamics in two spatial dimensions. The continuum quantum field theory of the

critical point has logarithmic corrections to scaling; consequently, the properties of the

continuum theory do have a logarithmic dependence upon a non-universal ultraviolet

cutoff. We will show that this cutoff dependence can be isolated within a single

parameter; all other aspects of the theory remain universal, and can be accurately

computed.

We will be interested in the continuum Bose gas theory with the partition function

ZB =
∫
Dψ(r, τ)e−SB/h̄

SB =
∫ h̄/kBT

0
dτ

∫
d2r

[
h̄ψ∗

∂ψ

∂τ
+

h̄2

2m
|∇rψ|2 − µ|ψ|2

+
V0

2
|ψ|4

]
. (7.1)

For PHCC, the mass m can be directly determined from the dispersion of the Sz = 1

excitation. We will present results primarily in the small |µ| quantum critical region
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of Fig 7.1, although our formalism can be extended to other regions, including across

the Kosterlitz-Thouless transition into the “superfluid” phase. The bare interaction

between the Bose particles, V0, is renormalized by repeated interactions between the

particles, in the T matrix, to the value

VR =
4πh̄2

m ln(Λ/
√

µ2 + (kBT )2)
, (7.2)

where Λ is a high energy cutoff, and the square-root function in the argument of the

logarithm is an arbitrary, convenient interpolating form. The parameter Λ is the sole

non-universal parameter appearing in the predictions of the continuum theory. For a

spin gap antiferromagnet like PHCC, we expect Λ ∼ J , where J is a typical exchange

constant. For our purposes, it is convenient to rescale VR to a parameter U , which

has the dimensions of energy:

U ≡ 2mkBT

h̄2 VR =
8πkBT

(Λ/
√

µ2 + (kBT )2)
. (7.3)

Our universal results for the continuum theory are predicated on the assumption

that the logarithm in Eqs. (7.2) and (7.3) is “large”. At first glance, it would appear

from Eq. (7.2) that the quantum theory of the Bose gas is weakly coupled in the

leading-logarithm approximation. However, as will be clear from our analysis (and

has been noted in earlier works [50, 47, 48, 53]), this is not the case: although

pairwise interactions are weak, the collective static and dynamic properties of the gas

remain strongly coupled even when the logarithm is large. We shall argue, that to

leading order in the logarithm, these strong coupling effects can be captured in an

effective classical model. The latter model is amenable to straightforward numerical

simulations, and so accurate quantitative predictions become possible, whose precision
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is limited only by the available computer time. Previous analyses [43, 14, 10, 11] of the

dilute Bose gas in two dimensions assumed (when extended to the quantum critical

region) that ln ln(Λ/(kBT )) was large; a more precise version of this condition appears

below, from which it is clear that this condition is essentially impossible to satisfy in

practice. We will not make any assumption on the value of such a double logarithm,

and only make the much less restrictive assumption on a large single logarithm.

The characteristic length and time scales of the quantum-critical Bose gas are set

by a dimensionful parameter, which we denote R. Like U , we choose this to have

dimensions of energy; so a characteristic length is h̄/
√

2mR, while a characteristic

time is h̄/R. The value of R is determined by the solution of the following equation

R = −µ +
U

2π
ln

(
µ

(eµ/kBT − 1)R

)
. (7.4)

Note that this defines a R > 0 for all −∞ < µ < ∞.

To understand the magnitude of the various scales, we now discuss approximate

solutions of Eqs. (7.3) and (7.4) at the quantum critical point, µ = 0. The estimates

below should not be used in place of the full solutions in applications of our results

to experiments. For the energy scale associated with R we obtain the estimate

R ∼ kBT
4 ln

(
1
4
ln(Λ/(kBT ))

)

ln(Λ/(kBT ))
; µ = 0. (7.5)

Note that the energy scale R is logarithmically smaller than kBT : this will be the

key in justifying an effective classical description of the dynamics. Numerically, we

can easily go beyond Eq. (7.5), and obtain the full solution of Eq. (7.4) at µ = 0; this

is shown in Fig. 7.2. With the two dimensionful parameters, U , and R, at hand, the

reader will not be surprised to learn that the effective classical theory is characterized
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Figure 7.2: T dependence of R at the quantum critical point, µ = 0, obtained by
solving Eq. (7.4). Λ is a non-universal ultraviolet energy cutoff.
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Figure 7.3: T dependence of the dimensionless ratio U/R at the quantum critical
point, µ = 0.

