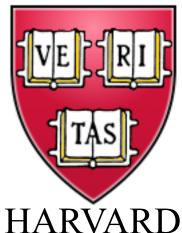
Strange metals and black holes

Distinguished Lecture Texas A&M University, College Station, November 9, 2017

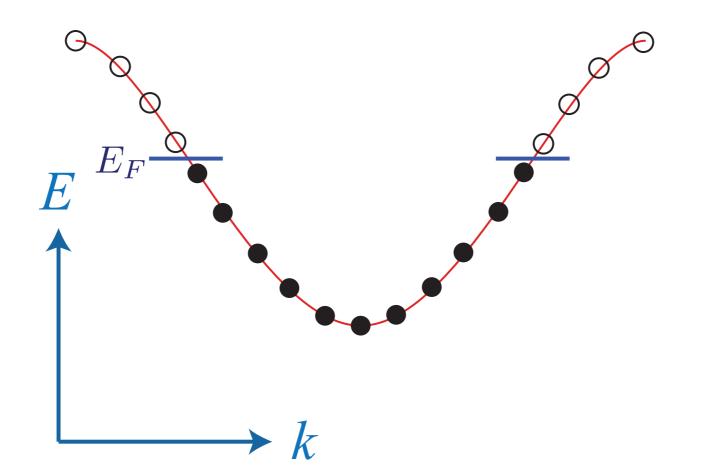
Subir Sachdev

Talk online: sachdev.physics.harvard.edu

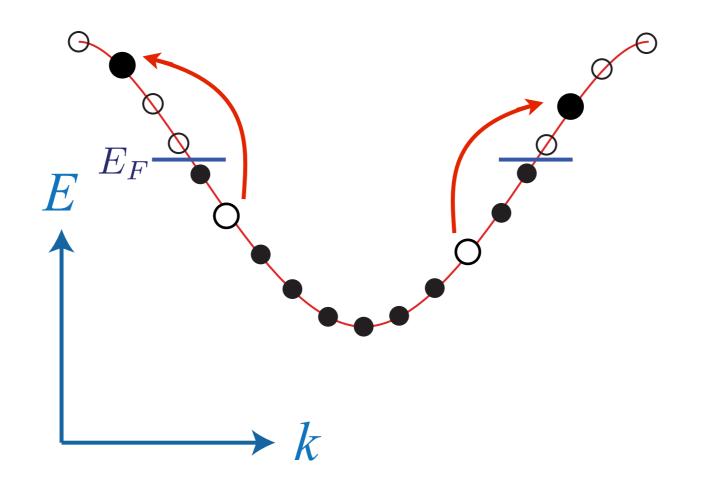
PHYSICS



Theory of (ordinary) metals

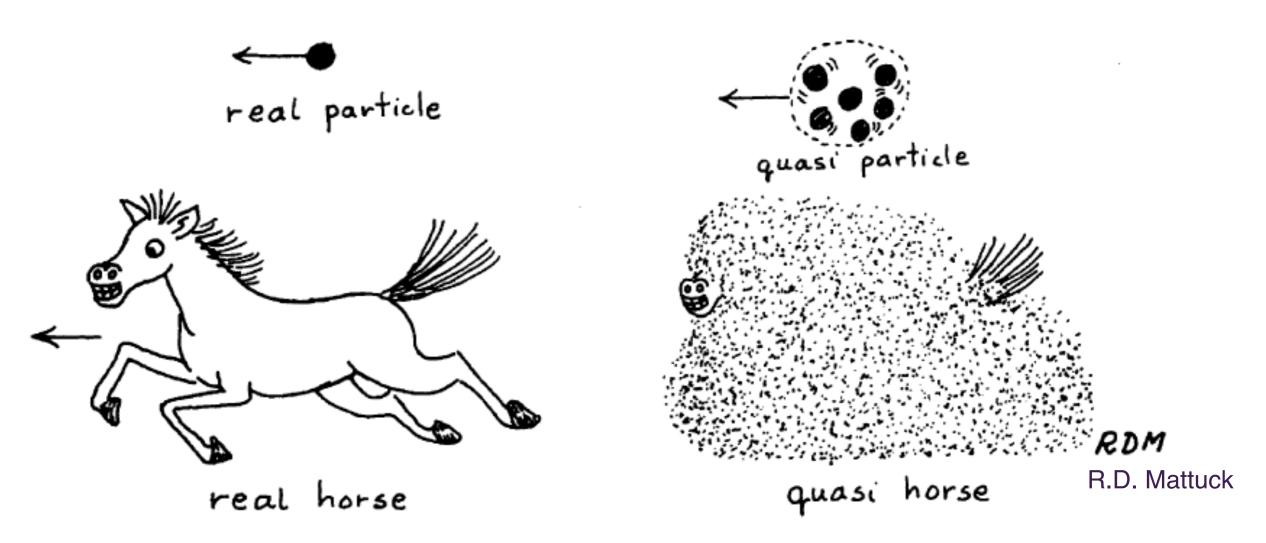


Theory of (ordinary) metals



Quasiparticles:

A quasiparticle is an "excited lump" in the manyelectron state which responds just like an ordinary particle.



Quantum matter with quasiparticles:

The quasiparticle idea is the key reason for the many successes of quantum condensed matter physics:

- Fermi liquid theory of metals, insulators, semiconductors
- Theory of superconductivity (pairing of quasiparticles)
- Theory of disordered metals and insulators (diffusion and localization of quasiparticles)
- Theory of metals in one dimension (collective modes as quasiparticles)
- Theory of the fractional quantum Hall effect (quasiparticles which are `fractions' of an electron)

Quantum matter without quasiparticles

200 150 SM г(К DW T_c 100 AF 50 SC + DW SC 0.05 0.20 0.25 0.10 0.15 0 p (hole/Cu)

Entangled electrons lead to "strange" temperature dependence of resistivity and other properties

Strange metal

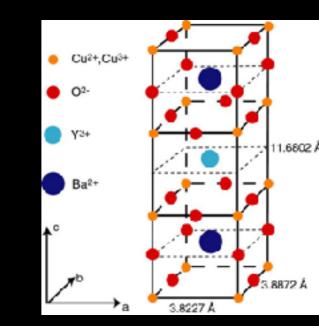
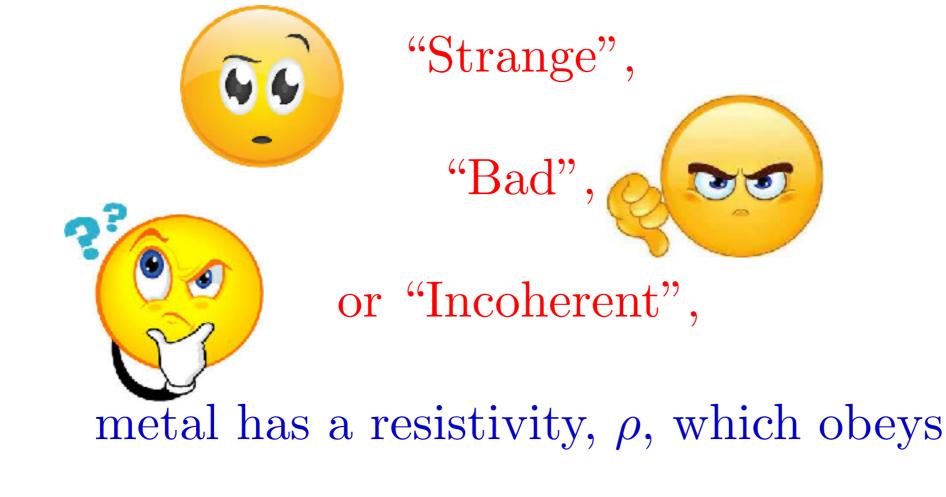


Figure: K. Fujita and J. C. Seamus Davis

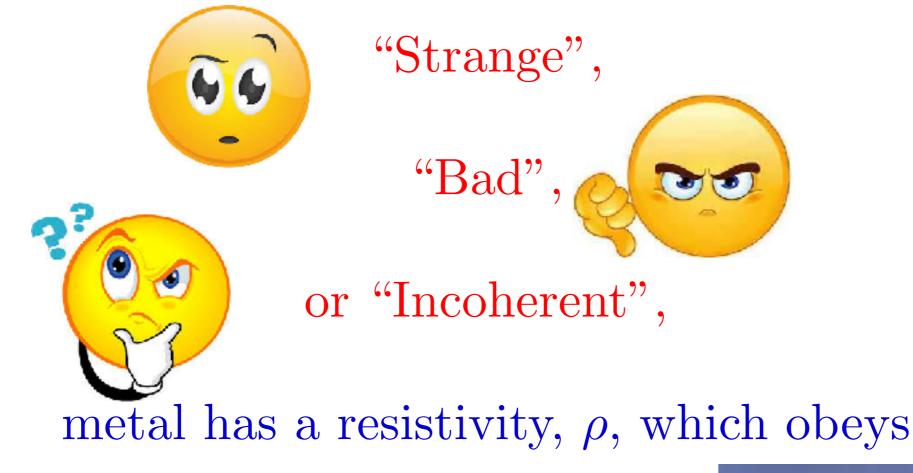


 $\rho \sim T,$

and

 $\rho \gg h/e^2$

(in two dimensions), where h/e^2 is the quantum unit of resistance.

