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‘ Superconductivity in a doped Mott insulator\

Introduce mobile carriers of density &
by substitutional doping of out-of-plane

lons e.g. La, ;Sr,CuO,

Doped state is a paramagnet with (@) =0
and also a high temperature superconductor with
the BCS pairing order parameter (. )= 0.

= With increasing o, there must be one or more
guantum phase transitions involving

(i) onset of a non-zero (W)
(i) restoration of spin rotation invariance by a transition
from (@)= 0to (¢)=0

First study magnetic transition in Mott insulators
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A. Magnetic qguantum phase transitions in
“dimerized” Mott insulators:

Landau-Ginzburg-Wilson (LGW) theory:

Second-order phase transitions described by
fluctuations of an order parameter
assoclated with a broken symmetry




TICuCl,

M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.



Coupled Dimer Antiferromagnet
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Weakly coupled dimers
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Weakly coupled dimers
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TICuCl,
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FIG. 1. Measured neutron profiles in the a*c¢® plane of TICuCl;
for i=(1.350.0), #i=100,0,3.13) [rlu]. The spectrtum at T=15K

For quasi-one-dimensional systems, the triplon linewidth takes

the exact universal value =1.20k,Te '™ at low T
K. Damle and S. Sachdev, Phys. Rev. B 57, 8307 (1998)

This result is in good agreement with observations in CsNiCl; (M. Kenzelmann, R. A. Cowley, W. J. L.
Buyers, R. Coldea, M. Enderle, and D. F. McMorrow Phys. Rev. B 66, 174412 (2002)) and Y,NiBaO¢ (G.
Xu, C. Broholm, G. Aeppli, J. F. DiTusa, T.Ito, K. Oka, and H. Takagi, preprint).



Coupled Dimer Antiferromagnet




Weakly dimerized square lattice
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A closeto 1 Weakly dimerized square lattice

I\

, i, 1, i, i i Excitations:

: ofal ® 2 spin waves (magnons)
. :"" . ;o . 5p:\/Cx2px2+Cy2py2
Ground state has long-range spin density wave <(5> -+ 0

(Neel) order at wavevector K= (,m)

- . _ S
spin density wave order parameter: ¢ = 7, ?I

, 1. =1 on two sublattices



TICuCl,

Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering
in the Spin Gap System TICuCl;

Akira O0sAwA™, Masashi Fuiisawa!, Toyotaka OSAKABE, Kazuhisa KAKURAI and Hidekazu TANAKA?

Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195
'Department of Physics, Tokye Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551
*Research Center for Low Temperature Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551

(Received February 3, 2003)

4

3

g TICuCIe_

% 3 TI = Q= (1’0’_3}
- = X — ]
Z i:%3 P =1.48 GPa
8 [x.
© oy

= -

2 []

=

é L)

g | :

2

B N

=

on

g |

0 ﬂ!!l:—q—}t
0 5 10 15 20 25
T (K)

Gg. 3. Temperature dependence of the magnetic Bragg peak intensity for

@ = (1,0, —3) reflection measured at P = 1 .48 GPa in TICuCls.

J. Phys. Soc. Jpn 72, 1026 (2003)



A, = 0.52337(3)
T:O M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama,
Phys. Rev. B 65, 014407 (2002)
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Néel state Quantum paramagnet
(@) #0 (¢)=0
‘—I—<_
A1 A, Pressure in TICuCl,

The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323

(1990)) provides a quantitative description of spin excitations in TICuCl, across the

quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist,
Phys. Rev. Lett. 89, 077203 (2002))
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T:O M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama,
Phys. Rev. B 65, 014407 (2002)
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Quantum paramagnet
(#)#0 (¢)=0
H Magnetic order as in La,CuQ, Electrons in charge-localized Cooper pairs H
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The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323

(1990)) provides a quantitative description of spin excitations in TICuCl, across the

quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist,
Phys. Rev. Lett. 89, 077203 (2002))



LGW theory for quantum criticality
Landau-Ginzburg-Wilson theory: write down an effective action
for the antiferromagnetic order parameter ¢ by expanding in powers
of @ and its spatial and temporal derivatives, while preserving
all symmetries of the microscopic Hamiltonian

o) e v 5T

S. Chakravarty, B.l. Halperin, and D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

For A < A, oscillations of ¢ about ¢ =0 lead to the
following structure in the dynamic structure factor S ( p, »)

Lo|lw—¢ 2n?
? (A (p)) g(p):AJrsz A=A -1/
S(p.)
Triplon pole _ _
Structure Three triplon continuum
holds to all AV Chubukov
orders in u S. Sachdev, and J.Ye, Phys.