by the dimensionless coupling U/R. Indeed, as we will see, the ratio U/R behaves

like an effective Ginzburg parameter for the classical theory. From Eqs. (7.4) and

(7.5) we estimate

U

R
∼ 2π

ln
(

1
4
ln(Λ/(kBT ))

) ; µ = 0, (7.6)

in the quantum-critical region. Again, we can go beyond the asymptotics, and obtain

precise values for U/R by numerical solution of Eqs. (7.4) and (7.3), and the result

appears in Fig 7.3. So, unless Λ/(kBT ) is astronomically large, the ratio U/R is not

small, and the classical theory is strongly coupled. As we have already noted, we

will not make the assumption of large double logarithms here, but instead obtain
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numerical results for the strongly coupled theory.

The primary result of this chapter is that the low energy properties of the dilute

Bose gas are universal functions of the ratio U/R. This key result is illustrated in

Fig 7.1 where we plot the loci of points with constant U/R, obtained from Eqs. (7.3)

and (7.4). The physical properties of systems along a fixed locus are the same, apart

from an overall re-scaling of energy and distance scales which are set by the value of R.

In most cases, the universal dependence on U/R can be determined by straightforward

numerical simulations. As has been shown earlier, in a different context [50], the

effective classical model undergoes a Kosterlitz Thouless transition [50] (see Fig 7.1)

at U/R ≈ 34. The values of U/R in the quantum-critical region are smaller (see

Eq. (7.6) and Fig 7.1) and the focus of our attention will be on these smaller values.

With an eye to neutron scattering observations in PHCC, we focus on the fre-

quency dependence of the boson Green’s function. In the antiferromagnet, this

Green’s function is proportional to the two-point spin correlation function in the

plane orthogonal to the applied field i.e. the correlator of S+ and S−. The spec-

tral density of this Green’s function yields the neutron scattering cross-section. In

particular, we will consider the Green’s function (in imaginary time)

χψ(iωn) =
1

h̄

∫ h̄/kBT

0
dτ

∫
d2reiωnτ 〈ψ(r, τ)ψ∗(0, 0)〉; (7.7)

after analytic continuation to real frequency, and application of the fluctuation-

dissipation theorem, we obtain the corresponding dynamic structure factor Sψ(ω).

One of our main results is that this structure factor obeys the scaling form

Sψ(ω) =
kBT

R2
Φψ

(
h̄ω

R
,
U

R

)
. (7.8)
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We will numerically determine the universal function Φψ here for a range of values of

U/R in the quantum-critical regime.

Our results for Sψ(ω) are obtained directly in real time, and so do not suffer

ambiguities associated with analytic continuation. For a significant range of values

of U/R of relevance to quantum criticality, we found that our numerical results could

be fit quite well with the following simple Lorentzian functional form for χψ(ω)

Sψ(ω) =
2kBT

R
Z

γR

(h̄ω −Rω0)2 + (γR)2
, (7.9)

where the scaling form in Eq. (7.8) implies that the dimensional numbers Z, ω0, and

γ are all universal functions of the ratio U/R. Notice that this describes a neutron

resonance at frequency Rω0/h̄ with width Rγ/h̄; our primary purpose here is to

provide theoretical predictions for the temperature dependence of these observables.

Our numerical results for the values of Z, ω0 and γ as a function of U/R appear in

Figs. 7.4, 7.7, and 7.8 in later sections.

7.2 Quantum critical theory

This section will obtain the properties of the continuum theory in Eq. (7.1) which

were advertized above.

The analysis of the static properties of Eq. (7.1) has been outlined in Ref. [50, 47,

48, 53]. The key step is the integrate out all the ωn 6= 0 modes of ψ to obtain an

effective action only for the zero frequency component. Among the important effects

of this is to replace the bare interaction V0 by a renormalized interaction VR obtained
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by summing ladder diagrams

VR =
V0

1 + (mV0/(4πh̄2)) ln(Λ/(kBT ))
≈ 4πh̄2

m ln(Λ/(kBT ))
. (7.10)

The co-efficient of |ψ|2 is also renormalized, as we specify below. The resulting ef-

fective theory for the zero frequency component is most conveniently expressed by

defining

ψ =

√
2mkBT

h̄
Ψ, (7.11)

and rescaling spatial co-ordinates by

r → h̄√
2m

r. (7.12)

