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atoms - bosons

Superfluid-insulator transition
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Insulator (the vacuum) at large U
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Excitations of the insulator:
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condensate Dilute Boltzmann/Landau gas 
of particle and holes
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Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “perfect fluid”
with shortest possible
relaxation time, τR

τR � �
kBT
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Quantum critical transport 
Transport co-oefficients not determined

by collision rate, but by
universal constants of nature

Electrical conductivity

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

σ =
e2

h
× [Universal constant O(1) ]
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Quantum critical transport 

P. Kovtun, D. T. Son, and A. Starinets, Phys. Rev. Lett.  94, 11601 (2005)

, 8714 (1997).

Transport co-oefficients not determined
by collision rate, but by

universal constants of nature

Momentum transport
η

s
≡

viscosity
entropy density

=
�

kB
× [Universal constant O(1) ]
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Quantum critical transport 

1/T

R2

Euclidean field theory:
Compute current correlations on
R2 × S1 with circumference 1/T
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Quantum critical transport 
Euclidean field theory: Compute current correlations on R2 × S1

with circumference 1/T

2πT

4πT

−2πT

Complex ω plane

Direct 1/N or � expansions for correlators at the Eu-
clidean frequencies ωn = 2πnTi ( n integer)
or in the conformal “collisionless” regime, �ω � kBT .
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Density correlations in CFTs at T >0 

Two-point density correlator, χ(k, ω)

Kubo formula for conductivity σ(ω) = lim
k→0

−iω

k2
χ(k, ω)

For all CFT3s, at �ω � kBT

χ(k,ω) =
4e2

h
K

k2

√
v2k2 − ω2

; σ(ω) =
4e2

h
K

where K is a universal number characterizing the CFT3, and v is
the velocity of “light”.
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Quantum critical transport 
Euclidean field theory: Compute current correlations on R2 × S1

with circumference 1/T

2πT

4πT

−2πT

Complex ω plane

Strong coupling problem:
Correlators at �ω � kBT , along the real axis,
in the collision-dominated hydrodynamic regime.
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Density correlations in CFTs at T >0 

Two-point density correlator, χ(k, ω)

Kubo formula for conductivity σ(ω) = lim
k→0

−iω

k2
χ(k, ω)

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

For all CFT3s, at �ω � kBT , we have the Einstein relation

χ(k,ω) = e2χc
Dk2

Dk2 − iω
; σ(ω) = e2Dχc =

e2

h
Θ1Θ2

where the compressibility, χc, and the diffusion constant D
obey

χ =
kBT

(hv)2
Θ1 ; D =

hv2

kBT
Θ2

with Θ1 and Θ2 universal numbers characteristic of the CFT3
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Density correlations in CFTs at T >0 

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

In CFT3s collisions are “phase” randomizing, and lead to
relaxation to local thermodynamic equilibrium. So there
is a crossover from collisionless behavior for �ω � kBT , to
hydrodynamic behavior for �ω � kBT .

σ(ω) =






e2

h
K , �ω � kBT

e2

h
Θ1Θ2 ≡ σQ , �ω � kBT

and in general we expect K �= Θ1Θ2 (verified for Wilson-
Fisher fixed point).
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SU(N) SYM3 with N = 8 supersymmetry

• Has a single dimensionful coupling constant, e0, which flows
to a strong-coupling fixed point e0 = e∗0 in the infrared.

• The CFT3 describing this fixed point resembles “critical spin
liquid” theories.

• This CFT3 is the low energy limit of string theory on an
M2 brane. The AdS/CFT correspondence provides a dual
description using 11-dimensional supergravity on AdS4×S7.

• The CFT3 has a global SO(8) R symmetry, and correlators
of the SO(8) charge density can be computed exactly in the
large N limit, even at T > 0.
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SU(N) SYM3 with N = 8 supersymmetry

• The SO(8) charge correlators of the CFT3 are given by the

usual AdS/CFT prescription applied to the following gauge

theory on AdS4:

S = − 1

4g2
4D

�
d4x
√
−ggMAgNBF a

MNF a
AB

where a = 1 . . . 28 labels the generators of SO(8). Note that

in large N theory, this looks like 28 copies of an Abelian gauge

theory.
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P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) 

Imχ(k, ω)/k2 Im
K√

k2 − ω2

Collisionless to hydrodynamic crossover of SYM3
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P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) 

Imχ(k, ω)/k2

Im
Dχc

Dk2 − iω

Collisionless to hydrodynamic crossover of SYM3
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Universal constants of SYM3

χc =
kBT

(hv)2
Θ1

D =
hv2

kBT
Θ2

K =
√

2N3/2

3

Θ1 =
8π2
√

2N3/2

9

Θ2 =
3

8π2

P. Kovtun, C. Herzog, S. Sachdev, and D.T. Son, Phys. Rev. D 75, 085020 (2007) 
C. Herzog,  JHEP 0212, 026 (2002)

σ(ω) =






K , �ω � kBT

Θ1Θ2 , �ω � kBT
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Electromagnetic self-duality

• Unexpected result, K = Θ1Θ2, and σ(ω) is frequency
independent .

