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Abstract

States with gapless degrees of freedom are typically more complicated and less well-

understood than systems possessing a gap. In this thesis, we study strongly-correlated

systems described by gapless fermions. In most of the systems we consider, the fermionic

excitations are emergent, i.e. they are not adiabatically connected to the electrons which

constitute the fundamental building blocks of the system in question.

We start by proposing several novel states of matter which we claim are relevant to

strongly-correlated systems. The first state we present is a fractionalized Fermi liquid on the

surface of a topological Kondo insulator. A Kondo insulator is a material which becomes

insulating at low temperatures as a result of strong electron-spin interactions. When spin-

orbit coupling is present, this insulator might be topological and, consequently, host robust

gapless surface modes. Given the strong interactions and the decreased dimensionality of

the surface, we propose that the spins and electrons there may decouple, resulting in the

formation of a fractionalized Fermi liquid.

We next argue that quantum electrodynamics in 2+1 dimensions (QED3) with Nf = 4

fermion flavours may describe a continuous, deconfined phase transition connecting the 120◦

coplanar Néel phase and the
√
12 ×

√
12 valence bond solid phase of the triangular lattice

antiferromagnet (AF). In addition to being a critical point, QED3 is also believed to describe

a critical phase of matter called the Dirac spin liquid. Regardless of whether QED3 is manifest

as a phase or a critical point, impurities and imperfections are always present in the real

world, and it is therefore important to understand what effects this may have. We show that

when QED3 is perturbed by weak disorder, under certain circumstances, it flows to a new

critical point in which both interactions and disorder are present.

iii



Thesis advisor: Subir Sachdev Alexandra Rose Thomson

Conclusively identifying a system described by QED3 has proven to be a difficult task, not

only experimentally, but in numerical studies as well. Since QED3 is a critical theory, its

spectrum on a torus is a universal quantity dependent only on low-energy degrees of freedom,

such as the torus area. It follows that this data is accessible via exact diagonalization and

can serve as an identifying signature of the theory. To this end, we calculate the QED3 torus

spectrum using path integral methods.

We conclude this thesis with a comprehensive study of gapped Z2 spin liquids of the square

lattice antiferrogmagnet, using a critical theory of Dirac fermions coupled to an SU(2) gauge

field as a starting point. There are many different Z2 spin liquid groundstates which preserve

the same symmetry group. Even if one knows that a system has a Z2 spin liquid groundstate,

it is by no means obvious which Z2 spin liquid is being realized. By starting from a gapless

theory, the set of possibilities can be reduce considerably. Further, using certain recently

proposed dualities, comparisons with theories formulated using bosons can be made.
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2.1 Energy spectrum for JH = 0.15, JK = 0.3. Both V and χ are constant
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2.2 (a) Schematic phase diagram of surface states. (b),(c) Cartoon depictions of
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2.3 Spatial dependence of mean field parameters in SFL∗ phases. In the left
column, we plot values corresponding to the spin chain SFL∗ (JH = 0.15,
JK = 0.3) while on the right values corresponding to the spin ladder SFL∗

(JH = 0.25, JK = 0.3) are shown. (a),(b) Hybridization Vi. (c),(d) Spinon
bond parameters χiµ in the direction perpendicular (blue) and parallel (red)
to the boundary. (e),(f) The Lagrange multiplier field λi. In (a)−(f), the
yellow dashed line plots the value obtained in the translationally invariant
case. We use units with t1 = 1.0. Calculations were done with t2 = −0.25

and at a temperature of 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
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2.4 Energy spectra in SFL∗ phases. (a) Spin chain SFL∗ (JH = 0.15, JK = 0.3).
The ground state has Vi = 0 on the first surface layer and the moments form
a spin chain decoupled from the bulk. (b) Spin ladder SFL∗ (JH = 0.25,
JK = 0.3). The ground state has Vi = 0 on the first two layers and a spin
ladder is present on the surface. In both figures, the dash-dotted red curve
represents the one-dimensional cosine dispersion found for the spinons and is
merely an artifact of the ansatz. We use units with t1 = 1.0. Calculations
were done with t2 = −0.25 and at a temperature of 10−5. . . . . . . . . . . . 23

3.1 The global phase diagram of spin-1/2 systems on the triangular lattice. The
intertwinement between the order parameters is captured by the WZW term
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SO(3)-to-SO(3) transition, which is a direct unfine-tuned transition between
the noncollinear magnetic order and the VBS order. The detailed structure
of the shaded areas demands further studies . . . . . . . . . . . . . . . . . . 29

4.1 The kagome lattice. The arrows indicate the convention chosen for the bond
directions of the spin chirality operator, Si×Sj, where i and j label nearest-
neighbour sites. The order of the cross product is taken such that first spin
sits at the lattice site pointing towards the site of the second spin. Later,
we will use the same ordering convention to define nearest-neighbour bond
operators Si · Sj. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Diagrammatic expression for the effective photon propagator in the large-N
limit. The dotted lines indicate the bare photon propagator, D0

µν(p), while
the fermion bubbles are equal to Πµν(q). As indicated in the text, only the
full photon propagator will be used. . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Feynman rules associated with the replicated action, Sn
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]
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4.6 Diagrams which contribute when only SU(2N)-preserving, bilinear disorder
is considered (gt,a = gA,a = gv,a = 0). Both Figs. 4.6(c) and 4.6(d) are
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Chapter 1

Introduction

1.1 Quantum states of matter

Our understanding of matter is founded on the identification and classification of different

phases. In the standard Landau-Ginzburg approach, this assignment is determined by the

symmetries of the system. The standard example is that of the (classical) Ising model,

H
(cl)
ising = −J

∑
⟨ij⟩

σziσ
z
j , (1.1)

where σzi = ±1 on each site i and J > 0. This Hamiltonian is invariant under the global Z2

transformation, σzi → −σzi . At high temperatures, to maximize entropy, the system chooses

a paramagnetic state, i.e. one in which the average magnetization vanishes: m = ⟨σzi ⟩ = 0.

Conversely, in dimensions d ≥ 2, at low temperatures, the system prefers to minimize its

energy by selecting one of its two groundstates and spontaneously breaking the Z2 symmetry.

The resulting phase is a ferromagnet, with either m → +1 or m → −1 as the temperature

approaches zero.

A direct analogue exists in a (zero temperature) quantum model. The Hamiltonian is

H
(qm)
ising = −gJ

∑
i

σxi − J
∑
⟨ij⟩

σziσ
z
j , (1.2)
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where both J and g are positive and σzi now represents a 2×2 Pauli matrix. As in the classical

case, H(qm)
ising is invariant under a global Z2 transformation. The action of this symmetry on

the operators of the theory is implemented though conjugation by O =
∏

i σ
x
i . In particular,

O acts on the Pauli operators as σzi → −σzi and σxi → σxi , establishing that O commutes with

H
(qm)
ising . Instead of the temperature, the transition is tuned by the strength of the transverse

field g. When g ≫ 1, ⟨σxi ⟩ → +1 in the groundstate: |gnd⟩g=∞ =
⊗

i
1√
2
(|↑⟩i + |↓⟩i). Since

the magnetization then vanishes, ⟨σzi ⟩ = 0, this is the paramagnetic phase. In the opposite

limit, g ≪ 1, the groundstate is ferromagnetic with either ⟨σzi ⟩ → +1 or ⟨σzi ⟩ → −1.

While certain phases may be characterized by their symmetries in this way, it is by no

means a sufficient method of classification when quantum mechanics is considered.In partic-

ular, quantum entanglement often plays a very important role, and its inclusion results in a

much richer set of states. We briefly review some of the more important examples, placing

special emphasis on those relevant for this thesis.

1.1.1 Z2 topological order

A gapped phase is said to have ‘long-range entanglement’ when there is no set of local

transformations which can map the groundstate to a product state without closing the gap

or exiting the phase [181, 182]. Z2 spin liquids (SLs) are among the the best-known long-

range entangled phases [145, 183]. These phases possess what is know as ‘Z2 topological

order.’ This topological character becomes evident when a Z2 spin liquid is placed on a

manifold with nonzero genus, g, such as torus: provided the surface is large enough, one

finds 4g (essentially) degenerate grounstates. Tunnelling between these states can only occur

via non-local operators that stretch around one of the cycles of the manifold. For instance,

for a square torus with lengths L in both the x and y directions, it follows that the energy

splitting between the four degenerate groundstates is of the order ∼ e−∆L where ∆ is the

gap to the excited states.

A more striking aspect of the Z2 SL is that it hosts nonlocal excitations that satisfy

2
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fractional statistics. There are two distinct bosonic excitations, e andm, which have semionic

mutual statistics, i.e. the wavefunction picks up a minus sign when an m particle is taken

around an e particle. A third particle, ε, can be formed as a bound state of the first two,

ε ∼ em. It also has mutual semionic statistics with e and m, but its self-statistics are

fermionic.

These nontrivial properties may be interpreted as consequences of an emergent Z2 gauge

field under which all the excitations are charged. This Z2 gauge redundancy is not a physical

property, and it follows that the total wavefunction must always be invariant under its action.

For this to be true, excitations must always appear in pairs. Notably, this implies that Z2

spin liquids have no fermionic excited states even though there is a fermionic excitation ε.

Nevertheless, the theory is deconfined, and the excitations may be arbitrarily far from one

another, with the region separating them indistinguishable from the groundstate.

The Z2 SL structure becomes much more complicated when symmetries are included: in

addition to obeying fractional statistics, the excitations may also carry fractional quantum

numbers of the symmetry group. To see why, consider the action of an unbroken symmetry

G on a state containing two ε excitations located at r and r′. G will exclusively affect the

region immediately surrounding the excitations: G |r, r′⟩ = Gε(r)Gε(r′) |r, r′⟩, where Gε(r)

are local operators with support near r. Since Gε(r) always appears with a partner, it need

only satisfy the group relations of G up to a minus sign. For instance, both Gε(r)Gε(r) =

+1 and Gε(r)Gε(r) = −1 are consistent with G2 = 1. This is referred to as ‘symmetry

fractionalization’ [43] and is discussed in greater detail in Chapter 6.4.1. (The ‘projective

symmetry group’ [184], a related concept, is reviewed in Chapter 6.3 and Appendix E.2.)

When symmetry fractionalization is possible, classifying states solely by their physical

symmetries is no longer an option: numerous Z2 SLs with distinct symmetry fractionaliza-

tions may exist for a single set of physical symmetries.

3
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1.1.2 Quantum critical points and conformal field theories

Quantum correlations are also especially strong at a quantum critical point (QCP) – i.e. a

continuous phase transition at zero temperature [155]. Not only are critical points interesting

in their own right, but they also provide a natural way to probe the adjoining phases and

study the full phase diagram. At a QCP, a description in terms of quasi-particles is often

meaningless, and these ‘strongly-interacting’ critical theories will be the focus of the following

discussion.

The critical point separating the disordered and ordered phases of the quantum Ising

model in d = 2 spatial dimensions is probably the best-known example of a quantum phase

transition. It is described by ϕ4 theory [193]:

Lwf =
1

2
(∂µϕ)

2 − 1

2
rϕ2 − λ

4!
ϕ4, (1.3)

where ϕ is a scalar field and µ is summed over both space and time directions. Like the

transverse field Ising model in Eq. (1.2), Lwf possesses a global Z2 symmetry under which

ϕ → −ϕ. The phase transition is tuned via the mass r. When r > 0, ⟨ϕ⟩ = 0, indicating

that this is the paramagnetic phase, whereas when r < 0, ⟨ϕ⟩ ̸= 0 and the Z2 symmetry

is broken. The phase transition occurs exactly at the point where the mass r vanishes

(in the appropriate renormalization scheme). Its most salient feature is the presence of a

scaling symmetry, resulting in the algebraic decay of correlation functions [191, 192]. This

is indicative of the critical theory’s strongly-correlated nature.

In addition to the scaling symmetry, a number of symmetries that are not present at the

microscopic level may emerge at a quantum critical point. Notably, the strongly-interacting

theories of interest frequently have an emergent Lorentz symmetry. For instance, while the

Ising model presented at the being of this chapter is quite clearly non-relativistic, the theory

describing its phase transition, Eq. (1.3), is Lorentz-invariant. One reason this occurs so

frequently in strongly-interacting theories is simply that non-relativistic theories are more

4
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likely to be weakly interacting. In a non-relativistic theory, the action typically possesses a

linear time derivative and quadratic space derivatives. time typically scales linearly and mo-

mentum scales quadratically. This raises the effective dimension of the field theory, making

it more likely to behave like a free theory at low energies [155].

In conjunction with the scaling symmetry, the emergent Lorentz symmetry typically im-

plies the existence of a larger conformal symmetry, and this has actually been proven in both

1+1 and 3+1 dimensions [39, 125]. When this is the case, the critical point is described by

a conformal field theory (CFT) [36, 151, 173].

The conformal symmetry imposes rather stringent consistency conditions, so it is typically

assumed that two CFTs with the same symmetries are equivalent. For this reason, it is

perhaps not overly surprising that many of the (lower-dimensional) field theories studied by

high energy theorists have applications to condensed matter. In particular, when a QCP has

Lorentz symmetry and is expressed in terms of fermions, we expect these fermions to take a

Dirac form.

In this thesis we focus primarily on gauge theories with Dirac fermions transforming in

the fundamental representation of the gauge group. We will see why this is natural below

in Sec. 1.2. In Chapter 6 we work with quantum chromodynamics in 2+1d (QCD3) with an

SU(2) gauge group and Nf = 2 fermion flavours, while in Chapters 3, 4, and 5 we look at

quantum electrodynamics in 2+1d (QED3). We also mention that QED3 has the distinction

of potentially describing an extended phase of matter, instead of a critical point.

As was the case with the Z2 spin liquid considered above, the SU(2) and U(1) gauge fields

are not physical symmetries, and so the Hilbert space only contains charge-neutral objects.

It follows that the fermionic operators themselves are emergent, and that these field theories

are bosonic like the Z2 spin liquids in spite of appearances.

The presence of the gauge field distinguishes the theories we consider from the Ising tran-

sition in an important respect. The Ising model describes a transition between a symmetry

preserving and a symmetry broken phase. However, phase transitions with emergent sym-

5
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metry are not constrained in this manner. They can connect different topological phases,

ordered phases, and more [166, 170]. Since the gauge field mediate long-range interactions,

their presence is indicative of the enhanced correlations these theories possess.

1.1.3 Fractionalized Fermi liquid

The most ubiquitous example of a phase hosting gapless degrees of freedom is the Landau

Fermi liquid (FL). While the bare Coulomb interaction between electrons in a metal is very

large, this force is screened at low energies, and the electron behaviour is, in many ways,

completely analogous to that of a free particle [? ].

In this thesis, we will be interested in a more exotic version of the FL, called the frac-

tionalized Fermi liquid (FL∗) [169, 171]. This phase can be thought as the coexistence of

an FL with a Z2 or U(1) spin liquid. Note, however, that unlike the Z2 spin liquids and

continuous gauge theories mentioned above, the FL∗ does support fermionic states. While

the spin liquid component of the FL∗ may admit a description in terms of gapless, emergent

fermionic operators, this need not be the case. The actual fermionic states are essentially

electrons.

1.2 Parton constructions

In the previous section, we discussed various long-range entangled states of matter. This

naturally lends itself to the question of how and where such states are found. A generic

Hamiltonian capable of describing many of these systems is the frustrated spin-1/2 Heisen-

berg model in 2+1d:

HH =
∑
i,j

JijSi · Sj . (1.4)

The presence of the phases of interest is typically argued via a parton construction [186]

(this is also discussed in Chapter 6.2.2 and Appendix E.2). The spins are rewritten either

6
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in terms of Schwinger bosons, bi, or slave (or Abrikosov) fermions, fi [11, 186]:

Si =
1

2
b†iσbi =

1

2
f †
iσfi. (1.5)

These are accurate representations of the spin Hilbert space provided the constraints

∑
α

b†iαbiα = 1,
∑
α

f †
iαfiα = 1 (1.6)

are imposed. Since bi and fi carry spin, both are frequently referred to as ‘spinons,’ with

the modifiers ‘bosonic’ and ‘fermionic’ sometimes used to distinguish the two. Inserting this

expression into HH results in either a four-boson or four-fermion term. The Hamiltonian

can then be decoupled via a Hubbard-Stratonovich transformation and treated using the

standard mean field theory procedure. Provided the mean field ansatz is stable and preserves

the spin symmetry, a spin liquid phase is obtained.

In this thesis, we primarily use the slave-fermion approach, and so we focus on this case

for the remainder of the section. The unit constraint on the number of fermions introduces

a gauge redundancy. For instance, it’s clear that local phase rotations, fi → eiϕifi, do not

alter the physical operator, the spin Si, and therefore cannot constitute a real symmetry of

the Hamiltonian. For slave-fermions, the constraint in Eq. (1.6) actually implies two other

constraints:

∑
αβ

ϵαβfiαfiβ = 0,
∑
αβ

ϵαβf
†
iαf

†
iβ = 0, (1.7)

where ϵαβ is the two-component Levi-Civita symbol. These in turn generate two more gauge

transformations, demonstrating that the introduction of slave fermions results in an SU(2)

gauge redundancy in total. Depending on the mean field ansatz, the gauge group can be

Higgsed to either U(1) or Z2.

When only a Z2 gauge redundancy remains, the resulting state is precisely the Z2 spin

7
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liquid discussed in Sec. 1.1.1. The ε excitations of the Z2 topological order should be associ-

ated with the excitations created by the slave fermions f †
i . Similarly, both QCD3 and QED3

can be obtained from this construction when the mean field ansatz either preserves the full

gauge group or Higgses it down to U(1). The fermionic spinon is naturally associated with

the Dirac fermion operator of the field theories.

Since the original theory, the Heisenberg model, has no fermionic excitations, its low

energy description cannot either regardless of whether we choose to express the theory in

terms of fermionic operators. These observations are consistent with our earlier statements

at the ends of Secs. 1.1.1 and 1.1.2.

We also apply the fermionic parton construction in the context of the Kondo lattice model.

In this model, there is a one-to-one correspondence between electrons and spins. Before

including interactions, the electrons and spins are governed by a tight-binding Hamiltonian

and a Heisenberg Hamiltonian, respectively. They are coupled through a term of the form

JK
2

∑
i

c†iσci · Si, (1.8)

where ci is an electron annihilation operator and Si is a spin-1/2 operator (in Chapter 2 we

work with a minor variant of this Hamiltonian). Representing the spin operators in terms of

spinons, this becomes, ∼ −1
4
JK
∑

i f
†
iαciαc

†
iβfiβ. Performing a Hubbard-Stratonovich trans-

formation, we obtain

∼ −1

2

∑
i

Vif
†
i ci + h.c. (1.9)

where Vi = 1
2
JK

⟨
c†ifi

⟩
is typically referred to as the hybridization. When Vi is nonzero,

depending on both the chemical potential and the form of the band structure, a heavy Fermi

liquid or a Kondo insulator is obtained. The FL∗ phase described in Sec. 1.1.3 is realized

precisely in the opposite limit when the hybridization, Vi, vanishes. This is discussed further

8
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in Chapter 2.2.

1.3 Organization of thesis

We now provide an outline of the thesis.

We start by proposing a number of novel states in Chapters 2, 3, and 4. Chapter 2 discusses

the possibility that a topological Kondo insulator (TKI) may host a highly entangled phase

on its surface. If we ignore the unusual origin of the spinons, fi, and the hybridization, Vi,

the TKI is completely analogous to a conventional topological insulator [18, 47, 57, 84, 114,

135, 150]. The Hamiltonian is a simple 4-band model, which, depending on its symmetries,

may or may not admit a topologically non-trivial band structure. It turns out that the

spin-orbit coupling typically necessary for this to occur is present in Kondo lattice systems,

substantiating proposals for the existence of TKI’s in real materials. A TKI is gapped

everywhere except for the robust states at the surface originating from the topological band

structure. We propose that the hybridization vanishes at the surface and that these surface

states are unstable to the FL∗ theory discussed above.

In Chapter 3, we discuss the phase diagram of the triangular lattice antiferromagnet. We

demonstrate that a direct, continuous transition between two ordered phases is possible.

Such a phase transition must necessarily be deconfined. The presence of a proximate Z2

spin liquid indicates that a description in terms of fermionic spinons may be natural. This

leads us to show that the phase transition may be described by QED3 with Nf = 4 Dirac

fermions.

In Chapter 4, we study QED3 on more general grounds. In the large-flavour limit, we

investigate its stability against a variety of disorder perturbations. We observe that provided

the disorder satisfies certain restrictions, the theory flows away from the clean fixed point to

one in which both disorder and interactions are present. At this new fixed point, we calculate

the universal flavour conductivity to subleading order. We find that generic disorder becomes

strong under the renormalization group flow, taking the theory away from the perturbatively

9
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accessible regime.

We change focus in Chapter 5, where we address the problem of identifying strongly

correlated phases of matter. Numerical simulations of highly entangled states is a difficult

task. One issue for CFTs is that the first method by which we may attempt to identify the

theory, a measurement of the critical exponents and their anomalous dimensions, is severely

limited by system size. The spectrum is another, arguably more accessible, universal CFT

data which can be used to identify the theory being simulated. With this in mind, we

calculate the spectrum on the torus of QED3. We also consider theories containing a Chern-

Simons term, as these may be relevant to quantum Hall transitions.

We conclude in Chapter 6 with a study of Z2 spin liquids proximate to the π-flux phase

of the square lattice antiferromagnet, whose low-energy description is QCD3 with an SU(2)

gauge group and Nf = 2 fermion flavours. Ref. 184 showed that when approaching the

problem from a lattice perspective, 58 Z2 spin liquids can be found. With access to the

continuum theory, the set of spin liquids under consideration can be restricted in a number

of natural ways. Further, QCD3 is related to CP1, a bosonic CFT describing the Néel-VBS

transition on the square lattice [179]. The spin liquids obtained by perturbing about QCD3

can be matched with those obtained by perturbing about CP1 and new dualities inferred.

10
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Fractionalized Fermi liquid on the surface
of a topological Kondo insulator

We argue that topological Kondo insulators can also have ‘intrinsic’ topolog-
ical order associated with fractionalized excitations on their surfaces. The hy-
dridization between the local moments and conduction electrons can weaken near
the surface, and this enables the local moments to form spin liquids. This co-
exists with the conduction electron surface states, realizing a surface fractional-
ized Fermi liquid. We present mean-field solutions of a Kondo-Heisenberg model
which display such surfaces.

2.1 Introduction

An important development of the past decade has been the prediction and discovery of topo-

logical insulators (TI) [18, 47, 57, 84, 114, 135, 150]. These materials are well-described by

traditional band theory, but possess strong spin-orbit interactions that result in a non-trivial

winding of the ground state wavefunction in a manner analogous to the integer quantum Hall

effect. Since their discovery, the multitudinous effects of interactions have been a prominent

topic of study. One compelling proposal to emerge is the notion of a topological Kondo

insulator (TKI) [40–42]. In contrast to a band insulator, a Kondo insulator only develops an

insulating gap at low temperatures, and the magnitude of the gap is controlled by electron-

electron interactions. Doniach explained this phenomenon through the Kondo lattice model
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[37] in which a lattice of localized moments is immersed within a sea of conduction elec-

trons. At high temperatures, RKKY-type exchange interactions dominate and an ordered

magnetic state results. Conversely, at low energies, strong interactions between localized

moments and conduction electrons become important; the system crosses over into either

a metallic phase well-described by Fermi liquid theory (FL) or, if the chemical potential is

appropriately tuned, a Kondo insulator. As strong spin-orbit coupling is often present in

these materials, the possibility that a Kondo insulator may have a nontrivial topological

character is well-justified.

Of specific interest has been the Kondo insulator samarium hexaboride (SmB6). A number

of experiments have examined the proposal that it is a TKI: transport measurements have

established the presence of metallic surface states [92, 93, 124, 195, 209], and angle-resolved

photoemission spectroscopy (ARPES) results appear consistent with the expected Dirac

surface cones [34, 80, 122, 201, 202]. Nonetheless, the spin-polarized ARPES measurements

[201] remain controversial.

However, as the TKI phase is well-described within a mean field framework [42], its topo-

logical properties are not expected to be markedly different from what has already been

observed in its uncorrelated cousins. More intriguing is the potential the topologically pro-

tected surface states present for new interesting phases [4, 20, 70, 149]. In SmB6, this

expectation is motivated experimentally by ARPES measurements which find light surface

quasiparticles [80, 122, 202] in contradiction to current theories which predict heavy particles

at the surface [5, 40, 41, 105]. Ref. 4 proposes “Kondo breakdown” at the surface as an ex-

planation. They show that the reduced coordination number of the localized moments at the

surface may lead to a suppressed Kondo temperature. At low temperature these moments

are thermally decoupled from the bulk.

In this paper, we propose the existence of a fractionalized Fermi liquid (SFL∗) on the

surface of a TKI. This state is characterized by “intrinsic topological order” on the surface

of a TKI, in which the local moments form a spin liquid state which has ‘fractionalized’

12
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excitations with quantum numbers which cannot be obtained by combining those of one

or more electrons [13]. Rather than being thermally liberated, as in Ref. 4, the surface

local moments exploit their mutual exchange interactions to decouple from the conduction

electrons, and form a spin liquid state, as in the fractionalized Fermi liquid state (FL∗)

[169, 171]. We will present mean-field computations on a Kondo-Heisenberg lattice model

which demonstrate the formation of mutual singlets between the surface local moments,

while conducting surface states of light electronic quasiparticles are also present.

Somewhat confusingly, our SFL∗ state is ‘topological’ in two senses of the word, a conse-

quence of unfortunate choices (from our perspective) in the conventional terminology. As

in conventional TI, it is ‘topological’ because it has gapless electronic states on the surface

induced by the nature of the bulk band structure. However, it is also ‘topological’ in the

sense of spin liquids [13], because of the presence of fractionalized excitations among the

local moments on the surface.

The outline of this chapter is as follows. We specify our Kondo-Heisenberg model in

Section 2.2. In Section 2.3, we present the mean-field solution of this model for the case of

a translationally-invariant square lattice with periodic boundary conditions. The effect of

the surface on the mean field solutions is addressed in Section 2.4 where the presence of the

SFL∗ state is numerically demonstrated. We conclude in Section 2.5 with a discussion of our

results and their relevance to physical systems.

2.2 Model

Here we present the specific form of the Kondo-Heisenberg lattice model to be studied:

H = Hc +HH +HK . (2.1)

13
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The first terms represents the hopping Hamiltonian of the conduction electrons,

Hc = −
∑
⟨ij⟩

tij

(
c†iαcjα + h.c.

)
, (2.2)

where the operator c†iα creates an electron at site ri of spin α =↑, ↓. The remaining two

terms establish the form of the interactions: HH is a generalized Heisenberg term which

specifies the inter-spin interaction while HK is a Kondo term and describes the electron-spin

exchange.

The spin-orbit coupling of the f -orbital imposes a classification in terms of a (2J + 1)

multiplet, where J is the total angular momentum. In general, this degeneracy is further

lifted by crystal fields and we will consider the simplest case of a Kramers degenerate pair of

states. We start from an Anderson lattice model [7] with hopping tf between f -orbitals and

onsite repulsion Uf . To access the Kondo limit (Uf → ∞), we perform a Schrieffer-Wolff

transformation [162] and obtain a term of the form

HH = −JH
2

∑
⟨ij⟩

f †
iαfjαf

†
jβfiβ , (2.3)

where fiα creates a spinon at site ri, and JH ∼ t2f/Uf . This limit imposes the constraint∑
α f

†
iαfiα = 1 and further ensures that the correct commutation relations for the “spin”

operators Saj = 1
2
f †
jασ

a
αβfjβ are obeyed. By using the Fierz identity (and dropping a constant)

we can verify that we indeed have the familiar Heisenberg term:

HH =
JH
4

∑
⟨ij⟩

f †
iασαβfiβ · f

†
jγσγδfjδ = JH

∑
⟨ij⟩

Si · Sj , (2.4)

where σ = (σx, σy, σz). It is important to note that the spinon operators fjα do not have a

uniquely defined phase. In fact, by choosing to represent the spins in terms of constrained

fermion operators, we are formulating the Kondo lattice model as a U(1) gauge theory. This

emergent gauge structure is what permits a realization of the fractionalized phases we will

14
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discuss [169, 171].

For the electron-spin interaction, HK , we follow the construction of Coqblin-Schrieffer [31]

for systems with spin-orbit coupling. In order for the interaction to transform as a singlet,

the electron and spin must couple in a higher angular momentum channel. For simplicity,

we assume a square lattice and that the spins and conduction electrons carry total angular

momentum differing by l = 1. In the Anderson model, an appropriate interaction term is

then

Hint ∼ V
∑
k,α

(α sin kx − i sin ky) c
†
kα |f

0⟩ ⟨f 1;α|+ h.c. (2.5)

For instance, the interaction between moments with total angular momentum J = 3/2 and

spin-1/2 electrons would take this form. We will verify in the next section that for the

purpose of obtaining a TKI, this coupling is sufficient. We next define the electron operators

dkα = 2 (α sin kx + i sin ky) ckα, diα = −iα(ci+x̂,α − ci−x̂,α) + (ci+ŷ,α − ci−ŷ,α) . (2.6)

and, taking the same Uf → ∞ limit as above, again implement the Schrieffer-Wolff trans-

formation [162] to obtain

HK = −JK
4

∑
i

f †
iαdiαd

†
iβfiβ (2.7)

where JK ∼ V2/Uf .

We next perform a Hubbard-Stratonovich transformation of the Kondo and Heisenberg

15
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terms:

H ′ =H1 +H0

H1 =−
∑
⟨ij⟩

(
(tij − δijµi)c

†
iαcjα + h.c.

)
+

1

2

∑
jα

[
Vjf

†
jαdjα + V ∗

j d
†
jαfjα

]
− 1

2

∑
jαµ̂

[
χjµf

†
j+µ̂,αfjα + χ∗

jµf
†
jαfj+µ̂,α

]
+
∑
j

λjf
†
jαfjα

H0 =
∑
j

[
−λj +

|Vj|2

JK
+
∑
µ̂

|χjµ|2

2JH

]
. (2.8)

We proceed with a saddle-point approximation, and treat the fields Vj, χjµ, and λj as real

constants subject to the self-consistency conditions

Vj = −JK
2

⟨
d†jαfjα

⟩
, χjµ = JH

⟨
f †
jαfj+µ̂,α

⟩
, (2.9)

1 =
⟨
f †
jαfjα

⟩
. (2.10)

This can be formally justified within a large-N expansion of Eq. (2.1), with N the number

of spinons. As we are specifying to the case of an insulator, it further makes sense to require

perfect half-filling. Since nf = 1 already, this results in a final equation for the chemical

potential µj:

1 =
⟨
c†jαcjα

⟩
. (2.11)

2.3 Translationally invariant system

We begin by solving Eqs. (2.9)− (2.11) in a translationally invariant system with periodic

boundary conditions on a square lattice. Letting Vj = V , χjx = χjy = χ, λj = λ and µj = µ,

16
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we perform a Fourier transform:

H1 =
∑
k

Ψ†
kH(k)Ψk Ψ†

k =
(
c†k↑, f

†
k↑, c

†
k↓, f

†
k↓

)
(2.12)

H(k) =

h(k) 0

0 h∗(−k)

 h(k) =

 ϵc(k) V (sin kx + i sin ky)

V (sin kx − i sin ky) ϵf (k)

 .

(2.13)

For simplicity, we only consider nearest-neighbour coupling between spins; for the electron

dispersion, a slightly more general description is required, and we also take next-nearest

neighbour hopping into account. The dispersions are given by

ϵc(k) = −t1(cos kx + cos ky)− 2t2 cos kx cos ky − µ, ϵf (k) = −χ(cos kx + cos ky) + λ

(2.14)

where the subscripts “c” and “f” refer to the electrons and spinons respectively. In the

following, we will use units of energy where t1 = 1.0.

Since TI’s exist as a result of a band inversion, it’s important to ask which sign χ will take.

Naturally, when V = 0, the particle-hole symmetry of our mean field ansatz implies that

χ > 0 and χ < 0 have the same energy. At finite hybridization, however, one will become

preferable. We note that when χ and t1 have opposite signs, the energy of the lower band

will be less than the Fermi energy and hence occupied throughout most of the Brillouin zone

(BZ): an increase in V will push most of these states to lower energies. Conversely, if χ and

t1 take the same sign, in one of part of the BZ no states will lie below the Fermi energy

while in another both the upper and lower band will. It therefore makes sense to expect

sign (χ) = −sign (t1). In the parameter regime explored, the numerics always find this to be

the case.

By construction, the Hamiltonian H1 supports a non-trivial topological phase and is in

fact the familiar Bernevig-Zhang-Hughes model [18] used to describe the quantum spin Hall
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effect in HgTe wells. We can see this by studying the eigenfunctions of h(k):

ψ±(k) =
1√

2d(d± d3)

 d3 ± d

V (sin kx + i sin ky)

 (2.15)

where d(k) =
√
d3(k)2 + V 2(sin2 kx + sin2 ky), and d3(k) = (ϵc(k)− ϵf (k)) /2. If d3(k) > 0

or d3(k) < 0 for all k, these functions are well-defined on the entire BZ and the system is in a

topologically trivial phase [17]. If this is not the case then it is impossible to choose a globally

defined phase – the ground state wavefunction has nontrivial winding and characterizes a

topological insulator. From Eq. (2.14), we see that this occurs when

−2 <
µ+ λ+ 2t2
t1 − χ

< 2 . (2.16)

Alternatively, we can obtain the same result by calculating the Z2 invariant ν [46]: when

Eq. (2.16) holds, ν = −1 and the system is a TI.

We will typically be studying systems with |t1| ≫ |χ| and |t2/t1| small (implying µ and

λ small as well), so Eq. (2.16) is not difficult to fulfill. In Fig. 2.1 the energy spectrum of

the system in a slab geometry is shown for JH = 0.15, JK = 0.3. Half-filling is maintained

on every site (see Appendix A.1), but V and χ were determined by self-consistently solving

Eq. (2.9) in a periodic system. In Fig. 2.1(b), the topologically protected Dirac cone is

clearly visible.

If we ignore the effect the boundary will have on the values of V , χ, and λ, we can calculate

the Fermi velocity of the Dirac cone [17]:

vF = 2V

√
|χ(t1 − 2t2)|

|t1 − 2t2|+ |χ|
∼ 2V

√
|χ| (2.17)

where we’ve assumed |χ| ≪ t1 in the second equation. This is consistent with the prediction

that the quasiparticles at the surface be heavy [5, 40, 41, 105]. For the parameters shown
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Figure 2.1: Energy spectrum for JH = 0.15, JK = 0.3. Both V and χ are constant throughout
the bulk, but both µi and λi have been self-consistently solved to ensure that nc = nf = 1
on every site (see Appendix A.1). (a) The full spectrum is shown. (b) A closer view of
the insulating gap, where the Dirac cone is clearly visible. We use units with t1 = 1.0.
Calculations were done with t2 = −0.25 and at a temperature of 10−5.

in Fig. 2.1, this formula predicts vF = 0.0592, consistent with the numerically determined

value vF = 0.0585.

2.4 System with boundary

We now consider the effect the boundary will have on the mean field configuration and

demonstrate the presence of two new fractionalized phases. Generally, we expect that

the lower coordination number at the boundary will suppress the (nonlocal) hybridization:

Vsurf ∼ 3Vbulk/4. While the decrease in Vsurf will induce an increase in the spinon bond

parameter χiµ [123] both parallel and perpendicular to the surface, the parameter parallel

to the surface will be more strongly affected. Since Heisenberg coupling ultimately favours

an alternating bond order, in the absence of hybridization V , this anisotropy will result

in a further decrease in the magnitude of the spinon bond parameter perpendicular to the

surface, |χ⊥|.

When these effects are predominant, an FL∗ on the surface is realized: the hybridiza-

tion Vi vanishes on one or more layers at the surface and χ⊥ vanishes on the innermost
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layer. The existence of the SFL∗ phase is shown numerically by self-consistently solving

Eqs. (2.9)−(2.11) in a slab geometry and comparing ground states energies (some details are

given in Appendix A.1). The resulting phase diagram is shown in Fig. 2.2(a). In fact, we

find two distinct SFL∗ phases: a decoupled spin chain and a decoupled spin ladder, which are

depicted in Figs. 2.2(b) and 2.2(c) respectively. In Fig. 2.3 we plot the spatial dependence of

the mean field parameters in both SFL∗ states. The plots in the left column correspond to

a spin chain SFL∗ state whereas the right column corresponds to a spin ladder SLF∗ state.

The phases are distinguished by whether V vanishes on the first site only or on both the

first and second site, shown in Fig. 2.3(a) and (b) respectively. In Figs. 2.3(c) and (d) our

intuition regarding the behaviour of χ near the boundary is confirmed: |χ⊥| is suppressed to

zero whereas
∣∣χ∥
∣∣ increases to the value it would assume in a single dimension. The fluctu-

ations of the Lagrange multiplier field λ (Figs. 2.3(e) and (f)) are a reflection of the on-site

requirement of half-filling for both the spinons and electons.

In Fig. 2.4(a), the spectrum of the spin chain SFL∗ state is shown. The red dash-dotted

curve is the dispersion of the spinons calculated at mean field. While we do not claim

that this accurately represents the Heisenberg chain, we nonetheless expect gapless spin

excitations [53]. The remaining in-gap states can be understood as the result of the mixing

of the surface layer of conduction electron with the Dirac cone. Consistent with its topology,

even if the Dirac cone is no longer present at the chemical potential, two chiral bands traverse

the gap from the conduction to the valence band and the surface is metallic. In this case, an

additional four metallic surface states per spin are present, but these are not topologically

protected and we can imagine pushing them below the chemical potential in a number of

ways, such as, for instance, softening the restriction imposed by Eq. (2.11).

The spectrum corresponding to the second surface FL∗ state, the decoupled spin ladder,

is shown in Fig. 2.4(b). The red curve representing the spinons is now two-fold degenerate

per spin (a small splitting is hidden by the thickness of the line). Even more so than for the
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Figure 2.2: (a) Schematic phase diagram of surface states. (b),(c) Cartoon depictions of
surface FL∗ states. In the dark blue region, the electron spins and localized moments are
locked into singlets. Towards the edge (the pale blue region outlined in orange) the conduc-
tion electrons decouple from the moments, and the latter form a spin liquid. Naturally, the
conduction electrons remain coupled to each other at all sites.
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Figure 2.3: Spatial dependence of mean field parameters in SFL∗ phases. In the left column,
we plot values corresponding to the spin chain SFL∗ (JH = 0.15, JK = 0.3) while on the
right values corresponding to the spin ladder SFL∗ (JH = 0.25, JK = 0.3) are shown.
(a),(b) Hybridization Vi. (c),(d) Spinon bond parameters χiµ in the direction perpendicular
(blue) and parallel (red) to the boundary. (e),(f) The Lagrange multiplier field λi. In (a)−(f),
the yellow dashed line plots the value obtained in the translationally invariant case. We use
units with t1 = 1.0. Calculations were done with t2 = −0.25 and at a temperature of 10−5.
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Figure 2.4: Energy spectra in SFL∗ phases. (a) Spin chain SFL∗ (JH = 0.15, JK = 0.3).
The ground state has Vi = 0 on the first surface layer and the moments form a spin chain
decoupled from the bulk. (b) Spin ladder SFL∗ (JH = 0.25, JK = 0.3). The ground state has
Vi = 0 on the first two layers and a spin ladder is present on the surface. In both figures, the
dash-dotted red curve represents the one-dimensional cosine dispersion found for the spinons
and is merely an artifact of the ansatz. We use units with t1 = 1.0. Calculations were done
with t2 = −0.25 and at a temperature of 10−5.

spin chain, this result is an artifact of the mean field calculations: save in the limit where

the legs of the ladder are completely decoupled, a ladder of spin-1/2 particles is gapped [50?

].

In both phases, the metallic bands have lighter quasiparticles than predicted by the trans-

lationally invariant theory in Eq. (2.17). For the spin chain, the surface velocity of the

leftmost state in Fig. 2.4(a) is vF = 0.095, compared to vF = 0.052 for the Dirac cone of

Fig. 2.1(b). For the spin ladder, the effect is even more pronounced. There, the lightest state

has a Fermi velocity of vF = 0.48 compared to the translationally-invariant value vF = 0.072.

The structure of the fractionalized excitations in the SFL∗ states found here is rather

simple: just a free gas of neutral S = 1/2 spinon excitations. We view this mainly as a

‘proof of principle’ that such SFL∗ states can exist on the surface of TKI. Clearly, more

complex types of spin liquid states are possible on the surface, and also in three-dimensional

TKI with two-dimensional surfaces.
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2.5 Discussion

The strong electron-electron interactions in topological Kondo insulators make them appeal-

ing candidates for searching for novel correlated electron states. In many heavy-fermion

compounds, the strong interactions acting on the f -electron local moments are quenched

by the Kondo screening of the conductions electrons, and the resulting state is eventually

a Fermi liquid, or a band insulator for suitable density. The topological Kondo insulators

offer the attractive possibility that the hybridization between the local moments and the

conduction electron states can be weakened near the surface [4, 149], and this could explain

the light effective masses associated with the surface electronic states [80, 122, 202]. With

the weakened hybridization, we have proposed here that the local moments may form a spin

liquid state with ‘intrinsic’ topological order. As the fractionalized excitations of such a spin

liquid co-exist with the conduction electron surface states similar to those of a conventional

TI, the surface realizes a fractionalized Fermi liquid [169, 171].

This paper has presented mean-field solutions of Kondo-Heisenberg model on a square

lattice which act as a proof-of-principle of the enhanced stability of the such surface frac-

tionalized Fermi liquids (SFL∗). We fully expect that such solutions also exist on the surfaces

of three-dimensional lattices, relevant to a Kondo insulator like SmB6.

The recent evidence for bulk quantum oscillations in insulating SmB6 [174] is exciting

evidence for the non-trivial many-electron nature of these materials. It has been proposed [98]

that these oscillations appear because the magnetic-field weakens the hybridization between

the conduction electrons and the local moments, and this releases the conduction electrons

to form Fermi surfaces leading to the quantum oscillations. The fate of the local moments

was not discussed in Ref. 98, but a natural possibility is that they form a bulk spin liquid,

similar to the surface spin liquid we have discussed here. Thus, while we have proposed here

the formation of a SLF* states in SmB6 in zero magnetic field, it may well be that a bulk

FL∗ state forms in high magnetic field.
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Chapter 3

Deconfined quantum critical point on the
triangular lattice

We first propose a topological term that captures the “intertwinement” between
the standard “

√
3 ×

√
3” antiferromagnetic order (or the so-called 120◦ state)

and the “
√
12 ×

√
12” valence solid bond (VBS) order for spin-1/2 systems on

a triangular lattice. Then using a controlled renormalization group calculation,
we demonstrate that there exists an unfine-tuned direct continuous deconfined
quantum critical point (dQCP) between the two ordered phases mentioned above.
This dQCP is described by the Nf = 4 quantum electrodynamics (QED) with an
emergent PSU(4)=SU(4)/Z4 symmetry only at the critical point. The topological
term aforementioned is also naturally derived from the Nf = 4 QED. We also
point out that physics around this dQCP is analogous to the boundary of a 3d

bosonic symmetry protected topological state with on-site symmetries only.

The deconfined quantum critical point (dQCP) [166, 170] was proposed as a direct unfine-

tuned quantum critical point between two ordered phases that is beyond the standard Lan-

dau’s paradigm, as the ground state manifold (GSM) of one side of the transition is not

the submanifold of the other ordered phase (or in other words the spontaneously broken

symmetry of one side of the transition is not the subgroup of the broken symmetry of the

other side). A lot of numerical work has been devoted to investigating the dQCP with a full

SU(2) spin symmetry [55, 104, 119–121, 133, 134, 159–161, 165, 172]. Despite early numer-

ical evidence indicating models with in-plane spin symmetry lead to a first order transition
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[32, 33, 49, 101], recent studies with modified models [137, 210] demonstrate that a contin-

uous dQCP could exist with even inplane spin rotation symmetry, and at the easy-plane

dQCP there may be an enlarged emergent O(4) symmetry which becomes more explicit

after mapping this dQCP to the N = 2 noncompact QED [85, 131, 179], which enjoys a

self-duality and hence has a more explicit O(4) symmetry [67, 116, 200]. This emergent O(4)

symmetry is also supported by recent numerical simulations [88, 137].

Let us summarize the key ideas of the original dQCP on the square lattice [166, 170]:

(1) This is a quantum phase transition between the standard antiferromagnetic Néel state

with GSM S2 (two dimensional sphere) and the valence bond solid (VBS) state on the square

lattice. Although the VBS state only has four fold degeneracy, there is a strong evidence

that the four fold rotation symmetry of the square lattice is enlarged to a U(1) rotation

symmetry at the dQCP, and the VBS state has an approximate GSM S1, which is not a

submanifold of the GSM of the Néel state on the other side of the dQCP. Thus we can view

the dQCP as a S2-to-S1 transition.

(2) The vortex of the VBS order parameter carries a bosonic spinor of the spin symmetry,

and the Skyrmion of the Néel order carries lattice momentum. This physics can be described

by the NCCP1 model [166, 170]: L =
∑

α |(∂µ− iaµ)zα|2+ r|zα|2+ · · · , where the Neél order

parameter is N⃗ = z†σ⃗z, the flux of aµ is the Skyrmion density of N⃗ , and the flux condensate

(the photon phase of aµ) is the VBS order. Thus there is an “intertwinement” between the

Néel and VBS order: the condensation of the defect of one order parameters results in the

other order.

(3) If we treat the Néel and the VBS orders on equal footing, we can introduce a five

component unit vector n⃗ ∼ (Nx, Ny, Nz, Vx, Vy), and the “intertwinement” between the two

order parameters is precisely captured by a topological Wess-Zumino-Witten (WZW) term

of the nonlinear sigma model defined in the target space S4 where n⃗ lives [51, 168].

The goal of this paper is to study a possible dQCP on the triangular lattice. Let us

first summarize the standard phases for spin-1/2 systems with a full spin rotation symmetry
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on the triangular lattice. On the triangular lattice, the standard antiferromagnetic order

is no longer a collinear Néel order, it is the
√
3 ×

√
3 noncollinear spin order (or the so-

called 120◦ order) with GSM SO(3)= S3/Z2. The VBS order discussed and observed in

numerical simulations most often is the so-called
√
12 ×

√
12 VBS pattern with a rather

large unit cell [89, 113, 138]. This VBS order is the most natural pattern that can be

obtained from the condensate of the vison (or the m excitation) of a Z2 spin liquid on the

triangular lattice. The dynamics of visons on the triangular lattice is equivalent to a fully

frustrated Ising model on the dual honeycomb lattice [112], and it has been shown that with

nearest neighbor hopping on the dual honeycomb lattice, there are four symmetry protected

degenerate minima of the vison band structure in the Brillouin zone, and that the GSM of

the VBS order can be approximately viewed as SO(3)= S3/Z2 (just like the VBS order on

the square lattice can be approximately viewed as S1). Thus the
√
3×

√
3 noncollinear spin

order and the
√
12×

√
12 VBS order have a “self-dual” structure. Conversely on the square

lattice, the self-duality between the Néel and VBS order only happens in the easy-plane

limit [115].

The self-duality structure on the triangular lattice was noticed in Ref. 199 and captured

by a mutual Chern-Simons (CS) theory:

L = |(∂ − ia)z|2 + rz|z|2 + |(∂ − ib)v|2 + rv|v|2 +
i

π
a ∧ db+ · · · (3.1)

zα and vβ carry a spinor representation of SO(3)e and SO(3)m groups respectively, and when

they are both gapped (rz, rv > 0), they are the e and m excitations of a symmetric Z2 spin

liquid on the triangular lattice, with a mutual semion statistics enforced by the mutual CS

term [199]. Physically zα is the Schwinger boson of the standard construction of spin liquids

on the triangular lattice [107, 153, 180], while vβ is the low energy effective modes of the

vison.