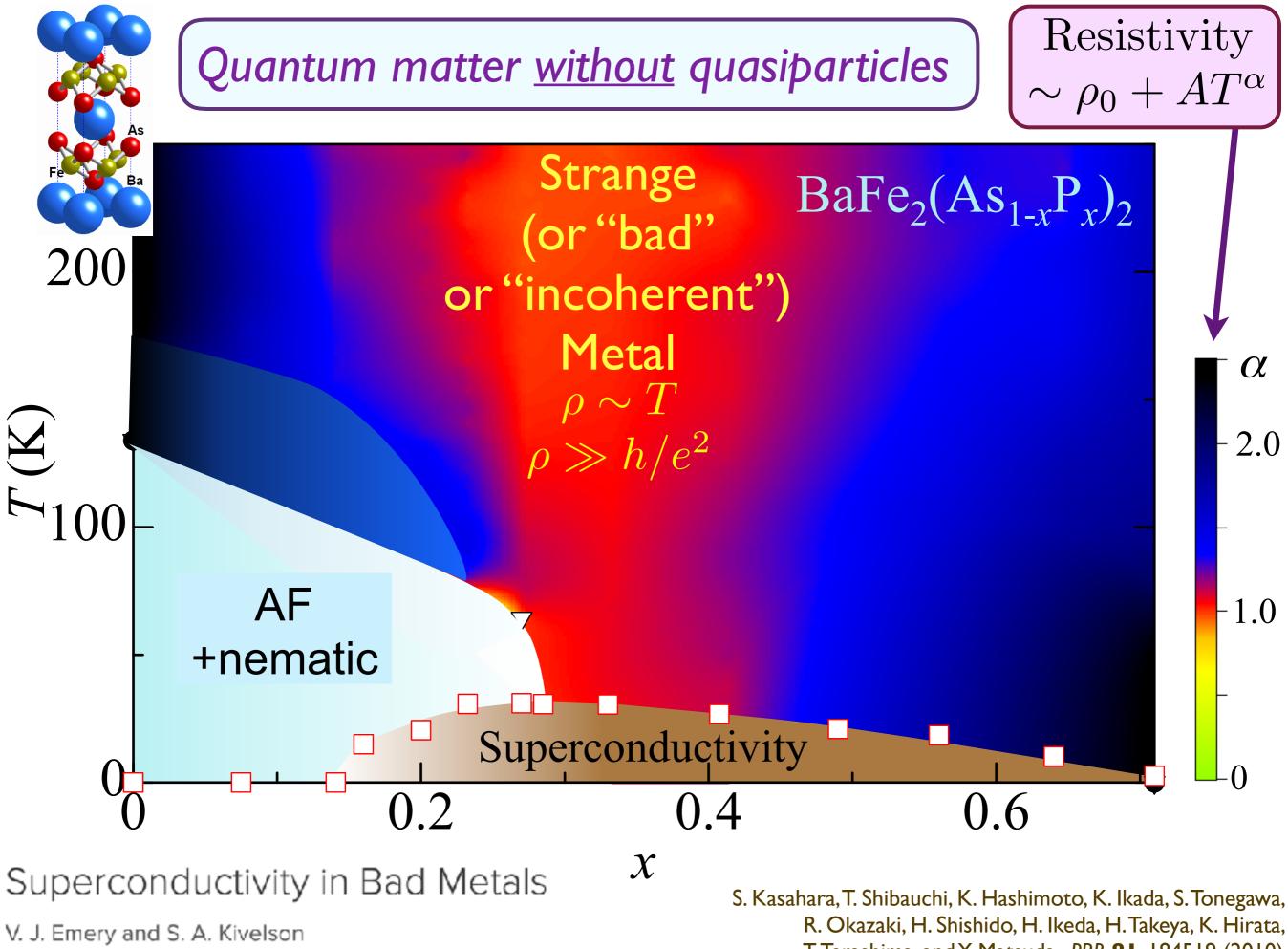


$$\rho \sim T,$$

and

 $\rho \gg h/e^2$

(in two dimensions), where h/e^2 is the quantum unit of resistance.



Phys. Rev. Lett. 74, 3253 – Published 17 April 1995

T. Terashima, and Y. Matsuda, PRB 81, 184519 (2010)

Quantum matter with quasiparticles:

• Quasiparticles are additive excitations: The low-lying excitations of the many-body system can be identified as a set $\{n_{\alpha}\}$ of quasiparticles with energy ε_{α}

$$E = \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

In a lattice system of N sites, this parameterizes the energy of $\sim e^{\alpha N}$ states in terms of poly(N) numbers.

Quantum matter with quasiparticles:

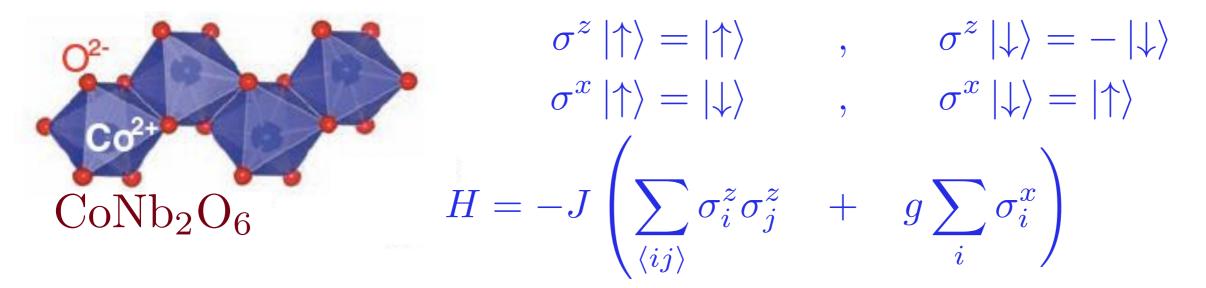
• Quasiparticles eventually collide with each other. Such collisions eventually leads to thermal equilibration in a chaotic quantum state, but the equilibration takes a long time. In a Fermi liquid, this time diverges as

$$au_{\rm eq} \sim \frac{\hbar E_F}{(k_B T)^2}$$
, as $T \to 0$,

where E_F is the Fermi energy.

Quantum Ising models)

Qubits with states $|\uparrow\rangle_i$, $|\downarrow\rangle_i$, on the sites, *i*, of a regular lattice.



For g = 0, ground state is a ferromagnet:

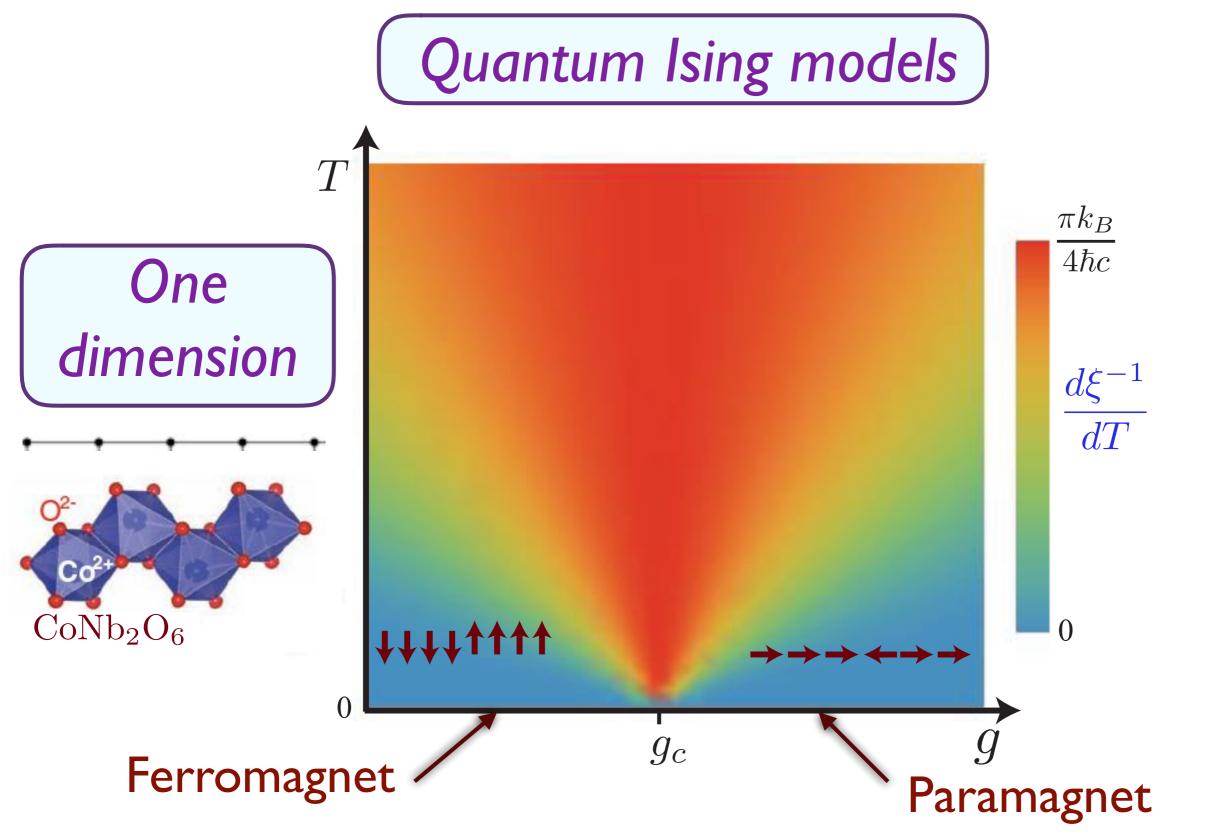
 $|G\rangle = |\cdots \uparrow \uparrow \uparrow \uparrow \uparrow \cdots \rangle \quad \text{or} \quad |\cdots \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \cdots \rangle$

For $g \gg 1$, unique 'paramagnetic' ground state:

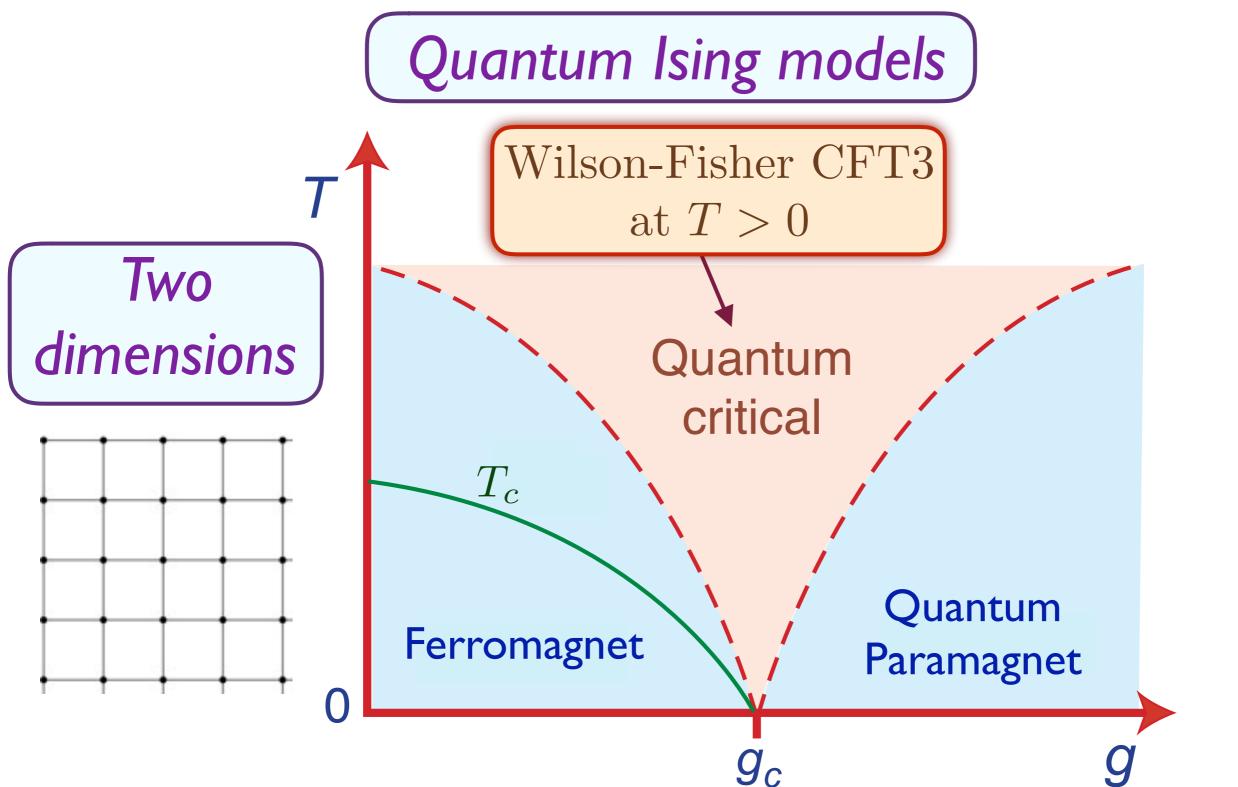
$$|G\rangle = |\cdots \rightarrow \rightarrow \rightarrow \rightarrow \cdots \rangle$$

