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Modern phases of quantum matter
Not adiabatically connected 

to independent electron states:
many-particle 

quantum entanglement
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Gapped quantum matter    
          Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Strange metals in higher 
                 temperature superconductors, spin liquids

“Complex entangled” states of 
quantum matter in d spatial dimensions
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|Ψ� ⇒ Ground state of entire system,
ρ = |Ψ��Ψ|

ρA = TrBρ = density matrix of region A

Entanglement entropy SE = −Tr (ρA ln ρA)

B

Entanglement entropy

A
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Band insulators

E

Metal
Metal

carrying
a current

Insulator
Superconductor

k

An even number of electrons per unit cell
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SE = aP − b exp(−cP )
where P is the surface area (perimeter)

of the boundary between A and B.

B

Entanglement entropy of a band insulator

A
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Mott insulator

An odd number of electrons per unit cell
but electrons are localized by Coulomb repulsion;

state has long-range entanglement

Emergent excitations
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H = J

�

�ij�

�Si · �Sj

Mott insulator: Kagome antiferromagnet
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Mott insulator: Kagome antiferromagnet

P. Fazekas and 
P. W. Anderson, 
Philos. Mag. 
30, 23 (1974).
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Mott insulator: Kagome antiferromagnet

Alternative view Pick a reference configuration

D. Rokhsar and
S. Kivelson, 
Phys. Rev. Lett. 
61, 2376 (1988).
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Mott insulator: Kagome antiferromagnet

Alternative view A nearby configuration

D. Rokhsar and
S. Kivelson, 
Phys. Rev. Lett. 
61, 2376 (1988).
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Mott insulator: Kagome antiferromagnet

Alternative view Difference: a closed loop

D. Rokhsar and
S. Kivelson, 
Phys. Rev. Lett. 
61, 2376 (1988).
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Mott insulator: Kagome antiferromagnet

Alternative view Ground state: sum over closed loops

D. Rokhsar and
S. Kivelson, 
Phys. Rev. Lett. 
61, 2376 (1988).
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Quantum “disordered” state with
exponentially decaying spin
correlations.

Spin liquid with topological features
described by a Z2 gauge theory,
or (equivalently)
a doubled Chern-Simons field theory.

ssc

non-collinear Néel state

Mott insulator: Kagome antiferromagnet
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ssc

non-collinear Néel state

Mott insulator: Kagome antiferromagnet

Entangled quantum state:
Z2 spin liquid.

S. Sachdev, Phys. Rev. B 45, 12377 (1992)

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
X.-G. Wen, Phys. Rev. B  44, 2664 (1991)
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Mott insulator: Kagome antiferromagnet

Z2 spin liquid: parton construction

Write spin operators in terms of S = 1/2 ‘partons’
�Si =

1
2b

†
iα�σαβbiβ . The ground state is

|Ψ� = Pnb=1 exp
�
f(i− j)εαβb†iαb

†
jα

�
|0�

Leads to a description of fractionalized ‘spinon’
and ‘vison’ excitations coupled to an emergent
Z2 gauge field.

S. Sachdev, Phys. Rev. B 45, 12377 (1992)
Y. Huh, M. Punk, and S. Sachdev, Phys. Rev. B 84, 094419 (2011)
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B

Entanglement in the Z2 spin liquid

A
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B

Entanglement in the Z2 spin liquid

A

Sum over closed loops: only an even number of 
links cross the boundary between A and B

Wednesday, June 13, 2012



SE = aP − ln(2)
where P is the surface area (perimeter)

of the boundary between A and B.

B

M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006);
Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B  84, 075128 (2011).

Entanglement in the Z2 spin liquid

A
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A

B

M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006);
Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B  84, 075128 (2011).

B

Entanglement in the Z2 spin liquid

SE = aP − ln(2)
where P is the surface area (perimeter)

of the boundary between A and B.

(4)
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B

M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006);
Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B  84, 075128 (2011).

Entanglement in the Z2 spin liquid

A

SE = aP − ln(2)
where P is the surface area (perimeter)

of the boundary between A and B.
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Simeng Yan, D. A. Huse, 
and S. R. White, 
Science 332, 1173 (2011).

Mott insulator: Kagome antiferromagnet

S. Depenbrock, 
I. P. McCulloch, 
and 
U. Schollwoeck, 
arXiv:1205.4858

Hong-Chen Jiang, 
Z. Wang, 
and L. Balents, 
arXiv:1205.4289

Strong numerical evidence 
for a Z2 spin liquid
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Mott insulator: Kagome antiferromagnet

Evidence for spinons
Young Lee, 

APS meeting, March 2012
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Gapped quantum matter    
          Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Strange metals in higher 
                 temperature superconductors, spin liquids

“Complex entangled” states of 
quantum matter in d spatial dimensions
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Spinning electrons localized on a square lattice

H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

Examine ground state as a function of λ

S=1/2
spins
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λλc

A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett. 72, 2777 (1994).