Eq. (3.1) already unifies much of the physics for spin-1/2 systems on the triangular lat-
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tice [199]: (1) When both zα and vβ are gapped, the system is in the Z2 spin liquid mentioned

above. (2) When vβ is gapped, it can be safely integrated out of the partition function, gen-

erating a standard Maxwell term for the gauge field bµ. bµ will then “Higgs” aµ down to a Z2

gauge field through the mutual CS term, so that when zα condenses we obtain an ordered

phase with GSM SO(3)e [30]: this corresponds to the
√
3×

√
3 noncollinear spin order. (3)

When zα is gapped and vβ condenses, the situation is “dual” to (2), and the system possesses

the
√
12 ×

√
12 VBS order discussed in Ref. 112, with an approximate GSM SO(3)m. The

transition between the Z2 spin liquid and the
√
3×

√
3 spin order, and the transition between

the Z2 spin liquid and the VBS order both have an emergent O(4) symmetry [30, 112].

vβ is the vison of the spin liquid, and it carries a π−flux of aµ due to the mutual CS

term in Eq. (3.1). The π−flux of aµ is bound with the Z2 vortex of the SO(3)e GSM of

the
√
3 ×

√
3 spin order (the homotopy group π1[SO(3)] = Z2). Similarly zα is also the Z2

vortex of the SO(3)m GSM of the VBS order, analogous to the vortex of the VBS order

on the square lattice. This mutual “decoration” of topological defects is what we mean by

“intertwinement” between the magnetic and VBS orders.

To capture the “intertwinement” of the two phases with GSM SO(3), i.e. to capture the

mutual decoration of topological defects, we need to design a topological term for these order

parameters, just like the O(5) WZW term for the dQCP on the square lattice [168]. The

topological term we design is as follows:

Lwzw =

∫
d3x

∫ 1

0

du
2πi

256π2
ϵµνρλtr[P∂µP∂νP∂ρP∂λP ]. (3.2)

Here P is a 4× 4 Hermitian matrix field:

P =
3∑

a,b=1

Na
eN

b
mσ

ab +
3∑

a=1

Ma
e σ

a0 +
3∑
b=1

M b
mσ

0b, (3.3)

where σab = σa ⊗ σb, and σ0 = 12×2. All vectors N⃗e, N⃗m, M⃗e and M⃗m transform a vector
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Figure 3.1: The global phase diagram of spin-1/2 systems on the triangular lattice. The
intertwinement between the order parameters is captured by the WZW term Eq. (3.2). Our
RG analysis concludes that there is a direct unfine-tuned SO(3)-to-SO(3) transition, which
is a direct unfine-tuned transition between the noncollinear magnetic order and the VBS
order. The detailed structure of the shaded areas demands further studies
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under SO(3)e and SO(3)m depending on their subscripts. And we need to also impose some

extra constraints:

P2 = 14×4, N⃗e · M⃗e = N⃗m · M⃗m = 0. (3.4)

Then N⃗e and M⃗e together will form a tetrad, which is topologically equivalent to a SO(3)

manifold, and N⃗m and M⃗m form another SO(3) manifold. With the constraints in Eq. (3.4),

the matrix field P is embedded in the manifold

M =
U(4)

U(2)× U(2)
· (3.5)

The maximal symmetry of the WZW term Eq. (3.2) is PSU(4) = SU(4)/Z4 (which contains

both SO(3)e and SO(3)m as subgroups), as the WZW term is invariant under a SU(4)

transformation: P → U †PU with U ∈ SU(4), while the Z4 center of SU(4) does not change

any configuration of P. The WZW term Eq. (3.2) is well-defined based on its homotopy

group π4[M] = Z.

The topological WZW term in Eq. (3.2) is precisely the boundary theory of a 3d symmetry

protected topological (SPT) state with a PSU(4) symmetry [196]. We will discuss this further

below.

Let us test that this topological term captures the correct intertwinement. To better

visualize this effect, let us break SO(3)m down to SO(2)m, which allows us to take N⃗m =

(0, 0, 1), i.e. N1
m = N2

m = 0, N3
m = 1. Because N⃗m · M⃗m = 0 (Eq. (3.4)), M⃗m = (M1

m,M
2
m, 0).

Then one allowed configuration of P is

P =
3∑

a=1

Na
e σ

a3 +
2∑
b=1

M b
mσ

0b = n⃗ · Γ⃗, (3.6)

where n⃗ is a five component vector and |n⃗| = 1 due to the constraint P2 = 14×4, and Γ⃗ are

five anticommuting Gamma matrices. Now the WZW term Eq. (3.2) reduces to the standard
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O(5) WZW at level-1 in (2 + 1)d, and it becomes explicit that the vortex of (M1
m,M

2
m) (the

descendant of the Z2 vortex of SO(3)m under the assumed symmetry breaking) carries a

spinor of SO(3)e [51].

Eq. (3.2) is a topological term in the low energy effective field theory that describes the

physics of the ordered phases. But a complete field theory which reduces to the WZW term

in the infrared is still required. For example, the O(5) nonlinear sigma model with a WZW

term at level-1 can be derived as the low energy effective field theory of the N = 2 QCD

with SU(2) gauge field, with an explicit SO(5) global symmetry [179].

The WZW term in Eq. (3.2) can be derived in the same manner, by coupling the matrix

field P to the Dirac fermions of the Nf = 4 QED:

L =
4∑
j=1

ψ̄jγ · (∂ − ia)ψj +m
∑
i,j

ψ̄iψjPij. (3.7)

The WZW term of P is generated after integrating out the fermions using the same method

as Ref. 1, and the PSU(4) global symmetry becomes explicit in Nf = 4 QED1.

Our goal is to demonstrate that Nf = 4 QED corresponds to an unfine-tuned dQCP

between the noncollinear magnetic order and the VBS order, or in our notation a “SO(3)-

to-SO(3)” transition (as both orders have GSM SO(3)). The PSU(4) global symmetry of

Nf = 4 QED must be explicitly broken down to the physical symmetry. The most natural

terms that beak this PSU(4) global symmetry down to SO(3)e×SO(3)m are four-fermion

interaction terms, and there are only two such linearly independent terms 2:

L1 =
(
ψ̄σ⃗ψ

)
·
(
ψ̄σ⃗ψ

)
, L2 =

(
ψ̄τ⃗ψ

)
·
(
ψ̄τ⃗ψ

)
, (3.8)

where ψ carries both indices from the Pauli matrices σ⃗ and τ⃗ , so that ψ is a vector repre-
1the global symmetry of the Nf = 4 QED is PSU(4) instead of SU(4) because the Z4 center of the SU(4)

flavor symmetry group is also part of the U(1) gauge group.
2This is true under the assumption of Lorentz invariance, as Ref. 91, 198. And the SU(4) invariant mass

term ψ̄ψ is usually forbidden by discrete space-time symmetry.
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sentation (1
2
, 1
2
) of SO(4)∼SO(3)e×SO(3)m.

One can think of some other four fermion terms, for example L′ =
∑

µ

(
ψ̄σ⃗γµψ

)
·
(
ψ̄σ⃗γµψ

)
,

but we can repeatedly use the Fiez identity, and reduce these terms to a linear combination

of L1 and L2, as well as SU(4) invariant terms: L′ = −2L2−L1+ · · · . The ellipses are SU(4)

invariant terms, which according to Refs. 91, 198 and 29 are irrelevant at the Nf = 4 QED.

The renormalization group (RG) of L1 and L2 can most conveniently be calculated by

generalizing the two dimensional space of Pauli matrices τ⃗ to an N -dimensional space, i.e. we

generalize the QED3 to an Nf = 2N QED3. And we consider the following two independent

four fermion terms:

gL = g
(
ψ̄σ⃗ψ

)
·
(
ψ̄σ⃗ψ

)
, g′L′ = g′

(
ψ̄σ⃗γµψ

)
·
(
ψ̄σ⃗γµψ

)
. (3.9)

At the first order of 1/N expansion, the RG equation reads

β(g) =

(
−1 +

128

3(2N)π2

)
g +

64

(2N)π2
g′,

β(g′) = −g′ + 64

3(2N)π2
g. (3.10)

There are two RG flow eigenvectors: (1,−1) with RG flow eigenvalue −1 − 64/(3(2N)π2),

and (3, 1) with eigenvalue −1 + 64/((2N)π2) 3. This means that when N = 2 there is one

irrelevant eigenvector with

L − L′ = 2(L1 + L2) + · · · , (3.11)
3The monopoles of aµ were ignored in this RG calculation. According to Ref. 38, monopoles of QED

carry nontrivial quantum numbers. A multiple-monopole could be a singlet under the global symmetry, and
hence allowed in the action. But the scaling dimension (and whether it is relevant or not under RG) of the
multiple-monopole needs further study.
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and a relevant eigenvector with

3L+ L′ = 2(L1 − L2) + · · · . (3.12)

Again the ellipses are SU(4) invariant terms that are irrelevant. In fact, L1+L2 preserves the

exchange symmetry (duality) between SO(3)e and SO(3)m, in other words L1+L2 preserves

the O(4) symmetry that contains an extra improper rotation in addition to SO(4), while

L1 − L2 breaks the O(4) symmetry down to SO(4). Thus L1 + L2 and L1 − L2 both must

be eigenvectors under RG. The RG flow is sketched in Fig. 3.1.

Since u(L1 − L2) is relevant, then when the coefficient u > 0, a simple mean field theory

implies that this term leads to a nonzero expectation value for ⟨ψ̄σ⃗ψ⟩. It appears that this

order parameter is a three component vector, and so the GSM should be S2. However, using

the “Senthil-Fisher” mechanism of Ref. 168, the actual GSM is enlarged to SO(3) due to

the gauge fluctuation of aµ (see appendix A). When u < 0, the condensed order parameter

is ⟨ψ̄τ⃗ψ⟩, and the “Senthil-Fisher” mechanism again enlarges the GSM to SO(3). Because

u(L1 − L2) is the only relevant perturbation allowed by symmetry, u drives a direct unfine-

tuned continuous SO(3)-to-SO(3) transition, which is consistent with a transition between

the
√
3 ×

√
3 noncollinear magnetic order and the

√
12 ×

√
12 VBS order. Further at the

critical point, there is an emergent PSU(4) symmetry.

Now let us investigate the perturbation L1 + L2. First of all, let us think of a seemingly

different term: L3 =
∑

a,b

(
ψ̄σaτ bψ

) (
ψ̄σaτ bψ

)
. This term also preserves the O(4) symmetry,

and after some algebra we can show that L3 = −(L1 + L2) + · · · . Another very useful way

to rewrite L3 is that:

L3 = −
(
ψ̄tJϵψ̄

) (
ψtJϵψ

)
+ · · · = −∆̂†∆̂ + · · · (3.13)

where ∆̂ = ψtJϵψ, J = σ2 ⊗ τ 2. ϵ is the antisymmetric tensor acting on the Dirac indices.

Thus although the O(4) invariant deformation in our system (at low energy it corresponds
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to L1+L2) is perturbatively irrelevant at the Nf = 4 QED fixed point, when it is strong and

nonperturbative, the standard Hubbard-Stratonovich transformation and mean field theory

suggests that, depending on its sign, it may lead to either a condensate of ∆̂, or condensate

of
(
ψ̄σaτ bψ

)
through extra transitions. The condensate of

(
ψ̄σaτ bψ

)
has GSM [S2×S2]/Z2,

and is identical to the submanifold of P when M⃗e = M⃗m = 0 in Eq. (3.3). The Z2 in

the quotient is due to the fact that P is unaffected when both N⃗e and N⃗m change sign

simultaneously. In the simplest scenario, the field theory that describes (for example) the

condensation of ∆̂ is the similar QED-Yukawa theory discussed in Ref. 78 and Chapter 6.

Now we show that the condensate of ∆̂ is a self-dual Z2 topological order described by

Eq. (3.1). First of all, in the superconductor phase with ∆̂ condensate, there will obviously be

a Bogoliubov fermion. This Bogoliubov fermion carries the (1/2, 1/2) representation under

SO(3)e×SO(3)m. The deconfined π−flux of the gauge field aµ is bound to a 2π−vortex of

the complex order parameter ∆̂, which then traps 4 Majorana zero modes. The 4 Majorana

zero modes transform as a vector under the SO(4) action that acts on the flavor indices.

The 4 Majorana zero modes define 4 different states that can be separated into two groups

of states depending on their fermion parities. In fact, the two groups should be identified

as the (1/2, 0) doublet and the (0, 1/2) doublet of SO(3)e×SO(3)m. Therefore, the π−flux

with two different types of doublets should be viewed as two different topological excitations.

Let us denote the (1/2, 0) doublet as e and the (0, 1/2) doublet as m. Both e and m have

bosonic topological spins. And they differ by a Bogoliubov fermion. Therefore, their mutual

statistics is semionic (which rises from the braiding between the fermion and the π−flux).

At this point, we can identify the topological order of the ∆̂ condensate as the Z2 topological

order described by Eq. (3.1).

The physics around the dQCP discussed above is equivalent to the boundary state of a

3d bosonic symmetry protected topological (SPT) state with SO(3)e×SO(3)m symmetry,

once we view both SO(3) groups as onsite symmetries. The analogy between the dQCP

on the square lattice and a 3d bulk SPT state with an SO(5) symmetry was discussed in
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Ref. 179. We have already mentioned that the topological WZW term Eq. (3.2) is the same

as the boundary theory of a 3d SPT state with PSU(4) symmetry [196], which comes from

a Θ−term in the 3d bulk. And by breaking the symmetry down to either SO(3)e×SO(2)m

or SO(2)e×SO(3)m, the bulk SPT state is reduced to a SO(3)×SO(2) SPT state, which can

be interpreted as the decorated vortex line construction [178], namely one can decorate the

SO(2) vortex line with the Haldane phase with the SO(3) symmetry, and then proliferate

the vortex lines. In our case, the bulk SPT state with SO(3)e×SO(3)m symmetry can be

interpreted as a similar decorated vortex line construction, i.e. we can decorate the Z2 vortex

line of one of the SO(3) manifolds with the Haldane phase of the other SO(3) symmetry,

then proliferating the vortex lines. The Z2 classification of the Haldane phase is perfectly

compatible with the Z2 nature of the vortex line of a SO(3) manifold. Using the method in

Ref. 179, we can also see that the (3 + 1)d bulk SPT state has a topological response action

S = iπ
∫
w2[Ae] ∪ w2[Am] in the presence of background SO(3)e gauge field Ae and SO(3)m

gauge field Am (w2 represents the second Stiefel–Whitney class). This topological response

theory also matches exactly with decorated vortex line construction.

Similar structure of noncollinear magnetic order and VBS orders can be found on the

Kagome lattice. For example, it was shown in Ref. 68 that the vison band structure could

have symmetry protected four degenerate minima just like the triangular lattice (although

the emergence of O(4) symmetry in the infrared is less likely). Indeed, algebraic spin liquids

with Nf = 4 QED as their low energy description have been discussed extensively on both

the triangular and the Kagome lattice [60, 61, 107, 139]. Ref. 107 also observed that the

noncollinear magnetic order, the VBS order, and the Z2 spin liquid are all nearby a Nf = 4

QED (the so-called π−flux state from microscopic construction). The Z2 spin liquid was

shown to be equivalent to the one constructed from Schwinger boson [180], which can evolve

into the
√
3×

√
3 magnetic order, and the

√
12×

√
12 VBS order through an O(4)∗ transition.

In summary, we proposed a theory for a potentially direct unfine-tuned continuous quan-

tum phase transition between the noncollinear magnetic order and VBS order on the trian-
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gular lattice, and at the critical point the system has an emergent PSU(4) global symmetry.

Our conclusion is based on a controlled RG calculation. The physics around the critical point

has the same effective field theory as the boundary of a 3d SPT state [196]. The anomaly

(once we view all the symmetries as onsite symmetries) of the large-N generalizations of

our theory will be analyzed in the future, and a Lieb-Shultz-Mattis theorem for SU(N) and

SO(N) spin systems on the triangular and Kagome lattice can potentially be developed like

Ref. 77, 110.

We also note that in Ref. 89 spin nematic phases with GSM SN/Z2 (analogous to the spin-

1/2
√
3 ×

√
3 state with GSM SO(3)= S3/Z2) and the

√
12 ×

√
12 VBS order are found in

a series of sign-problem free models on the triangular lattice. Thus it is potentially possible

to design a modified version of the models discussed in Ref. 89 to access the dQCP that we

are proposing.
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Chapter 4

QED3 with quenched disorder: quantum
critical states with interactions and
disorder

Quantum electrodynamics in 2+1-dimensions (QED3) is a strongly coupled con-
formal field theory (CFT) of a U(1) gauge field coupled to 2N two-component
massless fermions. The N = 2 CFT has been proposed as a ground state of
the spin-1/2 kagome Heisenberg antiferromagnet. We study QED3 in the pres-
ence of weak quenched disorder in its two spatial directions. When the disorder
explicitly breaks the fermion flavor symmetry from SU(2N)→U(1)×SU(N) but
preserves time-reversal symmetry, we find that the theory flows to a non-trivial
fixed line at non-zero disorder with a continuously varying dynamical critical
exponent z > 1. We determine the zero-temperature flavor (spin) conductivity
along the critical line. Our calculations are performed in the large-N limit, and
the disorder is handled using the replica method.

4.1 Introduction

While our understanding of magnetic systems and spin liquids in particular has made great

progress in the last two decades, most systems have been studied in the clean limit with

translational symmetry present. In this paper, we explore the behavior of a critical spin liquid

described by a conformal field theory (CFT) when perturbed by weak quenched disorder.

The CFT we consider is 2+1 dimensional quantum electrodynamics (QED3), a strongly
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coupled theory of a U(1) gauge field coupled to 2N massless two-component fermions [140,

141]. This CFT is one of the proposed ground states of the spin-1/2 kagome Heisenberg

antiferromagnet, HH = J
∑

⟨ij⟩ Si · Sj, where J > 0 and ⟨ij⟩ labels nearest-neighbour sites

on a kagome lattice (shown in Fig. 4.1) [58, 61, 139]. (We note that other proposed ground

states are gapped Z2 spin liquids [153], and the choice between the CFT and the Z2 spin

liquids remains a matter of continuing debate [60, 71, 72, 81, 102, 109].) In addition, QED3

may also describe certain deconfined critical points [166, 170] between topological phases

[14, 52].

The QED3 action is written

Sqed

[
ψ, ψ̄, A

]
= −

∫
d2x dτ ψ̄αγ

µ

(
∂µ −

iAµ√
2N

)
ψα +

1

4e2(2N)

∫
d2x dτ (∂µAν − ∂νAµ)

2

(4.1)

where α labels the 2N fermion flavors, and we have denoted the Euclidean spacetime co-

ordinates as r = (x, τ). The ψα’s are 2-component spinors, with ψ̄α = ψ†
ατ

z and γµ =

(τ z, τ y,−τx) where the τa’s are Pauli matrices. The dimension of the charge is [e2] = +1

and so under the renormalization group (RG) flow we expect e2 → ∞; this will be discussed

in greater detail in Sec. 4.2.1. This theory possesses an explicit global SU(2N) symmetry

under which the fermions flavors are rotated into one another.

The action in Eq. (4.1) specifically describes non-compact QED3 i.e. there are no monopoles

operators in the action, and flux conservation is a global symmetry: ∂µJ
µ
top = 0, where

Jµtop = ϵµνρ∂νAρ. Because Sqed arises in condensed matter as the low-energy description

of a lattice model, monopole events must be allowed in the ultraviolet (UV). However,

Berry phases from the underlying lattice spins can lead to destructive interference between

monopole tunneling events [143, 144, 166, 170], and it could well be the case that monopoles

carrying the smallest magnetic charge are prohibited for the clean kagome antiferromagnet;

the minimal magnetic charge for allowed monopoles in the kagome antiferromagnet is un-

known, and its determination remains an important open problem. In order for non-compact
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QED3 to be the correct low-energy description, the smallest allowed monopole operators must

be irrelevant perturbations. When the number of fermion flavors is low, this is not the case

and the monopoles to proliferate, confining the theory [127, 129]. As matter is added to

the system, the scaling dimension of the monopoles increases and they eventually become

irrelevant [19, 28, 64, 117, 132]. The number of fermion flavours required before this occurs is

currently unknown, but estimates place it around 2N c
monopole ≲ 12 for the smallest monopole

charge [28]. In this paper, we work in the large-N limit, where all possible monopole op-

erators are strongly irrelevant [117]. There is an additional critical fermion flavour number

beneath which QED3 spontaneously generates a chiral mass. The exact value of this number

is also unknown but is expected to be 2N c
chiral ≈ 3 [99, 100].

The kagome antiferromagnet corresponds to the case N = 2: the four flavors of fermions

arise as a result of spin degrees of freedom, as well as an additional two-fold valley degeneracy.

Nonetheless, when we specify to this case, we will operate under the assumption that the

large N results also apply to the N = 2 case.

Since some degree of disorder is present in all physical systems, it is important to under-

stand the behavior of these theories under this type of perturbation. The primary result

of this paper is that when time reversal and a global U(1)×SU(N) flavour symmetry are

respected microscopically, there exists a critical line with both non-zero disorder and inter-

actions. This is obtained by coupling the theory to quenched disorder of the form

Sdis,z

[
ψ, ψ̄

]
=

∫
d2x dτ

[
Mz(x)ψ̄σ

zψ(x, τ) + +iAjz(x)ψ̄σ
zγjψ(x, τ)

]
. (4.2)

Here, Mz and Ajz are random fields with zero mean. Both fields are independent of time:

although QED3 is a relativistic theory, disorder explicits breaks this symmetry. This should

be contrasted with classical disordered field theories where the random fields are functions of

all of the coordinates in the action. Mz and Ajz are both Gaussian and entirely determined
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by their disorder averages:

Mz(x)Mz(x′) =
gt,z
2
δ2 (x− x′) , Aiz(x)Ajz(x′) = δij

gA,z
2
δ2 (x− x′) , Mz(x)Ajz(x′) = 0.

(4.3)

The variances gt,z and gA,z control the strength of the disorder, and, naturally, they must

be positive. Performing a diagrammatic expansion to O(g2ξ , gξ/2N) with ξ = (t, z), (A, z),

we find a critical line with gt,z = −8gA,z + 64/(3π2N). Provided the flavor symmetry is not

broken further, we expect at least a fixed point to exist at sufficiently large N : higher order

corrections could convert the line to a fixed point but are not expected to lead to runaway

flows to strong disorder.

In the context of the kagome antiferromagnet, the bilinear ψ̄σzψ can be associated with

the z-component of the Dzyaloshinskii-Moriya (DM) interaction operator:

∑
⟨ij⟩∈hex(x)

ẑ · (Si × Sj) , (4.4)

where hex(x) labels the hexagon at point x and the bonds ⟨ij⟩ are summed in the fashion

shown in Fig. 4.1. Similarly, iψ̄σzγx,yψ correspond to spin currents in the microscopic theory.

It follows that the fixed line could be relevant to kagome magnets with randomly varying

DM fields.

We also study the RG flow when disorder couples to the more general set of operators:

Ns = ψ̄ψ, Na = ψ̄σaψ, Jaµ = iψ̄σaγµψ, Jtop,µ = ϵµνρ∂
νAρ (4.5)

where σa = (σx, σy, σz). We find that the U(1)×SU(N) symmetric critical line is unstable

to disorder coupling to either Nx,y, Jx,yj , and Jz0 . These theories flow to strong disorder

and cannot be accessed with the perturbative methods used here. Disorder coupling to

the topological current is marginal to O(1/(2N)2); however, upon including higher order
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Figure 4.1: The kagome lattice. The arrows indicate the convention chosen for the bond
directions of the spin chirality operator, Si×Sj, where i and j label nearest-neighbour sites.
The order of the cross product is taken such that first spin sits at the lattice site pointing
towards the site of the second spin. Later, we will use the same ordering convention to define
nearest-neighbour bond operators Si · Sj.

contributions, the Jtop,0 disorder strength becomes relevant.

In Sec. 4.4 we will see that if the Pauli matrices in the operators of Eq. (4.5) act on

the valley indices of the emergent Dirac fermions, then the mass-like terms Na should be

associated with different valence bond ordering patterns on the kagome lattice [61]. Our

analysis therefore indicates that the QED3 phase is unstable to random bond disorder in the

kagome antiferromagnet.

There have been earlier studies of massless Dirac fermions coupled to disorder. A compre-

hensive analysis for free Dirac fermions was presented by Ludwig et al. [108]. An important

ingredient in their analysis was the coupling of the disorder to components of the current

operator Jµ(r) = iψ̄γµψ(r). For the free theory, Jµ has scaling dimension 2 like any other

globally conserved current; consequently, the disorder coupling to Jµ turns out to be marginal

at the clean free fixed point, and this has important consequences for the disordered system.

For the QED3 case considered here, the situation is dramatically different: because of the

presence of the gauge field, Jµ is no longer a globally conserved current, and its scaling di-
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Chapter 4 – QED3 with quenched disorder

mension at the CFT fixed point is 3 [62]. The corresponding disorder is strongly irrelevant,

and this is the reason it was not included in Eqs. (4.2) and (4.5).

Other earlier works with Dirac fermions studied the influence of disorder and the 1/r

Coulomb interactions between the Dirac fermions [206, 207], and were motivated by the

study of transitions between quantum Hall states. Today, they can be applied to graphene.

As in our work, they found fixed lines at non-zero disorder and interactions.

Our paper begins in Sec. 4.2 by discussing our model in more detail. We start by review-

ing some important properties of QED3 in Sec. 4.2.1, before presenting the types of disorder

under consideration in Sec. 4.2.2. The renormalization procedure and resulting β-functions

are described in Sec. 4.3.1. The remainder of the section discusses the flows which result

upon enforcing different symmetries, including the U(1)×SU(N) symmetric critical line men-

tioned above (Sec. 4.3.4). Sec. 4.4 focuses on applications to the kagome antiferromagnet

and translates the fermion bilinears and topological current of the CFT to the microscopic

observables of the spin model. Finally, in Sec. 4.5 the flavor conductivity along the critical

line is calculated. We review out results and conclude in Sec. ??.

4.2 Disordered QED3

4.2.1 Pure QED3

The Euclidean signature action for QED3 is given in Eq. (4.1). In the IR limit, for N large

enough, this theory flows to a strongly coupled CFT at e2 = ∞. All loop contributions to

the fermion propagator are suppressed by 1/2N and so we will work with the free propagator

G(p) = δαβ
ipµγ

µ

p2
(4.6)

where α and β are flavor indices. The same is not true of the photon propagator. Instead,

the N = ∞ Green’s function must include a summation over the bubble diagrams shown in

Fig. 4.2. The effective propagator is determined most simply by adding a non-local gauge
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µ ⌫
=

µ ⌫
+

µ ⌫
+

µ ⌫
+ · · ·

FIG. 2: Diagrammatic expression for the e↵ective photon propagator in the large-N limit. The

dotted lines indicate the bare photon propagator, D0

µ⌫(p), while the fermion bubbles are equal to

⇧µ⌫(q). As indicated in the text, only the full photon propagator will be used.

where d = 2 + ✏, µ is an arbitrary scale, and the photon propagator is understood to be D
e↵

µ⌫(p).

We will often write D = d + 1 and denote spacetime coordinates by r = (x, ⌧). By making the

coupling dimensionful, we are taking the engineering dimension of Aµ to be d/2. Gauge invariance

guarantees that g will not be renormalized, and it will be set to unity at the end of the calculation.

This is discussed further in Sec. III A.

We now discuss the symmetries and operator content of the theory. QED3 has a SU(2N)

symmetry under which the flavors rotate into one another:

 ↵ !
⇥
exp

�
i✓ab�

a
T

b
�⇤

↵�
 � · (12)

Here, we have expressed the (2N)2 � 1 generators of SU(2N) as

�
a
T

b
, �

a
, T

b
, (13)

where �a, a = x, y, z, are the 2⇥2 Pauli matrices and T
a, a = 1, . . . , N2 � 1, are N ⇥N traceless,

Hermitian matrices normalized such that tr
�
T

a
T

b
�
= �ab/2. Associated with each generator of

this symmetry is a conserved current,

J
ab
µ (r) = i ̄�

a
T

b
�µ (r), J

a0
µ (r) = i ̄�

a
�µ (r), J

0b
µ (r) = i ̄T

b
�µ (r). (14)

To all orders in 1/(2N), these operators have scaling dimension �J = 2. When we discuss the

symmetry of the theory in the remainder of the paper, we will be referring to the flavour symmetry

unless explicitly stated otherwise.

As we remarked in Sec. I, the irrelevance of monopoles results in an emergent U(1)top symmetry

associated with a conserved gauge flux current,

J
µ
top = ✏

µ⌫⇢
@⌫A⇢. (15)

7

Figure 4.2: Diagrammatic expression for the effective photon propagator in the large-N limit.
The dotted lines indicate the bare photon propagator, D0

µν(p), while the fermion bubbles are
equal to Πµν(q). As indicated in the text, only the full photon propagator will be used.

fixing term to the action [29]

Sgauge-fixing =
1

32 (ζ − 1)

∫
d3p

(2π)3
pµpν
|p|

Aµ(p)Aν(−p), (4.7)

where ζ is an arbitrary parameter which cannot enter into any physical observable. The

resulting free photon propagator is

D0
µν(p) =

2Ne2

p2

(
δµν −

pµpν
p2

)
+

16 (ζ − 1)

|p|
pµpν
p2

· (4.8)

The polarization bubble in Fig. 4.2 can be evaluated (see Appendix C.6.1) and gives

Πµν(p) =
|p|
16

(
δµν −

pµpν
p2

)
· (4.9)

Therefore, the N = ∞ propagator is

Deff
µν(p) =

([
D0
µν(p)

]−1
+Πµν(p)

)−1

=
16

|p|

(
δµν − ζ

pµpν
p2

)
+O

(
p2

e2

)
. (4.10)

Here, we have used the fact that, because the dimension of e2 is 1, in the infrared limit, p→ 0,

all terms of O(p2/e2) are suppressed. Provided we use the effective photon propagator and

organize our perturbation theory such that no fermion bubbles of the type summed in Fig. 4.2

are repeated, the limit e2 → ∞ can be taken directly. We will further simplify by working

in the ζ = 0 gauge.
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Since we will regulate the disordered theory using dimensional regularization, we write

Sqed

[
ψ, ψ̄, A

]
= −

∫
ddx dτ ψ̄α

(
/∂ +

iµ−ϵ/2g√
2N

/A

)
ψα, (4.11)

where d = 2 + ϵ, µ is an arbitrary scale, and the photon propagator is understood to be

Deff
µν(p). We will often write D = d+ 1 and denote spacetime coordinates by r = (x, τ). By

making the coupling dimensionful, we are taking the engineering dimension of Aµ to be d/2.

Gauge invariance guarantees that g will not be renormalized, and it will be set to unity at

the end of the calculation. This is discussed further in Sec. 4.3.1.

We now discuss the symmetries and operator content of the theory. QED3 has a SU(2N)

symmetry under which the flavors rotate into one another:

ψα →
[
exp

(
iθabσ

aT b
)]
αβ
ψβ · (4.12)

Here, we have expressed the (2N)2 − 1 generators of SU(2N) as

σa T b, σa, T b, (4.13)

where σa, a = x, y, z, are the 2×2 Pauli matrices and T a, a = 1, . . . , N2 − 1, are N × N

traceless, Hermitian matrices normalized such that tr
(
T aT b

)
= δab/2. Associated with each

generator of this symmetry is a conserved current,

Jabµ (r) = iψ̄σaT bγµψ(r), Ja0µ (r) = iψ̄σaγµψ(r), J0b
µ (r) = iψ̄T bγµψ(r). (4.14)

To all orders in 1/(2N), these operators have scaling dimension ∆J = 2. When we discuss

the symmetry of the theory in the remainder of the paper, we will be referring to the flavour

symmetry unless explicitly stated otherwise.

As we remarked in Sec. 4.1, the irrelevance of monopoles results in an emergent U(1)top
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symmetry associated with a conserved gauge flux current,

Jµtop = ϵµνρ∂νAρ. (4.15)

Like the SU(2N) currents, the scaling dimension of Jµtop is exactly 2. In the limit we consider,

monopole scaling dimensions are much greater than 2, though, as N descreases, this may

cease to be the case.

The global U(1) transformation, ψ → eiθψ, also has a conserved current, Jµ(r) = iψ̄γµψ(r).

However, because the U(1) phase rotation is also a local symmetry, its current is quite differ-

ent from the SU(2N) and U(1)top currents. This is evident upon considering the equations

of motion:

Jµ =
1

e2
√
2N

∂νF
νµ =

1

e2
√
2N

ϵµνρ∂νJtop,ρ· (4.16)

Taken as an operator identity, this implies that the global U(1) current is actually a descen-

dent of the gauge field, and, consequently, its scaling dimension is 3 instead of 2 [62].

In addition to the currents, there are (2N)2−1 “mass” operators which can be constructed

from the SU(2N) generators,

Nab(r) = ψ̄σaT bψ(r), Na0(r) = ψ̄σaψ(r), N0b(r) = ψ̄T bψ(r), (4.17)

as well as the usual 2+1 dimensional Dirac mass term:

Ns(r) =
1√
2N

ψ̄ψ(r)· (4.18)

Unlike the currents, at finite N these operators have nontrivial anomalous scaling dimensions

[29, 62, 63]. In particular, since Ns allows for “photon decay” processes, it becomes less
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relevant, with a scaling dimension of

∆s = 2 +
128

3π2(2N)
+ O

(
1

N2

)
· (4.19)

Conversely, the SU(2N) masses become more relevant:

∆1 = 2− 64

3π2(2N)
+ O

(
1

N2

)
· (4.20)

4.2.2 Disorder

We are interested in perturbing the QED3 CFT with disorder. A simple scaling argument

shows that there are a limited number of operators which can give interesting results upon

coupling to disorder. We begin by considering disorder coupling to an arbitrary, gauge-

invariant operator O with scaling dimension ∆O:

Sdis,O [O] =

∫
ddx dτ MO(x)O(x, τ) (4.21)

where MO(x) is a Gaussian random variable with zero average and with correlations given

by

MO(x)MO(x′) =
gO
2
δd(x− x′)· (4.22)

gO is the variance of MO and controls the strength of the disorder. To allow for a well-

controlled perturbative expansion, we assume that gO is of the same order as 1/(2N); this

implies that the bare disorder strength and the electromagnetic interaction are of the same

magnitude.

Since Sdis explicitly breaks Lorentz symmetry, time and space need no longer scale in the

same way. We express this by allowing time to scale as −z: [τ ] = −z. “z” is referred to as the

dynamic critical exponent. While our assumption that gO ∼ O(1/N) ensures that z − 1 ∼
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O(1/N) as well, the possibility that z ̸= 1 at higher orders has several effects which will be

important later. First, the dimensions of conserved currents are no longer all fixed precisely

at 2. The scaling dimension of the time component remains 2, but spatial components have

dimension ∆J,xy = 1 + z. Second, having a dynamic critical exponent different from unity

also changes the dimensional analysis of the disorder strength gO. Eq. (4.21) establishes that

[MO] = d+ z −∆O, and with Eq. (4.22), this indicates that [gO] = d+ 2z − 2∆O. It follows

that the critical dimension is 1 + z. This is the quantum version of the Harris criterion [56].

At tree level, z = 1, so the Harris criterion indicates that in 2d disorder coupling to

operators with ∆O > 2 is irrelevant: at low energies, the system is described by the clean

theory. Conversely, operators with scaling dimensions less than or equal to 2 are either

relevant or marginal perturbations when coupled to disorder.

Referring to the previous section, to leading order in N , there are no relevant perturbations

and only the global topological current, the SU(2N) currents, and the mass terms, Ns and

Nab, are marginal. However, as mentioned above, at finite N , it’s possible that the scaling

dimension of an allowed monopole operator is less than 2, making it relevant. We will not

examine this possibility in our present large N expansion. As discussed in Sec. 4.1, the global

U(1) current, Jµ = iψ̄γµψ, is irrelevant because its scaling dimension is 3.

Keeping in mind that in order to compare with the kagome antiferromagnet we must set

N = 2, we couple disorder to operators which break the SU(2N) symmetry down to SU(N):

Sdis[ψ, ψ̄] =

∫
ddx dτ

[
Ms(x)ψ̄ψ(x, τ) +Mt,a(x)ψ̄σ

aψ(x, τ)

+ iAja(x)ψ̄σ
aγjψ(x, τ) + Va(x)ψ̄σ

aγ0ψ(x, τ)

+ iEj(x)J jtop(x, τ) + B(x)J0
top(x, τ)

]
(4.23)

where Ms, Mt,a, Aja, Va, Ej, and B are Gaussian random variables with vanishing mean.

Here and throughout the paper we use the convention that, when contracting vectors and γ-

matrices, Roman letters i, j, ℓ, etc. indicate that the sum is only over the spatial coordinates
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x, while Greek letters µ, ν, σ, etc. include time as well. We note that since the quenched

disorder is classical, the random fields have been expressed in real time. That is, the time

component of all classical gauge potentials picks up a factor of “i”. Averaging over disorder,

we have

Ms(x)Ms(x′) =
gs
2
δd(x− x′), Va(x)Vb(x′) =

gv,a
2
δabδ

d(x− x′)

Mt,a(x)Mt,b(x′) =
gt,a
2
δabδ

d(x− x′), Ei(x)Ej(x′) =
gE
2
δijδ

d(x− x′)

Aia(x)Ajb(x′) =
gA,a
2
δabδijδ

d(x− x′), B(x)B(x′) = gB
2
δd(x− x′) (4.24)

with all other two-points vanishing. As in the general case considered above, we assume that

the variances, {gs, gt,a, gA,a, gv,a, gE , gB}, are small and of the same order as 1/(2N).

When we interpret these operators in the context of the kagome antiferromagnet, the σa

matrices will act on spin. By recalling that the Dirac mass, ψ̄ψ, is odd under time reversal in

2+1 dimensions, we deduce that the SU(2) mass operators, iψ̄σaψ, should be even. The same

logic asserts that the scalar potential operators, iψ̄γ0σaψ, are odd under time reversal while

the vector potential operators, iψ̄γjσaψ, are even. Similarly, the fact that J0
top and J jtop are

the emergent magnetic field and electric fields respectively reveals that they are odd and even

under time reversal. Therefore, while the zero mean of the quenched disorder fields implies

that Sdis[ψ, ψ̄] preserves time reversal on average, it is only a good symmetry everywhere

within the system when Ms, Va and B are not present (equivalently, gs = gv,a = gB = 0). In

Sec. 4.4 we will discuss the microscopic meaning of Sdis[ψ, ψ̄] in the kagome antiferromagnet

more thoroughly.

We will use dimensional regularization with d = 2+ϵ so that the dimension of the variances

is shifted to [gξ] = −ϵ, where ξ = s, (t, a), (A, a), (v, a), E , or B. For convenience, we

make the couplings dimensionless by taking gξ → µ−ϵgξ where µ is an arbitrary momentum

scale. When we perform the renormalization group study, the couplings are restricted to

non-negative values because they physically correspond to variances.
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The disorder breaks translational symmetry and makes calculating quantities for a given

realization of disorder completely intractable. Instead, the fundamental quantity of interest

is the disorder-averaged free energy:

F = −logZ

= − log

[∫
DM(x)DMa(x)DMµa(x)DAµa(x)DVa(x) e

−Sqed−Sdis e
− µϵ

2g2s

∫
ddxMs(x)2

e
− µϵ

2g2B

∫
ddxB(x)2

× e
− 1

2g2E

∫
ddxEj(x)Ej(x) ∏

a=x,y,z

e
− µϵ

2g2t,a

∫
ddxMt,a(x)2

e
− µϵ

2g2A,a

∫
ddxAja(x)A

ja(x)

e
− µϵ

2g2v,a

∫
ddxVa(x)2

]
.

(4.25)

To solve perturbatively, we employ the replica trick. Using the identity

logZ = lim
n→0

Zn − 1

n
, (4.26)

we instead calculate

Zn ≡ Zn = N
∫ ∏

α=1,...,2N
ℓ=1,...,n

DψαℓDψ̄αℓDAℓ e
−Sn[ψαℓ,ψ̄αℓ] (4.27)

where N is a normalization constant and

Sn
[
ψ, ψ̄, A

]
= −

∑
ℓ

∫
ddx dτ ψ̄ℓ(x, τ)

(
/∂ +

iµ−ϵ/2g√
2N

/Aℓ

)
ψℓ(x, τ)

+
µ−ϵ

2

∑
ℓ,m

∫
ddx dτ dτ ′

{
− gsψ̄ℓψℓ(x, τ)ψ̄mψm(x, τ

′)−
∑
a

gt,aψ̄ℓσ
aψℓ(x, τ)ψ̄mσaψm(x, τ

′)

−
∑
a

gA,a ψ̄ℓiγ
jσaψℓ(x, τ)ψ̄miγjσaψm(x, τ

′) +
∑
a

gv,a ψ̄ℓiγ
0σaψℓ(x, τ)ψ̄miγ

0σaψm(x, τ
′)

− gBJ
ℓ,0
top(x, τ)J

m,0
top (x, τ

′) + gE J
ℓ,j
top(x, τ)J

m
top,j(x, τ

′)

}
· (4.28)

In addition to the physical flavor symmetry, the fermions and photon now carry a replica
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FIG. 3: Feynman rules associated with the replicated action, Sn

⇥
 ,  ̄, A

⇤
. The diagrams on the

first and second rows are diagonal with respect to the replica and flavor indices. In the four-point

diagrams, ` and m are replica indices while ↵, �, �, ⇢ label the 2N fermion flavors.

III. RENORMALIZATION GROUP ANALYSIS

A. Renormalized action

The low energy properties of Sn

⇥
 ,  ̄, A

⇤
can be studied with the same renormalization tech-

niques used in many-body systems provided the number of replicas, n, is taken to zero at the end

of the calculation. This implies that diagrams which sum over all replicas must be neglected. For

instance, Fig. 4 is proportional to n and should not be included.

12

Figure 4.3: Feynman rules associated with the replicated action, Sn
[
ψ, ψ̄, A

]
. The diagrams

on the first and second rows are diagonal with respect to the replica and flavor indices. In
the four-point diagrams, ℓ and m are replica indices while α, β, σ, ρ label the 2N fermion
flavors.

index denoted by ℓ and m. We have suppressed the summation over the flavour indices and

will continue to do so in what follows. Likewise, the replica indices will often be left implicit.

The Feynman rules corresponding to Sn
[
ψ, ψ̄, A

]
are provided in Fig. 4.3.

4.3 Renormalization group analysis

4.3.1 Renormalized action

The low energy properties of Sn
[
ψ, ψ̄, A

]
can be studied with the same renormalization

techniques used in many-body systems provided the number of replicas, n, is taken to zero

at the end of the calculation. This implies that diagrams which sum over all replicas must
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FIG. 4: Example of a diagram which vanishes in the replica limit, n ! 0. The internal fermion

loop involves a sum over all replica indices, and multiplies the diagram by an overall factor of n.

We will use renormalized perturbation theory [35], making use of a counter term action:

S
CT

n

⇥
 ,  ̄

⇤
= �

X

`

Z
d
d
x d⌧  ̄`

✓
i�1�

0
@

@⌧
+ i�2�

j @

@xj
+
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�✏/2g�0

1p
2N

A
`
0
�
0 +

iµ
�✏/2g�0

2p
2N

A
`
j�

j

◆
 `(x, ⌧)

+
µ
�✏

2

X

`,m

Z
d
d
x d⌧ d⌧

0

⇢
� �s  ̄` `(x, ⌧) ̄m m(x, ⌧

0)�
X

a

�t,a  ̄`�
a
 `(x, ⌧) ̄m�a m(x, ⌧

0)

�
X

a

�A,a  ̄`i�
j
�
a
 `(x, ⌧) ̄mi�j�a m(x, ⌧

0) +
X

a

�v,a  ̄`i�
0
�
a
 `(x, ⌧) ̄mi�

0
�a m(x, ⌧

0)

� �B J
`,0
top(x, ⌧)J

m,0
top (x, ⌧

0) + �E J
`,j
top(x, ⌧)J

m
top,j(x, ⌧

0)

�
· (29)

The counter terms, {�1,2, �01,2, �s, �t,a, �v,a, �A,a, �B, �E}, are determined by requiring that all physical

observables are finite in a dimensional regularization scheme. While relativistic invariance is ex-

plicitly broken, there is no need track the relative flow of the fermion and photon velocities since

the low-energy behaviour of the photon propagator descends entirely from its interaction with the

fermions.

The bare action is the sum of Sn and S
CT

n :

S
B
n

⇥
 ,  ̄, A

⇤
= �

X

`

Z
d
d
xB d⌧B  ̄`,B

✓
i�

0
@

@⌧B
+ i�

j @

@xj,B
+

igB�0p
2N

A
`
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igB�jp
2N
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`
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◆
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+
1

2

X

`,m
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B

⇢
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B
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0
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�
X

a
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B
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a
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0

B)

�
X

a

g
B
A,a  ̄`,Bi�

j
�
a
 `,B(xB, ⌧B) ̄m,Bi�j�a m,B(xB, ⌧

0

B)

+
X

a

g
B
v,a  ̄`,Bi�

0
�
a
 `,B(xB, ⌧B) ̄m,Bi�

0
�a m,B(xB, ⌧

0

B)

� g
B
B
J
`,0
top,B(xB, ⌧B)J

m,0
top,B(xB, ⌧

0

B) + g
B
E
J
`,j
top,B(xB, ⌧B)J

m
top,B,j(xB, ⌧

0

B)

�
(30)
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Figure 4.4: Example of a diagram which vanishes in the replica limit, n → 0. The internal
fermion loop involves a sum over all replica indices, and multiplies the diagram by an overall
factor of n.

be neglected. For instance, Fig. 4.4 is proportional to n and should not be included.

We will use renormalized perturbation theory [6], making use of a counter term action:

SCT
n

[
ψ, ψ̄

]
= −

∑
ℓ

∫
ddx dτ ψ̄ℓ

(
iδ1γ

0 ∂

∂τ
+ iδ2γ

j ∂

∂xj
+
iµ−ϵ/2gδ′1√

2N
Aℓ0γ

0 +
iµ−ϵ/2gδ′2√

2N
Aℓjγ

j

)
ψℓ(x, τ)

+
µ−ϵ

2

∑
ℓ,m

∫
ddx dτ dτ ′

{
− δs ψ̄ℓψℓ(x, τ)ψ̄mψm(x, τ

′)−
∑
a

δt,a ψ̄ℓσ
aψℓ(x, τ)ψ̄mσaψm(x, τ

′)

−
∑
a

δA,a ψ̄ℓiγ
jσaψℓ(x, τ)ψ̄miγjσaψm(x, τ

′) +
∑
a

δv,a ψ̄ℓiγ
0σaψℓ(x, τ)ψ̄miγ

0σaψm(x, τ
′)

− δB J
ℓ,0
top(x, τ)J

m,0
top (x, τ

′) + δE J
ℓ,j
top(x, τ)J

m
top,j(x, τ

′)

}
· (4.29)

The counter terms, {δ1,2, δ′1,2, δs, δt,a, δv,a, δA,a, δB, δE}, are determined by requiring that all

physical observables are finite in a dimensional regularization scheme. While relativistic

invariance is explicitly broken, there is no need track the relative flow of the fermion and

photon velocities since the low-energy behaviour of the photon propagator descends entirely

from its interaction with the fermions.
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The bare action is the sum of Sn and SCT
n :

SBn
[
ψ, ψ̄, A

]
= −

∑
ℓ

∫
ddxB dτB ψ̄ℓ,B

(
iγ0

∂

∂τB
+ iγj

∂

∂xj,B
+
igBγ

0

√
2N

Aℓ0,B +
igBγ

j

√
2N

Aℓj,B

)
ψℓ,B(xB, τB)

+
1

2

∑
ℓ,m

∫
ddxB dτB dτ

′
B

{
gBs ψ̄ℓ,Bψℓ,B(xB, τB)ψ̄m,Bψm,B(xB, τ

′
B)

−
∑
a

gBt,a ψ̄ℓ,Bσ
aψℓ,B(xB, τB)ψ̄m,Bσaψm,B(xB, τ

′
B)

−
∑
a

gBA,a ψ̄ℓ,Biγ
jσaψℓ,B(xB, τB)ψ̄m,Biγjσaψm,B(xB, τ

′
B)

+
∑
a

gBv,a ψ̄ℓ,Biγ
0σaψℓ,B(xB, τB)ψ̄m,Biγ

0σaψm,B(xB, τ
′
B)

− gBB J
ℓ,0
top,B(xB, τB)J

m,0
top,B(xB, τ

′
B) + gBE J

ℓ,j
top,B(xB, τB)J

m
top,B,j(xB, τ

′
B)

}
(4.30)

where the bare fields and coordinates are

ψB(xB, τB) = Z
1/2
1 ψ(x, τ),

A0,B(xB, τB) = Z
1/2
γ,0 A0(x, τ), AjB(xB, τB) = Z1/2

γ,xyAj(x, τ),

τB =
Z2

Z1

τ, xB = x. (4.31)

Here, we have written Z1 = 1 + δ1 and Z2 = 1 + δ2, and, by taking x = xB, we are

renormalizing relative to the spatial scale. Gauge invariance constrains the photon field

strength renormalization constants to be

Z
1/2
γ,0 =

Z1

Z2

, Z1/2
γ,xy = 1, (4.32)

and it follows that we must have δ1,2 = δ′1,2. This has been explicitly verified. The field

strength renormalization of the topological currents then follows simply from the renormal-
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ization of Aµ and (x, τ):

J0
top,B =

∂Ay
∂x

− ∂Ax
∂y

, Jxtop,B =
Z1

Z2

(
∂A0

∂y
− ∂Ay

∂τ

)
, Jytop,B = −Z1

Z2

(
∂A0

∂x
− ∂Ax

∂τ

)
·

(4.33)

As discussed in the previous section, the dynamic critical exponent relates the scaling of

time and space to one another:

µ
d

dµ
τ = zτ · (4.34)

Since τB should scale like µ, taking its derivative with respect to log µ gives

z = 1− µ
d

dµ
log

(
Z2

Z1

)
· (4.35)

The renormalization of the disorder strengths is determined by comparing the bare action

to Sn + SCT
n :

gBs = µ−ϵZ−2
2 (gs + δs) , gBt,a = µ−ϵZ−2

2 (gt,a + δt,a) ,

gBA,a = µ−ϵZ−2
2 (gA,a + δA,a) , gBv,a = µ−ϵZ−2

2 (gv,a + δv,a) ,

gBE = µ−ϵ (gE + δE) , gBB = µ−ϵZ2
1Z

−2
2 (gB + δB) · (4.36)

The fact that the bare couplings are independent of the scale µ establishes the β-functions.