• This is traced to a four -dimensional electromagnetic

self-duality of the theory on AdS4. In the large N
limit, the SO(8) currents decouple into 28 U(1) cur-

rents with a Maxwell action for the U(1) gauge fields

on AdS4.

• The conductivity takes the self-dual value σ(ω) =

1/g24D.
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• All these special features are generic to theories with
a Maxwell-Einstein gravity dual. They are not ex-
pected to survive stringy 1/N2 corrections

• Unexpected result, K = Θ1Θ2, and σ(ω) is frequency
independent .

• This is traced to a four -dimensional electromagnetic

self-duality of the theory on AdS4. In the large N
limit, the SO(8) currents decouple into 28 U(1) cur-

rents with a Maxwell action for the U(1) gauge fields

on AdS4.

• The conductivity takes the self-dual value σ(ω) =

1/g24D.

Electromagnetic self-duality
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Lessons from AdS/CFT

Strongly interacting quantum-critical systems are nearly
“perfect fluids”. The AdS description of such perfect fluids
suggests that

• All continuous global symmetries are (approximately)
self dual.

• We can define a conductivity σ(ω) for each global
symmetry: σ(ω) is (nearly) ω independent

• The value of σ(ω) is close
to the self dual value
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Lessons from AdS/CFT

Strongly interacting quantum-critical systems are nearly
“perfect fluids”. The AdS description of such perfect fluids
suggests that

• All continuous global symmetries are (approximately)
self dual.

• We can define a conductivity σ(ω) for each global
symmetry: σ(ω) is (nearly) ω independent

• The value of σ(ω) is close
to the self dual value

These features are found in experimental
and numerical studies
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D. B. Haviland, Y. Liu, and A. M. Goldman, 
Phys. Rev. Lett. 62, 2180 (1989) 

Resistivity of Bi films

M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990)

Conductivity σ

σSuperconductor(T → 0) = ∞
σInsulator(T → 0) = 0

σQuantum critical point(T → 0) ≈ 4e2

h

• Self-dual value = 4e2/h
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Quantum critical transport in graphene

σ(ω) =






e2

h

�
π

2
+ O

�
1

ln(Λ/ω)

��
, �ω � kBT

e2

hα2(T )

�
0.760 + O

�
1

| ln(α(T ))|

��
, �ω � kBTα2(T )

η

s
=

�
kBα2(T )

× 0.130

where the “fine structure constant” is

α(T ) =
α

1 + (α/4) ln(Λ/T )
T→0
∼

4
ln(Λ/T )

L. Fritz, J. Schmalian, M. Müller and S. Sachdev, Physical Review B 78, 085416 (2008)        
M. Müller, J. Schmalian, and L. Fritz, Physical Review Letters 103, 025301 (2009) 
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t 

H0 = −
�

i<j

tijc
†
iαciα ≡

�

k

εkc
†
kαckα

• Begin with free electrons.

k

εk
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t 

• Add local antiferromagnetism with order pa-
rameter �ϕ

Hsdw = −
�

i

�ϕ(ri)(−1)ic†iα�σαβciβ

H0 = −
�

i<j

tijc
†
iαciα ≡

�

k

εkc
†
kαckα

• Begin with free electrons.
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t 

• Add local antiferromagnetism with order pa-
rameter �ϕ

Hsdw = −
�

i

�ϕ(ri)(−1)ic†iα�σαβciβ

H0 = −
�

i<j

tijc
†
iαciα ≡

�

k

εkc
†
kαckα

• Begin with free electrons.