“3A S > Rev. B 49, 11919 (1994)



B. Mott insulators with
spin S=1/2 per unit cell:

Berry phases, bond order, and the
breakdown of the LGW paradigm



Mott insulator with two S=1/2 spins per unit cell
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Ground state has Neel order with ¢ # 0



Mott insulator with one S=1/2 spin per unit cell

Destroy Neel order by perturbations which preserve full square
lattice symmetry e.g. second-neighbor or ring exchange.
The strength of this perturbation is measured by a coupling g.

Small g = ground state has Neel order with (@) # 0

Large g = paramagnetic ground state with (¢) =0
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Resonating valence bonds

Resonance in benzene leads to a
symmetric configuration of valence
bonds
(F. Kekulé, L. Pauling)

Different valence bond pairings
resonate with each other, leading
to a resonating valence bond liquid,

(Class B paramagnet) with (W, .,)=0

P. Fazekas and P.W. Anderson, Phil Mag 30, 23
(1974); P.W. Anderson 1987

Such states are associated with non-collinear spin
correlations, Z, gauge theory, and topological
order.
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773
(1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991).



Excitations of the paramagnet with non-zero spin
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Excitations of the paramagnet with non-zero spin
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Excitations of the paramagnet with non-zero spin

(W ona ) # 0; Class A (W pons ) = 0; Class B

S=1/2 spinons, Z , are S=1/2 spinons can
confined into a S=1 propagate
triplon, o Independently across
b ~ z; &aﬁ Z, the lattice
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Quantum theory for destruction of Neel order

Discretize imaginary time: path integral is over fields on the
sites of a cubic lattice of points a
Recall ¢, =21,S, - ¢,=(0,0,1) in classical Neel state;

n, — =1 on two square sublattices ;
A,, — half oriented area of spherical triangle

formed by ¢,, ¢,,,, and an arbitrary reference point ¢,

2A, D 2A, ~Vaint V| 7a

Change in choice of @, is like
a “gauge transformation”

Z

—

Pa

- Vo

(03."‘ U

The area of the triangle is uncertain modulo 4z, and the action
has to be invariantunder A, — A, +27

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Quantum theory for destruction of Neel order

Ingredient missing from LGW theory:
Spin Berry Phases

exp(iza:naAafj

Sum of Berry phases of
all spins on the square
lattice.

:exp(iZJaﬂAaﬂ]

with "current” J_, of

static charges =1 on sublattices



Quantum theory for destruction of Neel order

Partition function on cubic lattice
Loof =2 lw. . :
[ = degoj(goa —1)exp —Zgoa Do +IZ77aAaT
a g a, u a
Modulus of weights in partition function: those of a

classical ferromagnet at a “temperature” g

Small g = ground state has Neel order with (@) # 0

Large g = paramagnetic ground state with (¢) =0
Berry phases lead to large cancellations between different
time histories — need an effective action for A, at large g



Simplest large g effective action for the A, ,

Z =1;”dAau exp(Z—iZZD:COS(AﬂAaV —AVAaﬂ)”Za:ﬂaAarj

with e°~g*
This is compact QED in 3 spacetime dimensions with
static charges +1 on two sublattices.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990).

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Exact duality transform on periodic Gaussian (“Villain”) action for compact
QED yields a representation in terms of a Coulomb gas of monopoles

o s mj'rnjf :
Zdual = Z exp (_@ Z ITj > T'j,r| 4 271 Z mJXJ)

with the m; integer monopole charges. Each monopole carries a Berry phase
(F.D.M. Haldane, Phys. Rev. Lett. 61, 1029 (1988)) determined by the fixed
X; =0,1/4,1/2,3/4 on the four dual sublattices.

F =

3/4 1/2 3/4 1/2

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).