For disorder coupling to fermion bilinears, we have

0 = −ϵ (gξ + δξ)− 2 (gξ + δξ)µ
d

dµ
logZ2 + µ

d

dµ
δξ + βξ, ξ = s, (t, a), (A, a), (v, a), (4.37)
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µ µ

(a) �i�µpµ
⇣

8g2

3⇡2(4N)✏

⌘
(b) �i!�0

� gs
2⇡✏

�

a a

(c) �i!�0
�P

a
gA,a

2⇡✏

�

a, 0 a, 0

(d) �i!�0
�P

a
gv,a
2⇡✏

�

a, j a, j

(e) �i!�0
�P

a
gA,a

⇡✏

�

FIG. 5: Feynman diagrams which contribute to the fermion self-energy at O(g⇠, 1/2N).

where �⇠ = µdg⇠/dµ and a = x, y, z. Similarly, the �-functions for the flux disorder are

0 = �✏ (gE + �E) + µ
d

dµ
�E + �E ,

0 = �✏ (gB + �B) + 2 (gB + �B) (z � 1) + µ
d

dµ
�B + �B. (38)

In the second equation, the relation z � 1 = µd log (Z1/Z2) /dµ has been used.

The fermion self-energy diagrams which determine the counter terms �1 and �2 to leading order

are shown in Fig. 5. These are evaluated in Appendix B, and the divergent pieces are listed below

the corresponding diagram in the figure. Only the photon loop in Fig. 5a contributes to Z2. In

order to cancel this divergence, we must have

�2 =
8g2

3⇡2(2N)✏
· (39)

The frequency counter term, on the other hand, receives contributions from all of the diagrams in

Fig. 5:

�1 =
8g2

3⇡2(2N)✏
+

1

2⇡✏

"
gs +

X

a

(gt,a + gv,a + 2gA,a)

#
· (40)

It follows from Eq. (35), the dynamic critical exponent is

z = 1 +
1

2⇡

"
gs +

X

a

(gt,a + 2gA,a + gv,a)

#
· (41)

15

Figure 4.5: Feynman diagrams which contribute to the fermion self-energy at O(gξ, 1/2N).

where βξ = µdgξ/dµ and a = x, y, z. Similarly, the β-functions for the flux disorder are

0 = −ϵ (gE + δE) + µ
d

dµ
δE + βE ,

0 = −ϵ (gB + δB) + 2 (gB + δB) (z − 1) + µ
d

dµ
δB + βB. (4.38)

In the second equation, the relation z − 1 = µd log (Z1/Z2) /dµ has been used.

The fermion self-energy diagrams which determine the counter terms δ1 and δ2 to leading

order are shown in Fig. 4.5. These are evaluated in Appendix C.2, and the divergent pieces

are listed below the corresponding diagram in the figure. Only the photon loop in Fig. 4.5(a)

contributes to Z2. In order to cancel this divergence, we must have

δ2 =
8g2

3π2(2N)ϵ
· (4.39)

The frequency counter term, on the other hand, receives contributions from all of the dia-
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(a)
⇥
�j ⌦ �j

⇤
[1⌦ 1]

⇣
� g2s

4⇡✏

⌘
(b)

⇥
�j ⌦ �j

⇤
[1⌦ 1]

⇣
g2s
4⇡✏

⌘

2⇥

(c) [1⌦ 1] [1⌦ 1]
⇣
g2s
⇡✏

⌘

2⇥
µ µ

(d) [1⌦ 1] [1⌦ 1]
⇣
� 48gsg2

⇡2(2N)✏

⌘

4⇥

⌫ µ

⌫ µ

(e) [1⌦ 1] [1⌦ 1]
⇣

64gsg4

⇡2(2N)✏

⌘

FIG. 6: Diagrams which contribute when only SU(2N)-preserving, bilinear disorder is considered

(gt,a = gA,a = gv,a = 0). Both Figs. 6c and 6d are accompanied by a diagram with the interaction

on the other vertex. Partner diagrams to Fig. 6e with the fermion loop direction reversed and/or

the vertex switched are also present. These diagrams sum to

[1⌦ 1] [1⌦ 1]

⇢
g2s
⇡✏ +

64gsg4

⇡2(2N)✏ �
48gsg2

⇡2(2N)✏

�

The provision that all couplings be positive implies that z � 1 always.

The bilinear counter terms, �⇠, ⇠ = s, (t, a), (A, a), (v, a), are determined by adding diagrams

like those in Fig. 6. In particular, Fig. 6 shows all diagrams which renormalize disorder coupled to

the SU(2N)-symmetric mass when all other couplings have been tuned to zero. The integrals are

performed in Appendix C, and the remainder of the diagrams renormalizing the bilinear disorder
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Figure 4.6: Diagrams which contribute when only SU(2N)-preserving, bilinear disorder is
considered (gt,a = gA,a = gv,a = 0). Both Figs. 4.6(c) and 4.6(d) are accompanied by a
diagram with the interaction on the other vertex. Partner diagrams to Fig. 4.6(e) with the
fermion loop direction reversed and/or the vertex switched are also present. These diagrams

sum to [1⊗ 1] [1⊗ 1]

{
g2s
πϵ

+
64gsg4

π2(2N)ϵ
− 48gsg2

π2(2N)ϵ

}

grams in Fig. 4.5:

δ1 =
8g2

3π2(2N)ϵ
+

1

2πϵ

[
gs +

∑
a

(gt,a + gv,a + 2gA,a)

]
· (4.40)

It follows from Eq. (4.35), the dynamic critical exponent is

z = 1 +
1

2π

[
gs +

∑
a

(gt,a + 2gA,a + gv,a)

]
· (4.41)

The provision that all couplings be positive implies that z ≥ 1 always.

The bilinear counter terms, δξ, ξ = s, (t, a), (A, a), (v, a), are determined by adding dia-

grams like those in Fig. 4.6. In particular, Fig. 4.6 shows all diagrams which renormalize

disorder coupled to the SU(2N)-symmetric mass when all other couplings have been tuned
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to zero. The integrals are performed in Appendix C.3, and the remainder of the diagrams

renormalizing the bilinear disorder are shown in Appendix C.4 in Tables C.1, C.2, and C.3.

The resulting counter terms are

δs = − 1

πϵ

[
g2s +

64gsg
4

π(2N)
−

48gsg
2

π(2N)
+ gs

∑
a

(gt,a + gv,a − 2gA,a)− 2
∑
a

gv,agA,a

]

δt,a = − 1

πϵ

[
gt,a

(
2gt,a −

∑
b

gt,b

)
− 2gt,a

(
2gA,a −

∑
b

gA,b

)
+ gt,a

(
2gv,a −

∑
b

gv,b

)

+ gt,ags + 4gt,agA,ag2 − 4gt,agv,ag2 − 2
∑
bc

∣∣ϵabc∣∣ gt,bgA,c − 48gt,ag2

π(2N)

]
δA,a = − 1

πϵ

[
− gsgv,a −

∑
bc

∣∣ϵabc∣∣ (gt,bgt,c
2

+ 2gA,bgA,c +
gv,bgv,c

2

)
−

16gA,ag2

3π(2N)

]

δv,a = − 1

πϵ

[
− gv,a

(
2gv,a −

∑
b

gv,b

)
− gv,a

(
2gt,a −

∑
b

gt,b

)
− 2gv,a

(
2gA,a −

∑
b

gA,b

)

− gv,ags − 2gsgA,a − 2
∑
bc

∣∣ϵabc∣∣ gv,bgA,c − 16gv,ag2

3π(2N)

]
· (4.42)

The graphs which renormalize the topological disorder stengths, gE and gB, are actually three

loop diagrams at leading order. These are calculated in Appendix C.5 where we find

δE =
gsgBg4

πϵ
, δB =

gsgEg4

πϵ
· (4.43)

Differentiating the bare couplings (Eq. (4.36)) with respect to µ, solving for the β-functions
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to O(g2ξ , gξ/2N), and setting g2 = 1, we obtain

πβs = πϵgs + gs

[
gs +

∑
a

(gt,a + gv,a − 2gA,a) + 2c

]
− 2

∑
a

gv,agA,a

πβt,a = πϵgt,a + gt,a

[(
2gt,a −

∑
b

gt,b

)
+ 2

(
2gA,a +

∑
b

gA,b

)
−

(
6gv,a +

∑
b

gv,b

)

+ gt,ags − 2c

]
− 2

∑
bc

∣∣ϵabc∣∣ gt,bgA,c
πβA,a = πϵgA,a − gsgv,a −

∑
bc

∣∣ϵabc∣∣ (gt,bgt,c
2

+ 2gA,bgA,c +
gv,bgv,c

2

)
πβv,a = πϵgv,a − gv,a

[(
2gv,a −

∑
b

gv,b

)
+

(
2gt,a −

∑
b

gt,b

)
+ 2gv,a

(
2gA,a −

∑
b

gA,b

)
+ gs

]

− 2gsgA,a − 2
∑
bc

∣∣ϵabc∣∣ gv,bgA,c,
πβE = πϵgE − 3gsgB,

πβB = πϵgB − 3gsgE − gB

[
gs +

∑
a

(gt,a + 2gA,a + gv,a)

]
· (4.44)

where

c =
64

3πN
. (4.45)

In what follows we will work in 2 spatial dimensions and set ϵ = 0.

4.3.2 SU(2N) flavour symmetry

Since disorder coupling to the U(1) gauge currents is irrelevant, the only finite couplings

which preserve the SU(2N) flavour symmetry of QED3 are gs, gE , and gB. With gt,a = gt,A =

gv,a = 0, the only non-trivial β-functions are

πβs = g2s + 2cgs, πβE = −3gsgB, πβB = −gs (3gE + gB) · (4.46)
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βs is entirely determined by the fermion self-energy diagrams in Figs. 4.5(a) and 4.5(b) and

the 4-point diagrams in Fig. 4.6. Figs. 4.6(a) and 4.6(b) cancel, and Fig. 4.6(c) contributes

the second term in βs. This is precisely the same term found in Ref. 108 for free Dirac

fermions. The second term in βs results from interactions with the photon. In fact, this is

simply the anomalous dimension of Ns(r) = 1√
2N
ψ̄ψ(r) in pure QED3 (Eq. (4.19)). Since

gs > 0, both terms in βs are positive, and, as the energy scale is taken to zero, gs flows to

zero.

On inspecting the β-functions for the topological disorder strengths, we note an apparent

inconsistency with our claim that Jµtop is a conserved current. In particular, as indicated

near the beginning of Sec. 4.2.2, the scaling dimensions of the spatial and time components

of a conserved current are non-perturbatively protected to be 1 + z and 2 respectively, and

this should be reflected in their β-functions. However, this is not the case in the expression

above for either J jtop or J0
top when gs ̸= 0. Fortunately, this result makes sense in the context

of the parity anomaly: when a single species of Dirac fermions is coupled to a mass, a Chern-

Simons term at level 1/2 is generated ∼ 1
2
ϵµνρAµ∂νAρ/4π. In the disordered system, this

manifests itself through the induced coupling of the two topological currents.

Regardless, both of the β-functions for the topological disorder are directly proportional

to the SU(2N)-symmetric mass coupling and so vanish when gs = 0. However, we argue

that higher order effects ultimately destabilize the clean critical point in the absence of time

reversal symmetry. To start, we observe that the Dirac equation has an additional discrete,

anti-unitary symmetry under which both time and charge flip, leading us to refer to it as

“CT ” symmetry. J0
top is even under the action of CT , while both ψ̄ψ and J jtop are odd.

Imposing this symmetry sets gs = gE = 0 and allows only gB to be finite. The lowest order

diagram which contributes is the fermion self-energy shown in Fig. 4.7. Like the diagrams in

Fig. 4.5, its divergence is cancelled by Z1, yielding a dynamic critical exponent greater than
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unity:

z = 1 +
gB

2π(2N)
· (4.47)

Even though time-reversal is broken, the CT symmetry ensures that no diagrams mixing gB

and gE are generated. We conclude that since flux is still conserved, the only contribution

to the β-function of gB arise from the corrections to the dynamic critical exponent given in

Eq. (4.47). In Sec. 4.2.2, we showed that the dimension of disorder coupling to J0
top is

[gB] = 2(1 + z)− 2
[
J0
top

]
= 2(z − 1), (4.48)

and, therefore, the β-function is

πβB = − g2B
2N

· (4.49)

It follows that this theory flows to strong coupling, albeit at a higher order in gξ and 1/(2N)

than what is considered in the rest of the paper: O(g2B/2N) ∼ O(1/(2N)3) instead of

O(1/(2N)2).

This continues to be true even upon breaking CT and allowing finite gE and gs. The gs

disorder strength will flow to zero and need not be considered further. Then, the irrelevance

of monopoles ensures that gE remains marginal and that gB flows to strong coupling (we note

gE will give an additional contribution to z and, consequently, βB). In summary, the clean

theory is unstable to SU(2N) symmetric disorder when time reversal is broken.

Finally, when both the SU(2N) flavour symmetry and time reversal are imposed, only

disorder coupling to J jtop is allowed, and the theory is exactly marginal to all orders in

perturbation theory.
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0 0

0 0

FIG. 7: The only disorder diagram to contribute to O(gB/2N) when B(x) is the only random

field coupled to QED3. Note that it is subleading to the self-energy diagrams we consider

elsewhere in the paper (Fig. 5). It contributes a divergence �ip0�
0

⇣
gB

2⇡(2N)✏

⌘
.

Setting gt,a = gt, gv,a = gv, and gA,a = gA, the resulting set of �-functions is

⇡�s = gs [gs + 3gt + 3gv � 6gA + 2c]� 6gvgA,

⇡�t = gt [�gt + gs � 9gv + 6gA � c] ,

⇡�A = �4g2
A
� g

2

t � g
2

v � gsgv,

⇡�v = gv [gv � gs + gt � 2gA]� 2gsgA,

⇡�E = �3gsgB,

⇡�B = �3gsgE � gB [gs + 3(gt + 2gA + gv)] · (50)

The third equation indicates that if either gt, gA, or gv is non-zero, gA always flows to strong

coupling. The four negative terms in �A can be traced to the diagrams in the first, fifth, and seventh

rows of Table I, and the second row of Table II (shown in Appendix D). In these diagrams, the

anticommutation properties of the Pauli matrices ensure that the “box” and “crossing” diagrams

do not cancel as they did for the singlet mass term (Figs. 6a and 6b). In fact, it is shown in

Appendix A that disorder symmetric under any continuous non-abelian subgroup H of SU(2N)

will have this property and, consequently, flow to strong coupling.

This may appear to contradict the argument of the previous section: since gA couples disorder

to the spatial components of a conserved current, in the absence of a random mass Ms(x), should

it not be exactly marginal like gE? The key di↵erence is that because SU(2) is non-ablelian, the

SU(2)⇥SU(N) flavour symmetry is only present on average. The action for a specific realization

of disorder, Aa
j (x), only has a SU(N) flavour symmetry, and, as a result, the scaling dimension of

i ̄�
j
�
a
 is not protected.

Similarly, if gB is non-zero and any of the other four fermion bilinears couplings are non-

zero, disorder coupling to J
0

top
also becomes strong. Again, this is because the dynamical critical

20

Figure 4.7: The only disorder diagram to contribute to O(gB/2N) when B(x) is the only
random field coupled to QED3. Note that it is subleading to the self-energy diagrams we
consider elsewhere in the paper (Fig. 4.5). It contributes a divergence −ip0γ0

(
gB

2π(2N)ϵ

)
.

4.3.3 SU(2)×SU(N) flavour symmetry

If we instead allow disorder to break the symmetry from SU(2N) → SU(2)×SU(N), no non-

trivial fixed point is found; the system flows to strong disorder, and out of the perturbative

regime. Setting gt,a = gt, gv,a = gv, and gA,a = gA, the resulting set of β-functions is

πβs = gs [gs + 3gt + 3gv − 6gA + 2c]− 6gvgA,

πβt = gt [−gt + gs − 9gv + 6gA − c] ,

πβA = −4g2A − g2t − g2v − gsgv,

πβv = gv [gv − gs + gt − 2gA]− 2gsgA,

πβE = −3gsgB,

πβB = −3gsgE − gB [gs + 3(gt + 2gA + gv)] · (4.50)

The third equation indicates that if either gt, gA, or gv is non-zero, gA always flows to strong

coupling. The four negative terms in βA can be traced to the diagrams in the first, fifth, and

seventh rows of Table C.1, and the second row of Table C.2 (shown in Appendix C.4). In

these diagrams, the anticommutation properties of the Pauli matrices ensure that the “box”

and “crossing” diagrams do not cancel as they did for the singlet mass term (Figs. 4.6(a)

and (b)). In fact, it is shown in Appendix C.1 that disorder symmetric under any continuous

non-abelian subgroup H of SU(2N) will have this property and, consequently, flow to strong

coupling.

This may appear to contradict the argument of the previous section: since gA couples
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disorder to the spatial components of a conserved current, in the absence of a random mass

Ms(x), should it not be exactly marginal like gE? The key difference is that because SU(2)

is non-ablelian, the SU(2)×SU(N) flavour symmetry is only present on average. The action

for a specific realization of disorder, Aa
j (x), only has a SU(N) flavour symmetry, and, as a

result, the scaling dimension of iψ̄γjσaψ is not protected.

Similarly, if gB is non-zero and any of the other four fermion bilinears couplings are non-

zero, disorder coupling to J0
top also becomes strong. Again, this is because the dynamical

critical exponent is greater than 1 when gs, gt, gA, or gv are non-zero. We recall that the

dimensional analysis of Sec. 4.2.2 indicated that when z ̸= 1, the critical scaling dimension

is no longer 2, but instead 1 + z. Therefore, [J0
top] = 2 < 1 + z, making it a relevant

perturbation.

4.3.4 U(1)×SU(N) symmetry

We turn, finally, to the case of greatest interest in the present paper. When the disorder

couples to a U(1) subgroup of SU(2N), we find a fixed line with both finite disorder and

interactions.

We begin by considering an XY anisotropy where g·,z is allowed to differ from g·,x = g·,y =
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g·,⊥. With this restriction, the β-functions in Eq. (4.44) reduce to

πβs = gs [gs + gt,z + 2gt,⊥ − 2gA,z − 4gA,⊥ + gv,z + 2gv,⊥ + 2c]− 2gv,zgA,z − 4gv,⊥gA,⊥,

πβt,z = gt,z [gt,z − 2gt,⊥ + 6gA,z + 4gA,⊥ + gs − 7gv,z − 2gv,⊥ − c]− 4gt,⊥gA,⊥,

πβt,⊥ = gt,⊥ [−gt,z + gs + 8gA,⊥ − gv,z − 8gv,⊥ − c]− 2gt,zgA,⊥,

πβA,z = −4g2A,⊥ − g2t,⊥ − g2v,⊥ − gsgv,z,

πβA,⊥ = −4gA,⊥gA,z − gt,zgt,⊥ − gv,zgv,⊥ − gsgv,⊥,

πβv,z = gv,z [−gv,z + 2gv,⊥ − gt,z + 2gt,⊥ − 2gA,z + 4gA,⊥ − gs] ,−2gsgA,z − 4gv,⊥gA,⊥

πβv,⊥ = gv⊥ [gv,z + gt,z − gs]− 2gsgA,⊥ − 2gv,zgA,⊥,

πβE = −3gsgB,

πβB = −3gsgE − gB [gs + gt,z + 2gA,z + gv,z + 2(gt,⊥ + 2gA,⊥ + gv,⊥)] · (4.51)

These results are consistent with the RG equations obtained in Ref. 44. In this paper, the

authors considered Dirac cones interacting through a 3d Coulomb term instead of a strictly

2+1 dimension gauge field; we can compare to their results by setting the Coulomb coupling

in their equations to zero and g2 = gs = gv,z = gv,⊥ = gE = gB = 0 in Eq. (4.42).

As in the previous section, the β-functions for the vector potential couplings, gA,z and

gA,⊥ are all negative. In order to ensure that they do not flow to infinity, all perpendicular

couplings must vanish, gA,⊥ = gt,⊥ = gv,⊥ = 0. This describes a situation where the

U(1)×SU(N) symmetry of the underlying theory is preserved even in the presence of disorder.

62



Chapter 4 – QED3 with quenched disorder

AA BB

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.05

0.10

0.15

gt,z/c

g A
,z
/c

(a)

AA BB

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

gt,z/c
g v
,z
/c

(b)

BB

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

gs/c

g v
,z
/c

(c)

BB
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

gt,⟂/c

g A
,⟂
/c

(d)

Figure 4.8: RG flow in the (a) (gt,z, gA,z) plane, (b) (gt,z, gv,z) plane, and (c) (gs, gv,z) plane
with all other couplings set to zero. (d) shows the (gt,⊥, gA,⊥) plane with gt,z = c and all
other couplings vanishing. The critical point with all couplings equal to zero (no disorder)
is marked in orange with “A” and the critical point with gt,z = c is marked in green with a
“B”. In (a), the critical line is drawn in green. Here c = 128/3π(2N).
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The β-functions in the presence of this symmetry are

πβs = gs (gs + gt,z − 2gA,z + 3gv,z + 2c)− 2gA,zgv,z,

πβt,z = gt,z (gt,z + gs + 8gA,z − 7gv,z − c) ,

πβA,z = −gsgv,z,

πβv,z = −gv,z (gv,z + gs + gt,z + 2gA,z)− 2gsgA,z,

πβE = −3gsgB,

πβB = −3gsgE − gB (gs + gt,z + 2gA,z + gv,z) · (4.52)

Recalling that all couplings are positive, we find a single physical solution which breaks the

SU(2N) flavour symmetry to U(1)×SU(N). It is parametrized by the line

gt,z = c− 8gA,z, gA,z ≤
c

8
, (4.53)

with gB and all other bilinear couplings equal to zero. Moreover, since gs, gv,z, and gB are

absent, each realization of disorder is invariant under time reversal and, consequently, gE is

exactly marginal (see Sec. 4.3.2). The fixed line we discuss is more correctly a fixed plane

(though we will frequently refer to it only as a line). Referring to Eq. (4.41), the dynamical

critical exponent on this surface is

z = 1 + c− 6gA,z· (4.54)

In the presence of both time reversal and the U(1)×SU(2N) flavor symmetry, g·,⊥ = 0,

the critical surface has one irrelevant and two marginal directions. It is stable to small

variations in gt,z while perturbations in gE and gA,z are marginal. As we saw in the previous

two sections, these couplings are associated with the spatial components of a conserved

current, implying that their scaling dimensions are non-perturbatively fixed at exactly two

when time reversal symmetry is present. The presence of these symmetries means that we
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do not expect the stability of the critical surface to change with the inclusion of higher order

diagrams provided N is sufficiently large. However, it is possible that that it will be reduced

to a single critical point. The RG flow in the (gt,z, gA,z) plane is shown in Fig. 4.8(a).

When time reversal only holds on average, gs, gv,z and gB are allowed to be finite as

well. Disorder coupling to the SU(2N)-symmetric mass term remains irrelevant, but the

scalar potential-like disorder, gv,z and gB, take the theory into the strong coupling regime,

as expected when the z > 1. The RG flows in the (gt,z, gv,z) and (gs, gv,z) planes are shown

in Figs. 4.8(b) and 4.8(c).

The fixed surface is not stable to perturbations which explicitly break the U(1)×SU(2N)

flavour symmetry of the replicated theory. Fig. 4.8(d) shows the RG flow in the (gt,⊥, gA,⊥)

plane for gt,z = c, gA,z = 0 and indicates that both parameters are relevant. This is true

along the entire critical surface. Conversely, it can also be shown that along the critical line

gv,⊥ is irrelevant.

4.4 Application to the kagome antiferromagnet

The large emergent symmetry of the QED3 CFT implies that the currents and the fermion

bilinears which we couple to disorder can be interpreted in a number of ways. Nonetheless,

it is useful to directly relate our model to the microscopic operators of the spin-1/2 kagome

Heisenberg antiferromagnet (N = 2): HH = J
∑

⟨ij⟩ Si ·Sj, where ⟨ij⟩ are nearest-neighbour

sites on the kagome lattice (see Fig. 4.1). Special attention will be given to the fixed line

found in Sec. 4.3.4. This section draws heavily from the discussion of Ref. 61, and more

details can be found therein.

We begin by reviewing how the CFT is obtained as the low energy description of the

kagome antiferrormagnet. We start by expressing the spin operators in terms of fermions,

Si =
1
2
f †
iτσττ ′fiτ ′ , where σ are the three Pauli matrices. This representation reproduces the

Hilbert space of the spins provided it is accompanied by the local constraint
∑

τ=↑,↓ f
†
iτfiτ = 1.

The resulting Hamiltonian, HH = −J
4

∑
⟨ij⟩ f

†
iτfjτf

†
jτfiτ ′ + const., can be approximated by a
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mean field Hamiltonian HMF = −
∑

⟨ij⟩ tijf
†
iτfjτ ′ +H.c., where tij is chosen so as to minimize

the ground state energy while enforcing the condition
∑

τ=↑,↓ ⟨fiτfiτ ⟩ = 1 on average. The

mean field ansatz which inserts π and zero flux through the kagome hexagon and triangle

plaquettes respectively is found to have a particularly low energy [58, 61, 139]. In this case,

the dispersion of HMF has two Dirac cones per spin at a non-zero crystal momentum, ±Q

[58, 61]. The low energy excitations of HMF are described by expanding about these two

valleys, giving a free Dirac Lagrangian, LD = −ψ̄α/∂ψα, where α labels both spin and valley

(the relation between the continuum Dirac spinors, ψα, and the lattice fermions, fiτ , is given

in the appendix to Ref. 61). However, since the physical spin operators, Si, are invariant

under local phase rotations, fiτ → eiϕifiτ , the fermions carry an emergent gauge charge,

and, consequently, the true effective theory of HH must take gauge fluctuations into account.

Provided monopoles do not the confine the theory, the low energy description of the kagome

antiferromagnet is QED3 and not the free Dirac theory [19, 28, 64, 132]. We note that while

HH only had an SU(2) spin symmetry, QED3 has an emergent SU(4) symmetry under which

spin and valley indices are rotated into one another.

In order to calculate physical quantities, microscopic observables of the lattice theory must

be associated with continuum operators of QED3:

Ai ∼
∑
ℓ

cℓOℓ(r), (4.55)

where Ai is some function of local operators near the lattice site r, and Oℓ(r) are a set of

operators belonging to the CFT. At long distances, the quantities to the left and right of

Eq. (4.55) must decay in the same manner. Given Ai, the set of operators Oℓ for which cℓ

is non-vanishing could be determined by repeating the steps used to derive QED3 from the

Heisenberg model on the microscopic operators Oℓ [61]. However, it is easier to note that the

cℓ’s can be non-zero if and only if Ai and Oℓ transform in the same manner under the action

of the microscopic symmetries of the theory. In particular, the action under time reversal
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and space group transformations will be important. The symmetry operations relevant to

the kagome antiferromagnet can be found in Ref. 61.

As discussed in Sec. 4.2.2, we only consider disorder coupling to the topological current and

the fermion bilinears. That is, we restrict Oℓ to be either the conserved currents in Eqs. (4.14)

and (4.15), or the mass-like operators given in Eqs. (4.17) and (4.18). By applying our large-

N results to the N = 2 case, we may be neglecting important types of disorder in the form

of monopole operators.

With this caveat in mind, we begin by identifying the singlet mass operator 1√
2N
ψ̄ψ with

the chiral mass term discussed in Ref. 58. Noting that 1√
2N
ψ̄ψ is odd under both parity and

time reversal, it’s not surprising that it can be associated with the scalar spin chirality,

CSSP(x△) =
∑

(ijk)∈△

Si · (Sj × Sk) , (4.56)

where x△ is the position of a triangle in the lattice, and (ijk) are ordered as indicated by

the arrows in Fig. 4.1. Similarly, the flux disorder operator, J0
top, transforms in the same

way as 1√
2N
ψ̄ψ, indicating that it can also be associated with CSSP. We conclude that the

random fields Ms(x) and B(x) in Eq. (4.23) descend from disorder coupling to CSSP. The

renormalization group study of Secs. 4.3.2, 4.3.3, and 4.3.4 indicates that a randomly varying

scalar spin chirality remains a marginal perturbation to leading order. However, this is not

protected by any symmetry and, as discussed in Sec. 4.3.2, higher order diagrams make it

relevant.

The spatial components of the topological current are time reversal invariant and transform

as vectors under spatial rotations. The simplest operators invariant under time reversal are

the bond operators,

Pij = Si · Sj, (4.57)

where i and j are nearest-neighbours. In order to find the simplest combination of Pij’s
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which rotate in the correct fashion, we calculate the irreducible representations governing

the bond configurations within a unit cell. Defining

Px(x) =
∑

ij∈hex(x)

exijPij, Py(x) =
∑

ij∈hex(x)

eyijPij,

(
exij
)T

=
1

2
√
3
(2, 1,−1,−2,−1, 1) ,

(
eyij
)T

=
1

2
(0, 1, 1, 0,−1,−1) , (4.58)

we identity Jxtop and Jytop with Px and Py respectively; these patterns are shown in Fig. 4.9.

This identification along with the results of Sec. 4.3.2 may then appear to indicate that

random bond disorder, corresponding to a Hamiltonian of the form

HRB =
∑
ij

JijSi · Sj, (4.59)

is an exactly marginal perturbation to the QED3 fixed point when time-reversal is preserved.

However, we will see shortly that this is not the case.

We next express the 15 generators of SU(4) as {σa, µj, σaµj} where σa and µj are commut-

ing sets of Pauli matrices with σa acting on spin and µj acting on valley indices. Following

the notation of Ref. 61, it’s useful to re-label the operators of Eqs. (4.14) and (4.17) as

J iaA,µ = iψ̄µiσaγµψ, JaB,µ = iψ̄σaγµψ, J iC,µ = iψ̄µiγµψ,

N ia
A = ψ̄µiσaψ, Na

B = ψ̄σaψ, N i
C = ψ̄µiψ · (4.60)

Each of these operators can couple to a random field to contribute to an action of the form

in Eq. (4.23).

In Ref. 61, the microscopic spin operators corresponding to each of the mass operators,

N ia
A , Na

B, and N i
C are identified. We will primarily be interested in Na

B. This is a spin triplet

and is even under time reversal. The simplest microscopic operator with this property is

the vector chirality operator Cij = Si × Sj, where i and j are nearest-neighbours. The
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linear combination of Cij’s within a unit cell which transform in the same way as NB can

be written

Cs(x) =
∑

(ij)∈hex(x)

Cij, (4.61)

where the sum is taken around the hexagon at x following the convention in Fig. 4.1. As we

indicated in Sec. 4.1, Cs is precisely the DM interaction term.

Similar reasoning suggests that the B-type currents, JB,µ(r), correspond to the spin op-

erators and currents. First, the space group symmetry acts on Si in the same way as it

acts on JB,0; in particular, both S and JB,0 are invariant under spatial rotations and odd

under time reversal. It’s not surprising then that JB,x and JB,y correspond to spin currents.

They are both even under time reversal and are spin triplets. As with NB, this suggests

a linear combination of nearest-neighbour vector chirality operators, Cij, as their natural

microscopic counterpart. Like J jtop, they must transform as vectors under spatial rotations,

implying that the Cij’s should correspond to the JB,j in the same way the Pij’s correspond

to J jtop:

Cx(x) =
∑

ij∈hex(x)

exijCij, Cy(x) =
∑

ij∈hex(x)

eyijCij, (4.62)

where exij and eyij are given in Eq. (4.58) and shown in Fig. 4.9. In fact, since we assume

that fermion bilinears and topological currents are the only relevant operators of the CFT,

all disorder coupling to the Cij’s is taken into account by random fields coupling to NB,

JB,x, and JB,y. In particular, modulo the caveats we have already discussed, the low energy

theory of the kagome AF with weak disorder of the form

HDM
dis =

∑
⟨ij⟩

JDM
ij ẑ · Si × Sj (4.63)

where JDM
ij are sufficiently weak random variables, should be described by fixed line of
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(a) Current in x-direction. (b) Current in y-direction.

Figure 4.9: Bond ordering of bond order and vector chirality operators corresponding to the
topological currents, J jtop, and the spin currents Ja,jB (r) in the x and y directions respectively.
Our convention is that in Cij = Si × Sj, the ith site points towards the jth. The double
arrows in (a) identify the bonds which are weighted twice as strongly as others, while the
absence of arrows on the horizonal bonds in (b) implies that they do not contribute at all.

Sec. 4.3.4.

Unlike NB, the remaining two mass bilinears in Eq. (4.60) carry valley indices. The

bilinear N i
A represents a set of three spin triplets and is odd under time reversal. Focusing

on the z component in spin space, N i,z
A , three magnetic ordering patterns can be identified,

each with a crystal momentum at a different M point in the Brillouin zone. Under rotations

about the z-axis, the N i,z
A ’s transform into one another. Disorder resulting from magnetic

defects could couple to bilinears of this form, but the fixed line resulting in Sec. 4.3.4 is

particularly unlikely to occur. Except in cases of extreme anisotropy, we do not expect

disorder to exclusively couple to a single momentum channel.

Similarly considerations hold for N i
C . These operators are spin singlets and, like J jtop,

can be associated with bond ordering patterns Pij [58, 61]. In this case, two 3-dimensional

irreducible representations of bonds transforming in the same way as N i
C are identified, and,

again, each ordering pattern within an irreducible representation is distinguished by having

a crystal momentum at one of the three M points. It follows that perturbing HH by given

a generic random bond Hamiltonian HRB in the UV results in finite disorder strengths for

N i
C , J

i,a
C,µ, as well as J itop. The appropriate form of disorder is not the the SU(2N) symmetric
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case of Sec. 4.3.2, but rather the situation discussed in Sec. 4.3.3. We therefore conclude

that the kagome antiferromagnet is unstable to generic random bond disorder.

Finally, the same arguments hold for the microscopic analogues of J i,aA,µ and J iC,µ.

4.5 Flavour conductivity

The flavor conductivity is a universal observable of the CFT; for the case of the kagome

antiferromagnet, this conductivity is interpreted as a spin conductivity. By the usual ar-

guments, we expect this conductivity to also be a universal observable along the fixed line

with U(1)×SU(N) symmetry found in Sec. 4.3.4. Because of the presence of continuously

variable critical exponents along this line, we also anticipate the flavor conductivity to be

continuously variable.

The flavor conductivity is determined by the two point correlators at zero external mo-

mentum of the following currents:

Jxza(p) = iψ̄σzT aγxψ(p), Jxsa(p) = iψ̄T aγxψ(p), Jx⊥a(p) = iψ̄σxT aγxψ(p) = iψ̄σyT aγxψ(p).

(4.64)

In particular, we calculate the optical conductivity, valid for frequencies greater than the

temperature T , allowing us to evaluate these correlators at zero temperature. The diagrams

which contribute to O(gt,z, gA,z, 1/2N) are shown in Fig. 4.10. To this order, a non-zero gE

will not contribute.

We recall from the discussion of Sec. 4.2.2 that the dimensions of the spatial currents

Jxza(x, τ) and Jxsa(x, τ) are fixed at 1+z and, therefore, their correlators contain no divergences

at zero external momentum. Moreover, an inspection of the diagrams in Appendix C.4

shows that the scaling dimensions of Jxa⊥ remain unaltered to the order we are considering.

Appendix C.6 outlines how Figs. 4.10(a) to 4.10(e) are calculated, and also verifies that

counter term diagrams do not contribute. The photon diagrams, Figs. 4.10(f) and 4.10(g),
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FIG. 10: Diagrams which contribute to the current-current correlator.
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In particular, we calculate the optical conductivity, valid for frequencies greater than the tem-

perature T , allowing us to evaluate these correlators at zero temperature. The diagrams which

29

Figure 4.10: Diagrams which contribute to the current-current correlator.
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are determined in Ref. 69. Combining these results, we find

⟨Jxza(p0)Jxzb(−p0)⟩ = ⟨Jxsa(p0)Jxsb(−p0)⟩

= δab |p0|
{
− 1

16
− aγ

2N
+ aVgt,z + aΣ(gt,z + 2gA,z)

}

= δab |p0|
{
− 1

16
− aγ

2N
+ c(aV + aΣ)− (8aV + 6aΣ)gA,z

}
(4.65)

and

⟨Jx⊥a(p0)Jx⊥b(−p0)⟩ = δab |p0|
{
− 1

16
− aγ

2N
− aVgt,z + aΣ(gt,z + 2gA,z)

}
= δab |p0|

{
− 1

16
− aγ

2N
+ c(−aV + aΣ) + (8aV − 6aΣ)gA,z

}
(4.66)

where aV, aΣ, and aγ are derived from Figs. 4.10(b) and (c), Figs. 4.10(d) and (e), and

Figs. 4.10(f) and (g) respectively. The two disorder contributions are equal,

adis = aV = aΣ =
1

96π
, (4.67)

and the photon contribution is [69]

aγ =

(
0.0370767− 5

18π2

)
. (4.68)

From the Kubo formula, it follows that the conductivities are

σz(0) = σs(0) =
1

16
+

aγ
2N

− 2adis(c− 7gA,z),

σ⊥(0) =
1

16
+

aγ
2N

− 2adisgA,z· (4.69)

In both flavor channels, disorder suppresses the conductivity and, except when gA,z = c/8,

and gt,z = 0, the singlet and spin-z channels are affected more strongly. This is physically
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reasonable since we naturally expect transport in channels coupling directly to disorder to

decrease the most.

4.6 Conclusion

This paper examined the influence of quenched disorder on the 2+1 dimensional CFT of 2N

massless two-component Dirac fermions coupled to a U(1) field. The existence of this CFT

can be established for sufficiently large N by the 1/N expansion, and we combined the 1/N

expansion with a weak disorder expansion.

For generic disorder, our renormalization group analysis shows a flow to strong coupling,

and so we were unable to determine the fate of the theory. However, if we restrict the

disorder to obey certain global symmetries, then we were able to obtain controlled results.

For disorder respecting time reversal and the full SU(2N) flavor symmetry of the CFT,

we found in Sec. 4.3.2 that all allowed disorder perturbations were marginal to the order

we considered. Such a result does not apply to the CFT of 2N free Dirac fermions: in that

case, disorder coupling to a randomly varying chemical potential leads to a flow to strong

coupling [108]. However, once disorder is allowed to break time reversal, we again find a

runaway flow towards strong disorder, albeit at a higher order in perturbation theory.

Our main results, in Sec. 4.3.4, concerned the case in which disorder respects time-reversal

and U(1)× SU(N) symmetry. In this case, to leading order in 1/N , we found a non-trivial

fixed line with both interactions and disorder. This fixed line had continuously varying

exponents, in particular a dynamic critical exponent z > 1. It also had a continuously

varying, but cutoff independent, flavor conductivity.

We also discussed the possible relevance of our results to the spin-1/2 kagome lattice anti-

ferromagnet. In this case, the U(1)× SU(N) symmetric disorder corresponds to a randomly

varying Dzyaloshinkii-Moriya field, as we described in Secs. 4.1 and 4.4.
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Spectrum of conformal gauge theories on
a torus

Many model quantum spin systems have been proposed to realize critical points or
phases described by 2+1 dimensional conformal gauge theories. On a torus of size
L and modular parameter τ , the energy levels of such gauge theories equal (1/L)
times universal functions of τ . We compute the universal spectrum of QED3, a
U(1) gauge theory with Nf two-component massless Dirac fermions, in the large
Nf limit. We also allow for a Chern-Simons term at level k, and show how the
topological k-fold ground state degeneracy in the absence of fermions transforms
into the universal spectrum in the presence of fermions; these computations are
performed at fixed Nf/k in the large Nf limit.

5.1 Introduction

While many fractionalized states of matter have been proposed, verifying their existence is

a formidable task. Not only are experimental measurements of fractional degrees of freedom

difficult, but even establishing the existence of these phases in simplified lattice models can

be challenging. Numerical techniques have made a great deal of progress and now provide

support for some of these states of matter.

In the context of quantum spin systems, the simplest fractionalized state with an energy

gap and time-reversal symmetry is the Z2 spin liquid. Recent work described the universal

spectrum of a spin system on a torus [163, 189] across a transition between a Z2 spin liquid
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and a conventional antiferromagnetically ordered state [189]. Such a spectrum is a unique

signature of the transition between these states and goes well beyond the 4-fold topological

degeneracy of the gapped Z2 state that is usually examined in numerical studies.

In this paper, we turn our attention to critical spin liquids with an emergent photon and

gapless fractionalized excitations. Commonly referred to as an ‘algebraic spin liquid’ (ASL)

or a ‘Dirac spin liquid’, it is a critical phase of matter characterized by algebraically decaying

correlators, and whose long-distance properties are described by an interacting conformal

field theory (CFT) called 3d quantum electrodynamics (QED3) [64, 86, 87, 140, 184]. For

the kagome antiferromagnet, and also for the J1-J2 antiferromagnet on the triangular lattice,

there is an ongoing debate as to whether the ground state is a gapped Z2 spin liquid [35,

79, 109, 152, 203, 212] or a U(1) Dirac spin liquid [73, 74], and we hope our results here can

serve as a useful diagnostic of numerical data.

In addition, although certain systems may not allow for an extended ASL phase, related

CFTs could describe their phase transitions [14, 52]. These ‘deconfined critical points’ [166,

170] require a description beyond the standard Landau-Ginzburg paradigm and are often

expressed in terms of fractionalized quasiparticles interacting through a gauge field. Our

methods can be easily generalized [97] to critical points of theories with bosonic scalars

coupled to gauge fields [166, 170], but we will limit our attention here to the fermionic

matter cases.

A close cousin of QED3 can be obtained by adding an abelian Chern-Simons (CS) term to

the action. When a fermion mass is also present, the excitations of the resulting theory are

no longer fermions, but instead obey anyonic statistics set by the coefficient, or ‘level’, of the

CS term. The critical ‘Dirac-CS’ theory (with massless fermions) has been used to describe

phase transitions between fractional quantum Hall plateaus in certain limits [26, 154] and

transitions out of a chiral spin liquid state [14, 65, 190]

In this paper, we study the finite size spectrum of the QED3 and Dirac-CS theories on the

torus. While the state-operator correspondence often motivates theorists to put CFT’s on
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spheres, the torus is the most practical surface to study on a computer. The energy spectrum

on the torus does not give any quantitative information regarding the operator spectrum of

the theory, but it is a universal function of the torus circumference L and modular parameter

τ and, therefore, can be used to compare with numerically generated data. The torus has

the additional distinction of being the simplest topologically non-trivial manifold. A defining

characteristic of topological order is the degeneracy of the groundstate when the theory is

placed on a higher genus surface. On the torus, the pure abelian CS theory at level k has

k ground states [187, 194] whose degeneracy is only split by terms which are exponentially

small in L. Here, we will couple Nf massless Dirac fermions to the CS theory and find a rich

spectrum of low energy states with energies which are of order 1/L. In the limit of large Nf

and k, we will present a computation which gives the k degenerate levels in the absence of

Dirac fermions and a universal spectrum with energies of order 1/L in the presence of Dirac

fermions.

Proposals for ASL phases typically begin with a parton construction of the spin-1/2 Heisen-

berg antiferromagnet

H =
∑
⟨ij⟩

JijSi · Sj , (5.1)

where Si represent the physical spin operators of the theory and i, j label points on the

lattice. Slave fermions are introduced by expressing the spin operators as Si = 1
2
f †
iασαβfiβ,

where fiα is the fermion annihilation operator and σ = (σx, σy, σz) are the Pauli matrices.

This is a faithful representation of the Hilbert space provided it is accompanied by the local

constraint

∑
α

f †
iαfiα = 1. (5.2)

Since the physical spin Si is invariant under the transformation fiα → eiϕifiα, the slave

fermions necessarily carry an emergent gauge charge. Replacing spins with slave fermions,
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decoupling the resulting quartic term, and enforcing
⟨
f †
iαfiα

⟩
= 1 on average returns an

ostensibly innocuous mean field Hamiltonian HMF = −
∑

⟨ij⟩ tijf
†
iαfjα + H.c. The mean

field theory is a typical tight-binding model, but with electrons replaced by slave fermions.

However, the stability of HMF is by no means guaranteed, and gauge fluctuations must be

taken into account. This is achieved by supplementing the mean field hopping parameter

with a lattice gauge connection aij: tij → tije
iaij . Under the renormalization group, kinetic

terms for the gauge field are generated. Since the connection aij parametrizes the phase

redundancy of the fiα’s, it is a 2π-periodic quantity, and the resulting lattice gauge theory

is compact. Determining the true fate of these theories is where numerics provide such great

insight.

The mean field Hamiltonians of the models we are concerned with possess gapless Dirac

cones. In the continuum they can be expressed

SD[ψ,A] = −
∫
d3r ψ̄αiγ

µ (∂µ − iAµ)ψα, (5.3)

where r = (τ,x) is the Euclidean spacetime coordinate, ψα is a two-component complex

spinor whose flavour index α is summed from 1 to Nf , and Aµ is a U(1) gauge field that

is obtained from the continuum limit of the aij. The gamma matrices are taken to be

γµ = (σz, σy,−σx), and ψ̄α = iψ†
ασ

z. On the the kagome lattice, the mean field ansatz with

a π-flux through the kagome hexagons and zero flux through the triangular plaquettes has a

particularly low energy [58, 61, 139]. Its dispersion has two Dirac cones, which, accounting

for spin, gives Nf = 4.

By writing the theory in the continuum limit in the form of Eq. (5.3), we are implicitly

assuming that monopoles (singular gauge field configurations with non-zero flux) in the

lattice compact U(1) gauge theory can be neglected. In their absence, the usual Maxwell
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action can be added to the theory

SM[A] =
1

4e2

∫
d3r FµνF

µν , Fµν = ∂µAν − ∂νAµ, (5.4)

resulting in the full QED3 action, Sqed[ψ,A] = SD[ψ,A] + SM[A]. Importantly, when Nf is

smaller than some critical value, these manipulations are no longer valid. SM[A] is never an

appropriate low-energy description of a lattice gauge theory with Nf = 0: for all values of

e2, monopoles will proliferate and confine the theory [127, 129]. In the confined phase, the

slave fermions cease to be true excitations, and remain bound within the physical spins Si.

However, matter content suppresses the fluctuations of the gauge field. For Nf large enough,

monopoles are irrelevant operators, [19, 28, 64, 132] and Sqed[ψ,A] is a stable fixed point

of the lattice theory [64]. In this limit, QED3 is believed to flow to a non-trivial CFT in

the infrared, and this has been shown perturbatively to all orders in 1/Nf [9, 75, 176, 177].

The critical theory is obtained by naïvely taking the limit e2 → ∞, and, for this reason, the

Maxwell term will be largely ignored in what follows.

The Dirac fermions ψα represent particle or hole-like fluctuations about the Fermi level.