• The phase with ��ϕ� �= 0 is an insulator with a
gap between conduction and valence bands.

k

εk
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Z. Y. Meng et al., Nature 464, 847 (2010).
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Rz(x, τ)
��Néel

�

Perform SU(2) rotation Rz on filled band of electrons:

�
c↑
c↓

�
=

�
z↑ −z∗↓
z↓ z∗↑

��
ψ+

ψ−

�

ψ± states filled

ψ± states empty

k

εk

Friday, June 11, 2010



�
c↑
c↓

�
=

�
z↑ −z∗↓
z↓ z∗↑

� �
ψ+

ψ−

�
Quantum “disordering” magnetic order
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�
c↑
c↓

�
=

�
z↑ −z∗↓
z↓ z∗↑

� �
ψ+

ψ−

�
Quantum “disordering” magnetic order

SU(2)spin
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�
=
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z↑ −z∗↓
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ψ+

ψ−

�
Quantum “disordering” magnetic order

U(1)charge
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�
c↑
c↓

�
=

�
z↑ −z∗↓
z↓ z∗↑

� �
ψ+

ψ−

�
Quantum “disordering” magnetic order

U × U−1

SU(2)s;gauge

S. Sachdev, M. A. Metlitski, Y. Qi, and S. Sachdev  Phys. Rev. B 80, 155129 (2009)
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�
c↑
c↓

�
=

�
z↑ −z∗↓
z↓ z∗↑

� �
ψ+

ψ−

�
Quantum “disordering” magnetic order

The Hubbard model can be written

exactly as a lattice gauge theory with a

SU(2)s;g×SU(2)spin×U(1)charge

invariance.

The SU(2)s;g is a gauge invariance,

while SU(2)spin×U(1)charge is a global symmetry
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Matter context of SU(2)s;g×SU(2)spin×U(1)charge
theory

• Fundamental fermions ψ transform-
ing as (2,1, 1),

• Fundamental scalar z transforming
as (2̄,2, 0), connecting local to global
Néel order,

• Adjoint scalar �N(ri) = ψ†
i�σψi trans-

forming as (3,1, 0), measuring local
Néel order.
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�z� �= 0 , �N� = 0

Phase diagram

�z� �= 0 , �N� �= 0

�z� = 0 , �N� �= 0�z� = 0 , �N� = 0
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Phase diagram
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k

εk
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�z� = 0 , �N� �= 0�z� = 0 , �N� = 0
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�z� �= 0 , �N� = 0

Phase diagram

�z� �= 0 , �N� �= 0

k

εk

Semi-metal
Insulator 
with Neel 

order

t 

SU(2) QCD with Nf = 4 mass-
less Dirac quarks

L =
1

g2
F 2
µν + ψγµ(∂µ − iAµ)ψ

Could describe a CFT3 like SYM,
but could also be unstable to con-
finement.

�z� = 0 , �N� �= 0�z� = 0 , �N� = 0
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Spin liquid:
CFT of SU(2) QCD
with Nf =4 massless 

Dirac quarks
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�z� �= 0 , �N� = 0

Phase diagram

�z� �= 0 , �N� �= 0

k

εk

Semi-metal
Insulator 
with Neel 

order

t 

�z� = 0 , �N� �= 0�z� = 0 , �N� = 0

Spin liquid:
CFT of SU(2) QCD
with Nf =4 massless 

Dirac quarks

• SU(2) is Higgsed down to

U(1).

• All matter fields are gapped.

• U(1) monopoles drive Polyakov

confinement

• Spectral flow in filled fermion

bands leads to Berry phases

of monopoles, endowing them

with crystal momentum.

• Confining state has valence

bond solid (VBS) order
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Phase diagram

�z� �= 0 , �N� �= 0

k

εk

Semi-metal
Insulator 
with Neel 

order

t 

�z� = 0 , �N� �= 0�z� = 0 , �N� = 0

Confining insulator with 
VBS (kekule) order

Spin liquid:
CFT of SU(2) QCD
with Nf =4 massless 

Dirac quarks

t 
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�z� �= 0 , �N� = 0

Phase diagram

�z� �= 0 , �N� �= 0

k

εk

Semi-metal
Insulator 
with Neel 

order

t 

M
�z� = 0 , �N� �= 0�z� = 0 , �N� = 0

Confining insulator with 
VBS (kekule) order

t 

Spin liquid:
CFT of SU(2) QCD
with Nf =4 massless 

Dirac quarks

Multicritical point M :
SU(2) QCD with Nf = 4 mass-
less Dirac quarks, 4 real funda-
mental scalars, and 3 real adjoint
scalars.

L =
1

g2
F 2
µν + ψγµ(∂µ − iAµ)ψ

+|(∂µ−iAµ)z|2+((∂µ−iAµ)φ)
2

Could describe a CFT3 like SYM,
but could also be unstable to con-
finement.
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