where

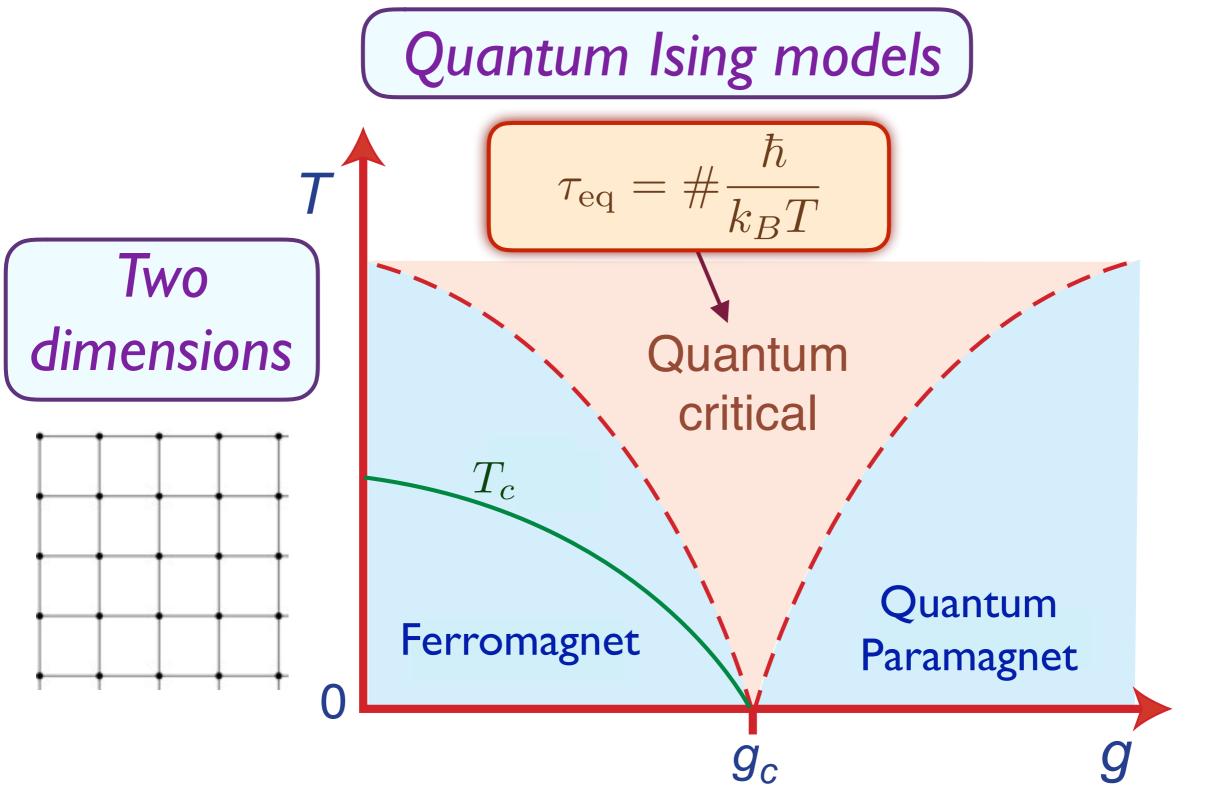
$$| \rightarrow \rangle = \frac{1}{\sqrt{2}} \left(| \uparrow \rangle + | \downarrow \rangle \right) \quad , \quad | \leftarrow \rangle = \frac{1}{\sqrt{2}} \left(| \uparrow \rangle - | \downarrow \rangle \right)$$



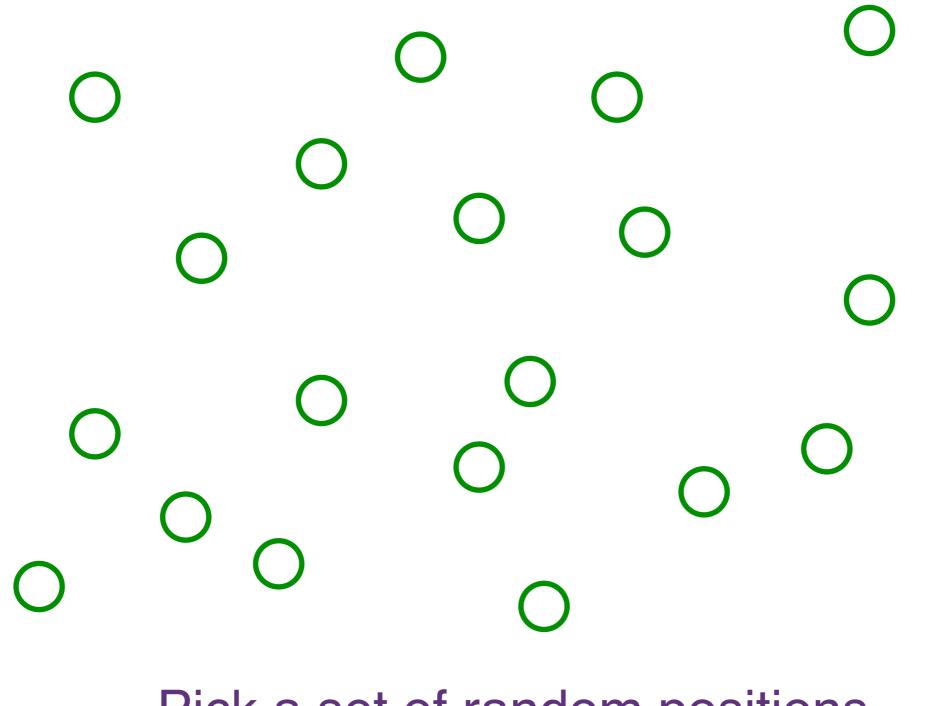
• In one dimension, quasiparticles exist even at the quantum critical point: there is a non-local transformations from the qubits to a system of free fermions.



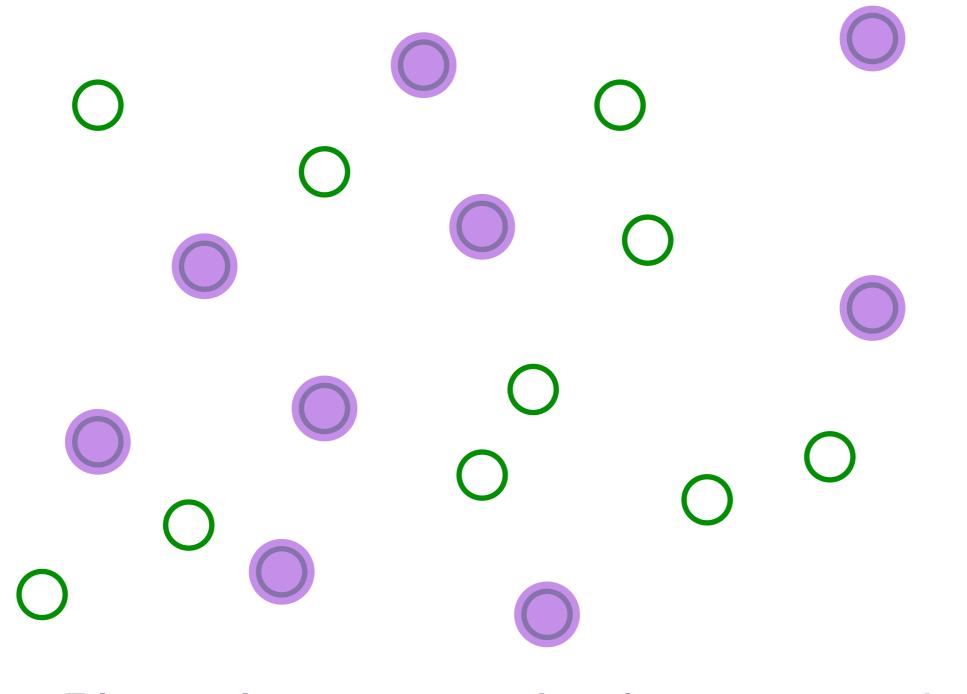
• In two dimensions, the "quantum critical" region provides us the first example of a system without a quasiparticle description. This is described by a strongly-coupled conformal field theory (CFT) in 2+1 dimensions, and dynamic properties cannot be computed accurately.