Consequently, any single-particle state violates the local gauge constraint in Eq. (5.2) and

is prohibited. Since fluctuations in Aµ are suppressed at Nf = ∞, we might expect this

neutrality to be the only signature of the gauge field in the large Nf limit, and so the

spectrum on the torus is given by the charge neutral multi-particle states of the free field

theory. It is important to note that all of these multi-particle states are built out of single

fermions ψα which obey anti-periodic boundary conditions around the torus: such boundary

conditions (or equivalently, a background gauge flux of π and periodic boundary conditions

for the fermions) minimize the ground state energy, as we show in Appendix D.3. Some of

these energy levels are given in Table 5.2.

Even among the charge neutral multiparticle states, there are certain states of the free

field theory which are strongly renormalized even at Nf = ∞. These are the SU(Nf ) singlet

79



Chapter 5 – Spectrum of conformal gauge theories on a torus

states which couple to the Aµ gauge field. Computation of these renormalizations is one of

the main purposes of the present paper. We show that the energies of these states are instead

given by the zeros of the gauge field effective action. A similar conclusion was reached in

Ref. 189 for the O(N) model, where the O(N) singlet levels were given by the zeros of the

effective action of a Lagrange multiplier.

In Table 5.1, we list some of the lowest frequency modes of the photon in QED3 on a square

torus, obtained in the large Nf computation just described. Because the theory on the torus

is translationally invariant, we can distinguish states by their total external momentum.

For each momentum considered, the left-most column gives the photon frequency with its

degeneracy is shown on the right. By including multi-photon states, the actual energy levels

of the photon are shown in Table 5.3 for the same set of momenta. The origin of the photon

shift will be apparent when we find the free energy in Sec. 5.2.3 and explicitly calculate the

energy levels in Sec. 5.3.

A similar story applies to the Dirac-CS theory with finite CS coupling k:

SCS[A] =
ik

4π

∫
d3r ϵµνρAµ∂νAρ. (5.5)

The addition of this term gives the photon a mass and attaches flux to the Dirac fermions so

that they become anyons with statistical angle θ = 2π(1−1/k). The Dirac-CS theory applies

to the chiral spin liquid which spontaneously breaks time reversal, generating a Chern-Simons

term at level k = 2 [83]. Similarly, a CS term with odd level can be used to impose anyonic

statistics on the quasiparticles of a fractional quantum Hall fluid. The Dirac-CS CFT we

consider can describe the continuous transitions into and between such topological phases

[14, 65, 190]. It is given by SDCS[ψ,A] = SD[ψ,A] + SCS[A] (after taking e2 → ∞). As

k becomes very large, the anyons become more fermion-like, making an expansion in 2π/k

possible at large Nf [26, 154].

Once again, keeping λ = Nf/k fixed, the critical Dirac-CS theory is both stable and
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q̄ = (0, 0) q̄ = (1, 0) q̄ = (1, 1)

ω̄γ dγ ω̄γ dγ ω̄γ dγ

1.437980 1
1.682078 1
1.739074 1

1.976292 1
2.311525 2

2.527606 1
2.658092 1

2.813224 1
3.156341 1
3.407832 1

3.517617 1
3.626671 1

3.814432 1
3.855225 2

4.092996 1
4.259784 1
4.330137 1

4.425387 1
4.523167 1

4.586816 2
4.657172 1

4.685590 1

Table 5.1: Photon modes in QED3 (CS level k = 0) on a square torus of size L. Frequencies
are shown for q = 0, q1 = 2π(1, 0)/L, and q2 = 2π(1, 1)/L. The 1st, 3rd, and 5th columns
list the frequencies, ωγ, while the column immediately to the right provides the degeneracy,
dγ. The actual photon energy levels are given by these frequencies as well as integer multiples.
(q̄ = Lq/2π, Ē = LE/2π.)
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tractable in the large-Nf limit. The qualitative features of the spectrum are very similar to

QED3. Again ψα is not a gauge invariant quantity and cannot exist by itself in the spectrum.

The Gauss law mandates that it be accompanied by k units of flux. In the large-k limit,

these states have very high energies and can be neglected: only charge-neutral excitations

need be considered. Likewise, the energy levels of the SU(Nf ) singlet states coupling to the

gauge field are strongly renormalized even at large Nf , while the mixed-flavor two-particle

excitations behave as free particles. As k/Nf becomes large, the Chern-Simons term will

dominate and the topological degeneracy which was lost upon coupling to matter will reassert

itself. The photon modes of the zero external momentum sector are shown in Table 5.4 for

several values of λ.

We will calculate the energy spectrum using a path integral approach similar to that of

Ref. 97. In order to ensure that the gauge redundancy is fully accounted for, it is useful to

first calculate the free energy. This is done in Sec. 5.2, starting with two exactly solvable

theories, pure Chern-Simons and Maxwell-Chern-Simons, before moving on to QED3 and

the Dirac-CS theory in the large-Nf limit. The structure of the free energy will allow us to

identify the multi-fermion states, along with their bound states which appear in the photon

contribution. In Sec. 5.3 we determine the energy levels and we conclude in Sec. 5.4.

5.2 Path integral and free energy

To understand the spectrum of the large-Nf QED3 and Dirac-CS theory, we evaluate its

path integral [97]. The path integral is

Z =
1

Vol(G)

∫
DADψ e−S[A,ψ] (5.6)

where Vol(G) is the volume of the gauge group. For simplicity, we work on the square torus:

the modular parameter τ = i and the x- and y-cycles are equal in length: x ∼ x + L,

y ∼ y+L. Eventually, we will specify to the zero-temperature limit, 1/T = β → ∞, but for
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now we leave β finite.

The gauge field A can be split into zero and finite momentum pieces,

Aµ = aµ + A′
µ, A′

µ =
1√
βL2

′∑
p

Aµ(p)e
ipr, (5.7)

where p sums over pµ = 2πnµ/Lµ, Lµ = (β, L, L) where nµ ∈ Z and the prime on the

summation indicates that the nµ = (0, 0, 0) mode is not included. We note that while this

representation is completely sufficient for the theories we consider in the paper, it does allow

for non-trivial flux sectors, and this is discussed in more detail in Appendix D.6. Overlooking

this technicality, the measure of integration is DA = DaDA′. Unlike on R3, the zero modes

a are not pure gauge configurations. Instead, the gauge transformation which shifts a,

U = exp

[
2πi
∑
µ

nµrµ
Lµ

]
, (5.8)

is only well-defined provided nµ ∈ Z. Under the action of U , the zero modes transform as

aµ → aµ + 2πnµ/Lµ, and so they are periodic variables and should be integrated only over

the intervals [0, 2π/Lµ). Including a Jacobian factor of
√
βL2 for each component, we have

∫
Da =

(
βL2

)3/2 ∫ 2π/β

0

da0

∫ 2π/L

0

d2a. (5.9)

The spatially varying portion of the gauge field can be decomposed further into A′ = B+dϕ

where ϕ parametrizes the gauge transformations of A′, and B may be viewed as the gauge-

fixed representative of A′. Naturally, gauge invariance implies that the action is independent

of ϕ: S[ψ,A] = S[ψ, a+B]. Here, we work in the Lorentz gauge, ∂µBµ = 0. The full measure

of integration is then

DA = DaDBD(dϕ). (5.10)
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We begin by expressing D(dϕ) directly in terms of the phases ϕ. They can be related through

the distance function D(ω, ω + δω) =
(∫

|δω|2
)1/2:

D (ϕ, ϕ+ δϕ) =

(∫
|δϕ|2

)1/2

D(dϕ, dϕ+ dδϕ) =

(∫
|dδϕ|2

)1/2

=

(∫
δϕ
(
−∇2

)
δϕ

)1/2

. (5.11)

Changing variables, the measure becomes

D(dϕ) = D′ϕ
√

det′ (−∇2) (5.12)

where the primes indicate that constant configurations of ϕ are not included and that the zero

eigenvalue of the Laplacian is omitted. This functional determinant is the familiar Faddeev-

Popov (FP) contribution to the path integral. As expected for abelian gauge theories, both

of these factors are independent of the gauge field B.

The volume of the gauge group can be divided in a similar fashion

Vol(G) = Vol(H)

∫
D′ϕ, (5.13)

where H is the group of constant gauge transformations.
∫
D′ϕ will cancel the identical

factor present in the numerator from the gauge field measure in Eq. (5.12), and Vol(H) can

be determined using the distance function defined above. A constant gauge transform has

ϕ = c, a constant, where c ∈ [0, 2π). We find

Vol(H) =

∫ 2π

0

dc
D(c, c+ δc)

δc
=

∫ 2π

0

dc
δc

δc

(∫
1

)1/2

= 2π
√

Vol (T 2 × S1) = 2π
√
βL2. (5.14)
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Putting these facts together, we are left with

Z =
βL2

2π

√
det′ (−∇2)

∫
d3aDBDψ e−S[a,B,ψ]. (5.15)

In the following two sections, we calculate the free energies and partition functions of the pure

Chern-Simons and the Maxwell-Chern-Simons theories. These serve as simple examples (and

verifications) of the normalization and regularization procedure, before we move on to the

third section and primary purpose of this paper, large-Nf QED3 and Dirac-Chern-Simons.

5.2.1 Pure Chern-Simons theory

It is well-known that pure abelian Chern-Simons theory should have ZCS = k [194]. Since

the action in Eq. (5.5) only has linear time derivatives, the Hamiltonian vanishes and it

may at first be surprising that ZCS is not simply unity: ⟨0|0⟩ = 1. One way to understand

this is through canonical quantization. The observable operators of the theory are the two

Wilson loops winding around either cycle of the torus. Their commutations relations are

determined by the Chern-Simons term, and at level k, it can be shown that the resulting

representation requires at least a k-dimensional Hilbert space (see e.g. [130]). The partition

function is therefore ZCS =
∑k

n=1 ⟨n |n⟩ = k. Within the general framework of topological

field theories, the partition function on the torus should evaluate to the dimension of the

corresponding quantum mechanical Hilbert space.

The pure CS partition function is

ZCS =
βL2

2π

√
det′ (−∇2)

∫
daDB e−SCS[B]. (5.16)

We write the Chern-Simons action in momentum space as SCS[B] = 1
2

∑
q Bµ(−q)Πµν

CS(q)Bν(q)

where

Πµν
CS(q) =

ik

2π
ϵµνρqρ, (5.17)
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with qµ = 2πnµ/Lµ, nµ ∈ Z. Performing the Gaussian integral, we find

ZCS =
βL2

2π

√
det′ (−∇2)

√
det′

(
2π

Πµν
CS

)∫
da. (5.18)

It is simpler to work with the free energy and then return to the partition function at the

end of the calculation:

FCS = − 1

β
logZCS = Fa + Fπ + FFP − 1

β
log

[
βL2

2π

]
. (5.19)

We proceed to treat each contribution individually. The integral over the zero modes gives

Fa = − 1

β
log

[∫
da

]
= − 1

β
log

[
(2π)3

βL2

]
. (5.20)

This cancels the volume-dependent constant in the free energy, leaving FCS = − 1
β
log(2π)2+

Fπ + FFP. The FP determinant’s contribution is

FFP = − 1

β
log
√

det′ (−∇2) = − 1

2β

′∑
q

log q2 (5.21)

where qµ = 2πnµ/Lµ, nµ ∈ Z. As will be the convention throughout this paper, the prime on

the summation indicates that the zero momentum mode (nµ = (0, 0, 0)) is omitted. Finally,

the piece from the Gaussian integral is

Fπ =
1

2β
log det′

[
Πµν
CS

2π

]
. (5.22)

For each momentum qµ, the Chern-Simons kernel has three eigenvalues, 0 and±ik |q| /2π, but

only the non-zero values should be included. In fact, it is easy to verify that the eigenvector

corresponding to the 0 eigenvalue is proportional to qµ and consequently arises from the pure
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gauge configurations ∼ ∂µϕ which have already been accounted for. Therefore,

Fπ =
1

2β

′∑
q

log

[
1

4π2

k2

4π2
q2
]
. (5.23)

Using the zeta-function regularization identity
∑′

p = −1, we have

Fπ =
1

2β

′∑
q

log q2 − 1

β
log

(
k

4π2

)
. (5.24)

The momentum sum in Fπ cancels exactly with the sum in FFP. This is a direct consequence

of the fact that the CS theory has no finite energy states and, notably, is only apparent when

the Faddeev-Popov and gauge kernel determinants are considered together. All together, the

total free energy is

FCS = − 1

β
log k, (5.25)

which gives ZCS = k as claimed.

5.2.2 Maxwell-Chern-Simons theory

It is also useful to understand how the topological degeneracy emerges in the presence of

finite-energy modes. This is easily accomplished by adding a Maxwell term:

SMCS[A] = SM[A] + SCS[A], (5.26)

where SM[A] is given in Eq. (5.4). The procedure for calculating the free energy is identical

to the pure CS case except that the gauge kernel is now

ΠMCS(q) =
q2

e2

(
δµν − qµqν

q2

)
+
ik

2π
ϵµνρqρ. (5.27)
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As above, this matrix has one vanishing eigenvalue in the pure gauge direction and two

non-trivial ones in orthogonal directions:

q2

e2
± ik

2π
|q| . (5.28)

Performing the functional integral and taking the logarithm, we find

Fπ =
1

2β

′∑
q

log

[
q4

e4
+
k2q2

4π2

]
. (5.29)

As in the pure CS case, the FP determinant cancels a factor of q2 from Fπ. Now, however,

this does not completely remove the momentum dependence of the sum. The total free

energy is

FMCS = − 1

β
log 4π2 + Fπ + FFP =

1

β
log

(
e2

2π

)
+

1

2β

′∑
n,q

log

[
ϵ2n + q2 +

e4k2

4π2

]
, (5.30)

where we’ve written qµ = (ϵn, q) with ϵn = 2πn/β, n ∈ Z. Analytically continuing to real

time, ϵn → −iω, the argument of the logarithm is ω2 − γ2q where γq =
√
q2 + (e2k/2π)2.

We recognize the γq’s as the frequencies of a set of harmonic oscillators. As in the previous

section, this is only manifest when the sum Fπ + FFP is considered: by itself, Fπ seems to

imply the existence of an extra set of oscillators whose frequencies are γ̃q = |q|.

The presence of the oscillators is even clearer upon performing the (imaginary) frequency

sum. Adding and subtracting the zero mode, we are left to evaluate an infinite sum

FMCS = − 1

β
log

(
2πγ0
e2

)
+

1

2β

∑
n,q

log

[
n2 +

(
βγq
2π

)2
]
. (5.31)

By using the known analytic properties of the zeta function for complex s, we can assign

a value to the otherwise obviously diverging sum. For the logarithm, this representation
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results in the identification

∑
n

log

[
n2 +

(
βγq
2π

)2
]
= − lim

s→0

d

ds

∑
n

[
n2 +

(
βγq
2π

)2
]−s

= − lim
s→0

d

ds
ζE

(
s;

(
βγq
2π

)2
)

(5.32)

where ζE(s; a2) is the Epstein zeta function. After some standard manipulations (given in

Appendix D.2), we arrive at the expression

FMCS = − 1

β
log k − 1

β

∑
q

log

[
e−βγq/2

1− e−βγq

]
. (5.33)

Re-exponentiating, we find

ZMCS = k
∏
q

Zq, Zq =
e−βγq/2

1− e−βγq
= e−βγq/2

∞∑
n=0

e−βnγq . (5.34)

As observed, the partition function is a product over an infinite stack of harmonic oscillators

with frequencies γq. The topological degeneracy enters through the factor of k multiplying

ZCS: there are k identical sets of oscillators. We note that in the limit e2 → ∞, the barrier to

the first excited state becomes infinitely large, effectively projecting onto the lowest Landau

level. Ignoring some constants, we arrive back at the pure Chern-Simons described above.

5.2.3 QED3 and Dirac-Chern-Simons theory

When we couple the gauge field to fermions, the partition function is no longer exactly

solvable. Nonetheless, when the number of fermion flavours, Nf , is large, a saddle-point

approximation is valid and allows a systematic expansion in 1/Nf . As discussed in the

introduction, the QED3 and Dirac-CS fixed points are obtained in the limit e2 → ∞, and

so we will not explicitly include the Maxwell action SM[A] in our calculations. In order to

avoid the parity anomaly [146, 147], we take Nf to be even in all that follows. The partition
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function is given in Eq. (5.15) with action

SDCS[ψ,A] = SD[A,ψ] + SCS[A]. (5.35)

where SD[A,ψ] and SCS[A] are given in Eqs. (5.3) and (5.5) respectively. The Chern-Simons

level k is assumed to be of the same order as Nf . We begin by integrating out the fermions,

Z =
βL2

2π

√
det′ (−∇2)

∫
daDB exp

(
−SCS[B] +Nf log det i /D

)
, (5.36)

where /D = σµ (∂µ − iaµ − iBµ). We subsequently expand the determinant in terms of B:

log det(i /D) = tr log
(
i/∂ + /a

)
+ tr

(
1

i/∂ + /a
/B

)
− 1

2
tr
(

1

i/∂ + /a
/B

1

i/∂ + /a
/B

)
+ · · · (5.37)

By rescaling B → B/
√
Nf , the subleading behaviour of the linear and quadratic terms, as

well as the Chern-Simons action, is clear.

On the plane, the saddle-point value of A vanishes by symmetry and gauge invariance.

However, since A → A + c for constant c is no longer a gauge transformation on the torus,

the zero modes are distinct and could conceivably have a non-zero expectation value: ⟨a⟩ =

ā ̸= 0. In fact, neither the pure CS nor Maxwell-CS actions depended on aµ. The matter

lifts this degeneracy by creating an effective potential for the a’s, and ā can be determined

by minimizing the free fermion functional determinant

F0(a) = −tr log
(
i/∂ + /a

)
= −

∑
p

log (p+ a)2 . (5.38)

The summation above is over spacetime momenta pµ = 2π (nµ + 1/2) /Lµ, nµ ∈ Z as is ap-

propriate for our choice of fermions with antiperiodic boundary conditions. This calculation

is performed in Appendix D.3 where it is shown that the saddle-point value of the gauge

field is āµ = 0: this is closely linked to the choice of anti-periodic boundary conditions for
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the fermions, which we have established also minimize the total energy.

The linear term in B in Eq. (5.37) vanishes, so that the subleading term in the determinant

expansion is

Sf [B] =
Nf

2
tr
(

1

i/∂
/B
1

i/∂
/B

)
=
Nf

2

∑
q

Bµ(−q)Πµν
f (q)Bν(q) (5.39)

where

Πµν
f (q) =

2

βL2

∑
p

pµ (pν + qν) + (pµ + qµ) pν − δµνp · (p+ q)

p2 (p+ q)2
. (5.40)

On the plane, this expression evaluates to [90]

Πµν
∞ =

|q|
16

(
δµν − qµqν

q2

)
. (5.41)

On the torus, a simple analytic formula is no longer available and Πf must be calculated

numerically. Expressions for the components of Πµν
f on the symmetric torus are given in

Appendix D.4.

Since k ∼ O(Nf ), the CS term will contribute at the same order as Πf . Rescaling Eq. (5.17)

to bring out an overall factor ofNf , we write the momentum space kernel of the Chern-Simons

term as

Πµν
CS(q) =

i

2πλ
ϵµνρqρ, λ =

Nf

k
. (5.42)

All together, the full effective potential is

Seff[B] =
Nf

2

∑
q

Bµ(−q)Πµν(q)Bν(q), Πµν(q) = Πµν
CS(q) + Πµν

f (q), (5.43)
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and the large-Nf partition function is

Z ∼=
βL2

2π

√
det′ (−∇2) e−βNfF0(ā)

∫
DB exp

[
−1

2

∑
q

Bµ(−q)Πµν(q)Bν(q)

]

=
βL2

2π

√
det′ (−∇2) e−βNfF0(ā)

√
det′

(
2π

Πµν

)
. (5.44)

The corresponding free energy is

F = − 1

β
logZ ∼= NfF0 + FG − 1

β
log

[
βL2

2π

]
(5.45)

where the full gauge field contribution is

FG = FFP + Fπ

Fπ = − 1

β
log

√
det′

(
2π

Πµν

)
FFP = − 1

β
log
√

det′ (−∇2). (5.46)

Zero external momentum, q = 0

We begin by considering the zero (spatial) momentum portion of the free energy. Denoting

the Euclidean spacetime momenta qµ = (ϵ, q), we set q = 0. In this case, only Πij(ϵ, 0) ̸= 0,

for i, j = x, y:

Πij(ϵ, 0) =

 Πxx
f ϵ/2πλ

−ϵ/2πλ Πyy
f

 . (5.47)

Expressions for Πxx
f and Πyy

f are given in Eqs. (D.25) and (D.26) of Appendix D.4. Taking

the determinant, the free energy is

F q=0
π =

1

β
log 2π +

1

2β

′∑
n

log

[
Πxx
f (ϵn, 0)

2 +
ϵ2n

4π2λ2

]
(5.48)
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where ϵn = 2πn/β, n ∈ Z/{0}, and the symmetry of the torus has been used to set Πxx
f =

Πyy
f . The FP piece is

F q=0
FP = − 1

2β

′∑
n

log ϵ2n . (5.49)

Adding the two and taking the zero temperature limit, β → ∞, the total gauge contribution

is

F q=0
G =

1

2

∫
dϵ

2π
log

[(
Πxx
f

ϵ

)2

+
1

4π2λ2

]
. (5.50)

For large ϵ, the integral does not converge. Instead, Πxx
f approaches its infinite volume limit

in Eq. (5.41):

(
Πxx
f

ϵ

)2

+
1

4π2λ2
→
(

1

16

)2

+
1

4π2λ2
. (5.51)

This is not a problem since an integral over a constant vanishes in the zeta regularization

scheme. Adding and subtracting the large frequency limit, the free energy is a finite function

F q=0
G =

1

2

∫
dϵ

2π

{
log

[(
Πxx
f

ϵ

)2

+
1

4π2λ2

]
− log

[(
1

16

)2

+
1

4π2λ2

]}
. (5.52)

Finite external momentum, q ̸= 0

For the finite momentum piece, we begin by restricting the polarization matrix Πµν(ϵ, q) to

the physical subspace. As required by gauge invariance, it has a vanishing eigenvalue along

the qµ = (ϵ, q) direction: qµΠµν = 0. To determine the remaining two modes, we project
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onto the orthogonal directions

vT =
1

|q|


0

qy

−qx

 , vL =
1

|q|
√
ϵ2 + q2


−q2

ϵqx

ϵqy

 , (5.53)

and, after some simplifying, arrive at

Πproj =
1

q2

 (ϵ2 + q2)Π00
√
ϵ2 + q2 (qyΠ

0x − qxΠ
0y)√

ϵ2 + q2 (qyΠ
0x − qxΠ

0y) q2 (Πxx +Πyy)− ϵ2Π00

 . (5.54)

Taking the determinant, the contribution to the free energy is

F q ̸=0
π = − 1

β
log

√
det′

(
2π

Πµν

)
= − 1

β

′∑
ϵ,q

log 2π +
1

2β

′∑
ϵ,q

log Πµν

=
1

2

∫
dϵ

2π

′∑
q

log

{
(ϵ2 + q2)

q2

[
Π00

(
Πxx +Πyy − ϵ2

q2
Π00

)
− 1

q2

(
qyΠ

0x − qxΠ
0y
)2]}
(5.55)

where the 1
β
log 2π term has vanished in the zero temperature limit. The Faddeev-Popov

portion of the free energy,

F q ̸=0
FP = −1

2

∫
dϵ

2π

∑
q

log
(
ϵ2 + q2

)
, (5.56)

perfectly cancels the ϵ2 + q2 prefactor inside the logarithm in Eq. (5.55). Had it not been

included, we may have erroneously assumed the existence of a state with energy E = |q| as

there is on the plane when k = 0.

As ϵ2 + q2 becomes large, Πµν approaches its infinite volume limit (Eq. (5.41)) like in

the q = 0 case. Here as well, the summand becomes a constant which vanishes in our
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regularization procedure. Putting this together, we have

F q ̸=0
G =

1

2

∫
dϵ

2π

′∑
q

{
log

[
Π00

q2

(
Πxx +Πyy − ϵ2

q2
Π00

)
− 1

q4

(
qyΠ

0x − qxΠ
0y
)2]

− log

[(
1

16

)2

+
1

4π2λ2

]}
. (5.57)

The total contribution of the gauge field to the free energy is given by the sum of this

expression with F q=0
G in Eq. (5.52).

5.3 Spectrum

In this section we explicitly calculate the universal spectrum on the finite torus using the

path integral expansion we just derived.

As the photon is the only element of the theory which differs from the free theory of Nf

Dirac fermions, it is not surprising that the free theory spectrum can account for most of

the states. The free Hamiltonian is

HD = −i
∫
d2xψ†

α(x)σi∂iψα(x), (5.58)

and can be diagonalized by first going to Fourier space,

ψα(x) =
1

L2

∑
p

eiq·x

c1α(p)
c2α(p)

 , p =
2π

L

(
nx +

1

2
, ny +

1

2

)
, nx,y ∈ Z, (5.59)

and then changing basis to χ±α(p):

c1α(p)
c2α(p)

 =
1√
2

 1 1

P/ |p| −P/ |p|


χ+α(p)

χ−α(p)

 , (5.60)
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where P = px + ipy, |p| =
√
p2x + p2y. In this basis, the Hamiltonian is

HD =
∑
p

|p|
[
χ†
+α(p)χ+α(p)− χ†

−α(p)χ−α(p)
]
. (5.61)

We identify the vacuum as the state having all negative energy modes filled: χ+α(p) |0⟩ =

χ†
−α(p) |0⟩ = 0. Consequently, χ†

+α(p) is a particle creation operator carrying momentum p,

and χ−α(p) is a hole creation operator carrying momentum −p. Note that all the fermionic

momenta correspond to anti-periodic boundary conditions around the torus, because these

minimize the ground state energy, as shown in Appendix D.3.

To determine the excitations relevant to QED3 and the Dirac-CS theory, we recall that

once the theory is gauged, neither χ+α(p) nor χ−α(p) is gauge invariant, and all single-

particle states are prohibited. Similarly, only charge-neutral two-particle states are allowed.

We therefore expect the lowest fermion-like energy states to be of the form

χ†
+α(p+ q)χ−β(p) |0⟩ , χ†

+α(−p)χ−β(−p− q) |0⟩ . (5.62)

Here, we have taken advantage of the translational invariance of the theory to distinguish

states by their total external momentum q, where q = 2π (nx, ny) /L, nx,y ∈ Z. Provided

the internal momentum p is not such that p + q = −p, these states are distinct for each

α, β, and have energy

Ef (q,p) = |p+ q|+ |p| . (5.63)

Naïvely counting, for every q and p, the flavour symmetry gives (at least) 2N2
f such states

(additional degeneracies may be present depending on the lattice and internal momentum,

but this will not be important for the subsequent discussion). When p + q = −p, the two

states in Eq. (5.62) are identical, and there are only N2
f possible states.

This story no longer holds even at Nf = ∞. The gauge field only couples to single
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trace operators, so it is natural to expect that the corresponding states may be shifted

like in the O(N) model [189]. However, QED3 and the Dirac-CS theory differ from this

example by having four different single-trace fermion bilinear operators: the “mass” operator

M(x) = ψ̄αψα(x) and the global gauge currents, Jµ(x) = ψ̄αγ
µψα(x). It is apparent that the

current operators and the mass operator must be treated very differently when we consider

the equations of motion:

Jµ =
k

4π
Jµtop +

i

e2
ϵµνρ∂νJtop,ρ, (5.64)

where Jµtop = ϵµνρ∂νAρ is the current of the topological U(1)top symmetry. This symmetry is

equivalent to the non-compactness of Aµ and the irrelevance of monopoles at the fixed point.

At Nf = ∞, when k = 0, Jµ is more correctly understood as a descendant of the topological

current and not as a composite operator. In the e2 → ∞ limit, it vanishes altogether and

should not be included in the spectrum: all states corresponding the poles of ⟨Jµ(x)Jν(0)⟩

in the free theory no longer exist in large-Nf QED3. The degeneracy is reduced so that for

each total momentum q and internal momentum p (where p + q ̸= −q), QED3 has only

2N2
f − 1 free-fermion-like states with energy Ef (q,p) (when p + q = −p, the degeneracy

is further reduced to N2
f − 1). This is discussed in more detail in Appendix D.5. For a

small set of momenta, these energy levels are shown in Table 5.2 along with their respective

degeneracies.

For non-vanishing k, the situation is very similar. Eq. (5.64) indicates that the CS term

attaches k units of charge to each unit of magnetic flux so that the charged state with the

lowest energy has k fermions accompanied by a single unit of magnetic flux. In the limit

k → ∞, these states have very high energies and, as in the k = 0 case, will not contribute to

the low energy spectrum. The same free-fermion states whose energies are given in Table 5.2

also appear in the Dirac-CS theory with the same degeneracy theory regardless of the level

k.
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q̄ = (0, 0) q̄ = (1, 0) q̄ = (1, 1)

Ēf df Ēf df Ēf df

1.414214 4N2
f − 2 1.414214 2N2

f − 1 1.414214 N2
f − 1

2.288246 4N2
f − 2 2.288246 4N2

f − 2

2.828427 2N2
f − 1

3.162278 8N2
f − 4 3.162278 2N2

f − 1 3.162278 2N2
f − 1

3.702459 4N2
f − 2

4.130649 4N2
f − 2 4.130649 4N2

f − 2

4.242640 4N2
f − 2

4.496615 4N2
f − 2

4.670830 4N2
f − 2

Table 5.2: Energies of two-particle fermion states in QED3 (CS level k = 0) on a square
torus of size L. Energies are shown for q = 0, q1 = 2π(1, 0)/L and q2 = 2π(1, 1)/L. The
1st, 3rd, and 5th columns list the energy levels, Ef , while the column to the right, labelled
df , shows the degeneracy of the level. The energy levels with finite external momentum,
q1 = 2π(1, 0)/L and q2 = 2π(1, 1)/L, have an additional 4-fold degeneracy resulting from
the symmetry of the lattice. (q̄ = Lq/2π, Ē = LE/2π.)
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For both QED3 and Dirac-CS, the removal of Jµ is counterbalanced by the addition of

Aµ. The spectrum must be supplemented by the poles of the photon propagator, ∆µν(x) =

⟨Aµ(x)Aν(0)⟩, and, unlike for the free-fermion states, the energies of the photon states depend

on the level k.

From the effective action in Eq. (5.43), the photon propagator is obtained by inverting the

polarization matrix Πµν(q). However, as discussed in the previous section, gauge invariance

is only fully taken into account once the FP determinant’s contribution is included as well.

Analogous to our identification of γq as the frequencies in a set of harmonic oscillators for the

Maxwell-Chern-Simons theory in Eq. (5.30), the physical photon modes are actually given

by the zeros of the argument of the logarithms in FG. When Nf = ∞, each mode represents

an infinite tower of states of a harmonic oscillator like in Maxwell-Chern-Simons: additional

energy levels are present as integer multiples of the modes determined from FG. Eqs. (5.52)

and (5.57) indicate that these modes occur when the functions

K0(ω) = −
(
Πxx
f (ω, 0)

ω

)2

+
1

4π2λ2
(5.65)

Kq(ω) =
Π00(ω, q)

q2

(
Πxx(ω, q) + Πyy(ω, q) +

ω2

q2
Π00(ω, q)

)
− 1

q4

(
qyΠ

0x(ω, q)− qxΠ
0y(ω, q)

)2
vanish. Here, we have analytically continued to real frequencies, ω = iϵ. In what follows ϵ

will always denote an imaginary frequency, while ω will represent a real frequency; the same

symbol for the polarization Πµν is used for both. For k = 0, some modes levels are listed

in Table 5.1 while Table 5.3 shows the lowest energy levels when multi-photon states are

included. Table 5.4 gives the lowest ten modes with zero external momentum for several

values of λ = Nf/k.

To summarize, the Nf = ∞ theory does not have single-particle excitations. Instead, the

lowest energy states are of the form given in Eq. (5.62) or are created by the photon, Aµ.

The free fermion 2-particle energies Ef (q,p) occur with either a (2N2
f −1) or a (N2

f −1)-fold

degeneracy depending on the internal momentum p (and before additional lattice symmetries
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q̄ = (0, 0) q̄ = (1, 0) q̄ = (1, 1)

Ēγ dEγ Ēγ dEγ Ēγ dEγ
0.58413 2
1.16826 4

1.43798 1
1.68208 1
1.73907 1

1.75239 8
1.97629 1
2.02211 2

2.26621 2
2.31153 2

2.3232 2
2.33652 16

2.52761 1
2.56042 2
2.60624 4
2.65809 1

2.81322 1
2.85034 4

2.87596 2
2.89566 4
2.89566 4

2.90733 4
2.92065 32

3.11174 2
3.14455 4
3.15634 1
3.19037 8
3.24222 2

3.36416 2
3.39735 2

Table 5.3: Photon energy levels in QED3 (CS level k = 0) on a square torus of size L. Energies
are shown for states with total momentum q = 0, q1 = 2π(1, 0)/L and q2 = 2π(1, 1)/L. The
1st, 3rd, and 5th columns list the energy levels, Eγ, while the column immediately to the
right provides their degeneracy, dEγ . (q̄ = Lq/2π, Ē = LE/2π.)

100



Chapter 5 – Spectrum of conformal gauge theories on a torus

0 1 2 3 4 5 6

ω̄

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

LΠxx(ω, 0)
±|ω̄|/λ

Figure 5.1: Plot of Πxx
f (ω, 0) and |ω| /2πλ. When k = 0, the modes are two-fold degenerate

and occur when Πxx
f = 0. For k ̸= 0, the degeneracy splits and the frequencies are given by

the intersection points Πxx
f (ω, 0) = ± |ω| /(2πλ). For λ = 4, this occurs when the solid blue

and dashed magenta lines cross. The lowest and second-lowest energies are shown in black
with an asterisk and a circle respectively. The vertical dash-dotted lines in red mark the
poles of Πxx

f at the two-particle energies of the free theory. (ω̄ = Lω/2π.)

are taken into account). The frequency modes of the photon operator are given by the gauge-

fixed poles of ∆µν and correspond to the zeros of the expressions in Eq. (5.65). Each mode,

ωγ, represents a harmonic oscillator so that the energies 2ωγ , 3ωγ, ωγ+ωγ′ , . . . are present in

the spectrum as well. We will examine Eq. (5.65) in more detail in the subsequent sections.

5.3.1 Zero external momentum, q = 0

When the external momentum vanishes, the zeros of Eq. (5.65) occur when

Πxx
f (ω, 0) = ± |ω|

2πλ
. (5.66)
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In Fig. 5.1, the left-hand side is shown with a solid blue line and the right-hand side is shown

with a dashed magenta line for λ = 4.

When k = 0 (λ→ ∞), the energy modes are two-fold degenerate and are given by the point

where Πxx
f crosses the x-axis. This degeneracy may be surprising since in 2+1 dimensions we

expect the photon to have a single polarization. However, if we had approached the problem

by gauge fixing in the Coulomb gauge, we would immediately see that the constraint∇·A = 0

does not affect the q = 0modes, again resulting in a degeneracy. In fact, the exact degeneracy

is a result of the additional symmetry of our torus, which gives Πxx
f (ϵ, 0) = Πyy

f (ϵ, 0).

To understand the effect of the gauge field on the theory, it’s useful to explicitly write the

form Πxx
f (ω, 0) takes:

Πxx
f (ω, 0) =

y2
4πL

− ω2

2L2

∑
p

1

|p|
1

4p2 − ω2
(5.67)

where y2 = −Y2(1/2) ∼= 1.6156 for the function Y2(s) defined in Eq. (D.1). Schematically,

we see from Fig. 5.1 that we could rewrite this as a rational function:

Πxx
f (ω, 0) ∼

∏
γ

(
ω2 − ω2

γ

)∏
p (ω

2 − Ef (0,p)2)
(5.68)

where ωγ are the zeros of the polarization, Πxx
f (ωγ, 0) = 0, and Ef (0,p) = 2 |p| are its poles.

Its contribution to the partition function is therefore something like

Zq=0 ∼
∏
iϵn

{ ∏
p

[
(iϵn)

2 + 4p2
]∏

γ

[
(iϵn)

2 + (ωγ)
2]
}2

. (5.69)

Not only are the interacting theory’s energies present as poles, but the free theory’s two-

particle energies are accounted for as zeros in the numerator, thereby removing them from

the spectral function. The fact that the function is squared accounts for the square symmetry

of the torus.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1/λ

0

1

2

3

4

5

ω̄

Figure 5.2: Plot of the modes of the Dirac-CS theory as a function of 1/λ. When 1/λ → 0,
the CS term vanishes, and the energies are two-fold degenerate, occurring when Πxx

f = 0.
These are marked with the dashed purple line. As 1/λ becomes large, the lowest mode
approaches zero and all others approach the two-particle energies of the free theory, shown
with a dash-dotted red line. (ω̄ = Lω/2π, λ = Nf/k.)

103



Chapter 5 – Spectrum of conformal gauge theories on a torus

When k is non-zero, the degeneracy splits. The energies are depicted in Fig. 5.1 as the

intersection points of Πxx
f and ± |ω| /2πλ for λ = 4. Fig. 5.2 plots the first few modes in blue

as a function of 1/λ, and for several values of λ, the first ten modes are listed in Table 5.4.

When λ is very large, these modes have only a small splitting and are nearly the same as

in QED3, shown with the purple dashed line in Fig. 5.2. Conversely, as λ → 0, the lowest

mode ω∗
0 approaches zero while all other levels approach one of the free theory two-particle

energies, depicted with a dash-dotted red line in Fig. 5.2.

The lowest energy level, ω∗
0, can be identified as the splitting between the groundstates of

the pure CS theory induced by matter. In the limit of λ and ω∗
0 very small, the topological

degeneracy is restored (albeit in the k → ∞ limit). This aligns with out expectation that

gauge fluctuations are suppressed at large k even when Nf is small [26]. In a similar fashion,

when the fermions have a large mass Mf , we find limω→0Π
xx
f (ω, 0) ∼ e−Mf , once again

implying an effective topological ground-state degeneracy.

5.3.2 Finite external momentum, q ̸= 0

The situation for finite external momenta is very similar. Using Eq. (5.65), along with

Eqs. (D.25) and (D.26), all levels can be numerically evaluated for any value of λ.

The next-lowest energies occur when the total momentum is q1 = 2π (1, 0) /L, or any other

of the momenta related to it by a π/2 rotation: 2π(0, 1)/L, 2π(−1, 0)/L, and 2π(0,−1)/L.

The C4 symmetry of the square torus implies an additional four-fold degeneracy for all

energy levels which would not generally be present. For these particular momenta, it turns

out that the second term of Kq1(ω) in Eq. (5.65) vanishes for all ω when k = 0, and

the zeros of the determinant can be found by separately solving for the zeros of Π00
f and

ΠT
f = Πxx

f +Πyy
f +ω2Π00

f /q
2. These functions are plotted in Fig. 5.3 and the resulting modes

are given in Table 5.1 along with the results for q2 = 2π(1, 1)/L.
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λ = Nf/k

0 1/10 1/4 1/2 1 4 10 ∞

0 0.012851 0.032056 0.063615 0.123519 0.347859 0.475391 0.584130
1.39173 1.358213 1.303479 1.201486 0.859690 0.700684

1.4142136 1.436722 1.470375 1.525588 1.629405 1.990723 2.171077 2.311525
3.142113 3.111848 3.061891 2.966946 2.626458 2.450844

3.162278 3.182355 3.212169 3.260552 3.349688 3.637930 3.765391 3.855225
4.235129 4.223855 4.205187 4.169170 4.025093 3.935641

4.242641 4.250129 4.261281 4.279522 4.313961 4.443737 4.761364 4.586816
5.086480 5.067543 5.036016 4.975471 4.519975 4.660037

5.099020 5.111437 5.129740 5.159072 5.211794 5.371116 5.439288 5.489309
5.820132 5.804317 5.779259 5.734850 5.599761 5.537818

Table 5.4: Dirac-Chern-Simons modes at Nf , k = ∞ with zero external momentum, q = 0.
(ω̄ = LE/2π.)
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Figure 5.3: Plot of Π00
f (ω, q1) and ΠT

f (ω, q1) for q1 = 2π(1, 0)/L, shown in solid blue and
dashed magenta respectively. The vertical dash-dotted lines in red denote the two-particle
energies of the free theory, Ef (q1,p). (ω̄ = Lω/2π.)
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5.4 Conclusion

This paper has described the structure of 2+1 dimensional conformal gauge theories on the

two-torus T 2. We computed the partition function on T 2 × R in the limit of large fermion

flavor number, Nf , using strategies similar to those employed for the computation on the

three-sphere S3 in Ref. 97. We also deduced the energies of the low-lying states in the

spectrum. For large Nf , most of the states are simply given by the sum of the free fermion

energies with anti-periodic boundary conditions, as established in Appendix D.3. However,

singlet combinations of pairs of fermions which couple to the current operator are strongly

renormalized even at Nf = ∞: these states appear instead as bound states given by the

zeros of the effective action for the gauge field. A similar phenomenon appears [189] in the

O(N) Wilson-Fisher conformal theory.

These results should be useful in identifying possible realizations of non-trivial conformal

field theories in exact diagonalization studies of model quantum spin systems in a manner

similar to the study in Ref. 163. For instance, focusing on the q = (0, 0) sector, a comparison

of Tables 5.2 and 5.3 indicates the existence of a two-fold degenerate singlet state with

significantly lower energy than the (N2
f − 1)-fold generate fermion states. Although higher

order effects from both the finite-N CFT and the numerics will undoubtedly split the energies

of these fermion states, it is reasonable to predict that a significant gap will remain. This

and similar trends between numerics and analytics could serve as a useful diagnostic tool for

the state being simulated.
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Chapter 6

Fermionic spinon theory of square lattice
spin liquids near the Néel state

Quantum fluctuations of the Néel state of the square lattice antiferromagnet are
usually described by a CP1 theory of bosonic spinons coupled to a U(1) gauge
field, and with a global SU(2) spin rotation symmetry. Such a theory also has a
confining phase with valence bond solid (VBS) order, and upon including spin-
singlet charge 2 Higgs fields, deconfined phases with Z2 topological order possibly
intertwined with discrete broken global symmetries. We present dual theories of
the same phases starting from a mean-field theory of fermionic spinons moving in
π-flux in each square lattice plaquette. Fluctuations about this π-flux state are
described by 2+1 dimensional quantum chromodynamics (QCD3) with a SU(2)
gauge group and Nf = 2 flavors of massless Dirac fermions. It has recently
been argued by Wang et al. [179] that this QCD3 theory describes the Néel-
VBS quantum phase transition. We introduce adjoint Higgs fields in QCD3,
and obtain fermionic dual descriptions of the phases with Z2 topological order
obtained earlier using the bosonic CP1 theory. We also present a fermionic spinon
derivation of the monopole Berry phases in the U(1) gauge theory of the VBS
state. The global phase diagram of these phases contains multi-critical points,
and our results imply new boson-fermion dualities between critical gauge theories
of these points.

6.1 Introduction

Spin liquid states of the square lattice antiferromagnet, with global SU(2) spin rotation

symmetry, have long been recognized as important ingredients in the theory of the cuprate
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high temperatures superconductors [8, 16, 96, 148]. The earliest established examples of

gapped states were ‘chiral spin liquids,’ which were constructed by analogy to the fractional

quantum Hall states [83, 188]. These have a topological order which is not compatible with

time-reversal symmetry. Soon after, ‘Z2 spin liquids’ were proposed [12, 45, 54, 145, 157,

167, 183]: their topological order is compatible with time-reversal symmetry, and exactly

solvable examples were later found in Kitaev’s toric code and honeycomb lattice models

[94, 95, 185]. Wen [184] used a fermionic spinon representation of the antiferromagnet to

obtain a plethora of possible square lattice spin liquid states, distinguished by different

realizations of ‘symmetry-enriched’ topological order [27, 43]. Wen’s classification criterion

was that the spin liquid states preserve time-reversal, SU(2) spin rotations, and all the square

lattice space group symmetries. However, in the application to the cuprates, there is no

fundamental reason all such symmetries should be preserved. If we also allow for breaking of

time-reversal and/or point group symmetries, then many more spin liquid states are clearly

possible, all of which preserve SU(2) spin rotations and the square lattice translational

symmetry [15, 21, 145, 157]. This proliferation of possible spin liquids, intertwining with

broken symmetries, sets up a daunting task of deciding which states, if any, are relevant for

the pseudogap phase of the underdoped cuprates.

We need an energetic and physical criterion to focus on a smaller set of relevant spin

liquid states, rather than relying exclusively on symmetry and topology. In recent work,

Chatterjee et al. [23] proposed examining spin liquids which are proximate to the magnet-

ically ordered Néel state. These proximate states are reachable by continuous (or nearly

continuous) quantum phase transitions involving the long-wavelength excitations of the an-

tiferromagnet. Specifically, they used a CP1 theory of quantum fluctuations of the Néel

state, expressed in terms of bosonic spinons, zα, to argue for the importance of 3 possible Z2

spin liquid states. These 3 states are identified here as Ab, Bb, and Cb, and appear below in

Figs. 6.1(a) and 6.2(a). The state Ab preserves all symmetries [205], while Bb breaks lattice

rotation symmetries and so has Ising-nematic order [145]. The state Cb breaks inversion
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and time-reversal symmetries, but not their product, and was argued to possess current loop

order.

A related motivation for the physical importance of these states comes from an examination

of the classical phase diagram of frustrated antiferromagnets on the square lattice. By

examining models with two-spin near-neighbor and four-spin ring exchange interactions,

Ref. 23 found magnetically ordered states with canted, spiral, and conical spiral order near

the Néel state. Quantum fluctuations about these classical ordered states can be described

by extensions of the CP1 theory, and the ‘quantum disordered’ states obtained across a

continous transition involving loss of magnetic order are precisely the three Z2 spin liquids,

with the correspondence [22, 23]

canted order → Ab , spiral order → Bb , conical spiral order → Cb . (6.1)

One of the purposes of the present paper is to present a unified theory of the 3 Z2 spin

liquids noted above, but using the fermionic spinon approach [2, 3, 184]. For gapped Z2

spin liquid states, a mapping between the fermionic and bosonic spinons approaches has

been achieved for specific states on the kagome, triangular, square, and rectangular lattices

[21, 43, 106, 107, 136, 204, 205, 208, 211]. This mapping relies on the fusion rules of the toric

code [94]: the fusion of any two of the anyon species yields the third. In Z2 spin liquids,

the three types of anyons are bosonic spinons, fermionic spinons, and a bosonic Z2-flux

spinless vison. We will extend such mappings here to the states of interest on the square

lattice, but using a method which allows us to treat the 3 Z2 spin liquids and the quantum

phase transitions between them in a unified manner. We will obtain a phase diagram of

the states proximate to the Néel state using the fermionic spinon approach, and propose

critical theories of the phase transitions involving massless Dirac fermions. The connection

to the earlier analysis [23] using the bosonic spinons of the CP1 model will also lead us to

propose new boson-fermion dualities of the strongly-coupled, gapless, quantum field theories

describing the (multi-)critical points.
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Our point of departure will be a boson-fermion duality of a conformal field theory (CFT)

proposed by Wang et al. [179]. They examined the critical theory of the Néel-valence bond

solid (VBS) transition in the CP1 theory [143, 144, 166, 170], and proposed that it was

equivalent to quantum chromodynamics (QCD) with a SU(2) gauge group and Nf = 2

flavors of massless, two-component Dirac fermions (note: the SU(2) gauge group is not to

be confused with the global SU(2) spin rotation symmetry). The latter theory can also

be obtained from the fermionic spinon approach to the square lattice antiferromagnet: it

describes fluctuations about a π-flux mean-field theory [2, 3, 184], which is labeled by Wen

as SU2Bn0n1.

Starting from the SU(2) QCD3 theory, we will explore routes to condensing Higgs fields

for fermionic bilinears, so that the SU(2) gauge group is ultimately broken down to Z2 and

we obtain gapped spin liquids with Z2 topological order. Our main results are contained in

the phase diagrams in Fig. 6.2. These phase diagrams contain the phases Af , Bf and Cf ,

which are fermionic counterparts of the Ab, Bb, and Cb states obtained from the bosonic CP1

theory.

