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T Quantum-critical

Why study quantum phase transitions ?

ggc
• Theory for a quantum system with strong correlations:          
describe phases on either side of gc by expanding in                            
deviation from the quantum critical point.                    
• Critical point is a novel state of matter without 
quasiparticle excitations               

• Critical excitations control dynamics in the wide 
quantum-critical region at non-zero temperatures.                      

~ z
cg g ν∆ −

Important property of ground state at g=gc :                              
temporal and spatial scale invariance;                                  

characteristic energy scale at other values of g: 
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I. Quantum Ising Chain



I. Quantum Ising Chain
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Experimental realization



Weakly-coupled qubits
Ground state:
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Coupling between qubits creates “flipped-spin” quasiparticle states at momentum p

Entire spectrum can be constructed out of multi-quasiparticle states
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Dynamic Structure Factor :
          Cross-section to flip a   to a (or vice versa)
           while transferring energy

 
  and momentum 
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Structure holds to all orders in 1/g

At 0,  collisions between quasiparticles broaden pole to 
a Lorentzian of width 1 where the  
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S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997)



Ground states:
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Dynamic Structure Factor :
          Cross-section to flip a   to a (or vice versa)
           while transferring energy
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Entangled states at g of order unity

ggc

“Flipped-spin” 
Quasiparticle

weight Z

( )1/ 4~ cZ g g−

A.V. Chubukov, S. Sachdev, and J.Ye, 
Phys. Rev. B 49, 11919 (1994) 

ggc

Ferromagnetic 
moment N0

( )1/8
0 ~ cN g g−

P. Pfeuty Annals of Physics, 57, 79 (1970)
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Excitation 
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Dynamic Structure Factor :
          Cross-section to flip a   to a (or vice versa)
           while transferring energy
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Quasiclassical
dynamics
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II. The superfluid-Mott insulator 
quantum phase transition 



Bose condensation
Velocity distribution function of ultracold 87Rb atoms

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman
and E. A. Cornell, Science 269, 198 (1995)



Apply a periodic potential (standing laser beams) 
to trapped ultracold bosons (87Rb)



Momentum distribution function of bosons

Bragg reflections of condensate at reciprocal lattice vectors

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



Superfluid-insulator quantum phase transition at T=0

V0=0Er V0=7Er V0=10Er

V0=13Er V0=14Er V0=16Er V0=20Er

V0=3Er



Bosons at filling fraction f = 1
Weak interactions: 

superfluidity

Strong interactions: 
Mott insulator which 
preserves all lattice 

symmetries

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



Bosons at filling fraction f = 1

0Ψ ≠

Weak interactions: superfluidity
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Bosons at filling fraction f = 1

0Ψ =

Strong interactions: insulator



Bosons at filling fraction f = 1/2
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Weak interactions: superfluidity

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) 
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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Superfluid-insulator transition of bosons at 
generic filling fraction f

The transition is characterized by multiple distinct order 
parameters (boson condensate, VBS/CDW order)

Traditional (Landau-Ginzburg-Wilson) view:
Such a transition is first order, and there are no 
precursor fluctuations of the order of the insulator in 
the superfluid.



Superfluid-insulator transition of bosons at 
generic filling fraction f

The transition is characterized by multiple distinct order 
parameters (boson condensate, VBS/CDW order)

Traditional (Landau-Ginzburg-Wilson) view:
Such a transition is first order, and there are no 
precursor fluctuations of the order of the insulator in 
the superfluid.

Recent theories:
Quantum interference effects can render such 
transitions second order, and the superfluid does 
contain precursor VBS/CDW fluctuations.

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004). 



III. The cuprate superconductors

Superfluids proximate to finite doping 
Mott insulators with VBS order ?
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La2CuO4

Mott insulator: square lattice antiferromagnet
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ij

ij SSJH ⋅= ∑
><



La2-δSrδCuO4

Superfluid: condensate of paired holes

0S =



Many experiments on the cuprate
superconductors show:

• Tendency to produce modulations in spin singlet 
observables at wavevectors (2π/a)(1/4,0) and 
(2π/a)(0,1/4).

• Proximity to a Mott insulator at hole density δ =1/8 
with long-range charge modulations at wavevectors
(2π/a)(1/4,0) and (2π/a)(0,1/4).



The cuprate superconductor Ca2-xNaxCuO2Cl2

T. Hanaguri, C. Lupien, Y. Kohsaka, D.-H. Lee, M. Azuma, M. Takano,           
H. Takagi, and J. C. Davis, Nature 430, 1001 (2004).
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Many experiments on the cuprate
superconductors show:

• Tendency to produce modulations in spin singlet 
observables at wavevectors (2π/a)(1/4,0) and 
(2π/a)(0,1/4).

• Proximity to a Mott insulator at hole density δ =1/8 
with long-range charge modulations at wavevectors
(2π/a)(1/4,0) and (2π/a)(0,1/4).

Superfluids proximate to finite doping 
Mott insulators with VBS order ?