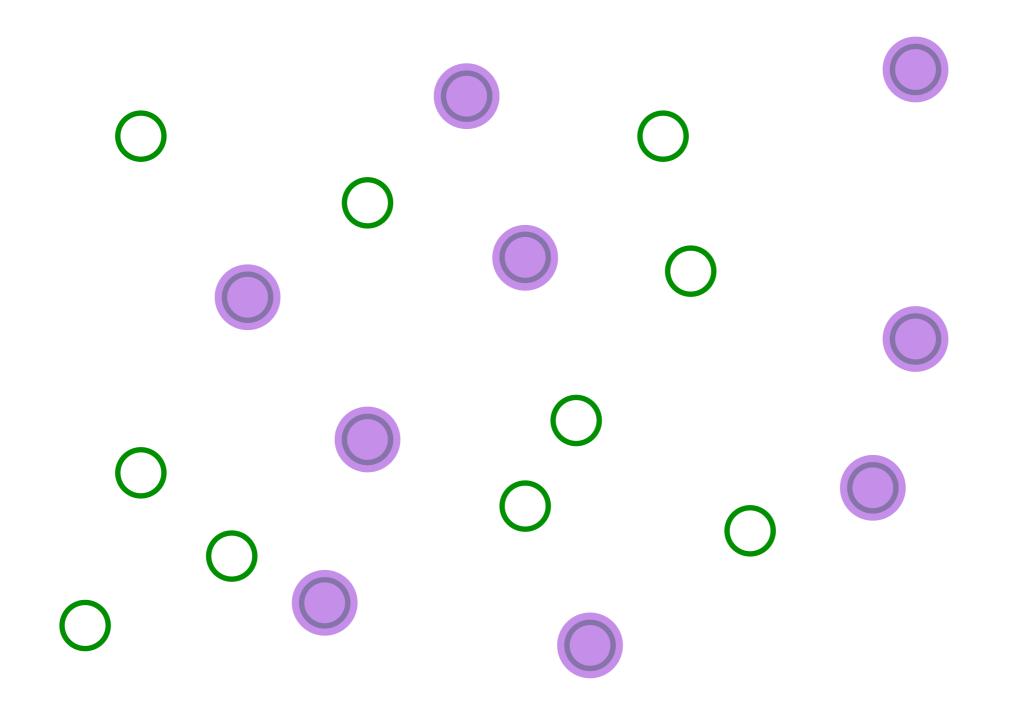
• In two dimensions, the "quantum critical" region provides us the first example of a system without a quasiparticle description. This is described by a strongly-coupled conformal field theory (CFT) in 2+1 dimensions, and dynamic properties cannot be computed accurately. S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

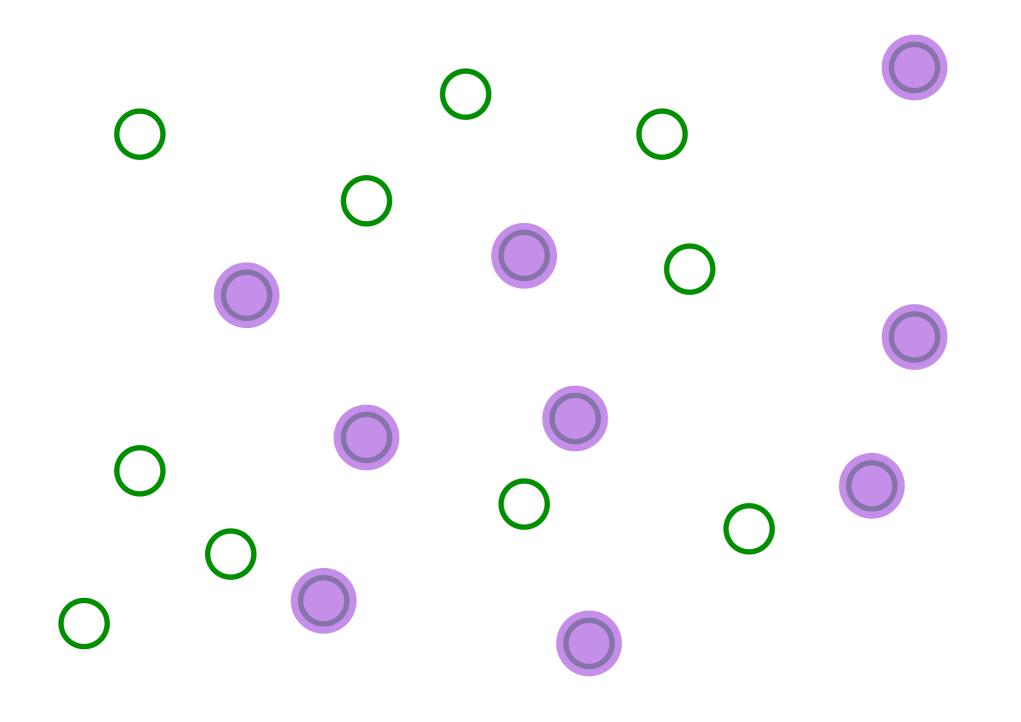


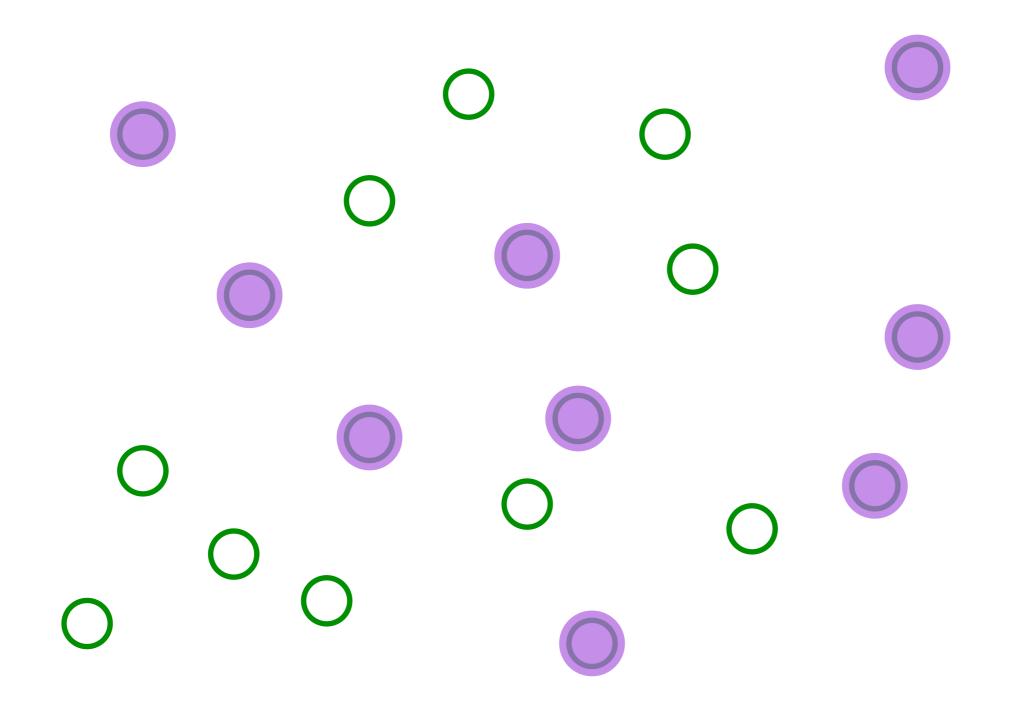
Pick a set of random positions

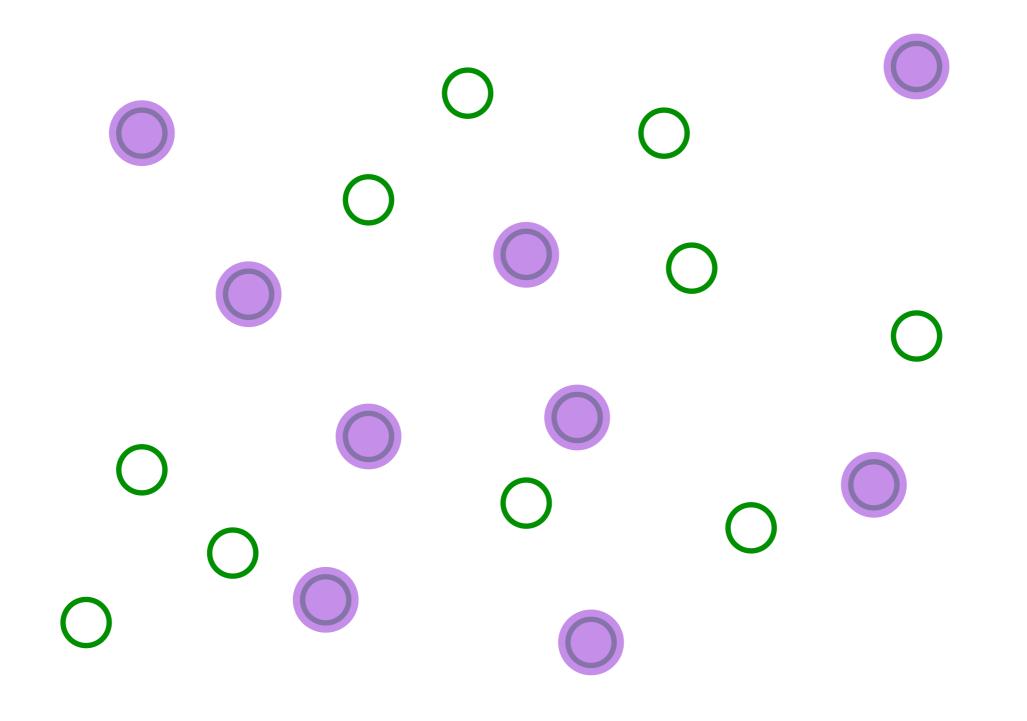


Place electrons randomly on some sites







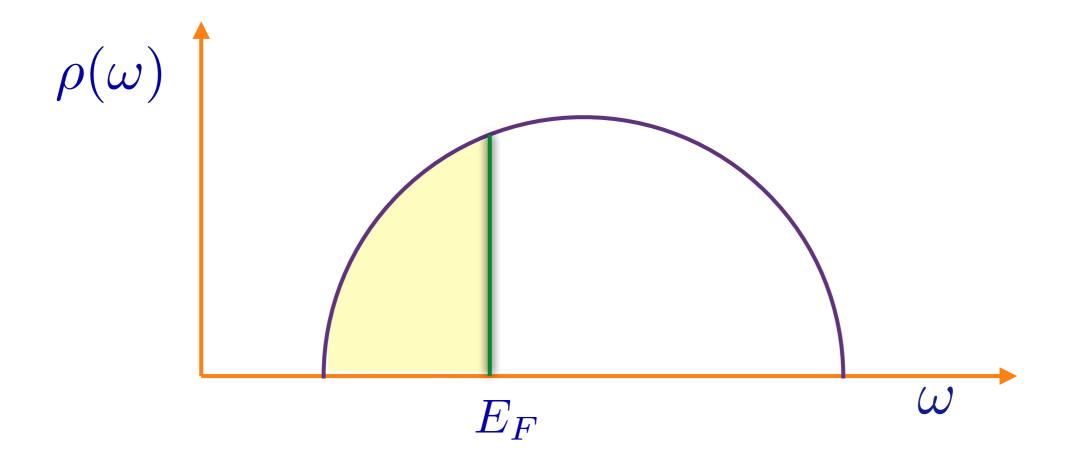


$$H = \frac{1}{(N)^{1/2}} \sum_{i,j=1}^{N} t_{ij} c_i^{\dagger} c_j + \dots$$
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$
$$\frac{1}{N} \sum_i c_i^{\dagger} c_i = \mathcal{Q}$$

 t_{ij} are independent random variables with $\overline{t_{ij}} = 0$ and $|\overline{t_{ij}}|^2 = t^2$

Fermions occupying the eigenstates of a $N \ge N$ random matrix

Let ε_{α} be the eigenvalues of the matrix t_{ij}/\sqrt{N} . The fermions will occupy the lowest $N\mathcal{Q}$ eigenvalues, up to the Fermi energy E_F . The density of states is $\rho(\omega) = (1/N) \sum_{\alpha} \delta(\omega - \varepsilon_{\alpha})$.