One important feature of the fermionic phase diagram in Fig. 6.1(b) is that it does not

contain the counterparts of the magnetically ordered Néel and canted states in the bosonic

phase diagram in Fig. 6.1(a). Instead Fig. 6.1(b) contains two critical phases, with mass-

less Dirac fermions interacting with gapless SU(2) and U(1) gauge bosons. Building on the

fermion-boson equivalence of Wang et al. [179], we argue here that these critical phases of

Fig. 6.1(b) are unstable to the corresponding magnetically ordered phases in Fig. 6.1(b); the

instability is assumed to be driven by relevant operators which are allowed by the symme-

tries of the underlying square lattice antiferromagnet. However, given the strongly-coupled

nature of the critical theories, this conclusion is based upon circumstantial, rather than firm,

evidence.
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hQii = 0

hP i = 0 , hz↵i 6= 0
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Critical SU(2) spin liquid,
Wen: SU2Bn0

h�i 6= 0 , h�1i 6= 0

h�2ii = 0

h�i = 0 , h�1i 6= 0

h�2ii = 0

h�i = 0 , h�1i = 0

h�2ii = 0

Z2 spin liquid Af ,
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h�i 6= 0 , h�1i = 0

h�2ii = 0

U(1) spin liquid with spin gap Df ,
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(a) (b)

Figure 6.1: (a) Schematic phase diagram of the CP1 theory in Eq. (6.4) as a function of g and
s1 (s2 in Eq. (6.7) is large and positive); Eq. (6.2) describes the deconfined critical Néel-VBS
transition at a critical g = gc. (b) Schematic phase diagram of the SU(2) QCD3 theory with
Nf = 2 flavors of massless Dirac fermions in Eq. (6.6) as a function of s and s1 (s2 in Eq. (6.8)
is large and positive). The ‘Wen’ labels refer to the naming scheme in Ref. 184. The Z2 spin
liquids Ab and Af in (a) and (b) are argued to be topologically identical, as are the confining
states with VBS order. The critical spin liquids in (b) to be unstable to the corresponding
phases with magnetic order in (a), with the critical SU(2) spin liquid surviving only at the
Néel-VBS transition. All Z2 spin liquids are shown shaded in all figures.
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6.1.1 Summary of results

Let us first recall the bosonic spinon approach [10, 23] to the phases in Fig. 6.1(a). This is

obtained by extending the Lagrangian for the theory of deconfined criticality for the Néel-

VBS transition [156]

Ldcp =
1

g
|(∂µ − ibµ)zα|2 + SB . (6.2)

The Lagrangian is in three spacetime dimensions with µ a spacetime index in Minkowski

signature (+,−,−), and α, β =↑, ↓ so there is global SU(2) spin rotation symmetry. The

Néel order parameter is z∗ασaαβzβ, where σa are the Pauli matrices. The U(1) gauge field bµ is

compact, and monopole tunneling events are permitted, and associated with a Berry phase

SB [53, 144]. The spinons are represented by the bosonic complex scalar zα which is of unit

length ∑
α

|zα|2 = 1 , (6.3)

and carries unit U(1) charge. For small g, zα is condensed, and this yields the Néel phase

with broken spin rotation symmetry. For large g, zα is not condensed, and we appear to

obtain a U(1) spin liquid (which we call Db) with a gapless photon bµ, and gapped zα

spinons. However, the condensation of monopoles yields the confinement of spinons and

the appearance of VBS order [143, 144]. The transition from the Néel state to the VBS

is described by a deconfined critical theory [166, 170] at g = gc in which monopoles are

suppressed.

We will now extend Ldcp by including complex, charge 2 Higgs fields whose condensation

can induce phases with Z2 topological order, while preserving SU(2) spin rotation symmetry.

We can construct such Higgs fields by pairing spinons, but the simplest possibility, εαβzαzβ,

vanishes identically. Any such spinon pair Higgs field must involve gradients, and the simplest

non-vanishing cases involve a single temporal or spatial gradient. We consider first the Higgs

field, P , conjugate to a pair of spinons with a single temporal gradient, and will include the
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spatial gradient Higgs field, Qi later. The Lagrangian for zα, bµ, and P is

Lb = Ldcp + |(∂µ − 2ibµ)P |2 − s1|P |2 + λ1 P
∗ εαβzα∂0zβ + λ1 P εαβz

∗
α∂0z

∗
β + . . . , (6.4)

where εαβ is the unit anti-symmetric tensor, and so SU(2) spin rotation symmetry is main-

tained. For s1 large and positive, when there is no P condensate, we obtain the phases of

Ldcp already described. For smaller s1, when there is a P Higgs condensate, we obtain the

canted antiferromagnet and the symmetric Z2 spin liquid Ab for small and large g respec-

tively, as shown in Fig. 6.1(a). The Z2 spin liquid Ab was first obtained in Ref. 205, where

it was called Z2[0, 0].

Now we turn to our results for the fermionic counterpart of Fig. 6.1(a), which is shown in

Fig. 6.1(b). We start with fermionic equivalent of the deconfined Néel-VBS critical theory,

which was identified by Wang et al. [179] as SU(2) QCD3 with Nf = 2, described by the

Lagrangian

LQCD3
= itr

(
X̄γµ(∂µX + iXaµ)

)
(6.5)

Here X represents the massless Dirac fermions, γµ are Dirac matrices, and the details of

the index structure will be specified in Section 6.2.2. The SU(2) gauge field is represented

by aµ. The fermion kinetic term in Eq. (6.5) has a global SO(5) symmetry, which is an

enlargement of the global SU(2) spin rotation and Z4 lattice rotation symmetries of the

lattice Hamiltonian [179]. To obtain Fig. 6.1(b), we extend Eq. (6.5) in Section 6.3.2 by

adding two real Higgs fields, Φ = Φaσa and Φ1 = Φa
1σ

a, both of which transform as adjoints

of the gauge SU(2). So we have the Lagrangian

Lf = LQCD3
+ (DµΦ

a)2 − s (Φa)2 + λ2Φ
a tr
(
σaX̄µyX

)
+ (DµΦ

a
1)

2 − s1 (Φ
a
1)

2 + iλ3Φ
a
1 tr
(
σaX̄∂0X

)
+ · · · (6.6)

Here Dµ is a covariant derivative, a is SU(2) gauge index, σa are Pauli matrices, while µy is

a Pauli matrix which acts on the flavor space. We assume the higher order terms are such
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that when both Higgs condensates are present, ⟨Φ⟩ and ⟨Φ1⟩ will be oriented perpendicular

to each other in SU(2) gauge space. For instance, the topological order would be stabilized

by the presence of a term like −µ (ΦaΦa
1)

2 when µ > 0. By varying s and s1 we can obtain

four phases in which the two Higgs condensates are either present or absent, as shown in

Fig. 6.1(b). We will show in Section 6.4.1 that the gapped Z2 spin liquid, Af , so obtained is

topologically identical to the Z2 spin liquid Ab in Fig. 6.1(a).

We will also examine the U(1) spin liquid with a spin gap, Df , obtained when there is

only a Φ condensate. We compute the monopole Berry phases in this state in Section 6.4.3,

and find that they are identical to those indicated by SB in the bosonic theory in Eq. (6.4).

As monopoles are eventually expected to proliferate in this U(1) spin liquid [143], we expect

VBS order to appear, just as in the corresponding phase in Fig. 6.1(a).

Now we turn our attention to the critical U(1) and SU(2) spin liquids in Fig. 6.1(b). As we

noted earlier, we expect that in the absence of fine-tuning, there are relevant perturbations

to Lf which will drive these critical phases to the corresponding magnetically ordered phases

in Fig. 6.1(a). These perturbations will break the SO(5) flavor symmetry of LQCD3
down to

the symmetries of the underlying lattice Hamiltonian [179].

Finally, we note that both Figs. 6.1(a) and 6.1(b) contain multicritical points accessed by

tuning 2 couplings where all 4 phases meet. A natural conjecture is that these multicritical

points are identical to each other. On the bosonic side, this is the theory obtained by tuning

g and s1, so that both the matter fields zα and P are critical. On the fermionic side, this

is the theory obtained by tuning s and s1, so that the bosonic matter fields Φ and Φ1 are

critical, while the fermionic matter X remains critical. A further conjecture is that the

Yukawa couplings λ1 and λ3 renormalize to zero at the multicritical point: then both the

bosonic and fermionic theories will represent CFTs.

We also extend our results to include additional Higgs fields which lead to phases with

Z2 topological order and broken lattice rotation and/or time-reversal symmetries. On the

bosonic side, we introduce the complex, charge 2 Higgs field Qi, where i = x, y is a spatial
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Figure 6.2: (a) Schematic phase diagram of the CP1 theory in Eqs. (6.4) and (6.7) as a
function of s1 and s2 (for large g). (b) Schematic phase diagram of the SU(2) QCD3 theory
with Nf = 2 flavors of massless Dirac fermions in Eqs. (6.6) and (6.8) as a function of s1
and s2 (for s < 0 and |s| large). All four phases in (a) and (b) are argued to be topologically
identical. So for the Z2 spin liquids Ab = Af , Bb = Bf , and Cb = Cf . Phases Bf and Cf do
not appear in Wen’s classification [184] because they break global symmetries.

index, leading to the Lagrangian [157]

L′
b = Lb + |(∂µ − 2ibµ)Qi|2 − s2|Qi|2 + λ4Q

∗
i εαβzα∂izβ + λ4Qi εαβz

∗
α∂iz

∗
β + · · · (6.7)

In the absence of magnetic order, so that g is large, the phase diagram obtained by varying

s1 and s2, with possible condensates of P and Qi is shown in Fig. 6.2(a). There are now 3

Z2 spin liquids, and these meet at a possible multicritical point with the VBS state.

On the fermionic side, in Section 6.3.3, we add another real Higgs field, Φ2i, which trans-

forms as the adjoint of SU(2). We now extend Lf in Eq. (6.6) to

L′
f = Lf + (DµΦ

a
2i)

2 − s2 (Φ
a
2i)

2 + iλ5Φ
a
2i tr

(
σaX̄∂iX

)
+ · · · (6.8)

The phase diagram obtained by varying s1 and s2, to obtain possible Higgs condensates of

Φ1 and Φ2i is shown in Fig. 6.2(b). We assume that s is negative, so that a Higgs condensate

Φ is always present in Fig. 6.2(b). We obtain 3 Z2 spin liquids in Fig. 6.2(b), and one of our
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main results is that these are topologically identical to the corresponding Z2 spin liquids in

Fig. 6.2(a). The relative orientations of the condensates of Φ, Φ1, and Φ2 in gauge space

are discussed in Section 6.3.4. Note that the spin liquids Bf and Cf do not appear in Wen’s

classification: this is because they break global symmetries associated with the appearance

of Ising-nematic and current loop order respectively.

Again, the multicritical points in Figs. 6.2(a) and 6.2(b), if present, are expected to map

to each other, setting up possible dualities of critical fermionic and bosonic gauge theories.

The paper is organized as follows. In Sec. 6.2, we provide the background information

necessary for our analysis. We begin by discussing the relevant symmetries and reviewing

the π-flux phase, showing that its low energy dynamics are described by Nf = 2 QCD. The

section finishes with a brief summary of the boson-fermion duality proposed by Wang et

al. [179]. Sec. 6.3 explains our procedure for finding spin liquids and how these phases are

classified. Using this, we next list all gapped spin liquids accessible using our methods and

which are either fully symmetric or have Ising-nematic order. We also describe how spin

liquids breaking additional discrete symmetries can be realized, with particular focus given

to the Z2 spin liquid Cf with current-loop order. These spin liquids, both symmetric and

ordered, are subsequently identified in Sec. 6.4. We start by using the symmetry fraction-

alization technique to verify the correspondence between the Z2 spin liquids we study and

those realized using Schwinger bosons. This allows us to verify the equivalence of Af , Bf ,

and Cf with Ab, Bb, and Cb. A comparison with Wen’s [184] lattice classification scheme

is also provided before we turn to the unstable U(1) spin liquid Df and demonstrate that

the proliferation of monopoles necessarily results in a confined phase with VBS order. We

conclude in Sec. 6.5 with some discussion.

We note a related paper [78] which appeared while our work was being completed, describ-

ing phases of antiferromagnets with only a U(1), ‘easy-plane’, global spin rotation symmetry.
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6.2 π-flux phase and Nf = 2 QCD

6.2.1 Model and symmetries

We are interested in this paper in spin liquid states of the spin-1/2 Heisenberg model on the

square lattice, with Hamiltonian of the form

HH = J
∑
⟨ij⟩

Si · Sj + · · · (6.9)

where the summation is over nearest-neighbours and the ellipsis indicates interactions over

further distances or terms which comprise three or more spin operators. In the absence of

these higher order terms, the ground state is known to have Néel order; nonetheless, we

will operate under the assumption that the terms contained in the ellipsis provide enough

frustration that the ground state loses long-range magnetic order.

It has been shown that a fully symmetric phase describing spin 1/2’s on a square lattice

must have topological order [59, 103]. It turns out that there are many possible such sym-

metric spin liquids, and a large body of work has been directed at classifying these phases.

One such scheme is provided by Wen in Ref. 184. He extended the physical symmetry group

to include gauge transformations, and showed that distinct spin liquids can be differentiated

based on the behaviour of the gauge degrees of freedom. We take this approach and apply

it it to a continuum formulation of the phases in question. However, as discussed, the true

hallmark of a spin liquid is topological order, not the absence of broken symmetries, and

there is no a priori reason to restrict to fully symmetric spin liquids. We therefore also

consider phases in which certain discrete symmetries are broken.

The physical symmetries relevant to the problem are the SU(2) spin symmetry, time

reversal T , and the space group symmetries. The space group of the lattice is generated

by the two translation operators, Tx and Ty, the inversion operator Py, and the rotation
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operator Rπ/2. These act on the lattice sites as

Tx : (ix, iy) 7→ (ix + 1, iy), Ty : (ix, iy) 7→ (ix, iy + 1),

Py : (ix, iy) 7→ (ix,−iy), Rπ/2 : (ix, iy) 7→ (−iy, ix). (6.10)

In addition, these generators imply a symmetry under inversion of the x-coordinate, Px =

Rπ/2PyR
−1
π/2, as well as reflection about the x = y axis, Pxy = PyR

−1
π/2. An equivalent

definition of the space group is given through its commutation relations:

T−1
y TxTyT

−1
x = 1, P−1

y Rπ/2PyRπ/2 = 1,

P−1
y TxPyT

−1
x = 1, R4

π/2 = 1,

P−1
y TyPyTy = 1, R−1

π/2TxRπ/2Ty = 1,

P 2
y = 1, R−1

π/2TyRπ/2T
−1
x = 1. (6.11)

The generators all commute with time reversal, G−1T −1GT = 1, G = {Tx, Ty, Py, Rπ/2}.

Because the fundamental degrees of freedom are bosonic spins, we have T 2 = 1.

Naturally, a different set of commutation relations is required to describe the space group

in a symmetry broken phase, and these will be presented as needed. To make contact with

these phases, we will often describe the action of Px independently from the other symmetries

even when considering fully symmetric spin liquids.

6.2.2 Heisenberg antiferromagnet and the π-flux state

We now present a lattice derivation of the π-flux model. We begin by re-writing the spin

operators in terms of so-called slave fermions [184]:

Si =
1

2
f †
iασαβfiβ, (6.12)

where σ = (σx, σy, σz) are the Pauli matrices. This expression introduces additional degrees

of freedom and therefore cannot reproduce the Hilbert space of the spin operators without be-
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ing supplemented by a constraint. It can easily be verified that provided
∑

α f
†
iαfiα = 1 on ev-

ery site, the representation in Eq. (6.12) is correct. This further implies that
∑

α,β ϵαβfiαfiβ =∑
α,β ϵαβf

†
iαf

†
iβ = 0 where ϵαβ is the fully anti-symmetric 2-index tensor. By defining a matrix

Xi =

fi↑ −f †
i↓

fi↓ f †
i↑

 (6.13)

we see that these constraints generate an SU(2) gauge symmetry which acts on Xi as

SU(2)g : Xi → XiU
†
g,i. (6.14)

The physical spin symmetry acts on Xi on the left:

SU(2)s : Xi → UsXi. (6.15)

The absence of a charge degree of freedom suggests that a more natural fermionic represen-

tation may be obtained by replacing the complex f -fermions with Majoranas:

fi↑ =
1√
2
(χi,0 + iχi,z) , fi↓ =

1√
2
(−χi,y + iχi,x) , (6.16)

where χ†
i,a = χi,a and {χi,a, χj,b} = δabδij . In this notation, the matrix Xi is written Xi =

1√
2
(χi,0 + iχi,aσ

a) and the local constraints can be expressed as the conditions

tr
(
σaX †

i Xi

)
= 0. (6.17)

The first step to an approximate solution to HH is to loosen the local constraint on the

fermions to

⟨
tr
(
σaX †

i Xi

)⟩
= 0. (6.18)

Next, we decouple the 4-fermion interaction through a Hubbard-Stratonovich transformation,

leaving a quadratic mean field Hamiltonian. The most general such Hamiltonian which can

119



Chapter 6 – Fermionic spinon theory of square lattice spin liquids near the Néel state

be made symmetric under spin rotation symmetry is [24, 184]

HMF =
∑
⟨ij⟩

[
iαijtr

(
X †

i Xj

)
+ βaijtr

(
σaX †

i Xj

)
+ iγijtr

(
σaX †

i σ
aXj

)]
, (6.19)

where αij , βaij , and γij are real numbers. In accordance with its name, the π-flux state is

obtained by threading a π-flux through every plaquette: we take βaij = γij = 0 and

αij = −αji, αi+x̂,i = α, αi+ŷ,i = (−1)ixα. (6.20)

This gives

Hπ = −iα
∑
i

[
tr (XiXi+x̂) + (−)ixtr (XiXi+ŷ)

]
. (6.21)

While it is clear that this ansatz preserves the full SU(2) gauge and spin symmetries, the

invariance of the π-flux Hamiltonian under the space group symmetries may be less clear.

In particular, translations in the x-direction do not preserve the form of Hπ. However, the

original Hamiltonian can be recovered through a gauge transformation, implying that the

symmetry transformed state is (gauge) equivalent to the original. Wen [184] termed this

extended symmetry group the “projective symmetry group” (PSG) and used it to show the

existence of eight distinct fully-symmetric SU(2) spin liquids on the square lattice. In his

scheme, the Hamiltonian Hπ describes the SU2Bn0 state (this is shown in Appendix E.3.1).

We will discuss the PSG extensively in subsequent sections, albeit in a slightly different

context than originally formulated. His scheme is briefly reviewed in Appendix E.2.

The band structure of Hπ has two Dirac cones. We expand about these cones, labelling

them by a valley index v = 1, 2. A convenient expression for the resulting theory is achieved

by defining the 4× 2 matrix operator

Xα,v;β =
1√
2

(
χ0,vδαβ + iχa,vσ

a
αβ

)
, (6.22)

where α, β, and v are spin, gauge, and valley indices respectively. The low energy excitation
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of HMF are described by the relativistic Dirac Lagrangian

LMF = itr
(
X̄γµ∂µX

)
(6.23)

where χ̄ = χTγ0, (γ0, γx, γy) = (τ y, iτ z, iτx). Here and in what follows, we express operators

in real time.

While Eq. (6.18) may hold in the ground state of Hπ, the full constraint in Eq. (6.17) does

not, and gauge fluctuations must be included to take this into account. The SU(2) gauge

transformation in Eq. (6.14) becomes

SU(2)g : X → XU †
g , aµ → UgaµU

†
g + i∂µUgU

†
g , (6.24)

in the continuum. As before, global spin rotations act the Majorana X on the left,

SU(2)s : X → UsX. (6.25)

Letting Da
µX = ∂µX + iXaµ, the inclusion of quantum fluctuations results in the following

Lagrangian:

LQCD3
= itr

(
X̄γµDa

µX
)
. (6.26)

LQCD3
can be expressed in a more familiar form by defining Dirac fermions

ψ1,v =
i√
2
(χx,v − iχy,v) , ψ2,v = − 1√

2
(χ0,v + iχz,v) . (6.27)

In terms of these operators, the Lagrangian becomes

LQCD3
=
∑
v=1,2

iψ̄vγ
µ
(
∂µ − iaaµσ

a
)
ψv. (6.28)

That is, the low energy physics of the π-flux state is described by QCD3 with Nf = 2

fermions. The Dirac representation is not nearly as useful as the Majorana representation of
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LQCD3
: while gauge transformations act of the ψ-fermions in the usual fashion, the action of

the spin symmetry is nontrivial. We will therefore primarily use the form given in Eq. (6.26).

A side-effect of the expansion about the Dirac cones is that the χ fermions transform

nontrivially under time reversal and the space group symmetries:

Tx : χ→ µxχ, Rπ/2 : χ→ eiπτ
y/4e−iπµ

y/4χ(−y, x),

Ty : χ→ µzχ, Px : χ→ τ zµzχ(−x, y),

T : χ→ τ yµyχ, i→ −i, Py : χ→ −τxµxχ(x,−y). (6.29)

In addition, the spin and space group symmetries of the model are significantly enlarged at

this fixed point. Not only is LQCD3
Lorentz invariant, but it is symmetric under rotations

mixing the spin and valley indices of X: X → LX, where L is a 4 × 4 unitary matrix.

Because X is composed of Majorana fermions, there is an important reality condition,

X∗ = σyXσy , (6.30)

and therefore only L such that LTσyL = σy are allowed. This reduces what would have been

a U(4) symmetry to Sp(4). Finally, since both SU(2)g and Sp(4) share the nontrivial element

−1, the true global symmetry is obtained by taking the quotient: Sp(4)/Z2
∼= SO(5).

6.2.3 Dual description

As with any mean field approach involving a continuous gauge group, the existence of LQCD3

is by no means guaranteed once gauge fluctuations have been taken into account. However,

in spite of some of the terminology, in this paper we do not view the π-flux ‘phase’ as a

stable state of matter existing over a finite region in parameter space. Instead we treat it

as a parent theory with instabilities potentially leading to U(1) and Z2 spin liquids, as well

as to ordered phases like Néel and VBS. This approach is motivated by a duality between

LQCD3
and CP1 proposed by Wang et al. [179] to describe the Néel-VBS transition. We
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discuss the relation between CP1 and QCD3 in this context.

One of the key components to their proposal is the SO(5) symmetry we just discussed.

On the QCD3 side of the duality, an order parameter for this symmetry is

nj = tr
(
X̄ΓjX

)
, Γj = {µx, µz, µyσx, µyσy, µyσz}. (6.31)

The symmetry transformations in Eq. (6.29) indicate that n1 and n2 are the VBS order

parameters, while n3, n4, and n5 correspond to the Néel order parameter. Using this, Refs. 1,

168, 175 showed that taking LQCD3
to

LQCD3,ϕ = LQCD3
+mϕj tr

(
X̄ΓjX

)
, (6.32)

and subsequently integrating out the fermions, yields a non-linear sigma model for ϕ with

a Wess-Zumino-Witten (WZW) term. This topological term manifests itself physically by

making the defects of the order parameter of one symmetry transform nontrivially under

the action of the other symmetry. These nontrivial correlations prompted Tanaka and Hu

[175] and Senthil and Fisher [168] to propose this non-linear sigma model as a description

of the critical theory describing the Landau-forbidden continuous phase transition between

Néel and VBS.

Conversely, the CP1 formulation of the phase transition circumvents the obstruction to

continuity by eschewing the traditional notion of an order parameter. While the Néel phase

is entered through the condensation of Na = z†σaz, the VBS phase is described by the

proliferation of monopoles, events which change the flux of the gauge field by 2π (or,

equivalently, change the global skyrmion number by one). Not only do these monopoles

confine the U(1) gauge field, but, because they transform nontrivially under the space

group, this symmetry is necessarily broken in the condensate. In spite of the very dif-

ferent forms the Néel and VBS order parameters take, numerics [121] have observed an

emergent SO(5) symmetry between the two, implying that SO(5) emerges as a symme-

try in the IR. In this version, the VBS portion of SO(5) order parameter is given by
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(ϕ1, ϕ2) = 2 (ReM, ImM) where M denotes the monopole operator, while the remaining

pieces are simply (ϕ3, ϕ4, ϕ5) =
(
z†σxz, z†σyz, z†σzz

)
.

Wang et. al. [179] suggest that both of these models flow to the same SO(5) symmetric

CFT in the IR. An important feature of this CFT is the absence of a relevant singlet operator.

The critical point is instead obtained by tuning the coupling µ of a relevant, anistropic

operator to zero,

L = LSO(5) + µOan Oan ∼ 2

5

(
ϕ2
3 + ϕ2

4 + ϕ2
5

)
− 3

5

(
ϕ2
1 + ϕ2

2

)
. (6.33)

When µ > 0, the system has VBS order, while when µ < 0, it orders along the Néel directions.

The approach we take is slightly different in spirit to this proposal, and we discuss this further

in Sec. 6.4.3.

6.3 Spin liquids proximate to the π-flux phase

In this section, we describe the Higgs descendants of QCD3 and our approach to their

classification. We start by discussing which operators can couple to the Higgs field, before

turning to a more complete discussion of the projective symmetry group than what was

provided in the previous section. Given a set of criteria described below, we conclude that

there exists a single (spin) gapped U(1) spin liquid among the Higgs descendents of QCD3.

We next list all gapped and fully symmetry Z2 spin liquids, as well as all gapped Z2 spin

liquids with Ising-nematic order. Special note is taken of the spin liquids Af and Bf , though

we wait until until Sec. 6.4.1 to prove their equivalence to Ab and Af . The section finishes

with a description of the gapped Z2 spin liquid with current-loop order we call Cf .

6.3.1 Higgs fields

We being by examining the set of operators we will be coupling to the Higgs field. QCD3

is strongly coupled in the IR, and so very little can be said with certainty regarding the

operators and their scaling dimensions in the IR. We focus on fermion bilinears since these
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are the most relevant gauge invariant bosonic operators of the UV theory. Non-perturbative

operators such as monopoles are not considered.

We consider interaction terms of the form

tr
(
φX̄MX

)
= φatr

(
σaX̄MX

)
(6.34)

where φ = φaσa is a generic Higgs field transforming in the adjoint representation of SU(2)g

and M is a matrix acting on the sublattice, colour, and/or flavour space of the fermions and

which may or may not contain derivatives. The physical properties of the various possible

Higgs phases are defined primarily by the bilinear it couples to.

Restricting for the moment to bilinears without derivatives, those which are charged under

the gauge group are

tr
(
σaX̄γµX

)
, tr

(
σaX̄ΓjγµX

)
, tr

(
σaX̄T jX

)
. (6.35)

where Γj = {µz,−µx, µyσa} and T j = {µy, σa, µxσa, µzσa} are the vector and adjoint rep-

resentations of SO(5) respectively. The first set of operators are the gauge currents Ja,µ.

These cannot couple a Higgs field since the gauge theory description of the Heisenberg model

is predicated on the requirement that these currents vanish. In fact, the gauge fields can be

interpreted as Lagrange multipliers which have been added to LQCD3
in order to impose the

Ja,µ = 0 constraint.

No such obstacles exist for the other two sets of bilinears. The second group of operators,

tr
(
σaX̄ΓaγµX

)
, are SO(5) and spacetime vectors in addition to gauge adjoints. The presence

of the gamma matrices γµ indicates that the fermions will remain massless upon coupling

these bilinears to a condensed φ.

On the other hand, should the Higgs field couple to one of the final operators in Eq. (6.35),

⟨φ⟩ ̸= 0 will act as a mass for the fermions. The only other bilinears which act as masses

to the fermions are the singlet and SO(5) vector, neither of which are fully symmetric.

Therefore, given the aforementioned restriction on which operators we consider, we conclude
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that an operator of the form tr
(
σaX̄T jX

)
must couple to a condensed Higgs field in Af and

Df . (It can also be verified that these colour-singlet mass terms cannot provide a spin gap

to the ordered spin liquids, Bf or Cf .)

We will see shortly that the operators in Eq. (6.35) are not sufficient to reproduce the

phase diagram in Figs. 6.1(b) and 6.2(b). Consequently, we also allow the Higgs field to

couple to bilinears which contain a single derivative:

tr
(
σaX̄i∂µX

)
, tr

(
σaX̄Γji∂µX

)
, tr

(
σaX̄T jγµi∂νX

)
. (6.36)

We now discuss how symmetries manifest in Higgs phases. The action of the space group

and time reversal on the bilinears listed above is given in Tables 6.1 and 6.2; the spin

symmetry rotates operators with spin indices among themselves in the usual way. It naïvely

appears that a Higgs field coupling to any of these bilinears will necessarily break one or

more symmetries upon condensing. As with the π-flux Hamiltonian in Eq. (6.21), Hπ, this

intuition does not account for the fact that the Higgs field is not a gauge invariant operator.

A symmetry is only truly broken if the original and symmetry transformed actions are not

gauge equivalent.

For instance, in Eq. (6.6), tr
(
σaX̄µyX

)
couples to the Higgs field Φ. Since tr

(
σaX̄µyX

)
maps to minus itself under T , Tx, and Ty, the naïve argument would suggest that these

symmetries are broken when ⟨Φa⟩ ̸= 0. However, it’s not difficult to find a gauge transfor-

mation capable of “undoing” the action of these symmetries. In particular, supposing that

only ⟨Φx⟩ ̸= 0, we see that the gauge transformation V = iσz takes tr
(
σxX̄µyX

)
to minus

itself, thereby proving the equivalence of the original and symmetry transformed actions.

This set of gauge transformations comprises the PSG and is what we use to characterize

the Higgs descendants. More generally, when a group element acts on a bilinear as

G : tr
(
σaX̄MX

)
→ tr

(
σaX̄ŪGMUGX

)
(6.37)
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T j T Px Py Tx Ty Rπ/2

µy − + + − − µy

σa − − − + + σa

µxσa + + − + − µzσa

µzσa + − + − + −µxσa

Table 6.1: Transformation properties of tr
(
σaX̄T jX

)
under the action of the physical sym-

metries. T j = {µy, σa, µxσa, µzσa} are the 10 generators of SO(5).

Γj T Px Py Tx Ty Rπ/2

µxγ0 + − + + − µzγ0

µxγx − + + + − µzγy

µxγy − − − + − −µzγx

µzγ0 + + − − + −µxγ0
µzγx − − − − + −µxγy
µzγy − + + − + µxγx

µyσaγ0 + − − − − µyσaγ0

µyσaγx − + − − − µyσaγy

µyσaγy − − + − − −µyσaγx

Table 6.2: Transformation properties of tr
(
σaX̄ΓjγµX

)
under the action of the physical

symmetries. Γj = {µx, µz, µyσa} transform under the vector representation of the emergent
SO(5).

where ŪG = γ0U †γ0, the projective symmetry group is defined as

PG : tr
(
σaX̄MX

)
→ tr

(
V †
Gσ

aVGX̄ŪGMUGX
)

(6.38)

where

tr
(
V †
Gσ

aVGX̄ŪGMUGX
)
= tr

(
σaX̄MX

)
. (6.39)

We will see that requiring the existence of a VG for every UG places stringent conditions

on which operators can couple to a Higgs field while preserving certain symmetries in the

condensed phase.
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µyγµi∂ν T Px Py Tx Ty Rπ/2

µyγ0i∂0 + − − − − µyγ0i∂0

µyγ0i∂x − + − − − µyγ0i∂y

µyγ0i∂y − − + − − −µyγ0i∂x
µyγxi∂0 − + − − − µyγyµ∂0
µyγxi∂x + − − − − µyγyi∂y

µyγxi∂y + + + − − −µyγyi∂x
µyγyi∂0 − − + − − −µyγxi∂0
µyγyi∂x + + + − − −µyγxi∂y
µyγyi∂y + − − − − µyγxi∂x

µ0,x,yi∂µ T Px Py Tx Ty Rπ/2

i∂0 + − − + + i∂0

i∂x − + − + + i∂y

i∂y − − + + + −i∂x
µxi∂0 − + − + − µzi∂0

µxi∂x + − − + − µzi∂y

µxi∂y + + + + − −µzi∂x
µzi∂0 − − + − + −µxi∂0
µzi∂x + + + − + −µxi∂y
µzi∂y + − − − + µxi∂x

Table 6.3: Symmetry transformation properties of bilinears of the form tr
(
σaX̄i∂µX

)
,

tr
(
σaX̄Γji∂µX

)
, and tr

(
σaX̄T jγµi∂νX

)
which do not transform under spin. The oper-

ators which can couple to a Higgs fields in a gapped symmetric spin Z2 spin liquid are
coloured; entries with the same colour transform into one another under Rπ/2.

6.3.2 Symmetric spin liquids

In this section, we focus on fully symmetric and gapped spin liquids (by ‘gapped,’ we are

referring specifically to the matter content). As mentioned, in order to simultaneously gap

the fermions and Higgs the gauge boson, an operator of the form tr
(
σaX̄T jX

)
where T j

is a generator of SO(5) must couple to a Higgs field. These are listed in Table 6.1. Of

the ten generators of SO(5), nine transform as vectors under the spin symmetry, and we

show in Appendix E.1 that a fully symmetry spin liquid cannot be formed by coupling a

Higgs field to any of these bilinears. Roughly, the argument relies on the fact that in order

to preserve the spin symmetry, a linear combination of the form ∼
∑

a tr
(
σaX̄MσaX

)
for

M = 1, µx, µz must couple to the Higgs, which then makes it impossible preserve all of the

discrete symmetries.

This observation establishes tr
(
σaX̄µyX

)
as the only fermion bilinear capable of both

giving the fermions a mass and coupling to a Higgs field. As indicated in Eq. (6.6) and

Section 6.3.1, we denote the Higgs field coupling to this bilinear as Φa. Since the action

remains invariant under all gauge transformations about the direction of the condensate, Φa

cannot fully Higgs the SU(2) gauge symmetry down to Z2. For instance, if we will assume
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that only ⟨Φx⟩ ̸= 0, U(1) operations of the form X → Xe−iθσ
x remain a gauge symmetry.

We label this U(1) spin liquid Df .

It is well-known [64] that without gapless degrees of freedom, a U(1) gauge theory is

unstable to the proliferation of monopoles and confinement [126]. We will ignore the ultimate

fate of Df until Sec. 6.4.3 where we show that the true ground state is a VBS.

With this caveat in mind, we deduce the projective symmetry group of the gapped U(1)

spin liquid from Table 6.1:

Vt = eiθtσ
x

iσz, Vtx = eiθtxσ
x

iσz,

Vpy = eiθpyσ
x

, Vty = eiθtyσ
x

iσz,

Vpx = eiθpyσ
x

, Vr = eiθrσ
x

, (6.40)

where the θG are arbitrary angles parametrizing the residual U(1) gauge degree of freedom.

Here, the subscripts t, px, py, tx, ty and r indicate that these gauge transformation accom-

pany the action of T , Px, Py, Tx, Ty, and Rπ/2 respectively.

We note that while the physical symmetries are all preserved in Df , the emergent SO(5)

symmetry of QCD3 has been broken. Of the SO(5) generators, T j = {µy, σa, µxσa, µzσa}, the

U(1) gauge theory is only invariant under {µy} × {σa}, indicating that the SO(5) is broken

to U(1)×SU(2). From the perspective of the SO(5) order parameter, nj = tr
(
X̄ΓjX

)
,

Γj = {µx, µz, µyσa}, the VBS order parameters, n1 and n2 can no longer be rotated into the

Néel order parameters, n3, n4, and n5.

To break the gauge group down to Z2, an additional Higgs field Φ1 is needed. However,

there are strict constraints on which bilinears can couple to Φ1 in order for the resultant

Z2 spin liquid to preserve all physical symmetries. We approach this problem from a vector

representation by associating an SO(3) matrix Q to each SU(2)g gauge transformation V .

That is, instead of looking at V such that tr
(
φX̄MX

)
→ tr

(
V †φV X̄MX

)
, we consider Q

such that φatr
(
σaX̄MX

)
→ (Qφ)atr

(
σaX̄MX

)
. In this notation, when ⟨Φx⟩ ≠ 0, we must
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have

QG =

1 0

0 RG

 , G = px, py, r, (6.41)

and

QG =

−1 0

0 R̃G

 , G = t, tx, ty, (6.42)

where RG and R̃G are determined by the bilinear coupling to Φ1. The constraints on this

bilinear arise from the fact that QG must be special orthogonal, therefore implying that RG

and R̃G must be 2× 2 orthogonal matrices with determinants +1 and −1 respectively.

We now argue that none of the operators in Table 6.2 satisfy these requirements. First,

all bilinears with spin indices can be excluded by the same reasoning given above and in

Appendix E.1. Next, we note that all remaining operators still transform differently than

tr
(
σaX̄µyX

)
under at least one of the symmetries, and therefore the Φ1 condensate must

be perpendicular to x in colour space. For the remaining six operators, the obstruction to

forming a spin liquid may be understood by studying the action of a 900 rotation. The last

column of the table indicates that Rπ/2 maps each bilinear to plus or minus another bilinear

in the table, eg. Rπ/2 : tr
(
σaX̄µxγ0X

)
→ tr

(
σaX̄µzγ0X

)
. In order for this to describe a

rotationally symmetric phase, both bilinears must couple to a Higgs field. We might imagine

that Φ1 couples to both operators in a pair, but this is not a viable option because the other

discrete symmetries do not act on the members of each pair in the same way. For instance, no

gauge transformation can preserve the form of ⟨Φa
1⟩ tr

(
σaX̄γ0 [µx ± µz]X

)
under Px, Py, Tx,

and Ty since tr
(
σaX̄γ0µxX

)
and tr

(
σaX̄γ0µzX

)
behave differently under these symmetries.

We might try coupling each of these operators to different Higgs fields, Φ1 and Φ′
1, and

require that they condense in mutually perpendicular channels, eg. ⟨Φy
1⟩ ̸= 0 and ⟨Φ′

1
z⟩ ̸= 0.

However, the matrix required to undo the action of the time reversal symmetry is then
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sPSG M Qt/Vt Qpx,py/Vpx,py Qtx,ty/Vtx,ty Qr/Vr

diag(−1, 1, 1) diag(1,−1,−1) diag(−1,−1, 1) 11 µyγ0i∂0, µ
y (γxi∂x + γyi∂y)

iσy iσx iσz 1

diag(−1, 1, 1) diag(1,−1,−1) diag(−1,−1, 1) diag(1,−1,−1)2 µy (γxi∂x − γyi∂y)
iσy iσx iσz iσx

diag(−1, 1, 1) 1 diag(−1,−1, 1) diag(1,−1,−1)3 µy (γxi∂y + γyi∂x)
iσy 1 iσz iσx

diag(−1, 1, 1) 1 diag(−1,−1, 1) 14 µy (γxi∂y − γyi∂x)
iσy 1 iσz 1

diag(−1, 1, 1) diag(1,−1,−1) diag(−1, 1,−1) 15 i∂0
iσy iσx iσy 1

Table 6.4: All symmetric PSG’s associated with symmetric Z2 spin liquids in which ⟨Φx⟩ ̸= 0
where Φ couples to tr

(
σaX̄µyX

)
. These are listed as a function of the operator tr

(
σaX̄MX

)
which Φ1 couples to. We assume that only ⟨Φy

1⟩ ≠ 0.

Qt = diag(−1, 1, 1) which is not an element of SO(3). We conclude that this does not work

either.

We next perform the same analysis on bilinears containing a single derivative. Once

again, the arguments in Appendix E.1 are valid, and we immediately exclude all operators

in Eq. (6.36) which transform nontrivially under spin rotations. The action of the space

group and time reversal symmetries on the remaining operators is provided in Table 6.3.

Again, Rπ/2 maps many of the operators to plus or minus a different operator in the table.

As discussed in the previous paragraph, only bilinears which transform in the same way

under T , Px, Py, Tx, and Ty as their partner under Rπ/2 are suitable candidates, and these

have been highlighted in different colours. In Table 6.4 we list the PSG’s of all gapped and

symmetric Z2 spin liquids which can be formed using this set of operators.

In Sec. 6.4.1 we determine which (if any) bosonic ansatz these PSG’s correspond to. We

find that sPSG5 corresponds to the fully symmetric spin liquid Ab, and for this reason, we

denote it Af .
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6.3.3 Z2 spin liquids with Ising-nematic order

As emphasized in Section 6.1, it is not necessary to restrict to fully symmetric spin liquids.

We therefore also study gapped, nematic Z2 spin liquids proximate to the gapped U(1)

spin liquid Df . In particular, we investigate spin liquids which are obtained by coupling a

third Higgs field, Φ2i, to the operators in Tables 6.1, 6.2, and 6.3, and which preserve the

continuous spin symmetry, T , Px, Py, Tx, and Ty, but break the 900 rotation symmetry,

Rπ/2. The absence of rotation symmetry makes it possible to couple any of the operators in

Tables 6.1 and 6.2 to the Higgs field, and the ten candidates we find are listed in Table 6.5.

We note that nPSG5 and nPSG6 are continuously connected to sPSG1-2 and sPSG3-4 re-

spectively. For instance, in the case of nPSG5, if the Higgs field couples as
∑

i=x,y Φ
a
2itr
(
σzX̄γii∂iX

)
,

then phases where the condensate satisfies ⟨Φa
2x⟩ = ±

⟨
Φa

2y

⟩
do not break Rπ/2 and are pre-

cisely sPSG1 and sPSG2. The same considerations hold for nPSG6 in relation to sPSG3

and sPSG4.

In all cases, the phase with ⟨Φ⟩ = 0 and ⟨Φ1⟩ ̸= 0 is a fully symmetric U(1) spin liquid.

However, unlike Df , the matter sector is gapless.

In the next section we find that nPSG7 is the fermionic version of the bosonic phase Bb,

leading us to label it Bf .

6.3.4 Z2 spin liquid with current-loop order

So far, we have defined three separate Higgs fields. To ensure that the condensed phases had

a spin gap, Φ and tr
(
σaX̄µyX

)
were required to couple. We then identified which bilinears

could couple to a second Higgs field, Φ1, such that the phase with ⟨Φ⟩ ̸= 0, ⟨Φ1⟩ ̸= 0, and

⟨Φ⟩ ⊥ ⟨Φ1⟩ was a fully symmetric spin Z2 liquid. Similarly, we determined in the previous

section which bilinears could couple to a Higgs field Φ2i such that the phase with ⟨Φ⟩ ̸= 0

and ⟨Φ2i⟩ ̸= 0 was a Z2 spin liquid with Ising-nematic order, again provided ⟨Φ⟩ ⊥ ⟨Φ2i⟩.

A natural extension is to ask which phases result when all three Higgs fields have con-
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nPSG Mi Vt Vpx Vpy Vtx Vty

x µxγ0 iσy iσx 1 iσy iσz1
y µzγ0 iσy 1 iσx iσz iσy

x µzγy iσz 1 1 iσz iσy2
y µxγx iσz 1 1 iσy iσz

x µxγy, iσz iσx iσx iσy iσz3
y µzγx iσz iσx iσx iσz iσy

x µyγ0i∂x, µ
yγxi∂0 iσz 1 iσx iσz iσz4

y µyγ0i∂y, µ
yγyi∂0 iσz iσx 1 iσz iσz

x µyγxi∂x iσy iσx iσx iσz iσz5
y µyγyi∂y iσy iσx iσx iσz iσz

x µyγxi∂y iσy 1 1 iσz iσz6
y µyγyi∂x iσy 1 1 iσz iσz

x i∂x iσz 1 iσx iσy iσy7
y i∂y iσz iσx 1 iσy iσy

x µxi∂0 iσz 1 iσx iσy iσz8
y µzi∂0 iσz iσx 1 iσz iσy

x µzi∂x iσy 1 1 iσz iσy9
y µxi∂y iσy 1 1 iσy iσz

x µxi∂x iσy iσx iσx iσy iσz10
y µzi∂y iσy iσx iσx iσz iσy

Table 6.5: Nematic PSG’s associated with order parameters of the form Φatr
(
σaX̄µyX

)
+

Φa
2itr
(
σaX̄M iX

)
. We have not included tr

(
σaX̄∂0X

)
since this operator is invariant under

the action of Rπ/2 and already accounted for as sPSG5. The labels x, y are simply a
convenient notation and do not necessarily signify a physical direction.
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densed: ⟨Φ⟩ ̸= 0, ⟨Φ1⟩ ̸= 0, and ⟨Φ2i⟩ ̸= 0. However, there are clearly a large number

of possibilities. Not only have we identified many candidate s- and nPSG’s, but different

symmetries will be broken depending on the relative orientation of the Higgs fields. There-

fore, we focus on producing the phase diagram in Fig. 6.2(b) and restrict our study to the

situation where the symmetric and nematic spin liquids are Af and Bf , the phases described

by sPSG5 and nPSG7.

This scenario describes four different patterns of symmetry breaking:

1. ⟨Φ⟩ ⊥ ⟨Φ1⟩ , ⟨Φ⟩ ⊥ ⟨Φ2i⟩, & ⟨Φ1⟩ ∥ ⟨Φ2i⟩

2. ⟨Φ⟩ ⊥ ⟨Φ1⟩ , ⟨Φ1⟩ ⊥ ⟨Φ2i⟩, & ⟨Φ⟩ ∥ ⟨Φ2i⟩

3. ⟨Φ2i⟩ ⊥ ⟨Φ⟩ , ⟨Φ2i⟩ ⊥ ⟨Φ1⟩, & ⟨Φ⟩ ∥ ⟨Φ1⟩

4. ⟨Φ⟩ ⊥ ⟨Φ1⟩ ⊥ ⟨Φ2i⟩

In Table 6.6 we list which symmetries are broken for each of these cases.

Referring to the phase diagram in Fig. 6.1(b), it is natural to restrict to the case where Af

and Bf are accessible by taking ⟨Φ2i⟩ or ⟨Φ1⟩ to zero. Since both the second and third cases

have ⟨Φ⟩ parallel to either ⟨Φ1⟩ or ⟨Φ2i⟩, we eliminate these options. Of the remaining two

phases, the resulting spin liquid only possesses current-loop order when ⟨Φ1⟩ ∥ ⟨Φ2i⟩. This

situation is further distinguished by breaking the fewest symmetries. We refer to this phase

as Cf and later equate it and the bosonic phase Cb.

6.4 Spin liquid identification

We now identify the phases examined above with previously studied spin liquids. On the

lattice, Wen [184] showed that 58 distinct Z2 PSG’s can be accessed from the π-flux state

(SU2Bn0). However, his PSG classification gives no indication of the physical properties of

these phases and, moreover, as we will see, it includes certain “anomalous” PSG’s which can-

not be obtained from a mean field ansatz. We therefore begin by discussing the “symmetry
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Direction Broken
⟨Φ⟩ ⟨Φ1⟩ ⟨Φ2x⟩ Symmetries

1 x y y T , Px
2 x y x Py, Tx, Ty
3 x x y T , Px, Py, Tx, Ty
4 x y z Px, Tx, Ty

Table 6.6: Symmetries broken depending on the orientation in gauge space taken by the
Higgs condensates. The fields couple to the bilinears as tr

(
ΦX̄µyX

)
+ tr

(
Φ1X̄i∂0X

)
+

tr
(
Φ2xX̄i∂xX

)
.

fractionalization” approach to spin liquid classification, and relate it to Wen’s scheme. This

will significantly simplify the process of relating the symmetric U(1) spin liquids and the

phases in Table 6.4 to the spin liquids studied by Wen. Its greatest power, however, will be

to treat fermionic and bosonic mean field ansatze on the same footing, allowing us relate our

results to phases described using Schwinger bosons, and prove our earlier claim that Af , Bf ,

and Cf are fermionic versions of Ab, Bb, and Cb.

We next show that the gapped U(1) spin liquid Df corresponds to Db. The gapless gauge

degrees of freedom invalidate the symmetry fractionalizaton approach to comparing spin

liquids represented with bosons and fermions. Instead, we show through linear response that

the proliferation of monopoles induces the condensation of the VBS order parameters given

by the first two components of the vector in Eq. (6.31). We provide additional verification

by demonstrating that the Berry phase of the monopole matches the calculation performed

by Haldane [53] and Read and Sachdev [144].