Alternative representation is in terms of a “height” model

e :
Bl = Z exp (_5 Z (A h; — A#Xj)‘z)

{hs}

)

with the h; integer heights.
The Berry phases now lead to height ‘offsets’ X; = 0,1/4,1/2,3/4 on the

four dual sublattices.

3/4 1/2 3/4 1/2



For large €2, low energy height configurations are in exact one-to-
one correspondence with nearest-neighbor valence bond pairings of
the sites square lattice

N X D
n - /-
(R (R
oo
_)
mwmmm

There is no roughening transition for three dimensional interfaces, which
are smooth for all couplings

—> There is a definite average height of the interface

—> Ground state has bond order.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).




Bond order

? O——— O
Neel order (W pong ) # 0 -
(p)#0 Not present in
LGW theory

of ¢ order




Naive approach: add bond order parameter to LGW theory “by hand”

Neel order First Bond order
=~ _ order >\ _
(6% 0.(¥ng) =0 transition () =0.(Fiona) # 0
> J
Neel order (EO(;XiStence Bond order
. ¢)#0 .
<¢>¢01<\Pbond>20 < >-‘/—'O <§0>:O < bond>¢0
bond
> J
Neel order “disordered"” Bond order
. p)=0, .
)20, =0 | 70 L (5)=0, ()0
bond /

> g



1/2 XY magnet

Bond order In a frustrated S

A. W. Sandvik, S. Daul, R. R. P. Singh, and D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002)

First large scale (> 8000 spins) numerical study of the destruction of Neel order in

1/2 antiferromagnet with full square lattice symmetry

aS=

K/T

g_

S")

k

[ S

S +SS:

S«

> (S7S;
(ijkl)co

H=2J)(S/S+S’S})-K
)



Bond order

? O——— O
Neel order (W pong ) # 0 -
(p)#0 Not present in
LGW theory

of ¢ order




Alternative formulation to describe transition:

Express theory in terms of a complex spinor z,,, o =T, |, with

*
n, =— zaaaagzag

7 = H/dzmdA § (J2aal? — 1)

exp 12,2* gtAan O et T GG, +ZZT)Q m)

9 [ 11 ]
HH | HH-H

g

>

S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990).

S. Sachdev and K. Park, Annals of Physics 298, 58 (2002).



Theory of a second-order quantum phase transition
between Neel and bond-ordered phases

At the quantum critical point:
e A, — A, +27 periodicity can be ignored

(Monopoles interfere destructively and are dangerously irrelevat).

e $=1/2 spinons z,,, with ¢ ~ z,6,,2,,, are globally

propagating degrees of freedom.

Second-order critical point described by emergent
fractionalized degrees of freedom (A ,and z,, );

Order parameters (¢ and ¥, 4 ) are “composites’ and of
secondary importance

S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990); G. Murthy and S. Sachdev,
Nuclear Physics B 344, 557 (1990); C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63,
134510 (2001); S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002);

O. Motrunich and A. Vishwanath, cond-mat/0311222.
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B. Mott insulators with spin
S=1/2 per unit cell:
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Emergent gauge excitations, fractionalization.



C. Technical detalils

Duality and dangerously irrelevant
operators
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A. N=1, non-compact U(1), no Berry phases

Use 2z, = €% and then

1
AN H / dé)a,dAau exp (@ Z (AMAQ,V = AyAaM)Q

O
Jrl Z cos{ A0, — Aaﬂ))
g
a,H

Standard duality maps, similar to those discussed earlier, show that this
theory is equivalent to an inverted XY model, described by the field theory

Zidual = /DZD exXp (— f d’zdr (|5,,L¢|2 + ] + %W‘L))

Here 1) is a dual field which orders in the paramagnetic phase i.e. () # 0
where (¢”?) = 0, and vice versa. The field 1 is a creation operator for vortices
in the original theory of a “Ginzburg-Landau superconductor” coupled to
“electromagnetism”.

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981).
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B. N=1, compact U(1), no Berry phases

Use z, = €%« and then

1
72 = 1] / d0,d Ay exp (e—g ) cos (Auda — AyAay)
a l

+l Z cos (A0, — Aa#))
g
a,H

The Dasgupta-Halperin mapping now yields the dual theory

Zuwa = [ Dvexp (— [ Erdr (10,08 +rlof + 5101~ vt + )

Here v,, is a monopole fugacity, and the last term in Zq,. accounts for the
fact that vortex lines can end in monopoles.