Experiments on the cuprate superconductors 
also show strong vortex fluctuations above Tc

Measurements of Nernst
effect are well explained 
by a model of a liquid of 
vortices and anti-vortices

N. P. Ong, Y. Wang, S. Ono, Y. 
Ando, and S. Uchida, Annalen
der Physik 13, 9 (2004).

Y. Wang, S. Ono, Y. Onose, G. 
Gu, Y. Ando, Y. Tokura, S. 
Uchida, and N. P. Ong, Science
299, 86 (2003).



Main claims:

• There are precursor fluctuations of VBS 
order in the superfluid.

• There fluctuations are intimately tied to 
the quantum theory of vortices in the  
superfluid



IV. Vortices in the superfluid

Magnus forces, duality, and point 
vortices as dual “electric” charges



Excitations of the superfluid: Vortices

Central question:
In two dimensions, we can view the vortices as 

point particle excitations of the superfluid. What 
is the quantum mechanics of these “particles” ?



In ordinary fluids, vortices experience the Magnus Force

FM

( ) ( ) ( )mass density of air velocity of ball circulationMF = i i





Dual picture:
The vortex is a quantum particle with dual “electric” 

charge n, moving in a dual “magnetic” field of 
strength = h×(number density of Bose particles)



V. Vortices in superfluids near the 
superfluid-insulator quantum phase transition 

The “quantum order” of the 
superconducting state: 

evidence for vortex flavors



A3

A1+A2+A3+A4= 2π f
where f is the boson filling fraction.

A2A4

A1



Bosons at filling fraction f = 1

• At f=1, the “magnetic” flux per unit cell is 2π, 
and the vortex does not pick up any phase from 
the boson density.

• The effective dual “magnetic” field acting on the 
vortex is zero, and the corresponding component 
of the Magnus force vanishes.



Bosons at rational filling fraction f=p/q

Quantum mechanics of the vortex “particle” in a 
periodic potential with f flux quanta per unit cell

Space group symmetries of Hofstadter Hamiltonian:

,  :  Translations by a lattice spacing in the ,  directions

 :  Rotation by 90 degrees.
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The low energy vortex states must form a 
representation of this algebra



At filling = / ,  there are  species 
of vortices,  (with =1 ),  
associated with  degenerate minima in
the vortex spectrum. These vortices realize
the smallest, -dimensional, representation of 
the 

f p q q
q

q

q

ϕ …

magnetic algebra.

Hofstadter spectrum of the quantum vortex “particle”  
with field operator ϕ

Vortices in a superfluid near a Mott insulator at filling f=p/q
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Vortices in a superfluid near a Mott insulator at filling f=p/q

   The   vortices characterize  
superconducting and VBS/CDW orders
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Vortices in a superfluid near a Mott insulator at filling f=p/q

 The excitations of the superfluid are described by the 
quantum mechanics of  flavors of low energy vortices 
moving in zero dual "magnetic" field.

  The orientation of the vortex in flavor space imp

q
i

i lies a 
particular configuration of VBS order in its vicinity. 



Spatial structure of insulators for q=2 (f=1/2)

Mott insulators obtained by “condensing” vortices

1
2
(         +         )=



Spatial structure of insulators for q=4 (f=1/4 or 3/4)
Field theory with projective symmetry

unit cells; 

,  ,  ,  

all integers

a b
q q ab

a b q

×



Vortices in a superfluid near a Mott insulator at filling f=p/q

 The excitations of the superfluid are described by the 
quantum mechanics of  flavors of low energy vortices 
moving in zero dual "magnetic" field.

  The orientation of the vortex in flavor space imp
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Vortices in a superfluid near a Mott insulator at filling f=p/q

 The excitations of the superfluid are described by the 
quantum mechanics of  flavors of low energy vortices 
moving in zero dual "magnetic" field.

  The orientation of the vortex in flavor space imp

q
i

i lies a 
particular configuration of VBS order in its vicinity. 

  Any pinned vortex must pick an orientation in flavor 
space: this induces a halo of VBS order in its vicinity
i



Vortex-induced LDOS of Bi2Sr2CaCu2O8+δ integrated 
from 1meV to 12meV at 4K

100Å

b
7 pA

0 pA

Vortices have halos 
with LDOS 
modulations at a 
period ≈ 4 lattice 
spacings

Prediction of VBS order 
near vortices:  K. Park 
and S. Sachdev, Phys. 

Rev. B 64, 184510 
(2001).

J. Hoffman, E. W. Hudson, K. M. Lang,                     
V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, 
and J. C. Davis, Science 295, 466 (2002).



Measuring the inertial mass of a vortex



Measuring the inertial mass of a vortex

p

 estimates for the BSCCO experiment:

      Inertial vortex mass 
      Vortex magnetoplasmon frequency 

Future experiments can directly d
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 looking for resonant absorption at this frequency.

Vortex oscillations can also modify the electronic density of states.



Superfluids near Mott insulators

• Vortices with flux h/(2e) come in multiple (usually q) 
“flavors”

• The lattice space group acts in a projective 
representation on the vortex flavor space.

• These flavor quantum numbers provide a distinction 
between superfluids: they constitute a “quantum order”

• Any pinned vortex must chose an orientation in flavor 
space. This necessarily leads to modulations in the local 
density of states over the spatial region where the vortex 
executes its quantum zero point motion.
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The Mott insulator has average Cooper pair density, f = p/q
per site, while the density of the superfluid is close (but need 

not be identical) to this value


