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Doped state is a paramagnet with 0
     and also a high temperature superconductor with
        the BCS pairing order parameter 0
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( ) restoration of spin rotation  invariance by a transition 
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Introduce mobile carriers of density δ
by substitutional doping of out-of-plane  

ions e.g. 2 4La Sr CuOδ δ−

  Superconductivity in a doped Mott insulator

First study magnetic transition in Mott insulators………….



OutlineOutline
A. Magnetic quantum phase transitions in “dimerized” 

Mott insulators
Landau-Ginzburg-Wilson (LGW) theory

B. Mott insulators with spin S=1/2 per unit cell
Berry phases, bond order, and the 
breakdown of the LGW paradigm

C. Technical details
Duality and dangerously irrelevant operators



A. Magnetic quantum phase transitions in 
“dimerized” Mott insulators: 

Landau-Ginzburg-Wilson (LGW) theory:
Second-order phase transitions described by 

fluctuations of an order parameter
associated with a broken symmetry



TlCuCl3

M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, cond-mat/0309440.



Coupled Dimer Antiferromagnet
M. P. Gelfand, R. R. P. Singh, and D. A. Huse, Phys. Rev. B 40, 10801-10809 (1989).
N. Katoh and M. Imada, J. Phys. Soc. Jpn. 63, 4529 (1994).
J. Tworzydlo, O. Y. Osman, C. N. A. van Duin, J. Zaanen, Phys. Rev. B 59, 115 (1999).
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev. B 65, 014407 (2002).
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close to 0λ Weakly coupled dimers

( )↓↑−↑↓=
2
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Excitation: S=1 triplon
(exciton, spin collective mode)

Energy dispersion away from
antiferromagnetic wavevector
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TlCuCl3

N. Cavadini, G. Heigold, W. Henggeler, A. Furrer, 
H.-U. Güdel, K. Krämer and   H. Mutka, Phys. Rev. 
B 63 172414 (2001).

“triplon” 

/

For quasi-one-dimensional systems, the triplon linewidth takes
the exact universal value 1.20  at low TBk T

Bk Te−∆=
K. Damle and S. Sachdev, Phys. Rev. B 57, 8307 (1998)

This result is in good agreement with observations in CsNiCl3 (M. Kenzelmann, R. A. Cowley, W. J. L. 
Buyers, R. Coldea, M. Enderle, and D. F. McMorrow Phys. Rev. B 66, 174412 (2002)) and Y2NiBaO5 (G. 
Xu, C. Broholm, G. Aeppli, J. F. DiTusa, T.Ito, K. Oka, and H. Takagi, preprint).



Coupled Dimer Antiferromagnet
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close to 1λ Weakly dimerized square lattice

Excitations:  
2 spin waves (magnons)
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TlCuCl3

J. Phys. Soc. Jpn 72, 1026 (2003)



λc = 0.52337(3)
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, 

Phys. Rev. B 65, 014407 (2002)
T=0

λ 1 cλ Pressure in TlCuCl3

Quantum paramagnetNéel state

0ϕ ≠
G

0ϕ =
G

The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 
(1990)) provides a quantitative description of spin excitations in TlCuCl3 across the 
quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, 

Phys. Rev. Lett. 89, 077203 (2002))



λc = 0.52337(3)
M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, 

Phys. Rev. B 65, 014407 (2002)
T=0

λ 1 cλ  δ in 
 cuprates ?

Quantum paramagnet

0ϕ ≠
G

0ϕ =
G

Néel state

Magnetic order as in La2CuO4 Electrons in charge-localized Cooper pairs

The method of bond operators (S. Sachdev and R.N. Bhatt, Phys. Rev. B 41, 9323 
(1990)) provides a quantitative description of spin excitations in TlCuCl3 across the 
quantum phase transition (M. Matsumoto, B. Normand, T.M. Rice, and M. Sigrist, 

Phys. Rev. Lett. 89, 077203 (2002))



LGW theory for quantum criticality
write down an effective action 
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A.V. Chubukov,            
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B. Mott insulators with                           
spin S=1/2 per unit cell:

Berry phases, bond order, and the 
breakdown of the LGW paradigm
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Resonating valence bonds

bond

Different valence bond pairings 
resonate with each other, leading 
to 
Cl

a reso
ass B 

nating valen
paramagnet) 

ce bond , 
( with 0

liquid
Ψ =

P. Fazekas and P.W. Anderson, Phil Mag 30, 23 
(1974); P.W. Anderson 1987

Such states are associated with non-collinear spin 
correlations, Z2 gauge theory, and topological 
order.
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 
(1991); X. G. Wen, Phys. Rev. B 44, 2664 (1991).