 $\begin{array}{l} \mbox{Many-body}\\ \mbox{level spacing}\\ \sim 2^{-N} \end{array}$

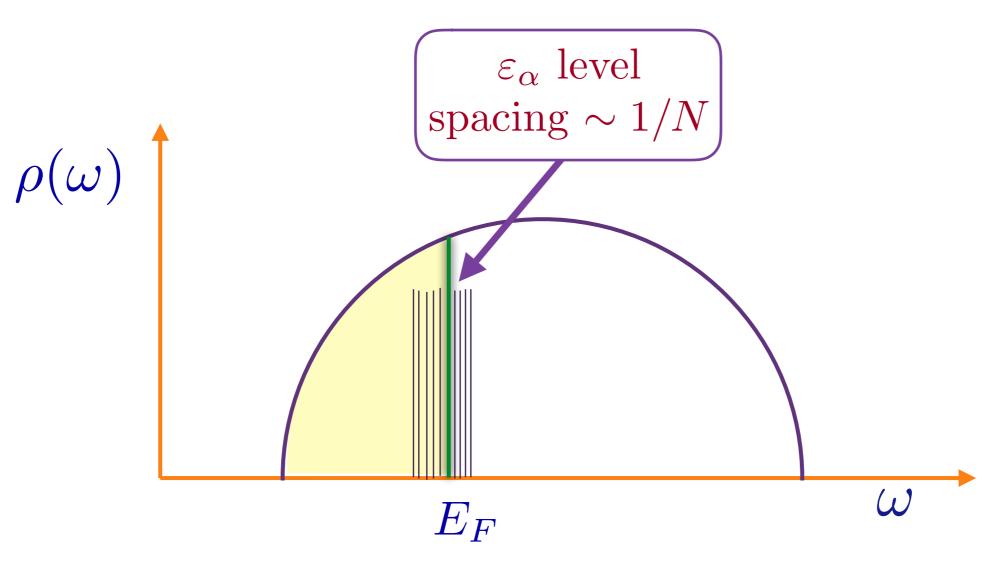
Quasiparticleexcitations withspacing $\sim 1/N$

There are 2^N many body levels with energy

$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where $n_{\alpha} = 0, 1$. Shown are all values of E for a single cluster of size N = 12. The ε_{α} have a level spacing $\sim 1/N$.

Let ε_{α} be the eigenvalues of the matrix t_{ij}/\sqrt{N} . The fermions will occupy the lowest $N\mathcal{Q}$ eigenvalues, upto the Fermi energy E_F . The density of states is $\rho(\omega) = (1/N) \sum_{\alpha} \delta(\omega - \varepsilon_{\alpha})$.



 $\begin{array}{l} \mbox{Many-body}\\ \mbox{level spacing}\\ \sim 2^{-N} \end{array}$

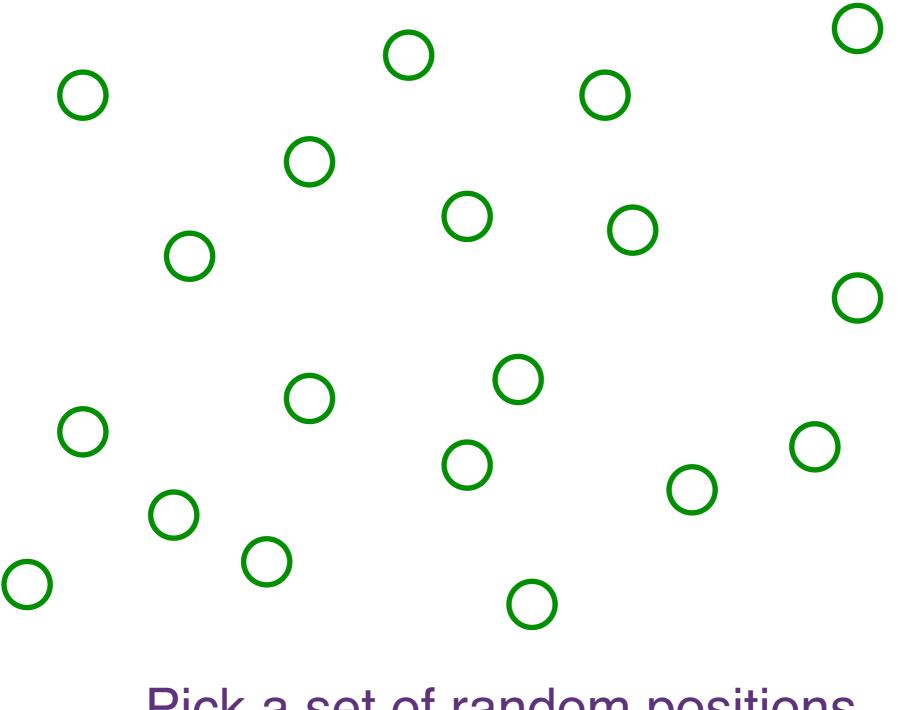
Quasiparticleexcitations withspacing $\sim 1/N$

There are 2^N many body levels with energy

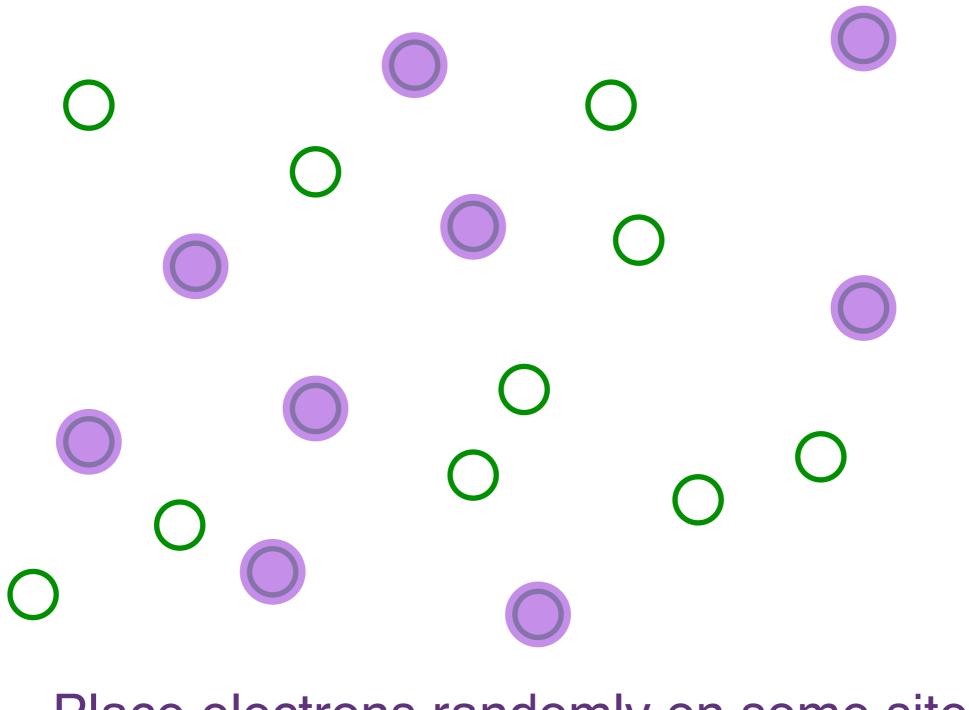
$$E = \sum_{\alpha=1}^{N} n_{\alpha} \varepsilon_{\alpha},$$

where $n_{\alpha} = 0, 1$. Shown are all values of E for a single cluster of size N = 12. The ε_{α} have a level spacing $\sim 1/N$.