This yields the following classical partition function

Zc =
∫
DΨ(r)e−Sc

Sc =
∫

d2r
[
|∇rΨ|2 + R̃|Ψ|2 +

U

2
|ψ|4

]
. (7.13)

Here the energy U is as defined in Eq. (7.3), while the ‘mass’ R̃ is given by

R̃ = −µ +
2U

kBT

∫ d2k

4π2

(
1

e(k2−µ)/(kBT ) − 1
− kBT

k2 − µ

)
. (7.14)

The most important property of this expression for R̃ is that the integral of k is not

ultraviolet finite, and has a logarithmic dependence on the upper cutoff. However,

this is not a cause for concern. The theory Zc is itself not a ultraviolet finite theory,

and its physical properties do have a logarithmic dependence on the upper cutoff.

Fortunately (indeed, as must be the case), the cutoff dependence in R̃ above is pre-

cisely that needed to cancel the cutoff dependence in the correlators of Zc so that
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the final physical results are cutoff independent. This important result is demon-

strated by noting that the only renormalization needed to render Zc finite is a ‘mass’

renormalization from R̃ to R, as defined by

R ≡ R̃ + 2U
∫ d2k

4π2

1

k2 + R
. (7.15)

Here, the R in the propagator on the r.h.s. is arbitrary, and is chosen for convenience.

We could have chosen a propagator 1/(k2 + cR) where c is an arbitrary numerical

constant; this would only redefine the meaning of the intermediate parameter R, but

not the value of any final observable result. Combining Eq. (7.15) with Eq. (7.14),

we observe that the resulting expression for R is free of both ultraviolet and infrared

divergences. The momentum integrals can be evaluated, and lead finally to the ex-

pression for R already presented in Eq. (7.4).

When expressed in terms of the renormalized parameter R, the properties of the

continuum theory Zc are universal (i.e. independent of short-distance regularization).

They are defined completely by the length scale 1/
√

R and the dimensionless ratio

U/R. The field Ψ is also dimensionless, and acquires no anomalous dimension. This

means e.g. the equal time correlations obey the scaling form

S(k) = 〈|Ψ(k)|2〉 =
1

R
Φ

(
k√
R

,
U

R

)
, (7.16)

where Φ is a universal function. Note that here, and in the remainder of this chapter,

we have rescaled momenta corresponding to Eq. (7.12)

k →
√

2m

h̄
k, (7.17)

so that k2 has the dimensions of energy. The function Φ can be easily computed

in a perturbation theory in U/R, and results to order (U/R)2 appear in Ref. [50].
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However, we are interested in values of U/R which are not small, and for this we have

to turn to the numerical method described in the following subsection.

7.2.1 Numerics: equal time correlations

We will analyze numerically Zc by placing it in a square lattice of spacing a,

and verifying that the correlations measured in Monte Carlo simulations become a

independent and universal in the limit a → 0.

The partition function on the lattice is

ZcL =
∏

i

∫
dΨie

−ScL (7.18)

ScL =
∑

〈ij〉
|Ψi −Ψj|2 +

∑

i

[
R̃La2|Ψi|2 +

Ua2

2
|Ψi|4

]
.

The parameter R̃L is not equal to the parameter R̃ above. Instead, the mapping to

the quantum theory has to be made by requiring that the values of the renormalized

R are the same. In the present lattice theory we have

R̃L = R− 2U
∫ π

−π

dkx

2π

∫ π

−π

dky

2π

1

4− 2 cos(kx)− 2 cos(ky) + Ra2
. (7.19)

We can measure lengths in units of R, and for each value of U , determine R̃L from

Eq. (7.19), and test if the Monte Carlo correlations are independent of a in the limit

of small a. The resulting correlations then determine the scaling function Φ in (7.16).

We used this method to determine the values of the function Φ(0, U/R) for a

sample set of values of U/R appropriate to the quantum-critical region. Note that

Φ(0, U/R) = Z, where Z is the amplitude appearing in the dynamic function in

Eq. (7.9). We used the Wolff cluster algorithm (as described in Ref. [50]) to sample
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Figure 7.4: Universal dependence of the equal-time correlation at zero momentum on
U/R. The parameter Z is that appearing in Eq. (7.9).

the ensemble specified by ZcL. Measurement of the resulting correlations led to the

results shown in Fig 7.4.