6.4.1 Symmetry fractionalization and Z2 spin liquid identification

In this section, we relate the gapped Z2 spin liquids determined in the previous section to

spin liquids obtained using Schwinger bosons by Yang and Wang [205] and Chatterjee et

al. [21]. Since these phases are gapped, they are completely defined via their “symmetry

fractionalization” [43]. Of the PSGs listed in Tables 6.4 and 6.5, we find that precisely
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Group relations sPSG1 sPSG2 sPSG3 sPSG4 sPSG5 vison twist Z2[0, 0] Z2[0, π]

1 T−1
y TxTyT

−1
x −1 −1 −1 −1 −1 −1 1 1 1

2 P−1
y TxPyT

−1
x −1 −1 1 1 −1 −1 1 1 1

3 P−1
y TyPyTy −1 −1 1 1 −1 1 1 −1 −1

4 P 2
y −1 −1 1 1 −1 1 −1 1 1

5 P−1
y Rπ/2PyRπ/2 1 −1 −1 1 1 1 1 1 −1

6 R4
π/2 1 1 1 1 1 −1 −1 1 1

7 R−1
π/2TxRπ/2Ty −1 −1 −1 −1 −1 −1 1 1 1

8 R−1
π/2TyRπ/2T

−1
x −1 −1 −1 −1 −1 1 1 −1 −1

9 R−1
π/2T

−1Rπ/2T 1 −1 −1 1 1 1 1 1 −1

10 P−1
y T −1PyT −1 −1 1 1 −1 1 −1 1 1

11 T−1
x T −1TxT 1 1 1 1 −1 1 1 −1 −1

12 T−1
y T −1TyT 1 1 1 1 −1 1 1 −1 −1

13 T 2 −1 −1 −1 −1 −1 1 1 −1 −1

Table 6.7: The columns labeled “sPSG1-5,” list the symmetry fractionalizations of the
gapped, symmetric Z2 spin liquids given in Table 6.4. The corresponding bosonic sym-
metry fractionalization numbers are obtained by multiplying the sPSG numbers with the
those given in the ‘vison’ and ‘twist’ columns. We see that sPSG5 corresponds to the Z2[0, 0]
state of Ref. 205. No bosonic counterparts to sPSG1-4 are present in Ref. 205.

one matches onto the spin liquid Ab, and one onto Bb of Fig. 6.2(a). We begin by briefly

reviewing this classification scheme in the context of Z2 topological order. The reader is

referred to Ref. 43 for more details.

One of the defining characteristics of topological order is the presence of anyonic excita-

tions. For the Z2 case we consider here, there are two bosonic particles, typically denoted

e and m, which are mutually semionic: the wavefunction picks up a minus sign upon the

adiabatic motion of an e particle travelling around an m particle. A bound state of an e and

m is a fermionic excitation, ε ∼ em, and it also satisfies mutual semionic statistics with e

and m. We will frequently refer to the m particle as the ‘vison’ and the e and ε particles

as the bosonic and fermionic ‘spinon’ respectively. These excitations carry Z2 gauge charge

and therefore must appear in pairs. Nonetheless, the Z2 gauge field is gapped and these

phases are deconfined, meaning that e, m, and ε particles may be very far from one another.

A comparison of these particles with the excitations in the Higgs phases implies that the

fermionic spinons ε should be identified with the excitations of the field operator X. In
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addition, in 2+1d the Abrikosov vortices of the condensate are pointlike, and we associate

these with the vison excitations m. The remaining particle, the bosonic spinon e, is therefore

described by a bound state of X and the vortex. In contrast, CP1 is formulated in terms of

the bosonic spinons. The vison is present as a vortex in the condensate as before, but now

it is the fermionic spinon that is expressed as a bound state.

This representation of the degrees of freedom of a gapped Z2 spin liquid provides a means

to compare phases described using fermionic and bosonic ansatze. In a manner analogous

to the classification of symmetries in terms of quantum numbers, these symmetry enriched

topological phases can be classified by what is known as symmetry fractionalization numbers.

Independent of any formalism, suppose we create from the groundstate two ε (or e or m)

excitations and separate them so that they lie at very distant points r and r′: |r, r′⟩. Since

the rest of the system is indistinguishable from the groundstate, the action of an unbroken

symmetry G will exclusively affect these regions:

G |r, r′⟩ = Gε(r)Gε(r
′) |r, r′⟩ , (6.43)

where Gε(r) only has support in the region immediately surrounding r. As discussed in

Sec. 6.2.1, the generators of a symmetry group satisfy certain commutation relations, and

for the space group of the square lattice (plus time reversal), these relations are given in

Eq. (6.11) and below. It follows that the action of any of these operations on all wavefunc-

tions must be equivalent to the identity. For example, since T−1
y TxTyT

−1
x = 1, it must map

|r, r′⟩ to itself:

|r, r′⟩ = T−1
y TxTyT

−1
x |r, r′⟩ . (6.44)

In terms of the local symmetry operations, this becomes

|r, r′⟩ = T −1
ε,y (r)Tε,x(r)Tε,y(r)T

−1
ε,x (r)· (6.45)
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Since the transformations are localized at either r and r′, they must be independent from

one another and therefore constant. However, because of the Z2 gauge degree of freedom,

ζεtxty = T −1
ε,y (r)Tε,x(r)Tε,y(r)T −1

ε,x (r) need not necessarily equal unity: the symmetry can be

fractionalized such that ζεtxty = −1. The value of ζεtxty will be consistent for every excitation

of that species within a phase

It is not difficult to connect this to the PSG classification of the previous section. The

PSG is the set gauge transformations required to preserve the form of the action following a

symmetry transformation, as shown in Eq. (6.39). Now, however, we present the PSG action

solely in terms of operator which creates fermionic spinons, X:

PG : X → UGXV
†
G. (6.46)

The same argument given above then requires that under the action of T−1
y TxTyT

−1
x , X is

mapped to plus or minus itself:

T−1
y TxTyT

−1
x [X] = U †

txUtyUxyU
†
tyX VtyV

†
txV

†
tyVtx = ±X. (6.47)

This factor is precisely the fractionalization number of ε. When time reversal is involved,

this is modified to

G−1T −1GT [X] = U∗
t σ

yU∗
Gσ

yUT
t U

†
GX VGV

∗
t σ

yV T
G σ

yV T
t ,

T 2[X] = U∗
t σ

yUtσ
yX σyV †

t σ
yV T

t , (6.48)

where the reality condition in Eq. (6.30) has been used. Table 6.1 lists the numbers cor-

responding to each of the sPSG’s in Table 6.7. (We note that the 7th group relation,

R−1
π/2TxRπ/2Ty = 1, can be fixed by a gauge transformation on the relative sign of Vtx and

Vty. In keeping with the convention of Ref. 205, we require that the symmetry fractionaliza-

tion number be −1 for the fermionic spinons.)

The argument also demonstrates a shortcoming of the PSG classification. While it im-
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mediately returns the symmetry fractionalization of the fermionic spinons, it provides no

information regarding the symmetry fractionalization of the vison and bosonic spinon. How-

ever, it fortunately turns out that the vison’s fractionalization numbers are independent of

the precise Z2 spin liquid under study and can be obtained by examining a fully frustrated

transverse-field Ising model [76, 158, 197, 205]. We quote these results in the column labeled

“vison” in Table 6.7.

Correspondence between fermionic and bosonic ansatze

Comparing fermionic and bosonic ansatze may appear straightforward from this point: since

e ∼ εm, it seems reasonable to assume that the symmetry fractionalization of the bosonic

spinon is obtained through a simple multiplication of the symmetry fractionalization numbers

of the fermionic spinon and the vison. However, the mutual statistics of ε andm occasionally

change this relation. For instance, upon rotating e by 3600, R4
π/2, either the vison will encircle

the fermionic spinon or vice versa. In either case, an extra factor of −1 must be taken into

account. These additional multiplication factors were worked out in Ref. 205, and we quote

them under the column labeled “twist” in Table 6.7.

The comparison with the bosonic symmetry fractionalization allows us to identify sPSG5

with Z2[0, 0], showing that Af = Ab as promised. We do not find fermionic counterparts to

the remaining four spin liquids in Ref. 205.

Using a slightly altered set of commutation relations to account for the symmetry breaking,

the exact same analysis can be performed for the nematic spin liquids. These symmtery

fractionalization numbers are shown in Table 6.5, and, as claimed, by comparing with the

analysis of Ref. [21] we positively identify Bf (nPSG7) with the Ising-nematic Z2 spin liquid

Bb.

Finally, the equivalence of Af and Bf with Ab and Bb indicates the equivalence of Cf and

Cb. In Appendix E.4, we provide additional verification of this result using the symmetry

fractionalization technique.
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6.4.2 Lattice classification of fermionic PSG’s

The data compiled in Table 6.7 can also be used to compare the phases we find against

fermionic spin liquids described on the lattice. In Appendix E.2, we review Wen’s classifica-

tion scheme [184] and identify the lattice PSG’s corresponding to the two U(1) spin liquids

as well as the five symmetric Z2 spin liquids. This classification is useful since it allows us

to express the phases we’ve studied on the lattice without having to reverse engineer the

bilinears.

We identify the gapped U(1) spin liquid, Df , with U1Cn0n1 and the gapless U(1) spin

liquid (⟨Φ1⟩ ≠ 0) with U1Bx11n. The lattice PSG’s corresponding to the five symmetric Z2

spin liquids we obtained are shown in Table 6.8.

Both sPSG1 and sPSG5 seemingly correspond to multiple lattice PSG’s. However, in

Appendix E.2.4, we prove that while the spin liquids have the same symmetry fractionaliza-

tions, of the two shown, only one of each pair actually corresponds to the spin liquids we

consider. In the case of sPSG5, it is not difficult to show that Z2Bxx2z is always gapless,

immediately ruling it out as a description of the gapped phase Af . Further, we show that

Z2Bxx2z is not proximate to either the gapped or gapless U(1) spin liquids U1Cn0n1 and

U1Bx11n. Similarly, we find that Z2Bxx23 is not proximate to U1Cn0n1, leaving Z2Bxx13

as the sole realizable lattice PSG capable of reproducing sPSG1.

These statements can be verified explicitly by comparing our continuum theory with mean

field Hamiltonians on the lattice which have been constructed using only information pro-

vided by the lattice PSG. In Appendix E.3 we study the lattice Hamilonians for the gapped

and gapless U(1) spin liquids, as well as Af . We find that a low-energy expansion of the

mean field Hamiltonian describing U1Cn0n1 corresponds to adding tr
(
σxX̄µyX

)
to the

π-flux Hamiltonian as expected, but that no analogous statement can be made for either

U1Bx11n or Z2Bxx1z. In particular, we demonstrate that no mean field ansatz on the

lattice can realize the U(1) spin liquid U1Bx11n. This should not be too surprising as

the continuum realization of this phase is the product of condensing Φ1 when coupled to
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sPSG1 sPSG2 sPSG3 sPSG4 sPSG5 (Af )

Lattice PSG Z2Bxx13
Z2Bxx03 Z2B0013 Z2B0001

Z2Bxx1z

Z2Bxx23 Z2Bxx2z

Table 6.8: Spin liquids according to the labeling scheme given in Ref. 184 and reviewed in
Appendix E.2.4. All of the spin liquids listed are found to be proximate to the π-flux phase
SU2n0 though not necessarily U1Cn0n1. While the symmetry fractionalization of sPSG1
and sPSG5 corresponds to multiple fermionic PSG’s, the two which have been italicized
(Z2Bxx23 and Z2Bxx2z) are not proximate to U1Cn0n1 and therefore cannot represent the
Higgs phases we obtain (see Appendix E.2.4).

tr
(
σaX̄∂0X

)
, the time component of a vector. This description is manifestly dependent on

the presence of temporal fluctuations in contrast to the purely static mean field analysis.

Conversely, a lattice Hamiltonian describing the Z2 phase Af does exist. However, upon

expanding the resulting Hamiltonian about its Dirac cones, the hopping term which breaks

the U(1) symmetry down to Z2 appears to arise from coupling tr
(
σaX̄µy∂x∂y

[
∂2x − ∂2y

]
X
)
to

a condensed Higgs field. We can see why this may be the case by observing how symmetries

act on Ξ = tr
(
σaX̄µy∂x∂y

[
∂2x − ∂2y

]
X
)
:

T [Ξ] = −Ξ, Px,y[Ξ] = −Ξ, Tx,y[Ξ] = −Ξ, Rπ/2[Ξ] = Ξ. (6.49)

It follows that a Higgs field Φ′
1 which couples to Ξ may have a non-zero expectation value

in the Af phase provided it is perpendicular in colour space to both Φ and Φ1. That is,

supposing ⟨Φx⟩ ̸= 0 and ⟨Φz
1⟩ ̸= 0, having ⟨Φ′

1
z⟩ ≠ 0 will not break any of the symmetries.

It can also be shown that the Ising-nematic spin liquid, Bf , is not ‘anomalous’ in the

manner just discussed.

6.4.3 Identification of U(1) spin liquid

The arguments which allowed us to compare Z2 spin liquids expressed using bosonic and

fermionic spinons breaks down in the presence of gapless degrees of freedom. In both cases,

these phases are unstable to the proliferation of monopoles, and their true ground states
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Group relations vison twist nPSGx
1 2 3 4 5 6 7 8 9 10

1 T−1
y TxTyT

−1
x −1 1 1 1 1 −1 −1 −1 −1 1 1 1

2 P−1
x TxPxTx 1 1 −1 1 −1 1 −1 1 1 1 1 −1

3 P−1
y TxPyT

−1
x −1 1 1 1 −1 −1 −1 1 −1 −1 1 −1

4 P−1
x TyPxT

−1
y −1 1 −1 1 −1 1 −1 1 1 1 1 −1

5 P−1
y TyPyTy 1 1 1 1 −1 −1 −1 1 −1 −1 1 −1

6 P 2
x 1 −1 −1 1 −1 1 −1 1 1 1 1 −1

7 P 2
y 1 −1 1 1 −1 −1 −1 1 −1 −1 1 −1

8 P−1
x P−1

y PxPy −1 −1 1 1 1 1 1 1 1 1 1 1

9 T−1
x T −1TxT 1 1 −1 −1 1 −1 1 1 1 1 1 −1

10 T−1
y T −1TyT 1 1 1 1 −1 −1 1 1 1 −1 −1 1

11 P−1
x T −1PxT 1 −1 −1 1 −1 1 −1 1 1 1 1 −1

12 P−1
y T −1PyT 1 −1 1 1 −1 −1 −1 1 −1 −1 1 −1

13 T 2 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Table 6.9: Symmetry fractionalization of nematic PSG’s (nPSG’s) for spin liquids listed in
Table 6.5. nPSG7x (highlighted in blue) corresponds to the fermionic PSG determined in
[21]. The columns labelled ‘v’ and ‘t’ list the vison fractionalization numbers and the twist
factors respectively.

will break any symmetries under which the monopoles transform nontrivially. In order to

ensure that Df actually corresponds to the massive phase of the CP1 theory, Db, we verify

that the two spin liquids share the same fate and ultimately realize a VBS. We approach

this problem from two perspectives. We first follow the method outlined in Ref. 48 and

determine which bilinear operators respond to a weakly varying flux and, consequently, the

monopoles’ presence. We complement this analysis by calculating the Berry phase of the

monopole in a certain limit and show that it agrees with the analogous calculation performed

using Schwinger bosons in Ref. 144.

Flux Response

The effective Lagrangian describing Df is

LU(1) = itr
(
X̄γµ

[
∂µX + iXσxaxµ

])
+ λ2 ⟨Φx⟩ tr

(
σxX̄µyX

)
. (6.50)
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Because both ayµ and azµ are gapped, only axµ is included in LU(1). In what follows, we drop

the ‘x’ index, taking axµ → aµ (this aµ should not be confused with the gauge field of the

original SU(2) gauge field). Finally, at this point in the discussion, it is more convenient to

express the Lagrangian in terms of Dirac spinors. Using Eq. (6.27), we find

LU(1) = ψ̄iγµ (∂µ − iaµσ
x)ψ +mψ̄σxµyψ (6.51)

where m = λ2 ⟨Φx⟩.

In the context of a U(1) gauge theory, a monopole is a topologically nontrivial field con-

figuration of aµ. In imaginary time, this configuration corresponds exactly to a (stationary)

Dirac monopole in 3+1d electromagnetism. However, instead of behaving as a particle, in

2+1d the monopole is actually an instanton: it describes tunneling between different vacua

or topological sectors labeled by their total flux,
∫
dSµϵ

µνλ∂νaλ = 2πn where n is an integer.

This number is zero in the deconfined phase of the gauge theory whereas it fluctuates and

ceases to take a definite value once the monopoles proliferate.

A complete treatment of the monopole proceeds by first expanding the gauge field into

a classical background piece Aµ and a quantum fluctuation piece ãµ, aµ = Aµ + ãµ, and

quantizing the theory about this background. Because the monopole background breaks

translational symmetry, this is quite an involved calculation which we will not perform.

Instead, we investigate the impact a non-zero flux has on the other operators of the the-

ory. That is, we assume that the classical monopole configuration described by Aµ varies

very slowly and, through linear response, determine which operators, O, the flux couples

to at leading order: ⟨O(x)⟩ =
∫
d3x′ χµO(x, x

′)Aµ(x
′) where χµO =

⟨
O(x)ψ̄γµσxψ(x′)

⟩
. This

calculation is outlined in Appendix E.5 and at low energies yields

⟨
ψ̄γµµyψ

⟩
=

1

π
ϵµαβ∂αAβ. (6.52)

Consequently, whenever there is a net flux,
∫
d2x (∂xAy − ∂yAx) ̸= 0, we expect

⟨
ψ̄γ0µyψ

⟩
̸=

0 as well. This allows us to identify ψ̄γµµyψ with the topological current. The topological
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charge is then obtained by integrating the zeroth component of the current over space:

Q =
1

2

∫
d2r ψ̄γ0µyψ. (6.53)

The factor of 1/2 is chosen to ensure that Q is always an integer, as follows from Eq. (6.52).

A conserved charge is the generator of the associated symmetry, meaning that Q generates

the flux conservation symmetry. However, this operator should be familiar from Sec. 6.3.1

where it was observed to be the generator of the U(1) VBS symmetry. This can be confirmed

by checking that

[Q, Vx] = iVy, [Q, Vy] = −iVx. (6.54)

where Vx = 1
2
ψ̄µxψ, Vy = 1

2
ψ̄µzψ. It follows that Q is conjugate to the VBS order parameters.

When the gapped U(1) gauge theory confines, the monopole proliferation induces large

fluctuations in Q. This in turn suppresses the fluctuations of the operators conjugate to

Q, ultimately resulting in long range order. We conclude from the analysis above that the

proliferation of monopoles triggers the condensation of one of the VBS order parameters,

proving that Df is unstable to a VBS and therefore equivalent to Db. This mechanism

should be contrasted with the scenario outlined in Sec. 6.2.3 where VBS order was achieved

by tuning µ > 0 in Eq. (6.33).

Berry phase

A separate argument for the identification of the U(1) spin liquid proceeds by a computation

of the monopole Berry phase, along the lines of the original arguments using the semiclassical

quantization of the antiferromagnet [53], or the Schwinger boson theory of the U(1) spin

liquid [144]. Here, this argument starts from a lattice Hamiltonian for the U1Cn0n1 U(1)
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spin liquid, which we obtain from Eq. (E.46) for a generic direction of the Higgs field Φ

H = −
∑
i

{
iα
(
ψ†
iψi+x̂ + (−)ixψ†

iψi+ŷ + h.c.
)
+ Φa(−)ix+iyβ

(
ψ†
iτ

aψi+2x̂ + ψ†
iτ

aψi+2ŷ + h.c.
)

− Φaa0(−)ix+iyψ†
iτ

aψi

}
. (6.55)

We are interested in saddle-points of the associated action where the Φa Higgs field, and the

associated SU(2) gauge field (not written explicitly in Eq. (6.55)) take the configuration of

’t Hooft-Polyakov monopoles [66, 128] in 2+1 dimensional spacetime. After obtaining such

saddle points, we have to compute the fermion determinant in such a background, and the

phase of this determinant will yield the needed monopole Berry phase. This is clearly a

demanding computation, and we will not attempt to carry it out in any generality. However,

assuming the topological invariance of the needed quantized phase, we can compute it by

distorting the saddle point Lagrangian, without closing the fermion gap, to a regime where

the phase is easily computable. Specifically, consider the limit where the parameter a0 in

Eq. (6.55) is much larger than all other parameters, including α and β. For the ’t Hooft-

Polyakov monopole at the origin of spacetime, Φa ∼ r̂a, where r̂a is a unit radial vector in

spacetime. Ignoring all but the a0 term in Eq. (6.55), we then have to compute the Berry

phases of single fermions, each localized on a single site, in the presence of a staggered field

∝ Φa. However, this Berry phase is precisely that computed by Haldane [53]; in his case the

staggered field was the antiferromagnetic order parameter which acts in the spin SU(2) space

(in contrast to the staggered field in the gauge SU(2) space in our case), and the Berry phase

arose from that of a quantized S = 1/2 spin. As the Berry phase of a spin 1/2 localized

fermion is equal to the spin Berry phase, we conclude that the ’t Hooft-Polyakov monopole

Berry phase is equal to that obtained by Haldane [53] for S = 1/2. Therefore, the monopole

Berry phases in the fermionic spinon U(1) spin liquid U1Cn0n1 are equal to those of the

U(1) spin liquid of the bosonic CP1 theory of the square lattice antiferromagnet [10, 156].
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6.5 Conclusions

Two distinct classes of 2 + 1 dimensional fermion-boson dualities have recently seen much

discussion in the literature.

One class concerns gapped Z2 spin liquids which have both bosonic and fermionic spinon

excitations. Binding with a vison transmutes a spinon from a boson to a fermion, or vice

versa [142], and this allows one to map between Z2 spin liquids obtained in mean-field theory

using fermionic or bosonic ansatze. Specific examples of such dualities have been described

on a variety of lattices [21, 43, 106, 107, 136, 204, 205, 208, 211], and our results for such

dualities appear in Figs. 6.1 and 6.2. We described the dualities between the bosonic Z2

spin liquids Ab, Bb, Cb and the fermionic spin liquids Af , Bf , Cf respectively. The first two

of these dualities have been obtained earlier [21, 205], but we obtained all three in a unified

manner with reference to continuum theories.

The second class of dualities concern conformal gauge theories with fermionic and bosonic

matter [25, 82, 85, 111, 118, 164]. Most relevant to our considerations is the proposed duality

[179] between the critical bosonic CP1 U(1) gauge theory, and fermionic SU(2) QCD3 with

Nf = 2 flavors of Dirac fermions.

Among our results was a demonstration of the compatibility between these two classes

of dualities. We Higgsed the critical bosonic CP1 and fermionic QCD3 theories, and found

nontrivial consistency between the gapped Z2 spin liquids so obtained. We also obtained

a fermionic counterpart to the U(1) spin liquid with gapped bosonic spinons on the square

lattice originally obtained by Arovas and Auerbach [10] (which is equivalent to the gapped

zα phase of the CP1 theory [143, 144]): the U(1) spin liquid with gapped fermionic spinons

was identified as U1Cn0n1 (in Wen’s notation). Both the bosonic and fermionic U(1) spin

liquids are eventually unstable to monopole proliferation, confinement, and VBS order, and

have identical monopole Berry phases (as shown in Section 6.4.3).

Our analysis also led us to propose new fermion-boson dualities between multi-critical
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theories. One example is the duality between (i) the U(1) gauge theory in Eq. (6.4) with

two unit charge bosons zα, a doubly charged Higgs field P , and the masses of both fields

tuned to criticality; and (ii) the SU(2) gauge theory in Eq. (6.6) with Nf = 2 massless

fundamental Dirac fermions ψ, and two adjoint Higgs fields Φ, Φ1, and the masses of both

Higgs field tuned to criticality.

The fermionic approach to square lattice spin liquids [2, 3, 184] yields a variety of critical

spin liquids coupled to U(1) and SU(2) gauge fields. Two examples are in Fig. 6.1(b), the

states labeled by Wen as U1Bx11n and SU2Bn0. The results of Wang et al. [179] indicate

that the SU(2) critical state SU2Bn0 cannot appear as an extended critical phase in a square

lattice antiferromagnet, and it is only realized as a critical point between the Néel and VBS

states. From our comparison of Fig. 6.1(b) and Fig. 6.1(a), we obtain evidence that the

critical U(1) spin liquid U1Bx11n also cannot be realized as an extended phase on the

square lattice: it is unstable to the appearance of canted antiferromagnetic order.
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A.1 Mean field theory with boundary

In this appendix, we consider the mean field equations in the presence of a boundary. We

define the lattice to be finite in the x-direction, xi = 1, . . . , N , and infinite in the y-direction

(to remove factors of i, we actually switch the x- and y-directions compared to Eq. (2.6)).

We rewrite the Fourier transform, which is now only valid in the y-direction:

cijσ =

∫
dk

2π
eikyjcikσ, dijα =

∫
dk

2π
eikyj [2α sin k cikα + (cj+1,kα − ci−1,kα)] ,

fijσ =

∫
dk

2π
eikyjfikσ. (A.1)

Translational invariance in the y-direction implies that the mean field parameters will

depend only on the distance from the boundary – the roman indices i, j, etc. label the

x-coordinate only. We express the Hamiltonian in block form as

ĤMF =
∑
k

Ψ†
kσHσ(k)Ψkσ, Ψ†

kσ =
(
c†1kσ, c

†
2kσ, . . . , f

†
1kσ, f

†
2kσ, . . .

)
=
(
ψ†
1kσ, ψ

†
2kσ, . . . , ψ

†
1+N,kσ, ψ

†
2+N,kσ, . . .

)
H↑(k) =

 hc(k) hcf (k)

h†cf (k) hf (k)

 H↓(k) = H↑(−k)∗ (A.2)
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with blocks given by

hc(k) = −t1
2



2 cos k 1 0 · · ·

1 2 cos k 1 · · ·

0 1 2 cos k · · ·
... ... ... . . .


− t2 cos k



0 1 0 · · ·

1 0 1 · · ·

0 1 0 · · ·
... ... ... . . .


−



µ1 0 0 · · ·

0 µ2 0 · · ·

0 0 µ3 · · ·
... ... ... . . .


(A.3)

hf (k) = −1

2



2χ1y cos k χ1x 0 0 · · · · · · · · ·

χ1x 2χ2y cos k χ2x 0 · · · · · · · · ·

0 χ2x 2χ3y cos k χ3x · · · · · · · · ·
... ... ... ... . . . · · · · · ·
... ... ... ... ... 2χN−1,y cos k χN−1,x

... ... ... ... ... χN−1,x 2χNy cos k



+



λ1 0 0 0 · · · · · · · · ·

0 λ2 0 0 · · · · · · · · ·

0 0 λ3 0 · · · · · · · · ·
... ... ... ... . . . · · · · · ·
... ... ... ... ... λN−1 0

... ... ... ... ... 0 λN


(A.4)

hcf (k) =
1

2



2V1 sin k −V2 0 · · ·

V1 2V2 sin k −V3 · · ·

0 V2 2V3 sin k · · ·
... ... ... . . .


. (A.5)

To determine correlation functions, we diagonalize the Hamiltonian numerically. For each
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k, we find the matrices U(k) such that

U †H(k)U(k) = Λ(k), Λij(k) = δijEj(k) . (A.6)

Then, the mean field equations of Eqs. (2.9)− (2.11) may be expressed as

1 =
∑
α

∫
dk

2π

⟨
f †
kjαfkjα

⟩
=
∑
α

∫
dk

2π

⟨
ψ†
k,j+N,αψk,j+N,α

⟩
= 2

∫
dk

2π

2N∑
l=1

n(El(k))Uj+N,l(k)U
†
l,j+N(k)

(A.7)

1 =
∑
α

∫
dk

2π

⟨
c†kjαckjα

⟩
=
∑
α

∫
dk

2π

⟨
ψ†
kjαψkjα

⟩
= 2

∫
dk

2π

2N∑
l=1

n(El(k))Ujl(k)U
†
lj(k)

(A.8)

Vi = −JK
2

∑
α

∫
dk

2π

⟨
d†ikαfikα

⟩
= −JK

2

∑
α

∫
dk

2π

[
2α sin k

⟨
c†ikαfikα

⟩
+
⟨
c†i+1,kαfikα

⟩
−
⟨
c†i−1,kαfikα

⟩]
= −JK

2

∑
α

∫
dk

2π

[
2α sin k

⟨
ψ†
ikαψi+N,kα

⟩
+
⟨
ψ†
i+1,kαψi+N,kα

⟩
−
⟨
ψ†
i−1,kαψi+N,kα

⟩]
= −JK

∫
dk

2π

2N∑
l=1

n(El(k))
[
2 sin k Ui+N,l(k)U

†
l,i(k) + Ui+N,l(k)U

†
l,i+1(k)− Ui+N,l(k)U

†
l,i−1(k)

]
(A.9)

χix =
JH
2

∑
α

∫
dk

2π

[⟨
f †
i+1,kαfik

⟩
+
⟨
f †
ikαfi+1,kα

⟩]
=
JH
2

∑
α

∫
dk

2π

[⟨
ψ†
i+N+1,kαψi+N,kα

⟩
+
⟨
ψ†
i+N,kαψi+N+1,kα

⟩]
= JH

∫
dk

2π

2N∑
l=1

n(El(k))
[
Ui+N,l(k)U

†
l,i+N+1(k) + Ui+N,1,l(k)U

†
l,i+N+1(k)

]
(A.10)

χiy =
JH
2

∑
α

∫
dk

2π
2 cos k

⟨
f †
ikαfikα

⟩
= JH

∑
α

∫
dk

2π
cos k

⟨
ψ†
i+N,kαψi+N,kα

⟩
= 2 JH

∫
dk

2π

2N∑
l=1

n(El(k)) cos k Ui+N,l(k)U
†
l,i+N(k) (A.11)
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B.1 The “Senthil-Fisher” mechanism

Here we reproduce the discussion in Ref. 168, and demonstrate how the GSM of the order

of ψ̄σ⃗ψ (and similarly ψ̄τ⃗ψ) is enlarged from S2 to SO(3). First we couple the Nf = 4 QED

to a three component dynamical unit vector field N(x, τ):

L = ψ̄γµ(∂µ − iaµ)ψ +mψ̄σψ ·N . (B.1)

The flavor indices are hidden in the equation above for simplicity. Now following the standard

1/m expansion of Ref. 1, we obtain the following action after integrating out the fermion ψj:

Leff =
1

g
(∂µN)2 + i2πHopf[N ] + i2aµJ

T
µ +

1

e2
f 2
µν , (B.2)

where 1/g ∼ m. JT0 = 1
4π
ϵabcN

a∂xN
b∂yN

c is the Skyrmion density of N , thus JTµ is the

Skyrmion current. The second term of Eq. (B.2) is the Hopf term of N which comes from

the fact that π3[S2] = Z.

Now if we introduce the CP1 field zα = (z1, z2)
t = (n1+ in2, n3+ in4)

t for N as N = z†σz,

the Hopf term becomes precisely the Θ−term for the O(4) unit vector n with Θ = 2π:

i2πHopf[N ] =
i2π

2π2
ϵabcdn

a∂xn
b∂yn

c∂τn
d. (B.3)
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In the CP1 formalism, the Skyrmion current JTµ = 1
2π
ϵµνρ∂ναρ, where αµ is the gauge field

that the CP1 field zα couples to. The coupling between aµ and αµ

2iaµJ
T
µ =

i2

2π
ϵµνρaµ∂ναµ (B.4)

takes precisely the form of the mutual CS theory of a Z2 topological order, and it implies

that the gauge charge zα is an anyon of a Z2 topological order, and the condensate of zα

(equivalently the order of N) has a GSM = SO(3) = S3/Z2, where S3 is the manifold of the

unit vector n⃗.

B.2 Deriving the WZW term

Let us consider a theory of QED3 with Nf = 4 flavors of Dirac fermions coupled to a matrix

order parameter field P :

L =
∑
i,j

ψ̄i(γµ(∂µ − iaµ)δij +mPij)ψj. (B.5)

P takes values in the target manifold P ∈ M = U(4)
U(2)×U(2)

. We can parametrize the matrix

field P = U †ΩU , where U ∈ SU(4) and Ω = σz ⊗ 12×2. P satisfies P2 = 14×4 and trP = 0.

The effective action after integrating over the fermion fields formally reads

Seff [aµ,P] = − ln

∫
Dψ̄Dψ exp

[
−
∫
d3xL(ψ, aµ,P)

]

= − ln det[D(aµ,P)] = −Tr ln[D(aµ,P)]. (B.6)

The expansion of Seff has the following structure

Seff [aµ,P ] = Seff [aµ = 0,P] +O(a) (B.7)

and we will look at the first term in the expansion. In general, all terms that respect the
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symmetry of the original action will appear in the expansion of the fermion determinant.

Here we want to derive the topological term of P . One way to obtain the effective action is

the perturbative method developed in Ref. 1. Let us vary the action over the matrix field P

δSeff = −Tr(mδP(D†D)−1D†) (B.8)

and then expand (D†D)−1 in gradients of P :

(D†D)−1 = (−∂2 +m2 −mγµ∂µP)−1

= (−∂2 +m2)−1

∞∑
n=0

[
(−∂2 +m2)−1mγµ∂µP

]n (B.9)

Since the coefficient of the WZW term is dimensionless, we will look at the following term

in the expansion

δW (P) = −Tr

[
m2δP 1

−∂2 +m2

[
(−∂2 +m2)−1mγµ∂µP

]3P]
= −K

∫
d3x Tr[δP(γµ∂µP)3P ] (B.10)

where

K =

∫
d3p

(2π)3
m5

(p2 +m2)4
=

1

64π
(B.11)

is a dimensionless number, and “Tr” is the trace over both the Dirac and flavour indices.

After tracing over the Dirac indices,

Tr(γµγνγρ) = 2iϵµνρ (B.12)

we obtain the following term for the variation

δW (P) = − 2πi

64π2
ϵµνρ

∫
d3x tr[δP∂µP∂νP∂ρPP ], (B.13)

where “tr” now refers to a trace over the flavour indices only.
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We can restore the topological term of the nonlinear σ-model by the standard method of

introducing an auxiliary coordinate u. The field P̃(x, u) interpolates between P̃(x, u = 0) =

Ω and P̃(x, u = 1) = P(x). The topological term reads

W (P̃) = − 2πi

256π2
ϵµνρδ

∫ 1

0

du

∫
d3x tr[P̃∂µP̃∂νP̃∂ρP̃∂δP̃ ]. (B.14)

The extra factor of 1/4 comes from the anti-symmetrization of the u coordinate with other

indices.
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C.1 General non-abelian subgroup of SU(2N)

In this appendix, we briefly discuss the RG flow which results upon breaking the flavor

symmetry from SU(2N)→ G×SU(2N)/G, where G is a continuous non-abelian subgroup of

SU(2N). The most general form the disorder could take is

SG
dis[ψ, ψ̄] =

∫
ddx dτ

[
MG

a (x)ψ̄T aψ(x, τ) + iAG
ja(x)T aγjψ(x, τ) + V G

a (x)T aγ0ψ(x, τ)

]
(C.1)

where T a are the generators of G. Averaging over disorder, we assume

MG
a (x)M

G
b (x

′) =
µ−ϵλt
2

δabδ
d(x− x′), MG

a (x)AG
jb(x

′) = 0,

AG
ia(x)AG

jb(x
′) =

µ−ϵλA
2

δabδijδ
d(x− x′), MG

a (x)V
G
b (x

′) = 0,

V G
a (x)V

G
b (x

′) =
µ−ϵλv
2

δabδ
d(x− x′), AG

ja(x)V
G
b (x

′) = 0. (C.2)

We can study this theory in the same way we did in Secs. 4.2.2 and 4.3.1. The Feynman

rules will be analogous to those shown in Fig. 4.3.

From the calculations in Appendix C.3, we see that only the diagrams in Figs. C.2(a)

and (b), and Figs. C.3(a) and (b) contribute to the renormalization of λA. In particular,
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letting ΓA be the vertex function whose spinor indices are proportional to iγj ⊗ iγj, we find

Γa iγ
j ⊗ iγj = − 1

4πϵ

(
λ2t + 4λ2A + λ2v

)
γj ⊗ γj

∑
ab

[
T aT b ⊗ T aT b − T aT b ⊗ T bT a

]
= +

1

8πϵ

(
λ2t + 4λ2A + λ2v

)
iγj ⊗ iγj

∑
ab

[
T a, T b

]
⊗
[
T a, T b

]
= − 1

8πϵ

(
λ2t + 4λ2A + λ2v

)
iγj ⊗ iγj

∑
a

T a ⊗ T a (C.3)

where we’ve used the fact that

∑
ab

[
T a, T b

]
⊗
[
T a, T b

]
=
∑
abcd

ifabc ifabdT c ⊗ T d = −
∑
cd

δcdT c ⊗ T d = −
∑
a

T a ⊗ T a,

(C.4)

where fabc are the structure constants of the algebra. It follows that

πβA = −
(
λ2t + 4λ2A + λ2v

)
. (C.5)

C.2 Fermion self-energy

In this section, we calculate the fermion self-energy diagrams given in Fig. 4.5.

Self-energy contribution from photon: Fig. 4.5(a)

Fig. 4.5(a) = 16

2N
µ−ϵg2

∫
dDq

(2π)D
iγµ

i(p+ q)αγ
α

(p+ q)2
iγν

δµν
|q|

· (C.6)

Using the identity

1

ABn
=

∫ 1

0

dx
n(1− x)n−1

[A+ x(B − A)]n+1 (C.7)
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and the fact that γµγαγµ = (2δαµ − γαγµ) γµ = −(D − 2)γα, we write

Fig. 4.5(a) = i(D − 2)16µ−ϵg2

2N
γµ
∫

dDq

(2π)D

∫ 1

0

dx
1

2
√
1− x

qµ + (1− x)pµ

[q2 + x(1− x)p2]3/2

= −iγµpµ
(

8g2

3π2(2N)ϵ

)
+ finite. (C.8)

Self-energy contribution from singlet mass disorder: Fig. 4.5(b)

Fig. 4.5(b) = gs

∫
dDq

(2π)D
2πδ(q0)

i(q + p)µγ
µ

(q + p)2

= igs

∫
ddq

(2π)d
i [(q + p)iγ

i + p0γ
0]

(q + p)2 + p20
= −ip0γ0

( gs
2πϵ

)
+ finite. (C.9)

Self-energy contribution from SU(2) mass disorder: Fig. 4.5(c)

The contribution from the SU(2) mass disorder is the same, since the Pauli matrices square

to the identity:

Fig. 4.5(c) = gt,aσ
aσa

∫
dDq

(2π)D
2πδ(q0)

i(q + p)µγ
µ

(q + p)2
= −ip0γ0

( gt,a
2πϵ

)
+ finite. (C.10)

Self-energy contribution from scalar potential disorder: Fig. 4.5(d)

Fig. 4.5(d) = −gv,a
∫

dDq

(2π)D
2πδ(q0)iγ

0 i(q + p)αγ
α

(q + p)2
iγ0 = −ip0γ0

(gv,a
2πϵ

)
+ finite. (C.11)

Self-energy contribution from vector potential disorder: Fig. 4.5(e)

Fig. 4.5(e) = gA,a

∫
dDq

(2π)D
2πδ(q0)iγ

j i(q + p)αγ
α

(q + p)2
iγj = −ip0γ0

(gA,a
πϵ

)
+ finite. (C.12)
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q

d,m

a, `

c,m

b, `

= 2⇡�(q0) [1]ab [1]cd q

d,m

b, `

c,m

a, `µ

µ

= 2⇡�(q0) [i�
µ]ab [i�

µ]cd

FIG. 11: Feynman rules for diagrams without flavor indices. a, b, c, d on the graphs label the

spinor indices, and ` and m label the replica indices. The vertex on the left describes mass-like

disorders, such as Ms(r) and Mt,a(r), and the diagram on the right corresponds to the SU(2)

scalar and vector potential disorder, Va(r), and Aj,a(r).

Self-energy contribution from scalar potential disorder: Fig. ??

Fig. ?? = �gv,a

Z
d
D
q

(2⇡)D
2⇡�(q0)i�

0
i(q + p)↵�↵

(q + p)2
i�

0 = �ip0�
0

⇣
gv,a

2⇡✏

⌘
+ finite. (B6)

Self-energy contribution from vector potential disorder: Fig. ??

Fig. ?? = gA,a

Z
d
D
q

(2⇡)D
2⇡�(q0)i�

j i(q + p)↵�↵

(q + p)2
i�j = �ip0�

0

⇣
gA,a

⇡✏

⌘
+ finite. (B7)

Appendix C: Diagrams without flavor indices

Since the spinor and flavor structure of the interactions factor, it’s convenient to first calcu-

late the diagrams which correct the four-point interaction without reference to the fermion flavor

indices. We denote these generalized vertices with the Feynman graphs shown in Fig. ??. The

set of diagrams with only internal mass-like disorder and photon lines is shown in Fig. ??, while

diagrams with only gauge-like disorder and photon lines are shown in Fig. ??. Finally, Fig. ?? lists

those diagrams which have contributions from both mass and gauge-like disorder. While there are

many repetitions, all integrals have been included for completeness.

34

Figure C.1: Feynman rules for diagrams without flavor indices. a, b, c, d on the graphs label
the spinor indices, and ℓ and m label the replica indices. The vertex on the left describes
mass-like disorders, such as Ms(r) and Mt,a(r), and the diagram on the right corresponds to
the SU(2) scalar and vector potential disorder, Va(r), and Aj,a(r).

C.3 Diagrams without flavor indices

Since the spinor and flavor structure of the interactions factor, it’s convenient to first calculate

the diagrams which correct the four-point interaction without reference to the fermion flavor

indices. We denote these generalized vertices with the Feynman graphs shown in Fig. C.1.

The set of diagrams with only internal mass-like disorder and photon lines is shown in

Fig. C.2, while diagrams with only gauge-like disorder and photon lines are shown in Fig. C.3.

Finally, Fig. C.4 lists those diagrams which have contributions from both mass and gauge-like

disorder. While there are many repetitions, all integrals have been included for completeness.

C.3.1 Diagrams with mass-type disorder and photon lines: Fig: C.2

In this section, we evaluate the diagrams with only internal mass disorder and photon lines.

These are listed in Fig. C.2.
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(a) �j ⌦ �j
�
� 1

4⇡✏

�
(b) �j ⌦ �j

�
1

4⇡✏

�
(c) 1⌦ 1

�
1

2⇡✏

�
(d) 1⌦ 1

�
1

2⇡✏

�

µ

µ

(e) Convergent

µ

µ

(f) Convergent

µ µ

(g) 1⌦ 1
⇣
� 24g2

⇡2(2N)✏

⌘

µ µ

(h) 1⌦ 1
⇣
� 24g2

⇡2(2N)✏

⌘

⌫ µ

⌫ µ

(i) 1⌦ 1
⇣

16g4

⇡2(2N)✏

⌘
⌫ µ

⌫ µ

(j) 1⌦ 1
⇣

16g4

⇡2(2N)✏

⌘
µ

µ

(k) Cancels Fig. 12l

µ

µ

(l) Cancels Fig. 12k

FIG. 12: 4-point diagrams with photon and mass-like disorder internal lines. Below each

diagram, the divergent piece, if present, is given. (The factor of 2⇡�(q0) has been been

suppressed for simplicity.)

1. Diagrams with mass-type disorder and photon lines: Fig: 12

In this section, we evaluate the diagrams with only internal mass disorder and photon lines.

These are listed in Fig: 12.

35

Figure C.2: 4-point diagrams with photon and mass-like disorder internal lines. Below each
diagram, the divergent piece, if present, is given. (The factor of 2πδ(q0) has been been
suppressed for simplicity.)
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⌫
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⌫
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P
j �

⌫j
i

⌫
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⌫
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�

1
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⇥�⌫0
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��µ0 +

P
j �

µj
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⌫

⌫

µ

µ

(e) Convergent

⌫

µ

⌫

µ

(f) 2⇡�(p0)�µ ⌦ �µ
⇣
� 8g2

3⇡2(2N)✏

⌘

⌫

µ

µ

⌫

(g) 2⇡�(p0)�µ ⌦ �µ
⇣
� 8g2

3⇡2(2N)✏

⌘

⌫

µ

µ

⌫

(h) Convergent

�

µ

⌫

µ

� ⌫

(i) Vanishes

�

µ

⌫

µ

� ⌫

(j) Vanishes

�

µ

⌫

µ

� ⌫

(k) Cancels Fig. 13l

�

µ

⌫

µ

� ⌫

(l) Cancels Fig. 13k

FIG. 13: 4-point diagrams with photon and gauge-like disorder internal lines. Below each

diagram, the divergent piece, if present, is given. (The factor of 2⇡�(q0) has been been

suppressed for simplicity.)

36

Figure C.3: 4-point diagrams with photon and gauge-like disorder internal lines. Below
each diagram, the divergent piece, if present, is given. (The factor of 2πδ(q0) has been been
suppressed for simplicity.)
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j ⌦ �j , µ = 0,

�1⌦ 1� �0 ⌦ �0, µ = x, y

µ µ

(c) 1⌦ 1
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�
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�
� 1

2⇡✏

�

µ

µ

(e) �µ0�0 ⌦ �0
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�

µ

µ

(f) �µ0�0 ⌦ �0
�

1

2⇡✏

�

⌫

µ

µ

⌫

(g) Cancels Fig. 14h

⌫

µ

µ

⌫

(h) Cancels Fig. 14g

⌫ µ

⌫ µ

(i) tr [Ofl]
g2
2N

�
1

4⇡✏

�

⇥ (2� �µj)1⌦ 1

⌫ µ

⌫ µ

(j) tr [Ofl]
g2
2N

�
1

4⇡✏
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⇥ (2� �µj)1⌦ 1

FIG. 14: 4-point diagrams with both mass-like and gauge-like disorder internal lines. Below each

diagram, the divergent piece, if present, is given. (The factor of 2⇡�(q0) has been been

suppressed for simplicity.) The tr [Ofl] term in Figs. 14i and 14j indicates that once the action on

the flavour indices has been specified, a trace over this operator should be taken.

37

Figure C.4: 4-point diagrams with both mass-like and gauge-like disorder internal lines.
Below each diagram, the divergent piece, if present, is given. (The factor of 2πδ(q0) has
been been suppressed for simplicity.) The tr [Ofl] term in Figs. C.4(i) and (j) indicates that
once the action on the flavour indices has been specified, a trace over this operator should
be taken.
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Two internal mass lines, no crossing: Fig. C.2(a)

Fig. C.2(a) = µ−ϵ
∫

dDq

(2π)D
2πδ(q0)2πδ(q0 + p0)

i [−q − p)α γ
α

(q + p)2
⊗ i(q + p)βγ

β

(q + p)2

= 2π(p0)µ
−ϵ
∫

ddq

(2π)d

∫ 1

0

dx γj ⊗ γj
q2/2

[q2 + x(1− x)p2]2

= 2π(p0)γ
j ⊗ γj

(
− 1

4πϵ

)
+ finite. (C.13)

Two internal mass lines, with crossing: Fig. C.2(b)

Fig. C.2(b) = µ−ϵ
∫

dDq

(2π)D
2πδ(q0)2πδ(q0 + p0)

iqαγ
α

q2
⊗ i(q + p)βγ

β

(q + p)2

= 2π(p0)γ
i ⊗ γi

(
1

4πϵ

)
+ finite. (C.14)

Vertex correction from disorder: Figs. C.2(c) and (d)

Fig. C.2(c) = µ−ϵ
∫

dDq

(2π)D
2πδ(q0)2πδ(p0)

iqαγ
α

q2
i (q − p)β γ

β

(q − p)2
⊗ 1

= 2π(p0)µ
−ϵ
[
−γ

j ⊗ γj
2

∫
ddq

(2π)d

∫ 1

0

dx
q2

[q2 + x(1− x)p2]2

]
⊗ 1+ finite

= 2π(p0)1⊗ 1

(
1

2πϵ

)
+ finite. (C.15)

The other vertex gives the same correction:

Fig. C.2(d) = 2π(p0)1⊗ 1

(
1

2πϵ

)
+ finite. (C.16)
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One internal gauge-like disorder line and one photon line: Figs. C.2(e)
and (f)

The diagrams are both convergent. We see this by writing

Fig. C.2(e) = µ−ϵg2

2N

∫
dDk

(2π)D
2πδ(k0)

1

|k|
iγµ

(−ikαγα)
k2

⊗ iγµ
i(k + q)βγ

β

(k + q)2

=
µ−ϵg2

2N

∫
ddk

(2π)d
γµγα ⊗ γµγα ·

1

|k| (q20 + k2)

= finite, (C.17)

where we have assumed that q = (q0, 0). The same reasoning shows that Fig. C.2(f) is

convergent as well.