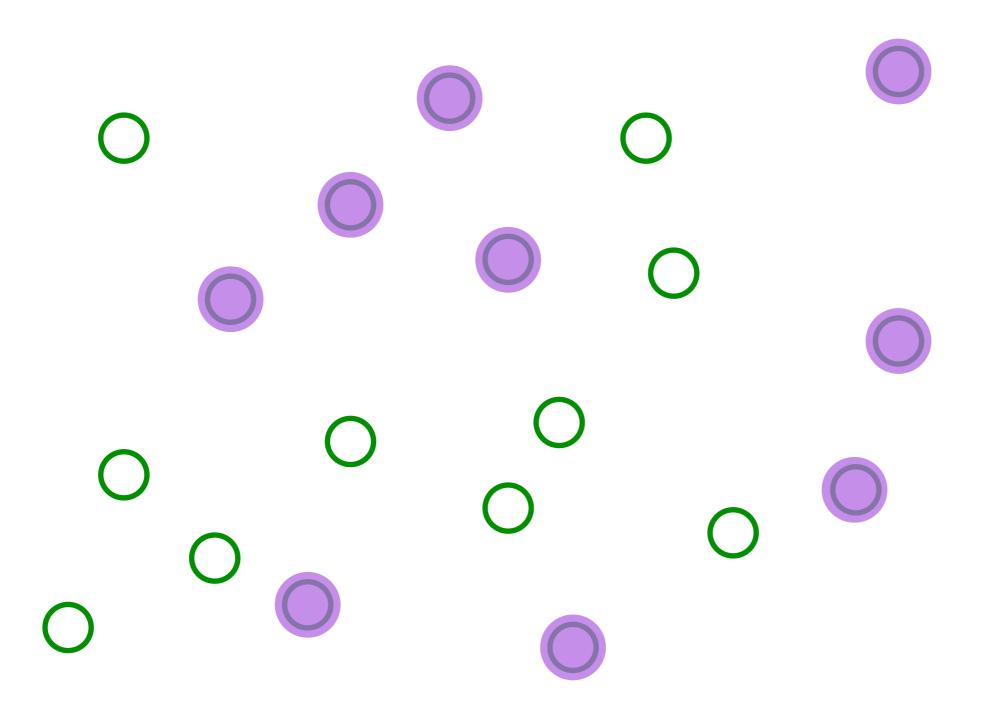
The Sachdev-Ye-Kitaev (SYK) model

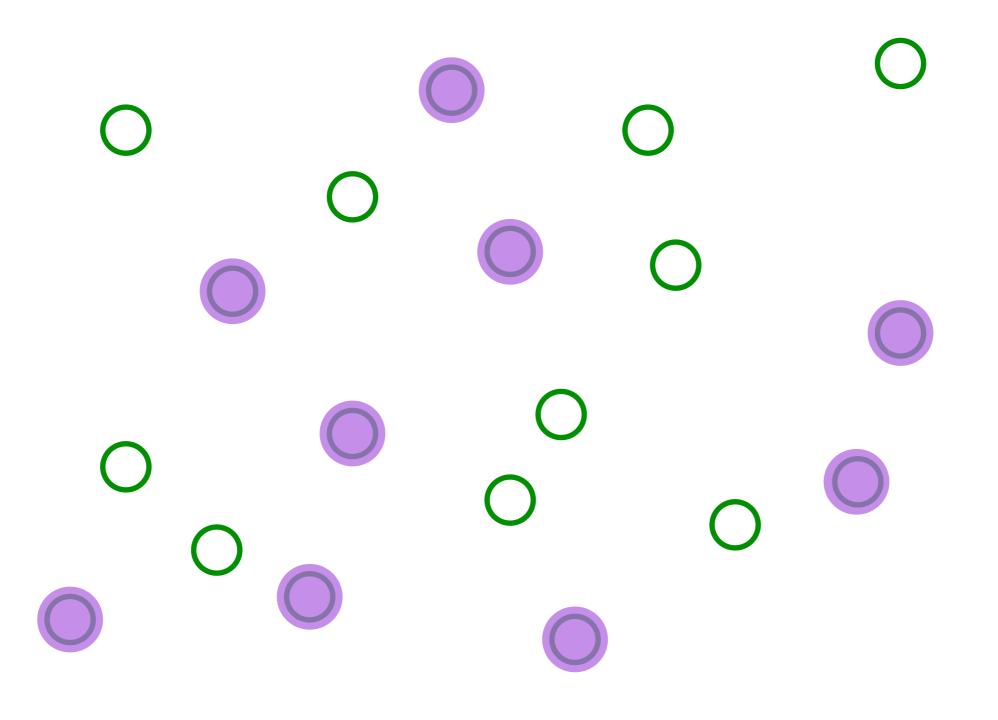


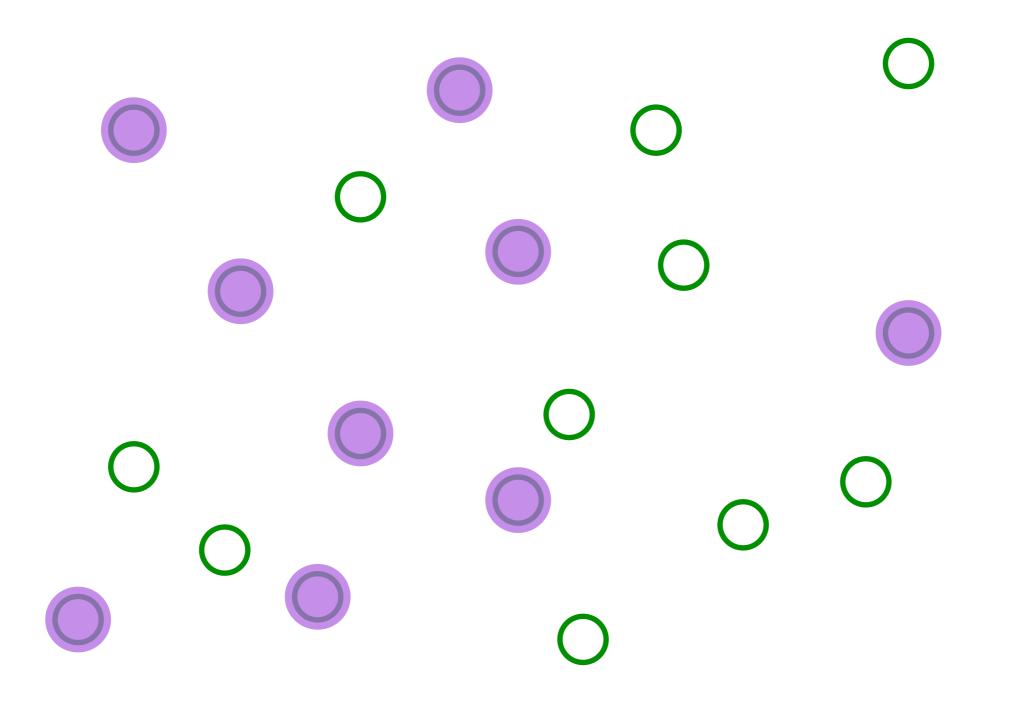
Pick a set of random positions

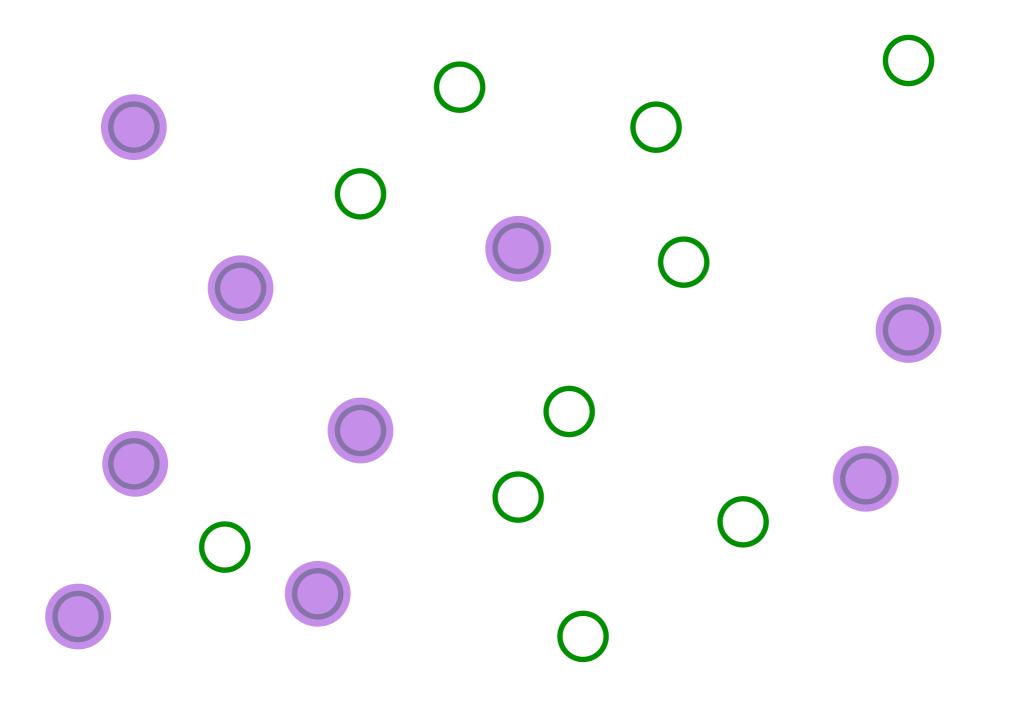


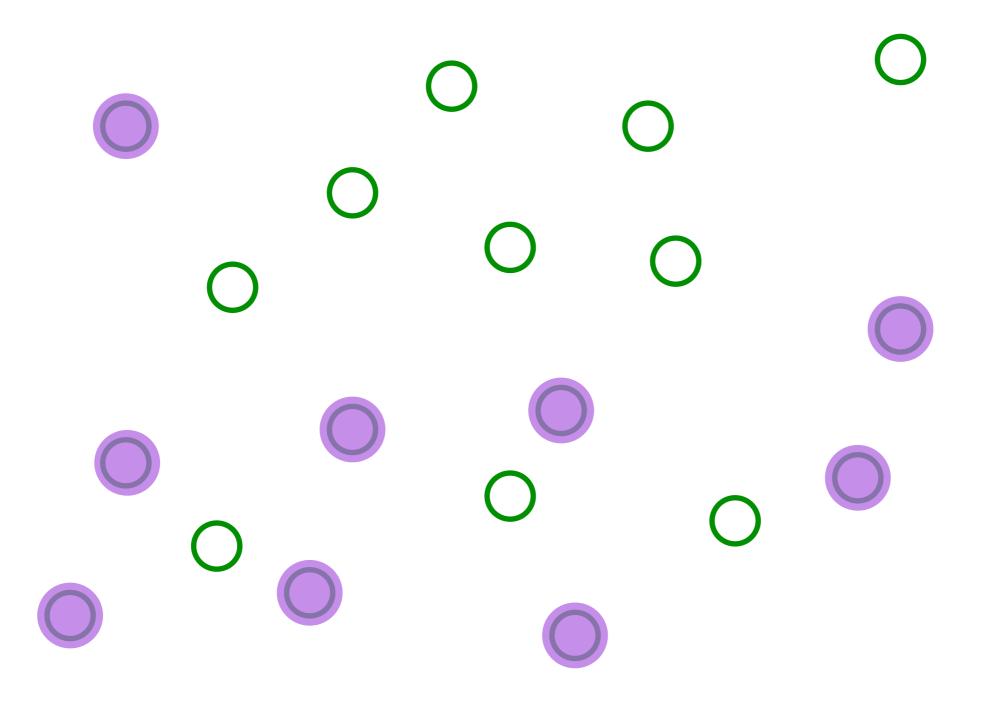
Place electrons randomly on some sites

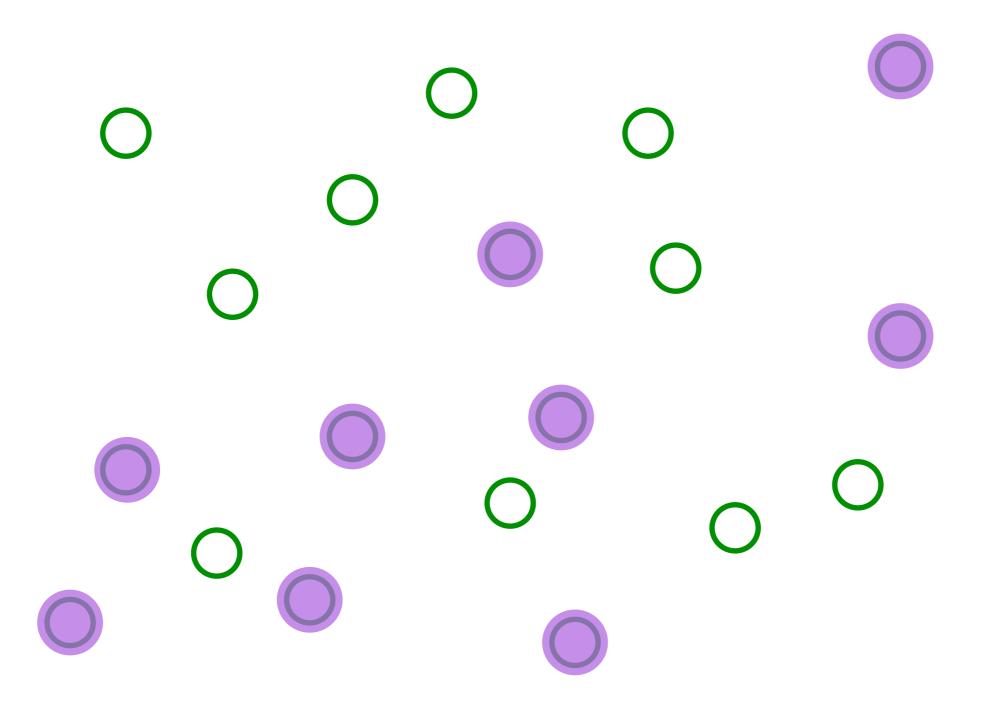


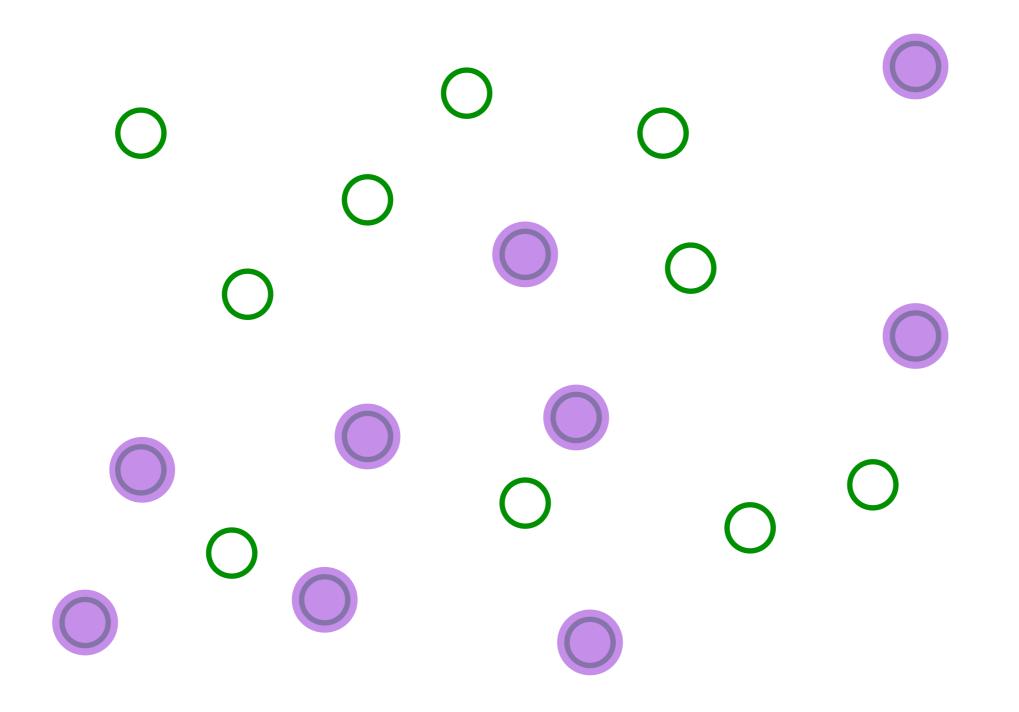










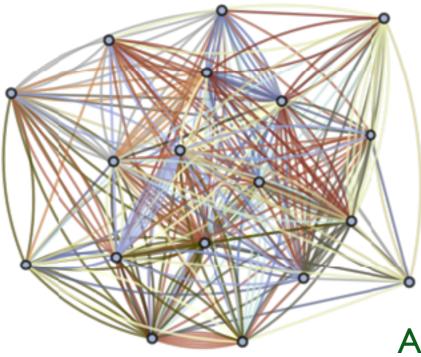


This describes both a strange metal and a black hole!

(See also: the "2-Body Random Ensemble" in nuclear physics; did not obtain the large N limit; T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. **53**, 385 (1981))

$$H = \frac{1}{(2N)^{3/2}} \sum_{i,j,k,\ell=1}^{N} U_{ij;k\ell} c_i^{\dagger} c_j^{\dagger} c_k c_\ell - \mu \sum_i c_i^{\dagger} c_i$$
$$c_i c_j + c_j c_i = 0 \quad , \quad c_i c_j^{\dagger} + c_j^{\dagger} c_i = \delta_{ij}$$
$$\mathcal{Q} = \frac{1}{N} \sum_i c_i^{\dagger} c_i$$

 $U_{ij;k\ell}$ are independent random variables with $\overline{U_{ij;k\ell}} = 0$ and $|\overline{U_{ij;k\ell}}|^2 = U^2$ $N \to \infty$ yields critical strange metal.



S. Sachdev and J.Ye, PRL **70**, 3339 (1993)

A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

Many-body level spacing \sim $2^{-N} = e^{-N \ln 2}$ There are 2^N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The $T \rightarrow 0$ state has an entropy $S_{GPS} = Ns_0$ with

$$s_0 = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848...$$

< $\ln 2$

Non-quasiparticle excitations with spacing $\sim e^{-Ns_0}$ where G is Catalan's constant, for the half-filled case Q = 1/2.

GPS: A. Georges, O. Parcollet, and S. Sachdev, PRB **63**, 134406 (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)

There are 2^N many body levels with energy E, which do not admit a quasiparticle decomposition. Shown are all values of E for a single cluster of size N = 12. The $T \to 0$ state Many-body has an entropy $S_{GPS} = Ns_0$ level spacing \sim with $2^{-N} = e^{-N \ln 2}$ $s_0 = \frac{G}{\pi} + \frac{\ln(2)}{4} = 0.464848\dots$ No quasiparticles ! $E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha}$ Non-quasiparticle $+\sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$ excitations with spacing $\sim e^{-Ns_0}$ PRB 63, 134406 (2001)

W. Fu and S. Sachdev, PRB 94, 035135 (2016)