7.2.2 Dynamic theory

We now extend the classical static theory above to unequal time correlations by

a method described in some detail in Refs. [50] and [51]. As argued there, provided

the scale R < kBT , the unequal time correlations can also be described by classical

equations of motion. In the context of perturbation theory, the reduction to classical

equations of motion is equivalent to the requirement that it is a good approximation

to replace all Bose functions by their low energy limit:

1

eω/T − 1
≈ T

ω
. (7.20)

From Eq. (7.5) we observe that the requirement on R is satisfied in the quantum-

critical region. It also holds everywhere in the superfluid phase, with µ > 0, where R

becomes exponentially small in 1/(kBT ) (as can be shown from Eq. (7.4)). However,
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it does fail in the low T ‘spin-gap’ region with µ < 0, where R > kBT . We will

not address this last region here, although a straightforward perturbative analysis of

the full quantum theory is possible here, as noted in Ref. [51]. Some results on the

perturbation theory appear in Appendix C.

The classical equations of motion obeyed by Ψ are merely the c-number represen-

tation of the Heisenberg equations of motion obeyed by ψ. With the rescalings in

Eqs. (7.11) and (7.12), these are

ih̄
∂Ψ

∂t
=

δSc

δΨ∗ . (7.21)

Following the reasoning leading to Eq. (7.16), it follows that the correlations of the

Ψ evolution described by these equations of motion obey the scaling form

S(k, t) = 〈Ψ(k, t)Ψ∗(k, 0)〉 =
1

R
Φt

(
k√
R

,
Rt

h̄
,
U

R

)
. (7.22)

where the scaling function Φt can be determined numerically, as we describe below.

After the rescalings in Eqs (7.11) and (7.12), we conclude that the Fourier transform

of S(k, t) to S(k, ω) is related to the dynamic structure factor Sψ(ω) defined below

Eq. (7.7) by

Sψ(ω) = kBTS(0, ω). (7.23)

We now describe our numerical computation of Φt. We begin by sampling the

ensemble of Ψi values specified by ZcL, as in the previous section. Once the ensemble

is thermalized, we choose a typical set of values of Ψi as the initial condition. These

are evolved forward in time deterministically by solving the equations of motion

i
∂Ψi

∂t
=

∑

j n.n.i

(Ψi −Ψj) + R̃La2Ψi + Ua2|Ψi|2Ψi, (7.24)
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Figure 7.5: Real part of the time-dependent structure factor S(0, t) obtained from
our numerical simulation. The results above are for U/R = 8.33. Two different values
of R are shown, and the axes have been scaled to demonstrate the scaling collapse as
required by Eq. (7.22). The fit with the functional form in Eq. (7.26) is also shown.

where t = t/h̄. For each initial condition, this defines a Ψi(t). Then

Φt(0, Rt, U/R) =
a2R

N2

〈(∑

j

Ψ∗
j(t)

)(∑

`

Ψ`(t)
)〉

(7.25)

for a lattice of N2 sites, and where the average is over the ensemble of initial condi-

tions. Sample results from such simulations appear in Figs. 7.5 and 7.6.

We have fit each observed time evolution to the functional form

Φt ≈ Ze−R(iω0t+γ|t|), (7.26)

where Z, ω0, γ are numbers determined from the fit. A sample fit is shown in

Figs. 7.5 and 7.6. As is clear from the figures, this form provides an excellent fit

over a substantial time window. Taking the Fourier transform of this result, and

using Eq. (7.23), we obtain a result for Sψ(ω) in the form in Eq. (7.9), with the same

parameters Z, ω0, γ.

The results for Z appeared earlier in Fig. 7.4, and our results ω0 and γ as a

function of U/R appears in Figs. 7.7 and 7.8. We can now combine the results in
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Figure 7.6: As in Fig. 7.5, but for the imaginary part of the correlation function.
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Figure 7.7: The universal dependence of the dimensionless frequency ω0 on U/R.
The points are the results of the numerical simulation, while the line is a best fit
polynomial used for interpolation.
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Figure 7.8: As in Fig 7.7, but for the dimensionless damping γ. The full line at small
U/R is the result of the perturbation theory obtained in Eq. (C.4).

these figures with those in Fig 7.3, and obtain predictions for the T dependence of

the resonant frequeny and damping in the dynamic structure factor in Eq. (7.9) at

the quantum-critical point. These results appear in Fig 7.9 and 7.10.