Vertex correction from photon: Figs. C.2(g) and (h)

Fig. C.2(g) = 2πδ(p0)
16µ−ϵg2

2N

∫
dDq

(2π)D
iγµ

iqαγ
α

q2
i(q + p)βγ

β

(q + p)2
iγµ

1

|q|
⊗ 1

= 2πδ(p0)
16µ−ϵg2

2N
γµγαγβγµ ⊗ 1

∫
dDq

(2π)D

∫ 1

0

dx
3

2

√
1− x

qαqβ − x(1− x)pαpβ

[q2 + x(1− x)p2]5/2

= 2πδ(p0)1⊗ 1

(
−

24g2

π2(2N)ϵ

)
+ finite. (C.18)

Similarly,

Fig. C.2(h) = 2πδ(p0)1⊗ 1

(
−

24g2

π2(2N)ϵ

)
+ finite. (C.19)

Internal fermion loop with two photon legs: Figs. C.2(i) and (j)

Because of the sum over N in the internal fermion loop, several two-loop diagrams contribute

to the order in perturbation theory we are considering. Since the frequency δ-function which

renormalizes disorder must come entirely from the single disorder leg in Figs. C.2(i) and (j),

we can determine the divergence by sending zero (spatial) momentum through this diagram.
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⌫
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⌫
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⌫

(h)

q
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µ

⌫

(i)

q

q

q + k

µ

⌫
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FIG. 15: Fermion loop subdiagrams which appear in the O(g2⇠ , g⇠/2N) bilinear counter terms.

We have

Fig. ?? = �
µ
�✏g2

2N
2N

Z
d
D
q

(2⇡)D
tr


iq↵�

↵

q2

iq��
�

q2
i�

⌫ i(q � k)��⇢

(q � k)2
�
µ

�

= �iµ
�✏g2

Z
d
D
q

(2⇡)D
tr [�⌫�⇢�µ]

q↵q�(q � k)⇢
(q2)2(q � k)2

= 2µ�✏g2
✏
µ⌫⇢

Z
d
D
q

(2⇡)D
(q � k)⇢
q2(q � k)2

= �µ
�✏g2

Z
d
D
q

(2⇡)D

Z
1

0

dx
2✏µ⌫⇢(1� x)k⇢

[q2 + x(1� x)k2]2
(C8)

We note that since the photons are diagonal in flavour space, the mass disorder in the loop must

also be diagonal. It follows that this diagram will only contribute to disorder coupling to the

singlet mass operator,  ̄ , and, for this reason, we have taken the flavour trace to be 2N . The full

diagram is then

Fig. ?? = �2⇡�(p0)1⌦ µ
�2✏ g4

2N

Z
d
D
k

(2⇡)D
i�

⌫ i(k + p)���

(k + p)2
i�

µ (16)
2

|k|2
·
Z

d
D
q

(2⇡)D

Z
1

0

dx
2✏µ⌫⇢(1� x)k⇢

[q2 + x(1� x)k2]2

(C9)

40

Figure C.5: Fermion loop subdiagrams which appear in the O(g2ξ , gξ/2N) bilinear counter
terms.
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Therefore, it becomes easier to first calculate the vertices shown in Fig. C.5.

We have

Fig. C.5(a) = −
µ−ϵg2

2N
2N

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
iqβγ

β

q2
iγν

i(q − k)γγ
ρ

(q − k)2
γµ
]

= −iµ−ϵg2

∫
dDq

(2π)D
tr [γνγργµ] qαqβ(q − k)ρ

(q2)2(q − k)2

= 2µ−ϵg2ϵµνρ
∫

dDq

(2π)D
(q − k)ρ
q2(q − k)2

= −µ−ϵg2

∫
dDq

(2π)D

∫ 1

0

dx
2ϵµνρ(1− x)kρ

[q2 + x(1− x)k2]2

(C.20)

We note that since the photons are diagonal in flavour space, the mass disorder in the loop

must also be diagonal. It follows that this diagram will only contribute to disorder coupling

to the singlet mass operator, ψ̄ψ, and, for this reason, we have taken the flavour trace to be

2N . The full diagram is then

Fig. C.2(i) = −2πδ(p0)1⊗ µ−2ϵ g4

2N

∫
dDk

(2π)D
iγν

i(k + p)σγ
σ

(k + p)2
iγµ

(16)2

|k|2
·
∫

dDq

(2π)D

∫ 1

0

dx
2ϵµνρ(1− x)kρ

[q2 + x(1− x)k2]2

(C.21)

We set p = 0 and use an IR cutoff. Then, we can take kσkρ → δσρk
2/d and

− i

d
γνγσγµϵµνσ =

1

d
γνγλϵ

σµλϵσµν = 1. (C.22)

Inserting this into the expression above, we find

Fig. C.2(i) = −2πδ(p0)1⊗ 1 · 2(16)2µ−2ϵ g4

2N

∫ 1

0

dx

∫
dDk

(2π)D
dDq

(2π)D
1− x

k2 [q2 + x(1− x)k2]2

= 2πδ(p0)1⊗ 1

(
16g4

π2(2N)ϵ

)
+ finite· (C.23)

For the second diagram, we calculate the vertex in Fig. C.5(b).

Fig. C.5(b) = −
µ−ϵg2

2N
2N

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
iqβγ

β

q2
iγµ

i(q + k)γγ
ρ

(q + k)2
iγν
]

(C.24)
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This is identical to Eq. (C.20) except with k → −k and µ↔ ν:

Fig. C.5(b) = µ−ϵg2

∫
dDq

(2π)D

∫ 1

0

dx
2ϵνµρ(1− x)kρ

[q2 + x(1− x)k2]2
= Fig. C.5(a). (C.25)

It follows that

Fig. C.2(j) = Fig. C.2(i) = 2πδ(p0)1⊗ 1

(
16g4

π2(2N)ϵ

)
+ finite· (C.26)

Internal fermion loop with one photon and one disorder line: Figs. C.2(k)
and (l)

As above, we approach the two-loop diagrams by first calculating the relevant fermion loop

vertices, shown in Figs. C.5(c) and (d). We have

Fig. C.5(c) = −
µ−ϵ/2g2

√
2N

tr [Ofl]

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
iqβγ

β

q2
iγµ

i(q − k)σγ
σ

(q − k)2

]
(C.27)

Here, we leave the flavour index behaviour of the vertices arbitrary by letting Ofl be a general

2N × 2N Hermitian matrix. Similarly

Fig. C.5(d) = −
µ−ϵ/2g2

√
2N

tr [Ofl]

∫
dDq

(2π)D
tr
[
i(q + k)σγ

σ

(q + k)2
iγµ

iqβγ
β

q2
iqαγ

α

q2

]
(C.28)

Taking q → −q and noting that tr[γσγµγβγα] = tr[γαγβγµγσ], this becomes

Fig. C.5(d) = µ−ϵ/2g2

√
2N

tr [Ofl]

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
iqβγ

β

q2
iγµ

i(q − k)σγ
σ

(q − k)2

]
= −Fig. C.5(c).

(C.29)

It follows that the divergences in Figs. C.2(k) and (l) cancel.
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C.3.2 Diagrams with gauge-like disorder and photon lines: Fig. C.3

Two internal gauge-like disorder lines, no crossing: Fig. C.3(a)

Fig. C.3(a) = 2π(p0)
1

2

∑
j

γµγjγν ⊗ γµγjγ
ν

(
− 1

2πϵ

)
+ finite

= 2π(p0)

(
1

4πϵ

)

−
∑

j γ
j ⊗ γj, (µ, ν) = (0, 0)

1⊗ 1− γ0 ⊗ γ0, (µ, ν) = (0, ℓ) , (ℓ, 0)

−
∑

j γ
j ⊗ γj, (µ, ν) = (ℓ, k)

+ finite (C.30)

Two internal gauge-like disorder lines, with crossing: Fig. C.3(b)

Fig. C.3(b) = 2π(p0)
1

2

∑
j

γµγjγν ⊗ γνγjγ
µ

(
1

2πϵ

)
+ finite

= 2π(p0)

(
1

4πϵ

)


∑
j γ

j ⊗ γj, (µ, ν) = (0, 0)

1⊗ 1+ γ0 ⊗ γ0, (µ, ν) = (0, ℓ) , (ℓ, 0)∑
j γ

j ⊗ γj, (µ, ν) = (k, ℓ)

+ finite (C.31)
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Vertex correction from gauge-like disorder: Figs. C.3(c) and (d)

Fig. C.3(c) =
∫

dDq

(2π)D
2πδ(q0)2πδ(p0)iγ

ν iqαγ
α

q2
iγµ

i [q − p]β γ
β

(q − p)2
iγν ⊗ iγµ

= 2π(p0)

[
−1

2

∫
ddq

(2π)d

∫ 1

0

dx
q2

[q2 + x(1− x)p2]2

]
γνγjγµγjγν ⊗ γν + finite

= 2π(p0)

(
1

2πϵ

)
×


0 (µ, ν) = (ℓ, 0) , (ℓ, k)

−γ0 ⊗ γ0 (µ, ν) = (0, 0)

γ0 ⊗ γ0 (µ, ν) = (0, ℓ)

+ finite

= 2π(p0)γ
0 ⊗ γ0

(
1

2πϵ

)
δµ0

[
−δν0 +

∑
j

δνj

]
(C.32)

The other vertex gives the same correction:

Fig. C.3(d) = 2π(p0)γ
0 ⊗ γ0

(
1

2πϵ

)
δν0

[
−δµ0 +

∑
j

δµj

]
+ finite (C.33)

One internal gauge-like disorder line and one photon line: Figs. C.3(e)
and (h)

This situation is identical to the one in Eq. (C.17) except for some γ matrices: both

Fig. C.3(e) and Fig. C.3(h) are finite.

Vertex correction from photon: Figs. C.3(f) and (g)

Fig. C.3(f) = 2πδ(p0)
16µ−ϵg2

2N

∑
ν

∫
dDq

(2π)D
iγν

iqαγ
α

q2
iγµ

i(q + p)βγ
β

(q + p)2
iγν

1

|q|
⊗ γµ

= 2πδ(p0)
16µ−ϵg2

2N
i
∑
ν

γνγαγµγβγν ⊗ γµ
∫

dDq

(2π)D

∫ 1

0

dx
3

2

√
1− x

qαqβ − x(1− x)pαpβ

[q2 + x(1− x)p2]5/2

= 2πδ(p0)γ
µ ⊗ γµ

(
−

8g2

3π2(2N)ϵ

)
+ finite. (C.34)
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Similarly,

Fig. C.3(g) = 2πδ(p0)γ
µ ⊗ γµ

(
−

8g2

3π2(2N)ϵ

)
+ finite. (C.35)

Internal fermion loop with one disorder and two photon legs: Figs. C.3(i)
and (j)

None of the gauge-like disorder terms are diagonal in the flavour indices. As we remarked

above, this is because the global U(1) current has scaling dimension 3, making it extremely

irrelevant. Therefore, the gauge-like disorder in Figs. C.3(i) and (j) inserts an 2N × 2N

traceless Hermitian matrix into the fermion loop. Upon taking the trace, both vanish.

Internal fermion loops with two disorder and one photon leg: Figs. C.3(k)
and (l)

As we did for the two loop diagrams with mass-like disorder above, we first calculate the

fermion loop vertices. The vertices relevant to our diagrams are shown in Figs. C.5(e) and (f).

We have

Fig. C.5(e) = −
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D
tr
[
iqβγ

β

q2
iγµ

iqαγ
α

q2
iγν

i(q − k)ργ
ρ

(q − k)2
iγσ
]

=
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D
tr
[
γνγργσγβγµγα

] qαqβ(q − k)σ
(q2)2(q − k)2

, (C.36)

where Ofl is the matrix in flavour space coming from disorder vertices. Similarly, reversing

the direction of the fermion loop, we have

Fig. C.5(f) = −
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
iγµ

iqβγ
β

q2
iγσ

i(q + k)ργ
ρ

(q + k)2
iγν
]

=
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D
tr
[
γαγµγβγσγργν

] qαqβ(q + k)σ
(q2)2(q + k)2

· (C.37)

Noting that

tr [γµ1γµ2 · · · γµn ] = (−1)ntr [γµnγµn−1 · · · γµ1 ] (C.38)
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and taking q → −q, we have

Fig. C.5(f) = −
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D
tr
[
γνγργσγβγµγα

] qαqβ(q − k)σ
(q2)2(q − k)2

= −Fig. C.5(e).

(C.39)

We conclude that Figs. C.3(k) and (l) cancel one another.

C.3.3 Both potential and mass disorder diagrams

One internal mass-like and gauge-like disorder lines, no crossing: Fig. C.4(a)

Fig. C.4(a) =
∫

dDq

(2π)D
2πδ(q0)2πδ (q + p) iγµ

i [−q]α γa

q2
⊗ iγµ

i(q + p)βγ
β

(q + p)2

= −2πδ(p0)γ
µγi ⊗ γµγj · δij

2

∫
ddq

(2π)2

∫ 1

0

dx
q2

[q + x(1− x)p2]2
+ finite

= 2πδ(p0)
∑
j

γµγj ⊗ γµγj

(
1

4πϵ

)
+ finite

= 2πδ(p0)

(
1

4πϵ

)
−
∑

j γ
j ⊗ γj, µ = 0,

1⊗ 1− γ0 ⊗ γ0, µ = ℓ

(C.40)

One internal mass-like and gauge-like disorder lines, with crossing: Fig. C.4(b)

Fig. C.4(b) = −2πδ(p0)
∑
j

γµγj ⊗ γjγµ

(
1

4πϵ

)
+ finite

= 2πδ(p0)

(
1

4πϵ

)
−
∑

j γ
j ⊗ γj, µ = 0,

−1⊗ 1− γ0 ⊗ γ0, µ = ℓ

(C.41)
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Mass disorder vertex correction from potential disorder: Figs. C.4(c)
and (d)

Fig. C.4(c) = 2π(p0)1⊗ 1

(
− 1

2πϵ

)
+ finite (C.42)

and

Fig. C.4(d) = 2π(p0)1⊗ 1

(
− 1

2πϵ

)
+ finite (C.43)

Potential disorder vertex correction from mass disorder: Figs. C.4(e) and (f)

Fig. C.4(e) =
∫

dDq

(2π)D
2πδ(q0)2πδ(p0)

iqαγ
α

q2
iγµ

i [q − p]β γ
β

(q − p)2
⊗ iγµ

= 2π(p0)

[
1

2

∫
ddq

(2π)d

∫ 1

0

dx
q2

[q2 + x(1− x)p2]2

]
γjγµγj ⊗ γµ + finite

= 2π(p0)δ
µ0γ0 ⊗ γ0

(
1

2πϵ

)
+ finite (C.44)

Similarly,

Fig. C.4(f) = 2πδ(p0)δ
µ0γ0 ⊗ γ0

(
1

2πϵ

)
+ finite (C.45)

Internal fermion loop with internal gauge and photon legs: Figs. C.4(g)
and (h)

In order to calculate Figs. C.4(g) and (h), we being by determining the subdiagrams in

Figs. C.5(g) and (h):

Fig. C.5(g) = −
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
iγµ

iqβγ
β

q2
iγν

i(q − k)σγ
σ

(q − k)2

]
(C.46)
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where Ofl is the matrix in flavour space resulting from disorder vertices. Similarly, the other

diagram gives

Fig. C.5(h) = −
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
iγµ

iqβγ
β

q2
iγν

i(q + k)σγ
σ

(q + k)2

]
=
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
iγµ

iqβγ
β

q2
iγν

i(q − k)σγ
σ

(q − k)2

]
= −Fig. C.5(g)

(C.47)

where in the last line we took q → −q. It follows that these diagrams cancel with each other.

Internal fermion loop with internal mass and gauge disorder and photon
lines: Figs. C.4(i) and (j)

We start by evaluating the fermion loop vertices in Figs. C.5(j) and (j). Actually, it’s not

difficult to see that up to the photon vertex coupling, µ−ϵ/2g/
√
2N , these diagrams are

identical to the vertices in Figs. C.5(a) and (b), determined in Eqs. (C.20) and (C.25):

Fig. C.5(i) = Fig. C.5(j)

= −
µ−ϵ/2g√

2N
tr [Ofl]

∫
dDq

(2π)D

∫ 1

0

dx
2ϵµνρ(1− x)kρ

[q2 + x(1− x)k2]2
· (C.48)

Proceeding as we did for this case, we have

Fig. C.4(i) = Fig. C.4(j)

= −2πδ(p0)1⊗
µ−ϵg2

2N
tr [Ofl]

×
∫

dDk

(2π)D
2πδ(k0)iγ

ν ikσγ
σ

k2
iγµ

16

|k|

∫
dDq

(2π)D

∫ 1

0

dx
2ϵµνρ(1− x)kρ

[q2 + x(1− x)k2]2

= −2πδ(p0)1⊗
32µ−ϵg2

2N
tr [Ofl]

×
∫

ddk

(2π)d

∫
dDq

(2π)D

∫ 1

0

dx (−i)γνγσγµϵµνρ
δ jσ δ

ρ
j

d

1

|k|
1− x

[q2 + x(1− x)k2]2
(C.49)

where tr [Ofl] indicates that, in order to allow disorder vertices which are off-diagonal in the

flavour indices, we have not yet explicitly taken the trace over the flavours. Moreover, we
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sum over ν, σ, and ρ but not µ. With this in mind, we note

− i

d

∑
σρνj

γνγσγµϵµνρδ
j
σδ

ρ
j =

1

d

∑
νλj

ϵνjλϵµνjγλγ
µ =

1

d

(
d− δjµ

)
1. (C.50)

Performing the q, k, and x integrals, we obtain,

Fig. C.4(i) = Fig. C.4(j)

= 2πδ(p0)1⊗ 1tr [Ofl]
g2

2N

(
1

4πϵ

)
(2− δµj) + finite

=


2πδ(p0)tr [Ofl]

g2

2N

(
1

2πϵ

)
1⊗ 1, µ = 0,

2πδ(p0)tr [Ofl]
g2

2N

(
1

4πϵ

)
1⊗ 1, µ = x, y

(C.51)

C.4 4-point diagrams contributing to fermion bilinear counter
terms

The diagrams which contribute to the β-functions at O(g2ξ , gξ/N) are shown in Fig. 4.6 and in

Tables. C.1 through C.3. The divergences are based on the integrals determined in Sec. C.3

and only diagrams which do not vanish are shown. The label “nd” indicates the degeneracy

of the diagram or else the existence of a diagram with a nearly identical form.

Some of the diagrams result in divergences proportional to [γµ ⊗ γµ] [1⊗ 1] and would

appear to imply that disorder coupling to the U(1) gauge current Jµ is generated. While

counter terms are technically required to render the theory finite, we emphasize that it is

not necessary to consider them since Jµ already has a large scaling dimension at the QED3

fixed point.
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diagram nd divergence diagram nd divergence
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TABLE I: Feynman diagrams which determine the bilinear counter terms.
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Table C.1: Feynman diagrams which determine the bilinear counter terms.
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diagram nd divergence diagram nd divergence
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TABLE II: Feynman diagrams which determine the bilinear counter terms.
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Table C.2: Feynman diagrams which determine the bilinear counter terms.
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diagram nd divergence diagram nd divergence
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TABLE III: Feynman diagrams which determine the bilinear counter terms.
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FIG. 16: Diagrams which enter into the photon self-energy at leading order. (a) will not

renormalize the disorder and (b) vanishes.

gs. This diagram is O(2Ngs) ⇠ O(1) and so thankfully it vanishes:

Fig. ?? = 2⇡�(p0)2Nµ
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(E1)

where

Iµ(p) = �itr
⇥
�
↵
�
�
�
µ
⇤ Z d

D
q

(2⇡)D

Z
1

0

dx
q↵q� � x(1� x)p↵pb

[q2 + x(1� x)p2]2
= 0. (E2)

We next consider the situation with two internal disorder lines. These lines must go between

the two bubbles otherwise they will be cancelled by a vertex or a field strength renormalization

and will not lead to a renormalization of the flux disorder. Furthermore, one of the internal lines

must correspond to a flux disorder interaction since otherwise the divergence will be cancelled by

50

Table C.3: Feynman diagrams which determine the bilinear counter terms.

C.5 Diagrams renormalizing flux disorder, gE and gB

The renormalization of gE and gB result from terms in the photon self-energy which are

proportional to 2πδ(p0). It follows that the usual 1/2N corrections to the photon propagator,

like shown in Fig. C.6(a), do not renormalize the flux disorder.

In order to renormalize gE and gB we must have a disorder line going through the middle.

This would allow a diagram like that shown in Fig. C.6(b). The trace over fermion flavours

means that the only disorder we could place between the two loops is the singlet mass-like

disorder, with coupling gs. This diagram is O(2Ngs) ∼ O(1) and so thankfully it vanishes:

Fig. C.6(b) = 2πδ(p0)2Nµ
−2ϵg2gs

∫
dDq

(2π)D
tr
[
iqαγ

α

q2
i(q + p)βγ

β

(q + p)2
iγµ
]

︸ ︷︷ ︸
Iµ(p)

∫
dDk

(2π)D
tr
[
ikσγ

σ

k2
i(k + p)ργ

ρ

(k + p)2
iγν
]

︸ ︷︷ ︸
Iν(p)

(C.52)

where

Iµ(p) = −itr
[
γαγβγµ

] ∫ dDq

(2π)D

∫ 1

0

dx
qαqβ − x(1− x)pαpb

[q2 + x(1− x)p2]2
= 0. (C.53)

We next consider the situation with two internal disorder lines. These lines must go
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diagram nd divergence diagram nd divergence
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TABLE III: Feynman diagrams which determine the bilinear counter terms.
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FIG. 16: Diagrams which enter into the photon self-energy at leading order. (a) will not

renormalize the disorder and (b) vanishes.
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We next consider the situation with two internal disorder lines. These lines must go between

the two bubbles otherwise they will be cancelled by a vertex or a field strength renormalization

and will not lead to a renormalization of the flux disorder. Furthermore, one of the internal lines

must correspond to a flux disorder interaction since otherwise the divergence will be cancelled by

50

Figure C.6: Diagrams which enter into the photon self-energy at leading order. (a) will not
renormalize the disorder and (b) vanishes.

� ⇢

µ ⌫

� ⇢

+

� ⇢

µ ⌫

� ⇢

+

� ⇢

µ ⌫

� ⇢

+

� ⇢

µ ⌫

� ⇢

FIG. 17: Diagrams which renormalizes the flux disorder at O(g⇠, g⇠/2N). Depending on whether

the internal indices are (�, ⇢) = (0, 0) or (i, j), the coupling constant are �gB or gE respectively.

one of the bilinear disorder counter terms we determined in the previous two sections. This leaves

the diagrams with one internal disorder line coupling to the topological current and one to the

mass since all other bilinear disorder types will vanish upon tracing over the flavour indices. These

diagrams are shown in Fig. ??. Depending on whether the internal indices (�, ⇢) are (0, 0) or (i, j)

the diagrams are proportional to �g4
gsg� or g4

gsgE respectively. They therefore contribute at the

same order as the diagrams in the previous two sections. We note that diagrams which two internal

flux disorder lines appear at a order in g⇠ and 1/2N .

Ignoring coupling constants for the moment, for any give µ, ⌫, �, and ⇢, it’s easy to check that

the four diagrams being added in Fig. ?? all have the same value. Therefore, their sum is equal to

Fig. ?? = 4(�1)2(16)2
Z

d
D
k

(2⇡)D

Z
d
D
q

(2⇡)D
d
D
`

(2⇡)D
2⇡�(k0)2⇡�(�k0 + p0)

✓
��⇢ �

k�k⇢

k2

◆

⇥ tr


i�

µ iq↵�
↵

q2
i�

� i(q + k)�
(q + k)2

i(q + p)���

(q + p)2

�
tr


i(`+ p)�0�

�0

(q + p)2
i(`+ k)�0

(`+ k)2
i�

⇢ i`↵0�
↵0

`2
i�

⌫

�
(E3)

Noting that

tr


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we define a function

Fµ�(k, p) =

Z
d
D
q

(2⇡)D
tr
⇥
�
µ
�
↵
�
�
�
�
�
�
⇤ q↵(q + k)�(q + p)�
q2(q + k)2(q + p)2

· (E5)

It follows that

Fig. ?? = 4(16)2 · 2⇡�(p0)
Z

d
d
k

(2⇡)d
Fµ�(k, p)F⌫⇢(k, p)

✓
��⇢ �

k�k⇢

k2

◆
· (E6)

By dimensional analysis and gauge invariance, we know that any divergence arising from the sum

of these diagrams must take the form

Fig. ?? = C
µ⌫,�⇢ ⇥ 2⇡�(p0)p

2

✓
�µ⌫ �

pµp⌫

p2

◆
+ finite (E7)

51

Figure C.7: Diagrams which renormalizes the flux disorder at O(gξ, gξ/2N). Depending on
whether the internal indices are (σ, ρ) = (0, 0) or (i, j), the coupling constant are −gB or gE
respectively.

between the two bubbles otherwise they will be cancelled by a vertex or a field strength

renormalization and will not lead to a renormalization of the flux disorder. Furthermore,

one of the internal lines must correspond to a flux disorder interaction since otherwise the

divergence will be cancelled by one of the bilinear disorder counter terms we determined in

the previous two sections. This leaves the diagrams with one internal disorder line coupling to

the topological current and one to the mass since all other bilinear disorder types will vanish

upon tracing over the flavour indices. These diagrams are shown in Fig. C.7. Depending

on whether the internal indices (σ, ρ) are (0, 0) or (i, j) the diagrams are proportional to

−g4gsgβ or g4gsgE respectively. They therefore contribute at the same order as the diagrams

in the previous two sections. We note that diagrams which two internal flux disorder lines

appear at a order in gξ and 1/2N .

Ignoring coupling constants for the moment, for any give µ, ν, σ, and ρ, it’s easy to check

that the four diagrams being added in Fig. C.7 all have the same value. Therefore, their
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sum is equal to

Fig. C.7 = 4(−1)2(16)2
∫

dDk

(2π)D

∫
dDq

(2π)D
dDℓ

(2π)D
2πδ(k0)2πδ(−k0 + p0)
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δσρ −
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k2

)
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iqαγ
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]
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(C.54)

Noting that

tr
[
i(ℓ+ p)λ′γ

λ′

(q + p)2
i(ℓ+ k)β′

(ℓ+ k)2
iγρ

iℓα′γα
′

ℓ2
iγν
]
= −tr

[
iγν
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ℓ2
iγρ

i(ℓ+ k)β′

(ℓ+ k)2
i(ℓ+ p)λ′γ

λ′

(q + p)2

]
,

(C.55)

we define a function

Fµσ(k, p) =

∫
dDq

(2π)D
tr
[
γµγαγσγβγλ

] qα(q + k)β(q + p)λ
q2(q + k)2(q + p)2

· (C.56)

It follows that

Fig. C.7 = 4(16)2 · 2πδ(p0)
∫

ddk

(2π)d
Fµσ(k, p)Fνρ(k, p)

(
δσρ −

kσkρ
k2

)
· (C.57)

By dimensional analysis and gauge invariance, we know that any divergence arising from the

sum of these diagrams must take the form

Fig. C.7 = Cµν,σρ × 2πδ(p0)p
2

(
δµν −

pµpν
p2

)
+ finite (C.58)

where Cµν,σρ is a constant proportional to 1/ϵ. It follows that our problem can be significantly

simplified by differentiating twice with respect to p, setting it to zero, and using a cuttoff

µIR to regulate the IR divergence. That is

Cµν,σρ = 4(16)2
∫

ddk

(2π)d

(
δσρ −

kσkρ
k2

)
∂

∂p2
[Fµσ(k, 0)Fνρ(k, 0)] , (C.59)

up to finite pieces. Noting that we should only differentiate with respect to p2 = p2x + p2y,
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since p0 = 0, we have

∂2

∂p2
[Fµσ(k, 0)Fνρ(k, 0)] =

1

2d

∑
j

[
∂j∂

jFµσFνρ + Fµσ∂j∂jFνρ + 2∂jFµσ∂jFνρ
]
. (C.60)

where ∂j = ∂/∂pj.

We start by finding Fµσ(k, 0):

Fµσ(k, 0) = tr
[
γµγαγσγβγλ

] ∫ dDq

(2π)D
qα(q + k)βqλ
(q2)2(q + k)2
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] ∫ dDq

(2π)D
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0

dx
2(1− x)

[q2 + x(1− x)k2]3

×
(
q2

D
[−xδαβkλ − xδβλkα + (1− x)δαλkβ] + x2(1− x)kαkβkλ

)
=
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[
γµγαγσγβγλ

]
128 |k|

(
3δαλkβ − δαβkλ − δβλkα +

kαkβkλ
k2

)
= 0. (C.61)

Here, we have set D = 3 since the integral is finite; we will continue to do so below. So the

first two terms in the derivative of FµσFνρ vanish, leaving only the third. We are left to find

∂jFµσ(k, 0) = δjηtr
[
γµγαγσγβγλ

] ∫ dDq

(2π)

qα(q + k)β
(q2)2(q + k)2

(
δηλ −

2qλqη
q2

)
· (C.62)

We separate this into two terms:

[∂jFµσ(k, 0)]A = δjηtr
[
γµγαγσγβγη

] ∫ dDq

(2π)

qα(q + k)β
(q2)2(q + k)2

,

[∂jFµσ(k, 0)]B = −2δjη tr
[
γµγαγσγβγλ

] ∫ dDq

(2π)

qα(q + k)βqλqη
(q2)3(q + k)2

· (C.63)
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The “A” contribution is

[∂jFµσ(k, 0)]A = δjηtr
[
γµγαγσγβγη

] ∫ dDq

(2π)D
2(1− x)

[q2 + x(1− x)k2]3

(
q2

D
δαβ − x(1− x)kαkβ

)
= δjη
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[
γµγαγσγβγη

]
32 |k|

(
δαβ −

kαkβ
k2

)
= δjη

2i

32 |k|

(
−ϵµση + 1

k2
[ϵσηαkαk

µ + ϵµσαkαk
η + ϵµηαkαk

σ]

)
· (C.64)

The “B” part is slightly more complicated,

[∂jFµσ(k, 0)]B = −6 δjη tr
[
γµγαγσγβγλ

] ∫ dDq

(2π)D

∫ 1

0

dx
(1− x)2

[q2 + x(1− x)k2]4

(
qαqβqλqη

+
q2

D

[
x2 (δαβkλkη + δβλkαkη + δβηkαkλ)− x(1− x) (δαλkβkη − δαηkβkλ − δληkαkβ)

]
− x3(1− x)kαkβkλkη

)
, (C.65)

and so we further separate this into three pieces:

[∂jFµσ(k, 0)]nB = −6 δjη tr
[
γµγαγσγβγλ

] ∫ dDq

(2π)D

∫ 1

0

dx
(1− x)2

[q2 + x(1− x)k2]4
fnαβλη(q, k),

(C.66)

where

f 1
αβλη(q, k) = qαqβqλqη,

f 2
αβλη(q, k) =

q2

D

[
x2 (δαβkλkη + δβλkαkη + δβηkαkλ)− x(1− x) (δαλkβkη − δαηkβkλ − δληkαkβ)

]
,

f 3
αβλη(q, k) = −x3(1− x)kαkβkλkη. (C.67)

For the first part of [∂jFµσ(k, 0)]B we replace the four q’s with

qαqβqλqη →
(q2)2

D(D + 2)
(δαβδλη + δαλδβη + δαηδβλ) (C.68)
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which gives

[∂jFµσ(k, 0)]1B = −δjη
3

256 |k|
tr
[
γµγαγσγβγλ

]
(δαβδλη + δαλδβη + δαηδβλ)

= δjη
2i

256 |k|
· 15ϵµση. (C.69)

The second piece evaluates to

[∂jFµσ(k, 0)]2B = δjη tr
[
γµγαγσγβγλ

](
− 1

256 |k|3
[δαβkλkη + δβλkαkη + δβηkαkλ]

+
3

256 |k|3
[δαλkβkη − δαηkβkλ − δληkαkβ]

)

= −δjη
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256 |k|3
(
ϵµσαkαk

η + 4ϵσηαkαk
µ + 4ϵµηαkαk

σ + 3ϵµσηk2
)
. (C.70)

Finally, the third part is

[∂jFµσ(k, 0)]3B = δjη
3

256 |k|5
tr
[
γµγαγσγβγλ

]
kαkβkλkη = − 2i

256 |k|3
· 3ϵµσαkαkη. (C.71)

Adding the three contributions, we find

[∂jFµσ(k, 0)]B = δjη
2i

64 |k|

(
3ϵµση − 1

k2
[ϵµσαkαk

η + ϵσηαkαk
µ + ϵµηαkαk

σ]

)
, (C.72)

and, upon including [∂jFµσ(k, 0)]A, we obtain

∂jFµσ(k, 0) = δjη
i

32 |k|

(
ϵµση +

1

k2
[ϵµσαkαk

η + ϵσηαkαk
µ + ϵµηαkαk

σ]

)
· (C.73)

We can now extract the divergence. When we only consider the magnetic disorder, the

internal indices in Eq. (C.59) are fixed at (σ, ρ) = (0, 0). In this case, we have

Cµν,00 = 4(16)2
∫

ddk

(2π)d
1

k2
2

2d

∑
j=x,y

∂jFµσ(k, 0)∂jFνρ(k, 0) = −δµiδνjδij2(16)2
4

4(16)2

∫
ddk

(2π)d
1

k2

= δµiδνjδij

(
1

πϵ

)
· (C.74)
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When we have (σ, ρ) = (i, j) we find

∑
i,j=x,y

Cµν,ij = 4(16)2
∫

ddk

(2π)d
1

k2
2

2d

∑
ℓ,i,j=x,y

∂ℓFµi(k, 0)∂ℓFνj(k, 0)

(
δij −

kikj
k2

)
= δµ0δν0

(
1

πϵ

)
· (C.75)

Multiplying by the corresponding coupling constants, we obtain the counter terms cited in

Eq. (4.43):

δE = g4gsgB

(
1

πϵ

)
, δB = g4gsgE

(
1

πϵ

)
· (C.76)

C.6 Current-current correlators

In this appendix we review our calculation of the Feynman diagrams shown in Figs. 4.10(a)

to (e). Since no divergences are present in these diagrams, no counter-terms will be necessary.

C.6.1 Bare loop

The leading term is shown in Fig. 4.10(a). It is simply

Fig. 4.10(a) = (−1)tr [T rT s] tr
[
σaσb

] ∫ dDq

(2π)D
tr
[
iγµ

iqαγ
α

q2
iγν

i(q + p)βγ
β

(q + p)2

]
= −δrsδab |p|

16

(
δµν − pµpν

p2

)
(C.77)

where we used tr [T rT s] = δrs

2
. Setting p = 0 and µ = ν = x,we have

Fig. 4.10(a) = −|p0|
16

· (C.78)
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FIG. 18: Subdiagrams which contribute to the flavour conductivity.

2. Vertex diagrams

a. Contribution proportional to gt,z

We begin by calculating the 1-loop vertex contribution shown in Fig. ??:
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z

Z
d
D
k

(2⇡)d
2⇡�(k0)

i(q + p)↵�↵

(q + p)2
i(q + k + p)���

(q + k + p)2
i�

µ i(q + k)���

q2

iq⇢�
⇢

q2

= igt,zT
r ⌦ �

z
�
a
�
z ⌦ �

a
�
⇢
�
µ
�
�
�
⇢ (q + p)aq⇢
(q + p)2q2

I��(q0, p0) (F3)

where

I��(q0, p0) = ��0��0

Z
d
d
k

(2⇡)d
q0(q0 + p0)⇥

(q0 + p0)2 + k2
⇤ ⇥

q
2

0
+ k2

⇤
| {z }

I0(q0,p0)

+
��j��i�

ij

d

Z
d
d
k

(2⇡)d
k2

⇥
(q0 + p0)2 + k2

⇤ ⇥
q
2

0
+ k2

⇤
| {z }

Id(q0,p0)

·

(F4)

The full diagram in Fig. ?? is then

Fig. ?? = �1⇥ 2⇥ gt,ztr[T
r
T

s]tr[�z
�
a
�
z
�
b]tr

⇥
�
↵
�
�
�
x
�
�
�
⇢
�
x
⇤
(i)2

Z
d
3
q

(2⇡)3
(q + p)aq⇢
(q + p)2q2

I��(q0, p0)

= �2⌘a�
rs
�
ab

Z
d
3
q

(2⇡)3
tr [�⇢

�
x
�
↵
�
x]

✓
IV,0(q0, p0) +

(d� 2)

2
IV,d(q0, p0)

◆
(q + p)aq⇢
(q + p)2q2

= 4⌘a�
rs
�
ab

Z
d
3
q

(2⇡)3

✓
IV,0(q0, p0) +

(d� 2)

2
IV,d(q0, p0)

◆
q0(q0 + p0)

[(q0 + p0)2 + q2] [q2
0
+ q2]

(F5)

where ⌘z = +1 and ⌘x,y = �1.

We perform the integral over k in IV,0 and IV,d and analytically continuing to d = 2+ ✏ spatial

dimensions:

I
V

tot
(q0, p0) = IV,0(q0, p0) +

(d� 2)

2
IV,d(q0, p0) = � 1

4⇡

(
1 +

q0(q0 + p0)

p0(p0 + 2q0)
log


q
2

0

(q0 + p0)2

�)
· (F6)
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Figure C.8: Subdiagrams which contribute to the flavour conductivity.

C.6.2 Vertex diagrams

Contribution proportional to gt,z

We begin by calculating the 1-loop vertex contribution shown in Fig. C.8(a):

Fig. C.8(a) = gt,zT
r ⊗ σzσaσz

∫
dDk

(2π)d
2πδ(k0)

i(q + p)αγ
α

(q + p)2
i(q + k + p)βγ

β

(q + k + p)2
iγµ

i(q + k)σγ
σ

q2
iqργ

ρ

q2

= igt,zT
r ⊗ σzσaσz ⊗ γaγργµγσγρ

(q + p)aqρ
(q + p)2q2

Iβσ(q0, p0) (C.79)

where

Iβσ(q0, p0) = δβ0δσ0

∫
ddk

(2π)d
q0(q0 + p0)

[(q0 + p0)2 + k2] [q20 + k2]︸ ︷︷ ︸
I0(q0,p0)

+
δβjδσiδ

ij

d

∫
ddk

(2π)d
k2

[(q0 + p0)2 + k2] [q20 + k2]︸ ︷︷ ︸
Id(q0,p0)

·

(C.80)

The full diagram in Fig. 4.10(b) is then

Fig. 4.10(b) = −1× 2× gt,ztr[T rT s]tr[σzσaσzσb]tr
[
γαγβγxγσγργx

]
(i)2

∫
d3q

(2π)3
(q + p)aqρ
(q + p)2q2

Iβσ(q0, p0)

= −2ηaδ
rsδab

∫
d3q

(2π)3
tr [γργxγαγx]

(
IV,0(q0, p0) +

(d− 2)

2
IV,d(q0, p0)

)
(q + p)aqρ
(q + p)2q2

= 4ηaδ
rsδab

∫
d3q

(2π)3

(
IV,0(q0, p0) +

(d− 2)

2
IV,d(q0, p0)

)
q0(q0 + p0)

[(q0 + p0)2 + q2] [q20 + q2]

(C.81)

where ηz = +1 and ηx,y = −1.
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We perform the integral over k in IV,0 and IV,d and analytically continuing to d = 2 + ϵ

spatial dimensions:

IVtot(q0, p0) = IV,0(q0, p0) +
(d− 2)

2
IV,d(q0, p0) = − 1

4π

{
1 +

q0(q0 + p0)

p0(p0 + 2q0)
log

[
q20

(q0 + p0)2

]}
·

(C.82)

Performing the q integral, we have

∫
d2q

(2π)2
q0(q0 + p0)

[(q0 + p0)2 + q2] [q20 + q2]
= − 1

4π

q0(q0 + p0)

p0(p0 + 2q0)
log

[
q20

(q0 + p0)2

]
. (C.83)

Plugging these into Eq. C.81 and integrating over q0 we find,

Fig. 4.10(b) = ηaδ
rsδab · gt,z

|p0|
96π

· (C.84)

Contribution proportional to gA,z

The diagram in Fig. 4.10(d) vanishes. We can see this by noting that

Fig. C.8(b) = gA,zT
r ⊗ σzσaσz

∫
dDk

(2π)d
2πδ(k0)

i(q + p)αγ
α

(q + p)2
iγj

i(q + k + p)βγ
β

(q + k + p)2
iγµ

i(q + k)σγ
σ

q2
γj
iqργ

ρ

q2

= −igA,zT r ⊗ σzσaσz ⊗ γαγjγργµγσγjγ
ρ (q + p)αqρ
(q + p)2q2

Iβσ(q0, p0) (C.85)

where Iβσ(q0, p0) is defined in Eq. C.80. The full diagram is therefore

Fig. 4.10(d) = (−1)2 × 2× gA,ztr[T rT s]tr[σzσaσzσb]tr
[
γαγjγβγxγσγjγ

ργx
]
(i)2

∫
d3q

(2π)3
(q + p)aqρ
(q + p)2q2

Iβσ(q0, p0)

= 2ηagA,zδ
rsδab

∫
d3q

(2π)3
tr [γργxγαγx] (2− d)

(
IV,0(q0, p0) +

(d− 2)

2
IV,d(q0, p0)

)
(q + p)aqρ
(q + p)2q2

= (d− 2)gA,z ×
(

1

gt,z
Fig. 4.10(b)

)
· (C.86)

Noting that Fig. 4.10(b) has no epsilon pole, when ϵ→ 0, this diagram vanishes: Fig. 4.10(d)=0.
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C.6.3 Self-energy diagram

Contribution proportional to gt,z

The self-energy subdiagram is

Fig. C.8(c) = gt,zσ
zσz ⊗

∫
dDk

(2π)D
2πδ(k0)

i(q + k)βγ
β

(q + k)2
= gt,ziγ

0

∫
ddk

(2π)d
q0

q20 + k2

= gt,ziγ
0q0

[
− 1

2πϵ
+

1

4π
log
[
4πe−γE

]
− 1

4π
log q20

]
︸ ︷︷ ︸

IΣ(q0)

· (C.87)

The full diagram is therefore

Fig. 4.10(c) = −1× 2× gt,ztr[T rT s]tr
[
σaσb

] ∫ d3q

(2π)3
tr
[
iqαγ

α

q2
iγ0

iqβγ
β

q2
iγx

i(q + p)ργ
ρ

(q + p)2
iγx
]
q0IΣ(q0)

= 4gt,zδ
rsδab

∫
d3q

(2π)3
q0(q0 + p0)(q

2 − q20)

[q20 + q2]
2
[(q0 + p0)2 + q2]

IΣ(q0)

= −gt,zδrsδab
2

π

∫
dq0
2π

q0(q0 + p0)IΣ(q0)

p0(p0 + 2q0)

(
1 +

q20 + (q0 + p0)
2

2p0(p0 + 2q0)
log

[
q20

(q0 + p0)2

])
(C.88)

We see that the constant (and divergent) portion of IΣ(p0) integrate to zero since it is odd.

The term proportional to the log on the other hand, can be rewritten and solved:

Fig. 4.10(c) = gt,zδ
rsδab

1

4π2

∫
dq0
2π

(
1 +

q20 + (q0 + p0)
2

2p0(p0 + 2q0)
log

[
q20

(q0 + p0)2

])
q0(q0 + p0)

p0(p0 + 2q0)
log

[
q20

(q0 + p0)2

]
= δrsδab · gt,z

|p0|
96π

(C.89)

Contribution proportional to gA,z

This diagram is nearly identical to the previous one:

Fig. 4.10(e) = −1× 2× gA,ztr[T rT s]tr
[
σaσb

] ∫ d3q

(2π)3
tr
[
iqαγ

α

q2
iγjiγ0iγj

iqβγ
β

q2
iγx

i(q + p)ργ
ρ

(q + p)2
iγx
]
q0IΣ(q0)

= 2× 4gA,zδ
rsδab

∫
d3q

(2π)3
q0(q0 + p0)(q

2 − q20)

[q20 + q2]
2
[(q0 + p0)2 + q2]

IΣ(q0)

= δrsδab · 2gA,z
|p0|
96π

· (C.90)
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where IΣ(q0) is given in Eq. C.87.
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Appendix to Chapter 5

D.1 Generalized Epstein zeta function

We define the function Y2(s) to be

Y2(s) =
∞∑

n1,n2=−∞

[(
n1 +

1

2

)2

+

(
n2 +

1

2

)2
]−s

. (D.1)

It is only convergent for Re s > 1/2, but can be defined by analytically continuing outside of

this domain. Specifically, it can be expressed in terms of the special functions λ and β [213]:

Y2(s) = 4 · 2s λ(s)β(s), (D.2)

where

β(s) =
∞∑
n=0

(−1)n (2n+ 1)−s , λ(s) =
∞∑
n=0

(2n+ 1)−s = (1− 2−s)ζ(s) (D.3)

with ζ(s) =
∑∞

n=1 n
−s, the Riemann zeta function.
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D.2 Analytic continuation of Maxwell-Chern-Simons free en-
ergy

In Eq. (5.32) we expressed the summation over imaginary frequencies in terms of the Epstein

zeta function

ζE(s; a
2) =

∞∑
n=−∞

[
n2 + a2

]−s
, (D.4)

where a = βγq/2π. This expression is only valid for Re s > 1/2, but can be analytically

continued onto the entire complex plane. To see this, we use the identity

1

As
=

πs

Γ(s)

∫ ∞

0

dt ts−1e−πtA, (D.5)

to write

ζE(s; a
2) =

∑
n

πs

Γ(s)

∫ ∞

0

dt ts−1e−πt(n
2+a2). (D.6)

For sufficiently large values of s, we can exchange the summation and the integral, and,

subsequently, use the Poisson summation formula:

ζE(s; a
2) =

πs

Γ(s)

∫ ∞

0

dt ts−1e−πta
2
∑
n

e−πtn
2

=
πs

Γ(s)

∫ ∞

0

dt ts−1e−πta
2 1√

t

∑
ℓ

e−πℓ
2/t. (D.7)

We see that divergence for Re s ≤ 1/2 is due to the ℓ = 0 term in the sum. Separating this

term out and evaluating the integral, we have

ζE(s; a
2) = a1−2s

√
πΓ(s− 1/2)

Γ(s)
+

2πs

Γ(s)

∞∑
ℓ=1

∫ ∞

0

dt ts−3/2e−πa
2te−πℓ

2/t. (D.8)

We can now extend s all the way to zero. Taking the derivative and limit, we have

− lim
s→0

d

ds
ζE(s; a

2) = 2πa− 2
∞∑
ℓ=1

e−2πaℓ

ℓ
= 2πa+ 2 log

(
1− e−2πa

)
. (D.9)
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Plugging this result into Eq. (5.31), we obtain

FMCS = − 1

β
log k − 1

β

∑
q

log

[
e−βγq/2

1− e−βγq

]
. (D.10)

D.3 Leading order contribution

The leading order contribution in the zero temperature limit is

F0(a) = − 1

β

∑
p

log (p+ a)2 = −
∑
p

∫
dω

2π
log
(
ω2 + (p+ a)2

)
= −

∑
p

∫
dω

2π
logω2 −

∑
p

|p+ a| , (D.11)

where p = (ω,p), p = 2π(nx+1/2, ny+1/2)/L, (nx, ny) ∈ Z2. The first term vanishes using

zeta-reg and the second one can be evaluating by analytically continuing to arbitrary s:

F0(a) = −
∑
p

(p+ a)−2s = −Nf

(
2π

L

)−2s∑
n

(
n+

1

2
+α

)−2s

(D.12)

where

αµ =
L

2π
aµ. (D.13)

We can write this as

F0(a) = −
(
2π

L

)−2s
πs

Γ(s)

 1

s− 1
+

∫ ∞

1

dt ts−1Θ

α
0

 (it) +

∫ ∞

1

dt t−s

Θ

0
α

 (it)− 1




(D.14)

where Θ is shorthand for a product of Jacobi theta functions

Θ

α
0

 (it) =
∏
j=1,2

ϑ

αj + 1/2

0

 (0|it), Θ

0
α

 (it) =
∏
j=1,2

ϑ

 0

−αj − 1/2

 (0|it). (D.15)
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and we’ve used the following definition for the Jacobi theta functions with characteristics:

ϑ

a
b

 (ν|τ) = exp
[
πia2τ + 2πia(ν + b)

]
ϑ(ν + aτ + b|τ)

=
∞∑

n=−∞

exp
[
πi(n+ a)2τ + 2πi(n+ a)(ν + b)

]
. (D.16)

For s = −1/2, we have

F0(a) =
1

L

−2

3
+

∫ ∞

1

dt t−3/2Θ

α
0

 (it) +

∫ ∞

1

dt
√
t

Θ

 0

−α

 (it)− 1


 . (D.17)

This function is plotted in Fig. D.1 and clearly has a minimum at α = (0, 0). In terms of

the function Y2 defined in Appendix D.1 in Eq. (D.1), this

F0(0) = −2π

L
Y2

(
−1

2

)
. (D.18)

D.4 Polarization diagram

Here we calculate the leading 1/Nf contribution to the gauge kernel from the fermions. It

is given by the polarization diagram:

Sf [B] =
1

2
tr
(

1

i/∂
/B

1

i/∂
/B

)
=

1

2

1

βV

∑
p,q

tr
(
/p

p2
/B(−q)

(
/p+ /q

)
(p+ q)2

/B(q)

)

=
1

2

1

βV

∑
p,q

tr
(
σρσµσλσν

)
Bµ(−q)Bν(q)

pρ (p+ q)λ
p2 (p+ q)2

(D.19)

where we have dropped all explicit references to ā = 0. The internal momentum, p, corre-

sponds to a fermionic field, pµ = 2π(nµ+1/2)/Lµ, nµ ∈ Z, whereas the external momentum
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F0

La
x

2⇡

Lay
2⇡

Figure D.1: Plot on the free energy of a free Dirac fermion on the torus as a function of its
boundary conditions, ax, ay.

is appropriate for a bosonic field, qµ = 2πnµ/Lµ, nµ ∈ Z. This can be written as

Sf [B] =
1

2

∑
q

Bν(−q)Πµν
f (q)Bν(q) (D.20)

with

Πµν
f (q) =

1

βV

∑
p

tr
(
σρσµσλσν

) pρ (p+ q)λ
p2 (p+ q)2

=
2

βL2

∑
p

pµ (pν + qν) + (pµ + qµ) pν − δµνp · (p+ q)

p2 (p+ q)2
. (D.21)

In what follows, we will consider the zero temperature limit, β → ∞.
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We begin by calculating the the xx component:

Πxx
f (ϵ, q) =

2

L2

∑
p

∫
dω

2π

px(px + qx)− py(py + qy)− ω(ω + ϵ)

(ω2 + p2)
(
(ω + ϵ)2 + (p+ q)2

)
=

1

L2

∑
p

[
px(px + qx)− py(py + qy)

(|p|+ |p+ q|)2 + ϵ2

(
1

|p|
+

1

|p+ q|

)
− |p|+ |p+ q|

(|p|+ |p+ q|)2 + ϵ2

]
(D.22)

This is formally divergent but can be regulated by adding and subtracting the divergent

piece and analytically continuing using zeta functions:

Πxx
f (ϵ, q) = − 1

L2

{∑
p

px(px + qx)− py(py + qy)

(|p|+ |p+ q|)2 + ϵ2

(
1

|p|
+

1

|p+ q|

)

−
∑
p

[
|p|+ |p+ q|

(|p|+ |p+ q|)2 + ϵ2
− 1

2 |p|

]
+
∑
p

1

2 |p|

}
. (D.23)

The divergent term is

∑
p

1

2 |p|
=

1

2

L

2π

∑
n

1√
(n+ 1/2)2

=
L

4π
Y2 (1/2) , (D.24)

where Y2(s) is defined for all s in Appendix D.1. The finite expression is therefore

Πxx
f (ϵ, q) = − 1

4πL
Y2(1/2)−

1

L2

∑
p

[
|p|+ |p+ q|

(|p|+ |p+ q|)2 + ϵ2
− 1

2 |p|

]

+
1

L2

{∑
p

px(px + qx)− py(py + qy)

(|p|+ |p+ q|)2 + ϵ2

(
1

|p|
+

1

|p+ q|

)
. (D.25)
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Similarly, we find

Πyy
f (ϵ, q) = − 1

4πL
Y2(1/2)−

1

L2

∑
p

[
|p|+ |p+ q|

(|p|+ |p+ q|)2 + ϵ2
− 1

2 |p|

]

− 1

L2

{∑
p

px(px + qx)− py(py + qy)

(|p|+ |p+ q|)2 + ϵ2

(
1

|p|
+

1

|p+ q|

)
,

Πxy
f (ϵ, q) =

1

L2

∑
p

px(py + qy) + py(px + qx)

(|p|+ |p+ q|)2 + ϵ2

(
1

|p|
+

1

|p+ q|

)
,

Π00
f (ϵ, q) =

1

L2

∑
p

|p| |p+ q| − p · (p+ q)

(|p|+ |p+ q|)2 + ϵ2

(
1

|p|
+

1

|p+ q|

)
,

Π0i
f (ϵ, q) =

1

L2

∑
p

ϵ

(|p|+ |p+ q|)2 + ϵ2

(
pi
|p|

− pi + qi
|p+ q|

)
. (D.26)

D.5 Operator contributions to the spectrum

In Sec. 5.3 we stated that in addition to imposing charge-neutrality, the gauge field alters

the spectrum in two ways at Nf = ∞. First, its presence enforces the constraint Jµ(x) = 0,

removing one state from the spectrum for every choice of external momentum q and internal

momentum p, thereby decreasing the degeneracy of the free theory spectrum. Further, the

photon creates states which contribute to the spectrum as well; their energies coincide with

the poles of the photon propagator, ∆µν(x) = ⟨Aµ(x)Aν(0)⟩.