• T = 0 fermion Green's function is incoherent: $G(\tau) \sim \tau^{-1/2}$ at large τ . (Fermi liquids with quasiparticles have the coherent: $G(\tau) \sim 1/\tau$) S. Sachdev and J.Ye, PRL **70**, 3339 (1993)

• T = 0 fermion Green's function is incoherent: $G(\tau) \sim \tau^{-1/2}$ at large τ . (Fermi liquids with quasiparticles have the coherent: $G(\tau) \sim 1/\tau$) S. Sachdev and J.Ye, PRL **70**, 3339 (1993)

• T > 0 Green's function has conformal invariance: $G \sim (T/\sin(\pi k_B T \tau/\hbar))^{1/2}$

A. Georges and O. Parcollet PRB 59, 5341 (1999)

• T = 0 fermion Green's function is incoherent: $G(\tau) \sim \tau^{-1/2}$ at large τ . (Fermi liquids with quasiparticles have the coherent: $G(\tau) \sim 1/\tau$) S. Sachdev and J.Ye, PRL **70**, 3339 (1993)

• T > 0 Green's function has conformal invariance: $G \sim (T/\sin(\pi k_B T \tau/\hbar))^{1/2}$

A. Georges and O. Parcollet PRB **59**, 5341 (1999)

• The last property indicates $\tau_{\rm eq} \sim \hbar/(k_B T)$, and this has been found in a recent numerical study.

A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arXiv: 1706.07803

• If there are no quasiparticles, then

$$E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

Quantum matter without quasiparticles:

• If there are no quasiparticles, then

$$E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

• If there are no quasiparticles, then

$$\tau_{\rm eq} = \# \frac{\hbar}{k_B T}$$

S. Sachdev, Quantum Phase Transitions, Cambridge (1999) Quantum matter without quasiparticles:

• If there are no quasiparticles, then

$$E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha} + \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$$

• If there are no quasiparticles, then

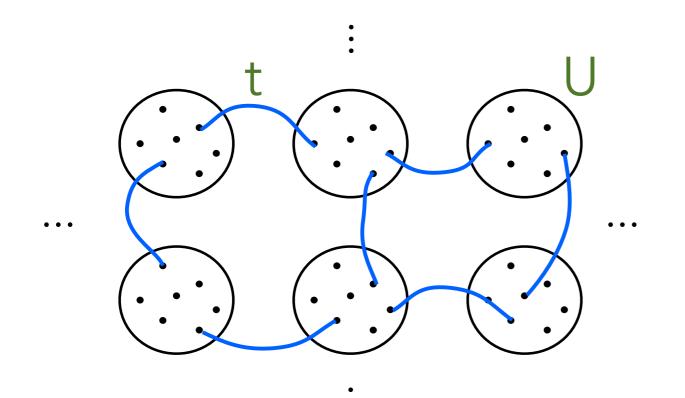
$$\tau_{\rm eq} = \# \frac{\hbar}{k_B T}$$

• Systems without quasiparticles are the fastest possible in reaching local equilibrium, and all many-body quantum systems obey, as $T \to 0$

$$\tau_{\rm eq} > C \frac{\hbar}{k_B T} \,. \qquad \begin{array}{c} {\rm S. \ Sachdev,} \\ {\rm Quantum \ Phase \ Transitions,} \\ {\rm Cambridge \ (1999)} \end{array}$$

- In Fermi liquids $\tau_{\rm eq} \sim 1/T^2$, and so the bound is obeyed as $T \to 0$.
- This bound rules out quantum systems with e.g. $\tau_{eq} \sim \hbar/(Jk_BT)^{1/2}$.
- There is no bound in classical mechanics $(\hbar \rightarrow 0)$. By cranking up frequencies, we can attain equilibrium as quickly as we desire.