7.3 Conclusions

We have argued that the quantum-critical dynamics of the two-dimensional Bose

gas (and of other quantum critical points in two spatial dimensions) represents a

strong-coupling problem. Nevertheless, an effective classical description was obtained

to leading logarithmic order, allowing tractable numerical simulation. The primary

results of this simulation at the quantum critical point appear in Figs. 7.9 and 7.10,

which specify the parameters appearing in Eq. (7.9).
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Figure 7.9: The universal dependence of the oscillation frequency ω0R on T at the
quantum-critical point µ = 0, obtained from Figs. 7.3 and 7.7.
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Figure 7.10: The universal dependence of the damping rate γR on T at the quantum-
critical point µ = 0, obtained from Figs. 7.3 and 7.8.
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In comparing our results to experiments, we have to set the value of the unknown

high energy cutoff Λ. For the range of parameters shown in Figs. 7.9 and 7.10,

we find a roughly linear dependence of ω0R and γR on T , with ω0R ≈ 0.11(kBT )

and γR ≈ 0.10(kBT ). The experiments [68, 67, 22] on the quantum-critical point

of PHCC, also observe a roughly linear dependence of peak frequency and width on

temperature, but with different co-efficients; the peak frequency ≈ 0.62kBT , while the

width is ≈ 0.23kBT . Choosing a different range of Λ for the theory, e.g. assuming

the experiments are in the range T/Λ < 0.01, will change the theoretical predictions

for ω0R and γR, but does not improve the agreement with experiments.

For the peak frequency, the work of Ref. [22] suggests an origin for the above

discrepancy. A similar theory was used in that paper to obtain the predictions of the

peak frequency, but keeping the full lattice dispersion for the spin excitations, and

the quantum Bose function values for the occupation numbers: good agreement was

found between such a theory and the experimental observations. The continuum and

classical limits taken here were avoided.

For the width of the spin excitation, we expect that the damping is more strongly

dominated by the low energy and low momentum excitations, and so the present con-

tinuum, classical theory should yield a more accurate description of the experiments.

This is indeed the case, relative to the poor accuracy of the peak frequency in the

continuum theory. Nevertheless, a discrepancy of a factor of ≈ 2 remains between

our present quantum critical theory and the experimental observations. It is possi-

ble that taking the classical theory also on the lattice will improve agreement with

experiments. However, there are also corrections to the present continuum theory
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which could improve the situation: in particular, at higher order in VR, there appear

renormalization of the time-derivative term in Eq. (7.1). This renormalization would

change the time-scale in the classical equations of motion, and so change the overall

frequency scale of the results in Figs. 7.9 and 7.10.



Appendix A

Quantum-classical Liouville

equation

We start with the Liouville-von Neumann equation, which describes the time

evolution of the density operator:

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂] (A.1)

and assume the Hamiltonian to be of the form

Ĥ =
P̂ 2

2M
+

p̂2

2m
+ V̂s(q) + V̂b(R) + V̂c(q, R) (A.2)

where small variables refer to the quantum system and large variables refer to the

bath particles. V̂c is the coupling between the quantum system and the bath.

The phase space representation of an operator can be constructed by taking the

Wigner transform. Taking the Wigner transform of the Liouville-von Neumann equa-

tion over the bath degrees of freedom gives:

86
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∂ρ̂

∂t
= − i

h̄
(ĤW (R,P )e

h̄Λ
2i ρ̂W (R,P, t)− ρ̂W (R,P, t)e

h̄Λ
2i ĤW (R,P )) (A.3)

where

ĤW (R, P ) =
P̂ 2

2M
+

p̂2

2m
+ V̂W (q, R) (A.4)

and

Λ =
←−∇P · −→∇R −←−∇R · −→∇P (A.5)

The partial Wigner transforms of an operator Â and a density operator ρ̂ are

defined by [72]:

ÂW (R,P ) =
∫

dzeiP ·z〈R− z

2
|A|R +

z

2
〉 (A.6)

ρW (R, P ) = (2πh̄)−3N
∫

dzeiP ·z〈R− z

2
|ρ|R +

z

2
〉 (A.7)

Working in dimensionless units allows us to see the explicit mass dependence.