Quantum critical point described by  
a CFT3 (O(3) Wilson-Fisher)

=
1√
2

����↑↓
�
−

��� ↓↑
��
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• Entanglement entropy obeys SE = aP − γ, where
γ is a shape-dependent universal number associated
with the CFT3.

Entanglement at the quantum critical point

B

M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009).
H. Casini, M. Huerta, and R. Myers, JHEP 1105:036, (2011)

I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598

A
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point

M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
G. Vidal, Phys. Rev. Lett. 99, 220405 (2007)

F.  Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)

d
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depth of
entanglement

D-dimensional
spaceA

d

Tensor network representation of entanglement
  at quantum critical point

Brian Swingle, arXiv:0905.1317
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depth of
entanglement

D-dimensional
spaceA

Most links describe 
entanglement within A

d

Tensor network representation of entanglement
  at quantum critical point

Brian Swingle, arXiv:0905.1317
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depth of
entanglement

D-dimensional
spaceA

Links overestimate 
entanglement 

between A and B

d

Tensor network representation of entanglement
  at quantum critical point

Brian Swingle, arXiv:0905.1317
Wednesday, June 13, 2012



depth of
entanglement

D-dimensional
spaceA

Entanglement entropy = 
Number of links on 

optimal surface 
intersecting minimal 

number of links.

d

Tensor network representation of entanglement
  at quantum critical point

Brian Swingle, arXiv:0905.1317
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Key idea: ⇒ Implement r as an extra dimen-
sion, and map to a local theory in d + 2 spacetime
dimensions.

r

Holography
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For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion
(i = 1 . . . d)

xi → ζxi , t → ζt , ds → ds

This gives the unique metric

ds2 =
1

r2
�
−dt2 + dr2 + dx2

i

�

Reparametrization invariance in r has been used
to the prefactor of dx2

i equal to 1/r2. This fixes
r → ζr under the scale transformation. This is
the metric of the space AdSd+2.
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zr

AdS4 R2,1

Minkowski
CFT3

AdS/CFT correspondence
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AdS4 R2,1

Minkowski
CFT3

AdS/CFT correspondence

A
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zr

AdS4 R2,1

Minkowski
CFT3

AdS/CFT correspondence

A

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

Associate entanglement entropy with an observer in the enclosed 
spacetime region, who cannot observe “outside” : i.e. the region is 
surrounded by an imaginary horizon.
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zr

AdS4 R2,1

Minkowski
CFT3

AdS/CFT correspondence

A

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

The entropy of this region is bounded by its surface area 
(Bekenstein-Hawking-’t Hooft-Susskind)
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zr

AdS4 R2,1

Minkowski
CFT3

AdS/CFT correspondence

A
Minimal 

surface area 
measures

entanglement
entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A

Entanglement entropy = 
Number of links on 

optimal surface 
intersecting minimal 

number of links.

d

Brian Swingle, arXiv:0905.1317
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A
d

Brian Swingle, arXiv:0905.1317

Entanglement entropy = 
Number of links on 

optimal surface 
intersecting minimal 

number of links.
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A
d

Emergent direction
of AdSd+2 Brian Swingle, arXiv:0905.1317

Entanglement entropy = 
Number of links on 

optimal surface 
intersecting minimal 

number of links.
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zr

AdS4 R2,1

Minkowski
CFT3

AdS/CFT correspondence

A

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

• Computation of minimal surface area yields
SE = aP − γ,

where γ is a shape-dependent universal number.
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P

AdS3

zr

CFT2

AdS/CFT correspondence

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

R1,1

Minkowski

A

• Computation of minimal surface area, or direct com-
putation in CFT2, yield SE = (c/6) lnP , where c is
the central charge.
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Gapped quantum matter    
          Spin liquids, quantum Hall states

Conformal quantum matter
        Graphene, ultracold atoms, antiferromagnets

Compressible quantum matter
         Graphene, strange metals in high 
                 temperature superconductors, spin liquids

“Complex entangled” states of 
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The Fermi liquid

A
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• Area enclosed by the Fermi surface A = Q, the
fermion density

• Particle and hole of excitations near the Fermi sur-
face with energy ω ∼ |q|.

• The phase space density of fermions is effectively one-
dimensional, so the entropy density S ∼ T deff with
deff = 1.

The Fermi liquid

A
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Logarithmic violation of “area law”: SE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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To obtain a compressible state which is not a Fermi liquid,
take a Fermi surface in d = 2, and couple it to any gapless
scalar field, φ, which has low energy excitations near q = 0.
The field φ could represent

• ferromagnetic order

• breaking of point-group symmetry (Ising-nematic or-
der)

• breaking of time-reversal symmetry

• circulating currents

• transverse component of an Abelian or non-Abelian
gauge field.