Resonance in benzene leads to a 
symmetric configuration of valence 

bonds 
(F. Kekulé, L. Pauling)



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠

S=1/2 spinons,     , are 
confined into a S=1 

triplon, ϕG
*~ z zα αβ βϕ σG G

zα



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠ bond 0; Class BΨ =

S=1/2 spinons,     , are 
confined into a S=1 

triplon, ϕG
*~ z zα αβ βϕ σG G

zα



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠ bond 0; Class BΨ =

S=1/2 spinons,     , are 
confined into a S=1 

triplon, ϕG
*~ z zα αβ βϕ σG G

zα



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠ bond 0; Class BΨ =

S=1/2 spinons,     , are 
confined into a S=1 

triplon, ϕG
*~ z zα αβ βϕ σG G

zα



Excitations of the paramagnet with non-zero spin

bond 0; Class AΨ ≠ bond 0; Class BΨ =

S=1/2 spinons,     , are 
confined into a S=1 

triplon, ϕG
*~ z zα αβ βϕ σG G

zα S=1/2 spinons can 
propagate 

independently across 
the lattice
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Quantum theory for destruction of Neel order
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The area of the triangle is uncertain modulo 4π, and the action 
has to be invariant under 2a aA Aµ µ π→ +

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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Quantum theory for destruction of Neel order
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Partition function on cubic lattice

Modulus of weights in partition function: those of a 
classical ferromagnet at a “temperature” g

Small ground state has Neel order with 0

Large paramagnetic ground state with 0
  Berry phases lead to large cancellations between different 
   time histories  need an effective action for a
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at large gµ



Simplest large g effective action for the Aaµ

( )2

2 2
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This is compact QED in 3 spacetime dimensions with 

                 static charges 1 on 
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µ µ ν ν µ τ
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∑ ∑∏∫
,

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). 

S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).





For large e2 , low energy height configurations are in exact one-to-
one correspondence with nearest-neighbor valence bond pairings of 
the sites square lattice

There is no roughening transition for three dimensional interfaces, which 
are smooth for all couplings

There is a definite average height of the interface
Ground state has bond order.

⇒
⇒

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
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Naïve approach: add bond order parameter to LGW theory “by hand”

First 
order 

transitionbond

     Neel order
0, 0ϕ ≠ Ψ =

G
bond

     Bond order
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gbond

Coexistence
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G
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     Neel order
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G
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     Bond order
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G
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"disordered"
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ϕ =
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G
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G
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Bond order in a frustrated S=1/2 XY magnet

A. W. Sandvik, S. Daul, R. R. P. Singh, and  D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002)

First large scale (> 8000 spins) numerical study of the destruction of Neel order in 
a S=1/2 antiferromagnet with full square lattice symmetry
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g0
S. Sachdev and R. Jalabert, Mod. Phys. Lett. B 4, 1043 (1990). 
S. Sachdev and K. Park, Annals of Physics 298, 58 (2002).

? or
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Theory of a second-order quantum phase transition 
between Neel and bond-ordered phases

*

At the quantum critical point:
 +2  periodicity can be ignored 

(Monopoles interfere destructively and are dangerously irrelevant).
 =1/2  , with ~ , are globally 
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µ µ
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π
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pagating degrees of freedom.

Second-order critical point described by emergent 
fractionalized degrees of freedom (Aµ and zα );

Order parameters (ϕ and Ψbond ) are “composites” and of 
secondary importance

Second-order critical point described by emergent 
fractionalized degrees of freedom (Aµ and zα );

Order parameters (ϕ and Ψbond ) are “composites” and of 
secondary importance

→
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Phase diagram of S=1/2 square lattice antiferromagnet

g
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Neel order

~ 0z zα αβ βϕ σ ≠
G G

(associated with condensation of monopoles in ),A
µ

or

bondBond order  0Ψ ≠

1/ 2 spinons  confined, 
1 triplon excitations

S z
S

α=
=

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004). 
S. Sachdev cond-mat/0401041.



(Quadrupled) 
monopole 
fugacity

Bond order



B. Mott insulators with spin                    
S=1/2 per unit cell:

Berry phases, bond order, and the 
breakdown of the LGW paradigm
Order parameters/broken symmetry

+
Emergent gauge excitations, fractionalization.



C. Technical details

Duality and dangerously irrelevant    
operators



Nature of quantum critical point

Use a sequence of simpler models which can be analyzed by
duality mappings

A. Non-compact QED with scalar matter
B. Compact QED with scalar matter
C. N=1: Compact QED with scalar matter and Berry phases
D. theory
E. Easy plane case for N=2

N → ∞
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A. N=1, non-compact U(1), no Berry phases
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B. N=1, compact U(1), no Berry phases
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Identical critical 
theories !



Nature of quantum critical point

Use a sequence of simpler models which can be analyzed by
duality mappings

A. Non-compact QED with scalar matter
B. Compact QED with scalar matter
C. N=1: Compact QED with scalar matter and Berry phases
D. theory
E. Easy plane case for N=2

N → ∞

Identical critical 
theories !



D.  , compact U(1), Berry phasesN → ∞



E. Easy plane case for N=2



Phase diagram of S=1/2 square lattice antiferromagnet
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Neel order

~ 0z zα αβ βϕ σ ≠
G G

(associated with condensation of monopoles in ),A
µ

or

bondBond order  0Ψ ≠

1/ 2 spinons  confined, 
1 triplon excitations
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=

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004). 
S. Sachdev cond-mat/0401041.