Defining the dimensionless variable Λ′ = Λh̄
µ

, where µ = ( m
M

)
1
2 , and expanding to

lowest order in µ, we obtain the mixed quantum-classical Liouville equation [24]

∂ρ̂W

∂t
= − i

h̄
[ĤW , ρ̂W ] +

1

2
({ĤW , ρW} − {ρ̂W , ĤW}) (A.8)

where the Poison brackets are defined by

{A,B} =
∂A

∂R
· ∂B

∂P
− ∂A

∂P
· ∂B

∂R
(A.9)
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We now have an equation for the time evolution of the density operator that has

both operator and phase space nature. The only approximation made was truncating

the expansion in µ to include terms up to linear order.



Appendix B

Trotterized Wigner-Liouville

approach

This appendix describes the implementation of the Wigner-Liouville trotterized

method in the adiabatic basis [29]. The solution of the quantum-classical Liouville

equation is:

ραα′
W (R,P, t) =

∑

ββ′
(e−iLt)αα′ββ′ρ

ββ′
W (R, P, 0) (B.1)

where ραα′
W (R, P ) = 〈α, R|ρW |α′, R〉. This can be written in Dyson form:

(e−iLt)αα′ββ′ = e−iL0
αα′ tδαβδα′β′ +

∑

γγ′

∫ t

0
dt′e−iL0

αα′ (t−t′)Jαα′γγ′(e
−iLt′)γγ′ββ′ (B.2)

To simplify the notation, associate s with the pair αα′. Divide the time interval

into small enough time segments, ∆tj = δ to use the trotter approximation:

(eiLt)s0sN
=

∑
s1,s2...sN−1

N∏

j=1

(eiL∆tj)sj−1sj
(B.3)

where

(eiLδ)s0s1 ≈ (eiL0δ/2)s0s0(e
−Jδ)s0s1(e

iL0δ/2)s1s1 (B.4)

89
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In this approximation, the full propagator consists of free propagation (for the bra

and ket states) on a single surface, with intermittent hops between surfaces.

It will be helpful to separate the Jαα′ββ′ operator as follows:

Jαα′ββ′ = J1αα′ββ′ + J2αα′ββ′ (B.5)

where

J1ss′ = −(dαβδα′β′ + d∗α′β′δαβ) · P

M
(B.6)

J2ss′ = −(Eα − Eβ)dαβδα′β′ + (Eα′ − Eβ′)d
∗
α′β′δαβ

2
· ∂

∂P
(B.7)

and dαβ is the non-adiabatic coupling matrix element:

dαβ = 〈α, R|∇R|β,R〉 (B.8)

Since the coupling matrix is anti-symmetric with respect to exchange of α and β,

J1ss′ is anti-symmetric with respect to interchange of s and s’, and J2ss′ is symmetric,

and are therefore diagonalized by different orthogonal transformations.

(e−Jδ)s0sN
=

∑
s1s2

(e−J1δ/2)s0s1(e
−J2δ)s1s2(e

−J1δ/2)s2sN

≡ ∑
s1s2

(Q1)s0s1(Q2)s1s2(Q1)s2sN
(B.9)

For a two state system:

J1 =




0 1 1 0

−1 0 0 1

−1 0 0 1

0 −1 −1 0




P

M
· d(R) (B.10)
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Diagonalize J1 with transformation K and exponentiate to obtain an expression

for Q1:

Q1 = e−J1δ/2 = e−KD1δ/2K−1

(B.11)

Matrix elements of Q1 contain terms of the form:

±cos2(a), ±sin(a)cos(a), ±sin2(a) (B.12)

where a = P/Md10(R)δ∂/∂P , and are used in the selection of hops. The expression

for Q2 can be obtained in a similar manner, where

J2 = −




0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0




(E1(R)− E0(R))d(R) · ∂
∂P

2
(B.13)

Exponentiate to obtain an expression for Q2:

Q2 = e−J2δ = e−K′D2δK′−1

(B.14)

Matrix elements of Q2 will contain terms of the form:

eb· ∂
∂P ± e−b· ∂

∂P ± 1 (B.15)

where b = (E1(R) − E0(R))d10(R)δ. This yields small positive and negative mo-

mentum shifts, which cause branching of the trajectories.