This dual theory is an inverted XY model in a “magnetic” field and
it has no phase transition. In the direct theory, the monopoles are a relevant
perturbation, and they destroy the “superconducting” phase.
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C. N=1, compact U(1), Berry phases

Upon including Berry phases, the previous theory becomes
1
z =[] / df,dA,, exp (6—2 ;cos F PP . . B

1
—f—; Z cos (Agly — Agp) 1 Z %Am)
< a,jt a

The Dasgupta-Halperin duality can also be extended to this theory, and we
obtain

Zawi = [ Diesp (= [ @i (100 + 10+ Sl — im0 +079)

S. Sachdev and R. Jalabert, Mod. Phys. Lett. 4, 1043 (1990).



C. N=1, compact U(1), Berry phases

Zual = / Dy exp (— / Padr (10,61 + il + Sl —%(WW“)))

This is an inverted XY model with a four-fold anisotropy, i.e. a Z,4
clock model. The four-fold anisotropy is irrelevant at the critical point (J.M.
Carmona, A. Pelissetto, E. Vicari, Phys. Rev. B 61, 15136 (2000)), and
hence there is a XY transition to a four-fold degenerate state with (1) # 0.
In the direct theory, this is the bond-ordered paramagnet.

S. Sachdev and R. Jalabert, Mod. Phys. Lett. 4, 1043 (1990).



C. N=1, compact U(1), Berry phases

Zual = / Dy exp (— / Padr (10,61 + il + Sl —gm(w"’*w“)))

Reinterpretation by T. Senthil: In the direct theory, the irrelevance
of v,, implies that the Berry phases have cancelled out the monopole con-
tributions. So monopoles are ‘dangerously irrelevant’ at the critical point,
and the critical theory is the same Dasgupta-Halperin inverted XY model
describing the non-compact theory without monopoles or Berry phases!




Nature of guantum critical point

== HfdzmdAaucS (|zm|2 — 1)

| | 1
exp (5 Z Z;aemau.zgma + c.c. +1 Z NaAar + 2 Z cos (DA — A,,Aw)>
a,p a Ll

Use a sequence of simpler models which can be analyzed by
duality mappings

Identical critical
A. Non-compact QED with scalar matterA/' theories !

B. Compact QED with scalar matter

C. N=1: Compact QED with scalar matter and Berry phases
D. N — oo theory

E. Easy plane case for N=2




Nature of guantum critical point

== HfdzmdAapcs (|zm|2 — 1)

1 . 1
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D. N = o0, compact U(1), Berry phases

Near the critical point of the N = oo non-compact theory, integrate out
Zo quanta (with gap A) in the presence of a Dirac monopole with A4, = A;?
with magnetic charge q. The functional determinant yields the action of such
a monopole, and the scaling dimension of the monopole insertion

(8 —= 1A 4+ &7+ V(7)

_ NTY Iy 3
Oworepels = N 1IN ! —05 a0 — ? a’rV(r)
6811101’10 ole
where 6V(fr§ ® —0and V(r — o) = 0.

Evaluation of functional determinant for ¢ = 4 shows

A
Smonopole = 0.815787.V In (A)

This computation shows that the scaling dimension of
g = 4 monopoles is 3 — 0.815787N

Monopoles are irrelevant both with and without Berry phases for large /V.

G. Murthy and S. Sachdev, Nucl. Phys. B 344, 557 (1990).



E. Easy plane case for N=2

Explicit duality mappings show that the physical situation is as for N = 1:
e monopoles are relevant without Berry phases,

e monopoles are irrelevant at the critical point in the presence of Berry
phases, and

e monopoles drive the appearance of bond order in the paramagnetic
phase.

Z sy = /D;lengDa# exp(—/dzxd'r(K@“ — éa#)d)ﬂz + [{0, — z‘a#)z/)gjz

= (]¢1|2 T \?/12‘2) T g (|¢1|4 P |1/f’2|4) ~ Ym ((1/);1/)2)4 T (1/)11/);)4)))

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001).
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002).

O. Motrunich and A. Vishwanath, cond-mat /0311222

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A. Fisher,
Science 303, 1490 (2004).
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