• . . .

Strange metals
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A

• Area enclosed by the Fermi surface A = Q, the
fermion density

• Particle and hole of excitations near the Fermi sur-
face with energy ω ∼ |q|z; three-loop computation
shows z = 3/2.

• The phase space density of fermions is effectively one-
dimensional, so the entropy density S ∼ T deff/z with
deff = 1.

Strange metals

Wednesday, June 13, 2012



A

• Area enclosed by the Fermi surface A = Q, the
fermion density

• Particle and hole of excitations near the Fermi sur-
face with energy ω ∼ |q|z; three-loop computation
shows z = 3/2.

• The phase space density of fermions is effectively one-
dimensional, so the entropy density S ∼ T deff/z with
deff = 1. M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

→| q
|←

Strange metals
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B

A

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)

Entanglement entropy of Fermi surfaces

Logarithmic violation of “area law”: SE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.
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r

Holography
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Consider the metric which transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1 for
“relativistic” quantum critical points).

θ is the violation of hyperscaling exponent.
The most general choice of such a metric is

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

We have used reparametrization invariance in r to choose so
that it scales as r → ζ(d−θ)/dr.
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ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

• The thermal entropy density scales as

S ∼ T (d−θ)/z.

The third law of thermodynamics requires θ < d.

• The entanglement entropy, SE , of an entangling region with
boundary surface ‘area’ P scales as

SE ∼






P , for θ < d− 1
P lnP , for θ = d− 1
P θ/(d−1) , for θ > d− 1

All local quantum field theories obey the “area law” (upto log
violations) and so θ ≤ d− 1.

• The null energy condition implies z ≥ 1 +
θ

d
.
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• The value of θ is fixed by requiring that the thermal
entropy density S ∼ T 1/z for general d.
Conjecture: this metric then describes a compressible
state with a hidden Fermi surface of quarks coupled to
gauge fields

• The null energy condition yields the inequality z ≥
1 + θ/d. For d = 2 and θ = 1 this yields z ≥ 3/2. The
field theory analysis gave z = 3/2 to three loops !

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

Holography of strange metals

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
Wednesday, June 13, 2012



• The value of θ is fixed by requiring that the thermal
entropy density S ∼ T 1/z for general d.
Conjecture: this metric then describes a compressible
state with a hidden Fermi surface of quarks coupled to
gauge fields

• The null energy condition yields the inequality z ≥
1 + θ/d. For d = 2 and θ = 1 this yields z ≥ 3/2. The
field theory analysis gave z = 3/2 to three loops !

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Holography of strange metals

Wednesday, June 13, 2012



• The entanglement entropy exhibits logarithmic viola-
tion of the area law only for this value of θ !!

• The logarithmic violation is of the form P lnP , where
P is the perimeter of the entangling region. This form
is independent of the shape of the entangling region,
just as is expected for a (hidden) Fermi surface !!!

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 
L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Holography of strange metals
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ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

• This metric can be realized in a Maxwell-Einstein-dilaton theory,
which may be viewed as a “bosonization” of the non-Fermi liquid
state. The entanglement entropy of this theory has log-violation of
the area law with

SE = ΞQ(d−1)/dP lnP.

where P is surface area of the entangling region, and Ξ is a dimen-
sionless constant which is independent of all UV details, of Q, and of
any property of the entangling region.
Note Q(d−1)/d ∼ kd−1

F via the Luttinger relation, and then SE is just
as expected for a Fermi surface !!!!

Holography of strange metals
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Gauss Law and the “attractor” mechanism
⇔ Luttinger theorem on the boundary

Hidden 
Fermi 

surfaces
of “quarks”
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Conclusions

Gapped quantum matter

 Numerical and experimental observation of a spin liquid on 
the kagome lattice. Likely a Z2 spin liquid.
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Conclusions

Conformal quantum matter

 Numerical and experimental observation in coupled-dimer 
antiferromagnets, and at the superfluid-insulator transition of 
bosons in optical lattices.
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Conclusions

Compressible quantum matter

 Field theory of a non-Fermi liquid obtained by coupling a 
Fermi surface to a gapless scalar field with low energy 
excitations near zero wavevector. Obtained promising 
holographic dual of this theory.
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Conclusions

Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

After fixing θ = d−1 to obtain thermal entropy density S ∼ T 1/z, we found

• Log violation of the area law in entanglement entropy, SE .

• Leading-log SE independent of shape of entangling region.

• The d = 2 bound z ≥ 3/2, compared to z = 3/2 in three-loop field
theory.

• Evidence for Luttinger theorem in prefactor of SE .
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Thank you !
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