The short time propagator can now be written as:

(eiLδ)s0s3 =
∑
s1s2

(eiL0δ/2)s0s0Q1s0s1Q2s1s2Q1s2s3(e
iL0δ/2)s3s3 (B.16)
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Jump Approximation

The jump approximation simplifies the calculations considerably. In its absence,

when Q2 acts on a function f(R, P ), there will be branching in the number of trajec-

tories. By taking the limit of small |b| = |(E1(R) − E0(R))d10(R)|δ << 1 which can

be enforced by making the time step very small, the expression for Q2 is simplified

and branching is eliminated. The result simplifies to:

(eiLδ)s0s1 =
∑
s1s2

(eiL0δ/2)s0s0(Q1)
2
s0s1

Ts0s1(e
iL0δ/2)s1s1 (B.17)

where T is defined as:



1 1− bd̂· ∂
∂P

2a
1− bd̂· ∂

∂P

2a
1− bd̂· ∂

∂P

a

1 +
bd̂· ∂

∂P

2a
1 1 1− bd̂· ∂

∂P

2a

1 +
bd̂· ∂

∂P

2a
1 1 1− bd̂· ∂

∂P

2a

1 +
bd̂· ∂

∂P

a
1 +

bd̂· ∂
∂P

2a
1 +

bd̂· ∂
∂P

2a
1




(B.18)

Terms like (1± bd̂· ∂
∂P

2a
)f(P · d̂) in T change P · d̂ by ± b

2a
. Transitions that increase

the energy of the system are forced not to occur.

Adiabatic states

The adiabatic states are represented in terms of a mixing angle to aid in the

numerical stability. For a two state system, the adiabatic states can be written in

terms of two orthogonal diabatic basis functions, Φd
1,2(r), as:

Φa
n(r,R) = cos[Θ(R)]Φd

1(r) + sin[Θ(R)]Φd
2(r)

Φa
m(r,R) = −sin[Θ(R)]Φd

1(r) + cos[Θ(R)]Φd
2(r) (B.19)
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where Θ(R) depends on the bath configuration, and is the mixing angle between

diabatic basis states. With this form, the coupling matrix elements are simply:

〈Φa
m|∇R|Φa

n〉 = ∇RΘ (B.20)

when n 6= m. In terms of the Hamiltonian matrix elements, the mixing angle is

given by:

Θ =
1

2

(π

2
− sin−1

( H22 −H11√
(H22 −H11)2 + 4H2

12

))
(B.21)

Algorithm

The expectation value of an observable is given by:

〈O(t)〉 = Tr′
∫

dRdPOW (R,P )e−iLtρW (R, P, 0)

= Tr′
∫

dRdPeiLtOW (R, P )ρW (R, P, 0)

=
∑
s0sN

∫
dRdP [(eiLt)s0sN

OsN
W (R,P )]ρ

s′0
W (R,P, 0)

=
∑

s0s1...sN

∫
dRdPρ

s′0
W (R, P, 0)[

N∏

j=1

(eiLt)sj−1sj
OsN

W (R,P )] (B.22)

where Tr′ is the trace over the quantum subsystem, and s′ is the complex conjugate

of s. These multi-dimensional sums can be carried out through Monte Carlo sampling.

The propagator was moved to act on the observable instead of the density matrix since

this makes the sampling easier.

The sequence of transfer operations in Equation B.17 can be handled by backwards

computation. Consider the following transfer operation sequence ABCf(x), where:
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Af(x) = α(x)f(a(x))

Bf(x) = β(x)f(b(x))

Cf(x) = γ(x)f(c(x)) (B.23)

Operating from left to right:

ABC(f(x0)) = A[BCf(x0)] = α(x0)[BCf(x1)], x1 = a(x0)

BC(f(x1)) = B[Cf(x1)] = β(x1)[Cf(x2)], x2 = b(x1)

C(f(x2)) = γ(x2)f(x3), x3 = c(x2) (B.24)

Introducing time as a parameter, ABC would calculated by going from left to

right starting from an initial time, t0: At0Bt1Ct2 .

The algorithm starts by choosing s0 from the possible values for anN state system.

The weight is ws0 = N 2. Choose (R, P ) from the absolute value of the initial density

matrix |ρs′0
W (R,P )| and record the sign of the density matrix, σρ. Initialize Z = σρws0 .

Propagate (R,P ) with the operator eiLs0
δ
2 to (R′, P ′), and compute corresponding

phase factor Ws0 .