We can understand how this comes about by translating the field theoretic operators to

the quantum mechanical language of the free theory. We write

Jµ(x) =
1

L2

∑
q,E

e−ix·qJµE(q), JµE(q) =
∑
p

Ef (q,p)=E

ψ̄α(p+ q)γµψα(p),

M(x) =
1

L2

∑
q,E

e−ix·qME(q), ME(q) =
∑
p

Ef (q,p)=E

ψ̄α(p+ q)ψα(p). (D.27)

For the moment, we specify to the case where p+q ̸= −p. Eq. (5.62) shows the two distinct

states which exist for each energy Ef (q,p) (additional degeneracies may be present due to

the symmetry of the lattice, but this does not alter any of the following discussion). It
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follows that JµE(q) and ME(q) create states of the form

JµE(q) |0⟩ =
[
vµ1 (p)χ

†
+α(p+ q)χ−α(p) + vµ2 (p)χ

†
+α(−p)χ−α(−p− q)

]
|0⟩ ,

ME(q) |0⟩ =
[
vM1 (p)χ†

+α(p+ q)χ−α(p) + vM2 (p)χ†
+α(−p)χ−α(−p− q)

]
|0⟩ , (D.28)

where the “E” subscript on vµi (p) and vMi (p) has been dropped for notational ease. These

coefficients are easily computed, and are found to be

v0 =
i

2

1− P
|p|

P+Q
|p+q|

1− P
|p|

P+Q
|p+q|

 , vx =
1

2

− P
|p| +

P+Q
|p+q|

− P
|p| +

P+Q
|p+q|

 , vy =
i

2

 P
|p| +

P+Q
|p+q|

− P
|p| −

P+Q
|p+q|

 ,

vM =
i

2

1 + P
|p|

P+Q
|p+q|

1 + P
|p|

P+Q
|p+q|

 , (D.29)

where P = px + ipy, Q = qx + iqy. While it may not be obvious, it can be verified that the

state created by the mass operator is orthogonal to the three states created by the current

operators, and that these states are all proportional to one another.

The linear dependence of the current states actually follows directly from the conservation

law ∂µJ
µ = 0. In terms of the states, this reads

[
−i (|p+ q|+ |p|) J0

E(q) + qxJ
x
E(q) + qyJ

y
E(q)

]
|0⟩ = 0. (D.30)

The space spanned by χ†
+α(p+q)χ−α(p) |0⟩ and χ†

+α(−p)χ−α(−p−q) |0⟩ is a 2-dimensional

complex vector space, equivalent to a 4d real vector space. Eq. (D.30) shows that the three

JµE(q) |0⟩ states actually only span a 2d real subspace, ie. a 1d complex vector space. As

claimed, the currents only create a single state. The orthogonality of ME(q) |0⟩ to this state

is then obvious since Eq. (D.29) implies that

(vµ)†vM = 0. (D.31)

Returning to the large-Nf theory, the gauge current states cease to exist, but the mass state
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remains, resulting in (at least) a 2N2
f − 1 degeneracy.

In the special case p+ q = −p, there is only a single state for each α, β pair, and so only

a N2
f degeneracy in the free theory. Eq. (D.29) shows that only the current operators create

states of this form, and, as above, this state is removed at Nf = ∞, resulting in a N2
f − 1

degeneracy.

D.6 Flux sectors

In this appendix we review the role of non-trivial flux sectors in the theories we considered

in Sec. 5.2. When we defined the gauge field in Eq. (5.7), we did not consider its ability to

carry non-trivial flux. This is possible because the photon is only defined modulo 2π/L and

so can wind around either cycle of the torus so that

2πn =
1

β

∫
d3r (∂xAy − ∂xAy) ̸= 0. (D.32)

Gauge field configurations with non-zero flux cannot be defined on the entire space with a

single function: multiple functions defined on different patches are necessary. However, in

regions intersecting one or more patches, the descriptions of A must differ only by a gauge

transformation. Analogous to the quantization of electric charge through the existence of

magnetic monopoles, this forces n to be an integer. Furthermore, at finite temperature, the

photon can also wind around the time direction, introducing the possibility of F0x or Fy0

integrating to a non-zero value. For simplicity, we will only focus on the flux through the

spatial torus though our arguments generalize easily to this case.

One way to represent a non-trivial flux state is to write

Ax = ax + A′
x +

2πny

L2
· (D.33)
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The Chern-Simons partition function in Eq. (5.16) is modified by replacing SCS with

S
(n)
CS,fl[A] = SCS[B] +

ik

2π

∫
d3r a0

2πn

L2
= SCS[A] + iβk n a0. (D.34)

The path integral must sum over the flux sectors separately; it becomes

ZCS =
βL2

2π

√
det′(−∇2)

∞∑
n=−∞

∫
da e−iβk n a0

∫
dB e−SCS[B]. (D.35)

Upon integrating over a0, n is restricted to be zero, and we get the partition function we

determined in the main body of the paper. Similarly, when a Maxwell term is present, the

action in the presence of flux is modified to

S
(n)
MCS[A] = SMCS[B] + iβk n a0 +

β

4e2

(
2πn

L

)2

· (D.36)

Integrating over a0 from 1 to 2π/β again sets n to zero.

In the presence of matter, the flux sector no longer completely vanishes. However, Dirac

fermions in the presence of flux have a higher energy than without. The saddle-point ap-

proximation we employ in Sec. 5.2.3 only expands about the ground state of free fermion

theory; it does not take possible winding of A into account. Provided N is large enough,

this is a good approximation.
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Appendix to Chapter 6

E.1 Spin liquids with projective spin symmetry

We expand upon our assertion in Sec. 6.3.2 that a fully symmetric, gapped spin liquid

cannot be obtained through the condensation of a Higgs field Φ coupling to a bilinear which

transforms in a nontrivial manner under the SU(2) spin symmetry. As discussed, in order

for the resulting spin liquid to have a spin gap, Φ must couple to one of the operators

in Tab. 6.1. We start by studying Nab = tr
(
σaX̄σbX

)
and couple it to a Higgs field as∑

a,bΦ
abN ba = t̃r (ΦN), where ‘t̃r’ refers to a trace over the spin and colour vector labels (as

opposed to the usual trace ‘tr’ over spin and colour spinor indices). In the Higgs phase, we

write Φ̄ = ⟨Φ⟩ ̸= 0.

Naturally, having the Higgs couple to Nab implies that spin symmetry is realized projec-

tively in the condensed phase, if at all. We associate SO(3) matrices to both the SU(2)

gauge and spin transformations. That is, instead of studying the action of gauge and spin

transformations Ug and Us, we consider matrices Q,R ∈ SO(3) such that

SU(2)s : N
ab → tr

(
σaX̄U †

sσ
bUsX

)
= Nac

(
RT
)cb

,

SU(2)g : N
ab → tr

(
Ugσ

aU †
g X̄σ

bX
)
= QacN cb. (E.1)
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Under a projective spin transformation,

PSU(2)s : t̃r
(
Φ̄N

)
→ t̃r

(
Φ̄QNRT

)
= t̃r

(
Φ̄N

)
, (E.2)

implying that Q = Φ̄−1R. The requirement that Q ∈ SO(3) implies that Φ̄ ∈ SO(3) as well,

for example Φ̄ab = |Φ| δab.

The obstruction to forming a fully symmetric spin liquid is then apparent. Since Nab →

−Nab under T , Px and Py, the equivalence of the original and symmetry transformed states

requires that Φ̄ be gauge equivalent to −Φ̄. This in only possible if Qt,px,py = −1 ̸∈ SO(3).

These considerations apply equally to tr
(
σaX̄µx,zσbX

)
as indicated in Section 6.3.2.

E.2 Wen’s Lattice PSG Classification Scheme

In this appendix, we relate our results to the spin liquid classification scheme proposed in

Ref. 184 by Wen. We begin by reviewing his conventions and formalism before explaining

what it means for two spin liquids to be “proximate” in this language. We then discuss

how we determined that the gapped and gapless U(1) spin liquids in Fig. 6.1b correspond to

U1Cn0n1 and U1Bx11n respectively. We subsequently consider the Z2 sPSG’s and explain

how the identification in Table 6.8 was obtained.

We note that frequent reference will be made to information that is only present in the

arXiv version of Ref. 184.

E.2.1 Conventions and formalism

Here, we briefly review the spin liquid classification scheme proposed in Ref. 184; for a

complete discussion the reader is referred to the original paper. In keeping with these

conventions, we express the mean field Hamiltonian of Eq. (6.19) in terms of fermions ψ =
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(ψ1, ψ2)
T =

(
f↑, f

†
↓

)T
. The mean field ansatz is written in terms of the matrix

uij =
3

8
J

α†
ij βij

βij −αij

 = u†ji. (E.3)

The average constraint in Eq. (6.18) become s

⟨
ψ†
iτ

ℓψi

⟩
= 0 (E.4)

where τ ℓ are Pauli matrices (with τ 0 = 1) and the mean field Hamiltonian can then be

written

HMF =
∑
⟨ij⟩

[
4

3Jij
tr
(
u†ijuij

)
−
(
ψ†
iuijψj + h.c.

)]
+
∑
i

aℓ0ψ
†
iτ

ℓψi. (E.5)

Here, uij is the analogue to αij , β
a
ij (when γij ̸= 0 the spin symmetry is realized projectively,

a possibility this formalism does not take into account [24]). aℓ0 are Lagrange multipliers

enforcing the constraint in Eq. (E.4). In order for HMF to preserve spin, we must choose

iuij ∈ SU(2). Finally, the SU(2) gauge symmetry acts on the ψ fermions and ansatz as

ψi →W (i)ψi, uij → W (i)uijW
†(j). (E.6)

The projective symmetry group in this context is expressed as the invariance of the ansatz

uij under the joint action of a symmetry transformation G and a gauge transformation WG:

Eq.

WGG [uij ] = uij (E.7)

where

G[uij ] = uG(i),G(j) WG [uij ] = WG(i)uijW
†
G(j), WG(i) ∈ SU(2). (E.8)
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Here, we have assumed that G is a space group operation; for time reversal, we have T [uij ] =

−uij . The invariant gauge group (IGG) is the set of gauge transformations which do not

alter the ansatz,

W = {W (i) |W (i)uijW (j)†,W (i) ∈ SU(2)}, (E.9)

and, therefore, W can either be SU(2), U(1), or Z2. In the main body of the text, this is

what we simply refer to as the gauge group or, sometimes in a Higgs phase, the “residual

gauge group.”

In order to make use of the symmetry fractionalization technique, we translate the com-

mutation relations in Eq. (6.11) and below to the lattice case:

1. W−1
ty (ix, iy + 1)Wtx(ix, iy + 1)Wty(ix − 1, iy + 1)W−1

tx (ix, iy) ∈ W

2. W−1
py (ix,−iy)Wtx(ix,−iy)Wpy(ix − 1,−iy)W−1

tx (ix, iy) ∈ W

3. W−1
py (ix,−iy)Wty(ix,−iy)Wpy(ix,−iy − 1)Wty(ix, iy + 1) ∈ W

4. Wpy(ix, iy)Wpy(ix,−iy) ∈ W

5. W−1
py (ix,−iy)Wr(ix,−iy)Wpy(−iy,−ix)Wr(−iy, ix) ∈ W

6. Wr(ix, iy)Wr(iy,−ix)Wr(−ix, iy)Wr(−iy, ix) ∈ W

7. W−1
r (−iy, ix)Wtx(−iy, ix)Wr(−iy − 1, ix)Wty(ix, iy + 1) ∈ W

8. W−1
r (−iy, ix)Wty(−iy, ix)Wr(−iy, ix − 1)W−1

tx (ix, iy) ∈ W

9. W−1
t (ix, iy)W

−1
r (−iy, ix)Wt(−iy, ix)Wr(−iy, ix) ∈ W

10. W−1
t (ix, iy)W

−1
py (ix,−iy)Wt(ix,−iy)Wpy(ix,−iy) ∈ W

11. W−1
t (ix, iy)W

−1
tx (ix + 1, iy)Wt(ix + 1, iy)Wtx(ix + 1, iy) ∈ W

12. W−1
t (ix, iy)W

−1
ty (ix, iy + 1)Wt(ix, iy + 1)Wty(ix, iy + 1) ∈ W

13. Wt(ix, iy)Wt(ix, iy) ∈ W (E.10)
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Group relations Gapped (Df ) Gapless
1 T−1

y TxTyT
−1
x −e−2i(θtx−θty)σ

z −1

2 P−1
y TxPyT

−1
x e2iθpyσ

z −e2iθtxσz

3 P−1
y TyPyTy e2iθpyσ

z −1

4 P 2
y e−2iθpyσ

z −1

5 P−1
y Rπ/2PyRπ/2 e−2iθrσ

z

1

6 R4
π/2 e−4iθrσ

z

e−4iθrσ
z

7 R−1
π/2TxRπ/2Ty e2iθrσ

z+i(θtx−θty)σ
z −e−i(θtx+θty)σ

z

8 R−1
π/2TyRπ/2T

−1
x e2iθrσ

z−i(θtx−θty)σ
z

ei(θtx−θty)σ
z

9 R−1
π/2T

−1Rπ/2T e2iθrσ
z

1

10 P−1
y T −1PyT e2iθpyσ

z

e2iθtσ
z

11 T−1
x T −1TxT −e2i(θt+θtx)σ

z −1

12 T−1
y T −1TyT −e2i(θt+θty)σ

z −1

13 T 2 −1 e2iθtσ
z

Table E.1: Symmetry fractionalization of U(1) spin liquids.

E.2.2 SU(2) spin liquid classification

We presented the mean field ansatz of the π-flux phase in Sec. 6.2.2. In Wen’s notation, it

corresponds to the spin liquid SU2Bn0, and consequently has the following PSG:

Wtx(i) = (−)iygtx, Wpx(i) = (−)ixgpx, Wpxy(i) = (−)ixiygpxy,

Wty(i) = gpy, Wpy(i) = (−)iygpy, Wt(i) = (−)ix+iygt, (E.11)

where gξ ∈ SU(2), ξ = tx, ty, px, py, pxy, t. All PSG’s proximate to SU2Bn0 can be obtained

by fixing the values of the gξ to a specific element in SU(2) (the PSG’s are only defined

modulo the IGG). In Appendix B of Ref. 184, Wen enumerates which U(1) and Z2 PSG’s

are proximate to SU2Bn0. All of the phases we consider must be identified with one of these

options.

E.2.3 U(1) spin liquid classification

Wen [184] finds that the following U(1) phases are proximate to SU2Bn0:
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U1B000n U1Bn10n U1Cn0nn U1C11nn

U1B0001 U1Bx10x U1Cn0n1 U1C11nx

U1B001n U1Bx11n U1Cn0x1 U1C11xn

U1B0011 U1Bx11x U1Cn01n U1C11xx

In this section we determine which of these lattice PSG’s corresponds to the gapped and

gapless U(1) spin liquids obtained by condensing Φ and Φ1 respectively.

Gapped U(1) spin liquid (Df)

To compare with Wen’s classification, we condense the Higgs’ fields in the z component.

Therefore, for the gapped U(1) spin liquid Df , only ⟨Φz⟩ ̸= 0 and the PSG in Eq. (6.40)

should be rewritten:

Vtx = eiθtxσ
z

iσx, Vpx = eiθpyσ
z

, Vr = eiθrσ
z

,

Vty = eiθtyσ
z

iσx, Vpy = eiθpyσ
z

, Vt = eiθtσ
z

iσx, (E.12)

The resulting symmetry fractionalization is shown in Table E.1.

We identify this phase in several steps. We note that independent from θt, (WtUt)
2 = −1,

and therefore, of the spin liquids proximate to SU2Bn0, only those with Wt(i) ̸∝ τ 0 are

possible candidates. Moreover, the U1B spin liquids all have Wtx = (−)iyg3(θtx), Wty(i) =

g3(θty) where gℓ(θ) = eiθτ
ℓ . Inserting these into group relation #1 in Eq. (E.10) returns

−1, again independent of the angles θtx and θty, invalidating these options. This leaves

four candidates: U1Cn0n1, U1Cn0x1, U1C11nx, and U1C11xx. We have computed the

symmetry fractionalization of each of these phases and determined that Df corresponds to
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U1Cn0n1 whose lattice PSG is

U1Cn0n1 :

Wtx(i) = (−)iyg3(θtx)iτ
1, Wty(i) = g3(θty)iτ

1,

Wpx(i) = (−)ixg3(θpx), Wpy(i) = (−)iyg3(θpy),

Wpxy(i) = (−)ixiyg3 (θpxy) , Wr(i) = (−)ixiy+ixg3 (θr)

Wt(i) = (−)ix+iyg3(θt)iτ
1. (E.13)

Gapless U(1) spin liquid

The (continuum) PSG of the gapless spin liquid with ⟨Φz
1⟩ ̸= 0 is

Vtx = eiθtxσ
z

, Vpx = eiθpyσ
z

, Vr = eiθrσ
z

,

Vty = eiθtyσ
z

iσx, Vpy = eiθpyσ
z

iσx, Vt = eiθtσ
z

. (E.14)

From the symmetry fractionalization in Table E.1 and the arguments in the previous section,

we conclude that only U1B spin liquids with Wt ∝ τ 0 are possible candidates: U1B000n,

U1Bn10n, U1B001n, U1Bx11n. Computing the symmetry fractionalization of these four

spin liquid identifies U1Bx11n as the correct lattice analogue:

U1Bx11n :

Wtx(i) = (−)iyg3(θtx)τ
0, Wty(i) = g3(θty)τ

0,

Wpx(i) = (−)ixg3(θpx)iτ
1, Wpy(i) = (−)iyg3(θpy)iτ

1,

Wpxy(i) = (−)ixiyg3(θpxy)iτ
1, Wr(i) = (−)ixiy+ixg3 (θr)

Wt(i) = (−)ix+iyg3(θt)τ
0. (E.15)

In Appendix E.3.3 we show that this PSG has no lattice realization.
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E.2.4 Z2 spin liquids

Wen divides the Z2 spin liquids into two classes. Their PSG’s are

Wtx(i) = η̃iyτ 0, Wpx(i) = ηixxpxη
iy
xpygpy, Wpxy(i) = (−)ixiygpxy,

Wty(i) = τ 0, Wpy(i) = ηixxpyη
iy
xpxgpy, Wt(i) = η

ix+iy
t gt, (E.16)

where A spin liquids have η̃ = +1 and B spin liquids have η̃ = −1. Unlike for the SU(2)

case, each of the group elements gξ takes only a single value. He labels these spin liquids

by Z2A (gpx)ηxpx (gpy)ηxpy gpxy (gt)ηt and Z2B (gpx)ηxpx (gpy)ηxpy gpxy (gt)ηt . An equivalent short-

hand notation replaces (τ 0, τ 1, τ 2, τ 3) and (τ 0+, τ
1
+, τ

2
+, τ

3
+) by (0, 1, 2, 3) and (τ 0−, τ

1
−, τ

2
−, τ

3
−) by

(n, x, y, z) (this is the notation used in the majority of the paper). There are 272 distinct

such PSG’s; however, though at least 72 of these are anomalous and cannot be described

with a mean field Hamiltonian on the lattice.

We can determine the symmetry fractionalization of each of these PSG’s using Eq. (E.10),

forming a table similar to Table 6.7, and this information is what leads to the identification in

Table 6.8. It is clear that the symmetry fractionalization does not completely determine the

PSG since both sPSG1 and sPSG5 have the same symmetry fractionalization as two different

spin liquids. We will show that in both cases, a single lattice PSG can be associated with

each of our continuum versions.

Our primary strategy will be to check that which PSG’s in Table 6.8 are proximate to

U1Cn0n1. By studying Table E.1, we determine which values of θξ give the Z2 symme-

try fractionalization of the phases we’re interested in. In both cases we find only a single

possibility. We also verify that sPSG5 is proximate to U1Bx11n.

We note that the symmetry transformations in Table E.1 depend on only five generators:

Tx, Ty, Py, Rπ/2, T . To make contact with Wen’s conventions, we also display the gauge

transformations corresponding to Px = Rπ/2PyR
−1
π/2 and Pxy = Rπ/2P

−1
y ; their forms are also

determined by the angles θtx, θty, θpy, θr, and θt.
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Lattice PSG of Af phase (sPSG5)

We begin by determining which choice of angles of the gapped U(1) spin liquid returns the

symmetry fractionalization of sPSG5. Setting θtx = 0 fixes the remaining angles to be

θty = π, θpy = ±π
2
, θr = 0, π, θt = 0, π. (E.17)

The choices only result in gauge transformations differing by a minus sign and, except forWty,

do not affect the symmetry fractionalization. In what follows we choose positive prefactors

for all of the gauge transformations below. Modulo these considerations, this is the only PSG

proximate to U1Cn0n1 with the same symmetry fractionalization as sPSG1. This gives

Wtx = (−)iy iτ 1, Wty = −iτ 1,

Wpx = (−)ixiτ 3, Wpy = (−)iy iτ 3,

Wpxy = (−)ixiy iτ 3, Wr = (−)ixiy+ixτ 0,

Wt = (−)ix+iy iτ 1. (E.18)

We can bring it into the form of Eq. (E.16) by performing the gauge transformation

W (i) =


(−)(ix+iy)/2iτ 2, ix + iy = even,

(−)(ix+iy−1)/2iτ 3 ix + iy = odd.

(E.19)

Under this transformation, the PSG in Eq. (E.18) becomes

Wtx = (−)iyτ 0, Wty = −τ 0,

Wpx = (−)ix+iy iτ 3, Wpy = (−)ix+iy iτ 3,

Wpxy = (−)ix(iy+1)iτ 3, Wr = (−)ix(iy+1)τ 0,

Wt = (−)ix+iy iτ 1. (E.20)
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Upon shifting iy → iy+1, we recognize this PSG as Z2Bzz3x, and, rotating by 900 about the

y-axis this becomes Z2Bxx1z. This identifies Z2Bxx1z as the unique lattice PSG capable of

describing the phase Af .

Another way we could have reached this conclusion is by studying the mean field ansatz

allowed by either of these PSG’s. It turns out that the mean field Hamiltonian corresponding

to the other candidate PSG, Z2Bxx2z, cannot be gapped, whereas no such restrictions exist

for Z2Bxx1z.

We also show that Z2Bxx1z is proximate to the gapless spin liquid U1Bx11n. In order to

reproduce the symmetry fractionalization of sPSG5, the angles in Eq. (E.15) must be

θtx = ±π
2

θty = ∓π
2
, θr = 0, π, θt = ±π

2
. (E.21)

θpy is un-determined, and therefore, unlike in the previous case, proximity to U1Bx11n does

not fully determine the lattice PSG corresponding to sPSG5. The angles which are restricted

indicate that

Wtx = (−)iy iτ 3, Wty = −iτ 3,

Wr = (−)ix(iy+1)τ 0, Wt = (−)ix+iy iτ 3. (E.22)

Rotating by 900 about the y-axis take τ 3 → τ 1. We then observe that all of the gauge trans-

formations shown above are equal to the corresponding gauge transformation in Eq. (E.18).

It can be shown that θpy can be chosen to obtain Z2Bxx1z but not Z2Bxx2z. Therefore,

only Z2Bxx1z is proximate to U1Bx11n. .

sPSG1

Performing the same analysis as above, we find that the only way for the symmetry frac-

tionalization of U1Cn0n1 to return the symmetry fractionalization of sPSG1 is if the angles
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in Eq. (E.13) are

θty = π, θpy = ±π
2
, θr = 0, π, θt = ±π

2
, (E.23)

where, again, we’ve set θtx = 0. The gauge transformations associated with the symmetry

generators are then

Wtx = (−)iy iτ 1, Wty = −iτ 1,

Wpx = (−)ixiτ 3, Wpy = (−)iy iτ 3,

Wpxy = (−)ixiy iτ 3, Wr = (−)ix(iy+1)τ 0,

Wt = (−)ix+iy iτ 2. (E.24)

Performing the gauge transformation in Eq. (E.19), these become,

Wtx = (−)iyτ 0, Wty = −τ 0,

Wpx = i(−)ix+iy iτ 3, Wpy = i(−)ix+iy iτ 3,

Wpxy = (−)ix(iy+1)iτ 3, Wr = (−)ix(iy+1)τ 0,

Wt = iτ 2. (E.25)

It is not difficult to see that this corresponds to Z2Bzz32, which is equivalent to Z2Bxx13.

E.3 Lattice realizations of spin liquids

In this appendix, we use the lattice PSG’s determined in Appendix E.2 for the π-flux phase

and Af , Bf , and Df to write down the corresponding lattice Hamiltonian. Doing so will

serve as further verification of the symmetry fractionalization used in the main text. Further,

the calculation of the Berry phase in Sec. 6.4.3 requires the lattice description of the gapped

U(1) spin liquid corresponding to U1Cn0n1.
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E.3.1 SUBn0 mean field Hamiltonian

The ansatz for the π-flux state is given in Eq. (E.11). Gauge invariance and the form of the

translational symmetry operations compels the mean field parameters to take the following

form:

ui,i+m = (−)ixmy iu0m. (E.26)

In order for the mean field Hamiltonian to be Hermition, u†ij must equal uji. This can be

used to show that

(−)ixmy iu0m = −(−)ixmy(−)mxmy iu0m, (E.27)

which indicates

u0−m = −(−)mxmyu0m. (E.28)

Next, Eq. (E.7) states that uij must be invariant under the action of all (projective) symmetry

operations. In particular, acting PxPy and using Eq. (E.28), we find

ui,i+m = WpxPxWpyPy[ui,i+m] = −(−)ixmy(−)mxmy(−)mx+my iu0mτ
0. (E.29)

Similarly, the action of time reversal requires

ui,i+m = WtT [ui,i+m] = (−)ixmy(−)mx+my iu0mτ
0. (E.30)

Between these two equations, we conclude that u0m ̸= 0 only when mx +my = odd. Finally,

we relate mean field parameters for different m’s through the action of Px, Py, and Pxy:

u0(−mx,my) = (−)mxu0(mx,my), u0(mx,−my) = (−)myu0(mx,my), u0(my,mx) = (−)mxmyu0(mx,my).

(E.31)
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The mean field ansatz we obtain is

ui,i+x̂ = iατ 0, ui,i+ŷ = (−)ixiατ 0. (E.32)

Inserting these hopping terms into Eq. (E.5) (and dropping the constant) we obtain

H ′
π = −iα

∑
i

(
ψ†
iψi+x̂ + (−)ixψ†

iψi+ŷ + h.c.
)
. (E.33)

We now show that the low-energy theory is precisely the Dirac Hamiltonian. In momentum

space, we find

H ′
π = 2α

∫ π/2

−π/2

dkx
2π

∫ π/2

−π/2

dky
2π

Ψ†
k

(
sin kxτ̃

3µ3τ 0 + sin ky τ̃
1µ3τ 0

)
Ψk (E.34)

where Ψk =
(
ψk, ψk+Qx+Qy , ψk+Qx , ψk+Qy

)T with Qx = (π, 0) and Qy = (0, π), and

τ̃ 3µ3 =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


, τ̃ 1µ3 =



0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


, τ̃ 0µ1 =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


. (E.35)

Equivalently, writing Ψk = (ψ1,1,k, ψ1,2,k, ψ2,1,k, ψ2,2,k)
T , we can identify the τ̃ ℓ’s with Pauli

matrices acting on the first index of Ψk and the µℓ’s with Pauli matrices acting on the second.

Finally, to make contact with the expression in Sec. 6.2.2, we express H ′
π in terms of

Ψ̃k = eiπτ̃
2µ3/4Ψk. (E.36)

The resulting mean field Hamiltonian is

H ′
π = −2α

∫ π/2

−π/2

dkx
2π

∫ π/2

−π/2

dky
2π

Ψ̃†
k

(
sin kxτ

1µ0σ0 − sin kyτ
3µ0σ0

)
∼= 2α

∫
d2k

(2π)2
Ψ̃† (kxγ0γx + kyγ

0γy
)
Ψ̃k (E.37)
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where we’ve rewritten the gauge-charged τ ℓ’s as σℓ’s (as done in the main body of the text)

and used the fact that γµ = (τ̃ y, iτ̃ z, iτ̃x). It is clear that once dynamic gauge fields are

included, this is equivalent to LQCD3
in Eq. (6.28).

E.3.2 U1Cn0n1 mean field Hamiltonian

We now use the ansatz for Eq. (E.13) to determine the lattice Hamiltonian corresponding to

the gapped spin liquid phase Df . We show that it is precisely H ′
π plus a term which breaks

the SU(2) symmetry to U(1): HDf
= H ′

π +H1.

Eq. (E.13) indicates that all bonds must be of the form

ui,i+m = (−)ixmy
(
iu0mτ

0 + (−)ix+iyu3mτ
3
)
. (E.38)

Further, hermiticity of the Hamiltonian requires u†ij = uji and therefore

(−)ixmy
(
−iu0mτ 0 + (−)ix+iyu3mτ

3
)
= (−)ixmy(−)mxmy

(
iu0−mτ

0 + (−)ix+iy(−)mx+myu3−mτ
3
)
,

(E.39)

implying that

u0m = −(−)mxmyu0−m, u3m = (−1)mx+my(−)mxmyu3−m . (E.40)

Similarly, to satisfy Eq. (E.7), uij must be invariant under 1800 rotations:

ui,i+m =WpxPxWpyPy[ui,i+m] = (−)ixmy(−)mxmy

[
− (−)mx+my iu0mτ

0 + (−)ix+iyu3mτ
3
]
,

(E.41)

where we’ve used the previous expression to relate uℓm and uℓ−m. It follows that u0m = 0

when (mx,my) = (even, even) and that u3m = 0 when (mx,my) = (odd, odd). The ansatz

must also be invariant under T :

ui,i+m =WtT [ui,i+m] = (−)ixmy(−)mx+my
(
−iu0mτ 0 + (−)ix+iyu3mτ

3
)
, (E.42)
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showing that u0m is non-zero only for mx + my = odd and that u3m is only non-zero when

mx +my = even. Together, these give

ui,i+m =


(−)ix+iyu3m, (mx,my) = (even, even),

(−)ixmy iu0mτ
0, mx +my = odd.

(E.43)

We can also show that the action of Px, Py, and Pxy implies the following relations:

uℓ(mx,my) = (−)mxuℓ(−mx,my), uℓ(mx,my) = (−)myuℓ(mx,−my), uℓ(mx,my) = (−)mxmyuℓ(my,mx),

(E.44)

for ℓ = 0, 3. Using these relations, we find,

ui,i+x̂ = iατ 0, ui,i+2x̂ = (−)ix+iyβτ 3, ui,i = (−)ix+iya0τ
3,

ui,i+ŷ = (−)ixiατ 0, ui,i+2x̂ = (−)ix+iyβτ 3. (E.45)

As expected, the nearest-neighbour bonds are identical to those we found for the π-flux phase

in the previous section. The SU(2) symmetry is already broken to U(1) by the inclusion of

the next-nearest neighbour bonds and so this is all we consider.

As in the previous section, the mean field Hamiltonian is obtained by inserting these

hopping terms into Eq. (E.5):

HDf
= H ′

π +H1,

H1 =
∑
i

(−)ix+iy
[
β
(
ψ†
iτ

3ψi+2x̂ + ψ†
iτ

3ψi+2ŷ + h.c.
)
− a30ψ

†
iτ

3ψi

]
, (E.46)

where H ′
π is given above in Eq. (E.34). In momentum space, this becomes

HDf
=

∫ π/2

−π/2

dkx
2π

∫ π/2

−π/2

dky
2π

Ψ†
k

[
2α
(
sin kxτ̃

3µ3τ 0 + sin ky τ̃
1µ3τ 0

)
− (2β [cos 2kx + cos 2ky]− a0) τ̃

0µ1τ 3
]
Ψk (E.47)
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where we’ve used the same notation as in the previous section: Ψk =
(
ψk, ψk+Qx+Qy , ψk+Qx , ψk+Qy

)T
with Qx = (π, 0) and Qy = (0, π), and the matrices defined in Eq. (E.35). In terms of

Ψ̃k = eiπτ̃
2µ3/4Ψk:

HDf
=

∫ π/2

−π/2

dkx
2π

∫ π/2

−π/2

dky
2π

Ψ̃†
k

[
2α
(
sin kxτ̃

1µ0σ0 − sin ky τ̃
3µ0σ0

)
− (2β [cos 2kx + cos 2ky]− a0) τ̃

2µ2σ3

]
Ψ̃k, (E.48)

where, again, we’ve rewritten the SU(2) matrices τ ℓ as σℓ in accord with the continuum

notation. Expanding HDf
about k = (0, 0), we obtain

HDf
∼=
∫

d2k

(2π)2
Ψ̃†
[
− 2α

(
kxγ

0γx + kyγ
0γy
)
+ (4β − a0) γ

0µyσz
]
Ψ̃k (E.49)

where γµ = (τ̃ y, iτ̃ z, iτ̃x). We conclude that the term which reduces the SU(2) symmetry

down to U(1) is precisely equivalent to ψ̄µyσzψ ∼ tr
(
σzX̄µyX

)
.

E.3.3 U1Bx11n mean field Hamiltonian

In this subsection, we demonstrate that U1Bx11n has no lattice analogue. Referring to

Eq. E.15, we see that gauge and translational symmetry requires

ui,i+m = (−)ixmy
(
iu0mτ

0 + u3mτ
3
)
. (E.50)

We relate u0,3−m = u0,3m using the fact that u†i,i+m = ui+m,i:

u0−m = −(−)mxmyu0m, u3−m = (−)mxmyu1m. (E.51)

Then, acting on ui,i+m with PxPy and T gives

WpxPxWpyPy[ui,i+m] = (−)ixmy(−)mxmy(−)mx+my
(
−iu0mτ 0 + u3mτ

3
)
,

T [ui,i+m] = (−)ixmy(−)mx+my
(
−iu0mτ 0 − u3mτ

3
)
. (E.52)
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Equating these expressions with ui,i+m implies that u0m ̸= 0 only for mx +my = odd, as for

SU2Bn0 and U1Cn0n1; it can be shown that they must satisfy identical constraints as the

τ 0-bonds allowed by these PSG’s. In particular, the nearest-neighbour values are identical to

those in Eq. (E.32). Conversely, there are no consistent solutions for u3m: it always vanishes

and is therefore unable to break the SU(2) gauge symmetry to U(1).

E.3.4 Z2Bxx1z mean field Hamiltonian

We choose a gauge such that Eq. (E.18) describes the PSG of Z2Bxx1z. Translational

symmetry and gauge invariance implies that

ui,i+m = (−)ixmy
(
iu0mτ

0 + u1mτ
1 + (−)ix+iy

[
u2mτ

2 + u3mτ
3
])
. (E.53)

Hermiticity then requires

u0−m = −(−)mxmyu0m, u1−m = (−)mxmyu1m, u2,3−m = (−)mxmy(−)mx+myu3m. (E.54)

Under the action of PxPy and T the ansatz transforms as

WpxPxWpyPy[ui,i+m] = (−)ixmy(−)mxmy

(
− (−)mx+my iu0mτ

0 + (−)mx+myu2mτ
1

+ (−)ix+iy
[
u2mτ

2 + u3mτ
3
] )
,

T [ui,i+m] = (−)ixmy(−)mx+my
(
−iu0mτ 0 − u1mτ

1 + (−)ix+iy
[
u2mτ

2 + u3mτ
3
])
.

(E.55)

These relations imply that u1m = 0 for all m, u0m ̸= 0 only for mx+my = 0, and that u2,3m ̸= 0

only for (mx,my) = (even, even). By studying the action of Px, Py, and Pxy, we obtain the

213



Appendix E – Appendix to Chapter 6

following relations:

u0(−mx,my) = (−)mxu0(mx,my), u2(−mx,my) = −u2(mx,my), u3(−mx,my) = u3(mx,my),

u0(mx,−my) = (−)myu0(mx,my), u2(mx,−my) = −u2(mx,my), u3(mx,−my) = u3(mx,my),

u0(my ,mx) = u0(mx,my), u2(my ,mx) = −u2(mx,my), u3(my ,mx) = u3(mx,my). (E.56)

These show that u0,3m are restricted to take the same values as in Eq. (E.45) for the gapped

U(1) spin liquid, leaving the u2m bonds to break the U(1) gauge symmetry down to Z2. It

turns out that its first non-zero value occurs at sixth nearest-neighbour:

ui,i+2x̂+4ŷ = (−)ix+iyγτ 2, ui,i+2x̂−4ŷ = −(−)ix+iyγτ 2,

ui,i+4x̂+2ŷ = −(−)ix+iyγτ 2, ui,i+4x̂−2ŷ = (−)ix+iyγτ 2. (E.57)

The contribution of these bonds to the Hamiltonian is

H2 = γ
∑
i

(−)ix+iy
[
ψ†
iτ

2ψi+2x̂+4ŷ − ψ†
iτ

2ψi+2x̂−4ŷ − ψ†
iτ

2ψi+4x̂+2ŷ + ψ†
iτ

2ψi+4x̂−2ŷ − h.c.

]
,

(E.58)

and the minimal Hamiltonian needed to describe Z2Bxx1z isHAf
= HDf

+H2. In momentum

space, we have

H2 = 4γ

∫ π/2

−π/2

dkx
2π

∫ π/2

−π/2

dky
2π

(sin 4kx sin 2ky − sin 2kx sin 4ky)Ψ
†
kτ̃

0µ2τ 2Ψk, (E.59)

where Ψk in defined in Eq. (E.36), and the action of the Pauli matrices τ̃ ℓ and µℓ is given in

Eq. (E.35) and below. Once more, we change notation such that Pauli matrices acting on

colour space, τ ℓ, becomes σℓ’s and express H2 in terms of the transformed fermion operator,
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Group relations fermionic vison twist bosonic
1 T−1

y TxTyT
−1
x −1 −1 1 1

2 P−1
y TxPyT

−1
x −1 −1 1 1

3 P−1
y TyPyTy −1 1 1 −1

4 P 2
y −1 1 −1 1

5 T−1
x (T Px)

−1Tx(T Px) −1 1 1 −1

6 T−1
y (T Px)

−1Ty(T Px) 1 −1 1 −1

7 P−1
y (T Px)

−1Py(T Px) −1 −1 1 1

8 (T Px)
2 −1 1 1 −1

Table E.2: Symmetry fractionalization and twist factors for the fermionic and bosonic spinon
and the vison in the phase Z2 spin liquid with current-loop order. By comparing with the
result in Ref. 23, are able to verify the equivalent of Cf and Cb.

Ψ̃k = eiπτ̃
2µ3/4Ψk:

H2 = 4γ

∫ π/2

−π/2

dkx
2π

∫ π/2

−π/2

dky
2π

(sin 4kx sin 2ky − sin 2kx sin 4ky) Ψ̃
†
kτ

yµyσyΨ̃k,

∼= −16γ

∫
d2k

(2π)2
Ψ̃†

k

[
kxky

(
k2x − k2y

)
γ0µyσy

]
Ψ̃k. (E.60)

Notably, H2 does not correspond to any of the continuum operators in the action we study in

the main text, in particular tr
(
σaX̄∂0X

)
∼ ψ̄σa∂0ψ. Instead, in the continuum language, H2

is proportional to ψ̄µyσy∂x∂y
(
∂2x − ∂2y

)
ψ ∼ tr

(
σyX̄µy∂x∂y

[
∂2x − ∂2y

]
X
)
. This is discussed

in Sec. 6.4.1.

E.4 Symmetry fractionalization of current-loop ordered spin
liquid

We can also use symmetry fractionalization to verify that the phase Cf corresponds to Cb.

There are now only eight group relations, and these are listed in Table E.2. The PSG of the

reduced symmetry group is defined by the gauge transformations

Vtx = iσy, Vpy = iσx,

Vtx = iσy, Vtpx = iσz, (E.61)

215



Appendix E – Appendix to Chapter 6

T Px Py Tx Ty

zα iσyz z z iσyz∗ iσyz∗

Qx Qx −Qx Qx Q∗
x Q∗

x

P −P P P P ∗ P ∗

Table E.3: Symmetry action on the bosonic spinon and Higgs fields in the bosonic dual to
the theories studied here, as presented in Eq. (6.4) and Eq. (6.7) [23]. The spinon here is
written as a two-component spinor, z = (z↑, z↓)

T and that iσy acts on these indices. We note
that T [z∗] = −iσyz∗ and that Tx,y[z∗] = iσyz.

where the subscript tpx denotes the joint group action of T Px. With these, we determine the

fermionic symmetry fractionalization using the methods described in Sec. 6.4.1. The results

are shown in Table E.2 under the column labeled “fermionic.”

Both the symmetry fractionalization of the vison and the twist factors for the reduced

symmetry relations can be worked out from the ones already given; Table E.2 lists these

under the columns “vison” and “twist” respectively.

In order to determine the bosonic symmetry fractionalization, we borrow notation from

Ref. 23. In Table E.3, the symmetry transformation properties of the bosonic spinon and

Higgs fields in Eqs. (6.4) and (6.7) are reproduced. It will be convenient to express the

bosonic spinon in terms of the four-component field Z = (z, z∗)T =
(
z↑, z↓, z

∗
↑ , z

∗
↓
)T . We then

let Pauli matrices τ ℓ act on this new index, while σ-matrices will act on the spin indices

as before. The U(1) gauge transformations are expressed as U(1)g : Z → eiθτ
zZ. In this

language, the symmetry transformations are expressed as

T [Z] = iσyτ zZ, Px,y[Z] = Z, Tx,y[Z] = iσyτxZ. (E.62)

Using these, we obtain the numbers in the column of Table E.2 labeled “boson.”

Finally, we multiply the twist, vison, and boson columns and obtain the numbers in the

fermion column, thereby verifying the equivalence of Cf and Cb.
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p ` q

p

M γµσx

Figure E.1: Fermion bubble to calculate flux response.

E.5 Linear response to nontrivial flux

In this appendix, we calculate the relation in Eq. (6.52) in imaginary time. The residual

U(1) gauge field aµ couples to the current Jµ = ψ̄γµσxψ. The response function of an

operator O is χµO = ⟨O(x)Jµ(x′)⟩, and the linear response equation in momentum space

is simply ⟨O(q)⟩ = χµO(p)Aµ(q) (we specify to operators whose vacuum expectation values

vanish in the absence of perturbations). Assuming O = tr
(
X̄MX

)
, χµ0(q) is represented by

the Feynman diagram in Fig. E.1 at leading order. We evaluate this as

χµO(q) = −
∫

d3p

(2π)3
tr
[
M
/p+ imσxµy

p2 +m2
γµσx

/p+ /q + imσxµy

(p+ q)2 +m2

]
. (E.63)

If M ∝ σx, it can be shown that the leading order term is quadratic in q. A q-linear piece

is obtained by assuming that tr (Mσx) = 0, in which case

χµO(q) = −m
∫

d3p

(2π)3
1

[p2 +m2] [(p+ q)2 +m2]

{
pαtr [Mγαγµµy] + (p+ q)αtr [Mµyγµγα]

}
=
m

8π

iqα
|q|

arctan

(
|q|
2m

)
Aµ(q) (tr [µyMγαγµ]− tr [Mµyγµγα]) . (E.64)

This is only non-zero for M = µyγν . Expanding the inverse tangent in small q, we find

χµν (q)
∼= − 1

π
ϵναµqαAµ(q) ∼=

i

π
ϵµνα∂αAβ(q). (E.65)

Returning to real time, we obtain the result in Eq. (6.52).
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