Next, compute the matrix elements (Q2
1)s0s1 , the probability Ps0s1 =

|(Q2
1)s0s1 |∑

s1
|(Q2

1)s0s1 |
,

and DQ =
∑

s1
|(Q2

1)s0s1|. Select a matrix element s1 with probability Ps0s1 , and record

the sign of Q2
1, σQ. Compute the change in momentum experienced by the bath if

a transition in the bra and/or ket state occured. Of course, if opposite transitions

occurred, then there will be no momentum change.

Propagate (R′, P ′) with the operator eiLs0
δ
2

to (R”, P”), and compute correspond-

ing phase factor Ws1 .
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Evaluate Z = ZWs0DQσQWs1 . Multiply by the value of the observable Os1
W (R,P ).

Repeat with this trajectory until the end time is reached. Repeat with additional

trajectories until convergence.

Filters must be used to limit the maximum number of hops and maximum value

of the observable to eliminate large biasing fluctuations due to the factors contained

in the matrix Q1. These fluctuations exacerbate the sign problem that comes from

the evolution phase factors.



Appendix C

Perturbation theory for quantum

critical Bose gas

Here we present the results of a direct perturbative computation of χψ [50]:

χψ(ω) =
1

−h̄ω + R + Σ(ω)
(C.1)

To order U2, the self energy is obtained by summing the two loop sunset diagram

and is given by:

Σ(iω) = −2U2
∑
ε1,ε2

∫ d2k1

4π2

d2k2

4π2

× 1

(−iε1 + k2
1 + R)(−iε2 + k2

2 + R)(−i(ε1 + ε2) + iω + (k1 + k2)2 + R)
.

96
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The frequency summation is done most easily by partial fractions and yields

Σ(iω) = −2
(

U

kBT

)2

×
∫ d2k1

4π2

d2k2

4π2

[n(k2
1 + R)− n((k1 + k2)

2 + R)] [n(k2
2 + R)− n((k1 + k2)

2 − k2
1)]

iω + (k1 + k2)2 − k2
1 − k2

2 −R
.

Now we analytically continue to real frequencies, and take the imaginary part at

ω = R/h̄, which is the leading order position of the pole in Eq. (C.1). This yields

ImΣ(R/h̄) = 2π
(

U

kBT

)2 ∫ d2k1

4π2

d2k2

4π2

[
n(k2

1 + R)− n((k1 + k2)
2 + R)

]

×
[
n(k2

2 + R)− n((k1 + k2)
2 − k2

1)
]
δ((k1 + k2)

2 − k2
1 − k2

2)

= −2π
(

U

kBT

)2 ∫ d2k1

4π2

d2k2

4π2

[
n(k2

1 + R)− n(k2
1 + k2

2 + R)
]

[
n(k2

2)− n(k2
2 + R)

]
δ((k1 + k2)

2 − k2
1 − k2

2). (C.2)

Now we can do the angular integration because the angle appears only in the argument

of the delta function, and obtain

ImΣ(R/h̄) = −
(

U

2πkBT

)2 ∫ ∞

0
dk1

∫ ∞

0
dk2

× (eR/(kBT ) − 1)

(e(k2
1+R)/(kBT ) − 1)(e(k2

2+R)/(kBT ) − 1)(1− e−(k2
1+k2

2+R)/(kBT ))
. (C.3)

This result is a function of R/(kBT ) which has to be evaluated numerically. How-

ever, it is instructive to examine its value in the classical limit, upon applying the

approximation in Eq. (7.20), when we obtain

ImΣ(R/h̄) = −U2R

4π2

∫ ∞

0
dk1

∫ ∞

0
dk2

1

(k2
1 + R)(k2

2 + R)(k2
1 + k2

2 + R)

= −R
(

U

R

)2 (4− π)

16π
. (C.4)
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Notice that explicit factors of kBT have dropped out, and consequently Eqs. (C.1) and

(C.4) are consistent with the scaling form Eq. (7.9). It is also interesting to compare

the value of the classical limit in Eq. (C.4) with that obtained from the full quantum

expression in Eq. (C.3). For R = kBT/2 (which are roughly the quasiparticle energy

values obtained in the experiments on PHCC [22]), Eq. (C.3) evaluates to a value

which is 16% smaller than Eq. (C.4). This gives us an estimate of the error made by

representing the quantum-critical theory by classical equations of motion.
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