A strongly correlated metal built from Sachdev-Ye-Kitaev models Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117 See also A. Georges and O. Parcollet PRB **59**, 5341 (1999)

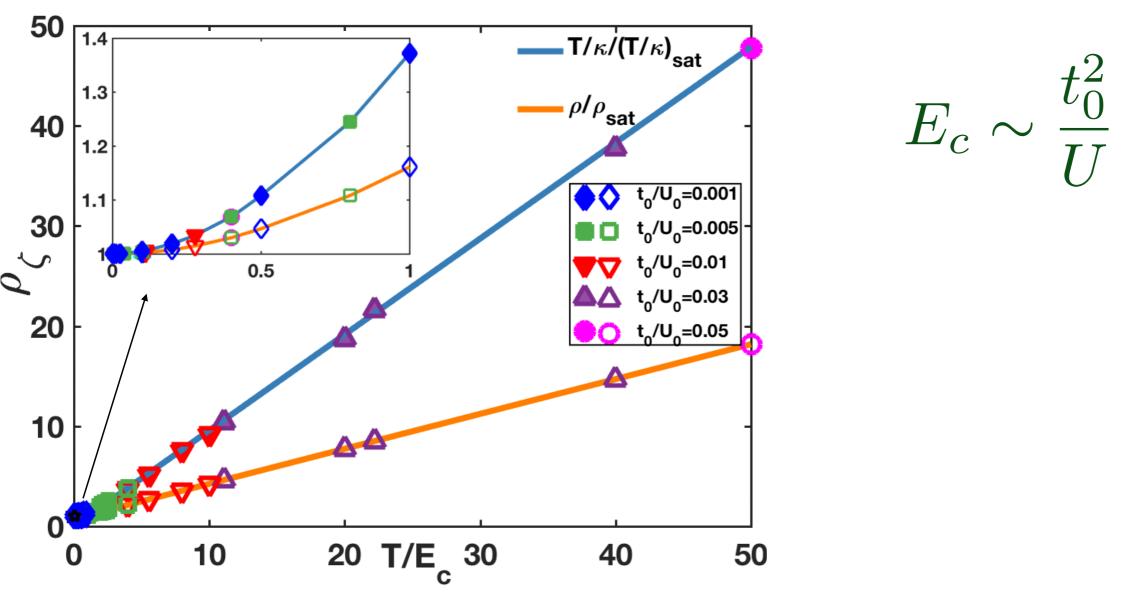


$$\begin{split} H = \sum_{\substack{x \\ i < j, k < l}} \sum_{\substack{i < j, k \\ i < l}} U_{ijkl, x} c_{ix}^{\dagger} c_{jx}^{\dagger} c_{kx} c_{lx} + \sum_{\langle xx' \rangle} \sum_{i,j} t_{ij, xx'} c_{i,x}^{\dagger} c_{j,x'} \end{split}$$

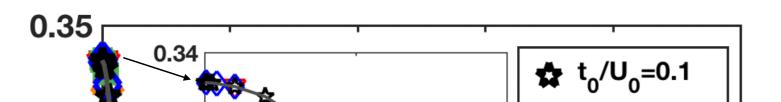
$$\overline{|U_{ijkl}|^2} = \frac{2U^2}{N^3}$$

$$\frac{|t_{ij,x,x'}|^2}{|t_0|^2} = t_0^2/N_1$$

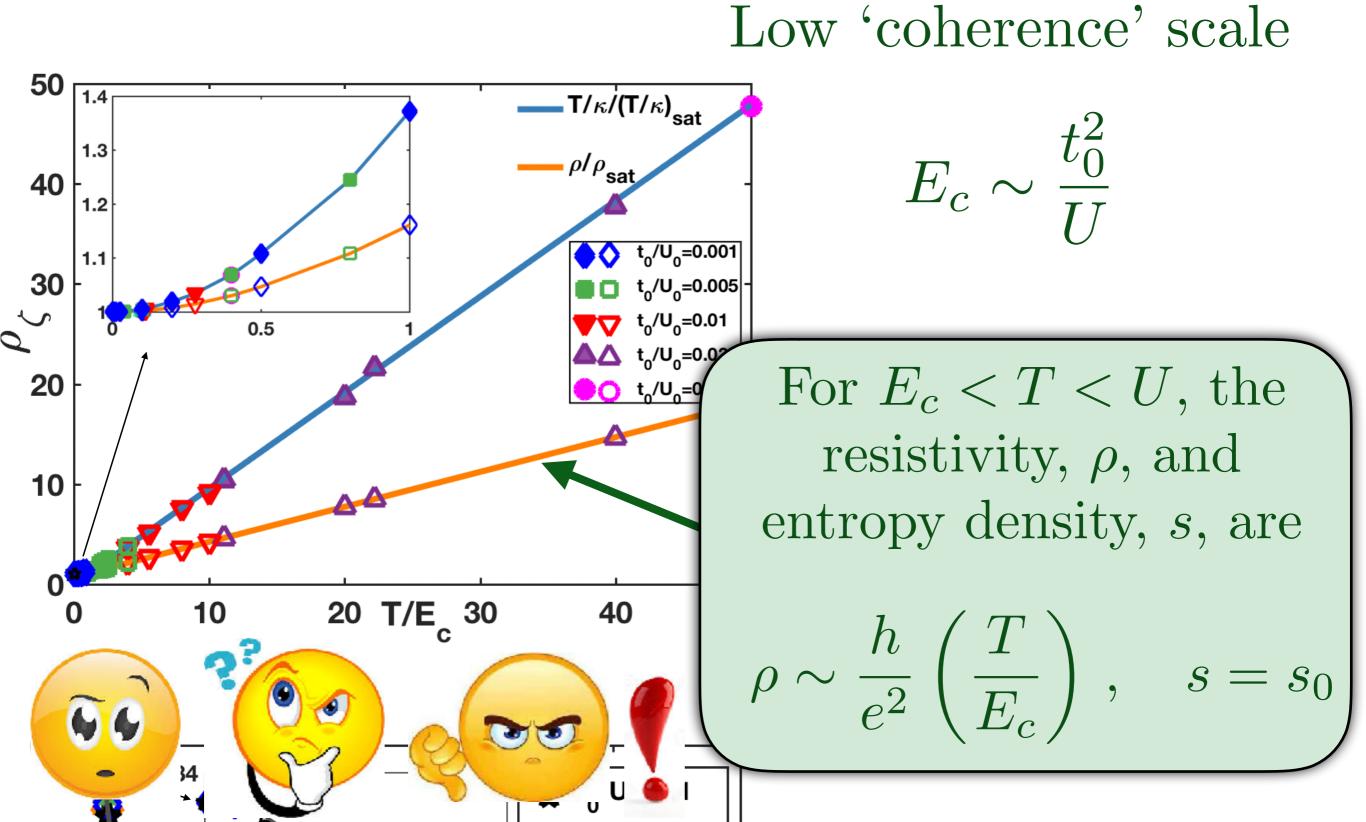
A strongly correlated metal built from Sachdev-Ye-Kitaev models Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117 See also A. Georges and O. Parcollet PRB **59**, 5341 (1999)



Low 'coherence' scale

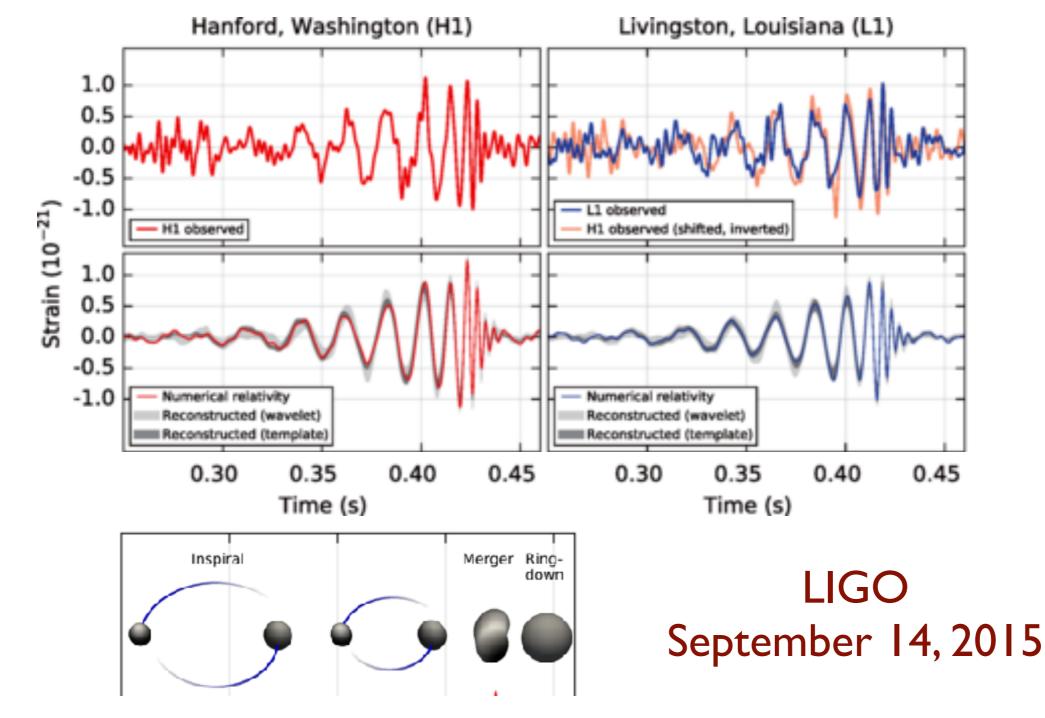


A strongly correlated metal built from Sachdev-Ye-Kitaev models Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117 See also A. Georges and O. Parcollet PRB **59**, 5341 (1999)



Black holes

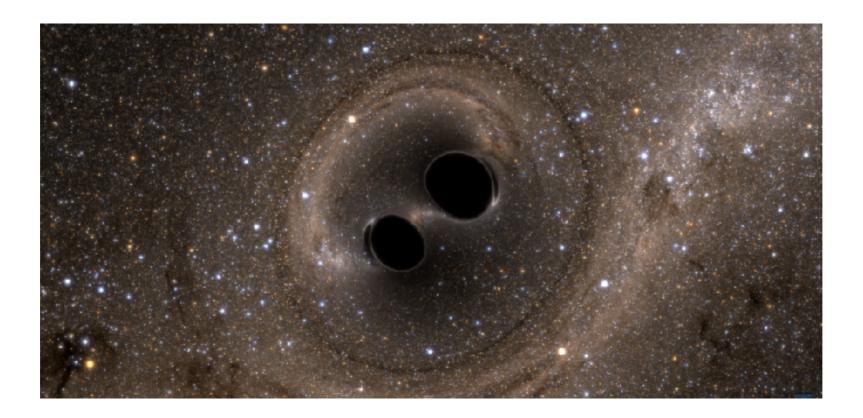
- Black holes have an entropy and a temperature, T_H .
- The entropy is proportional to their surface area.



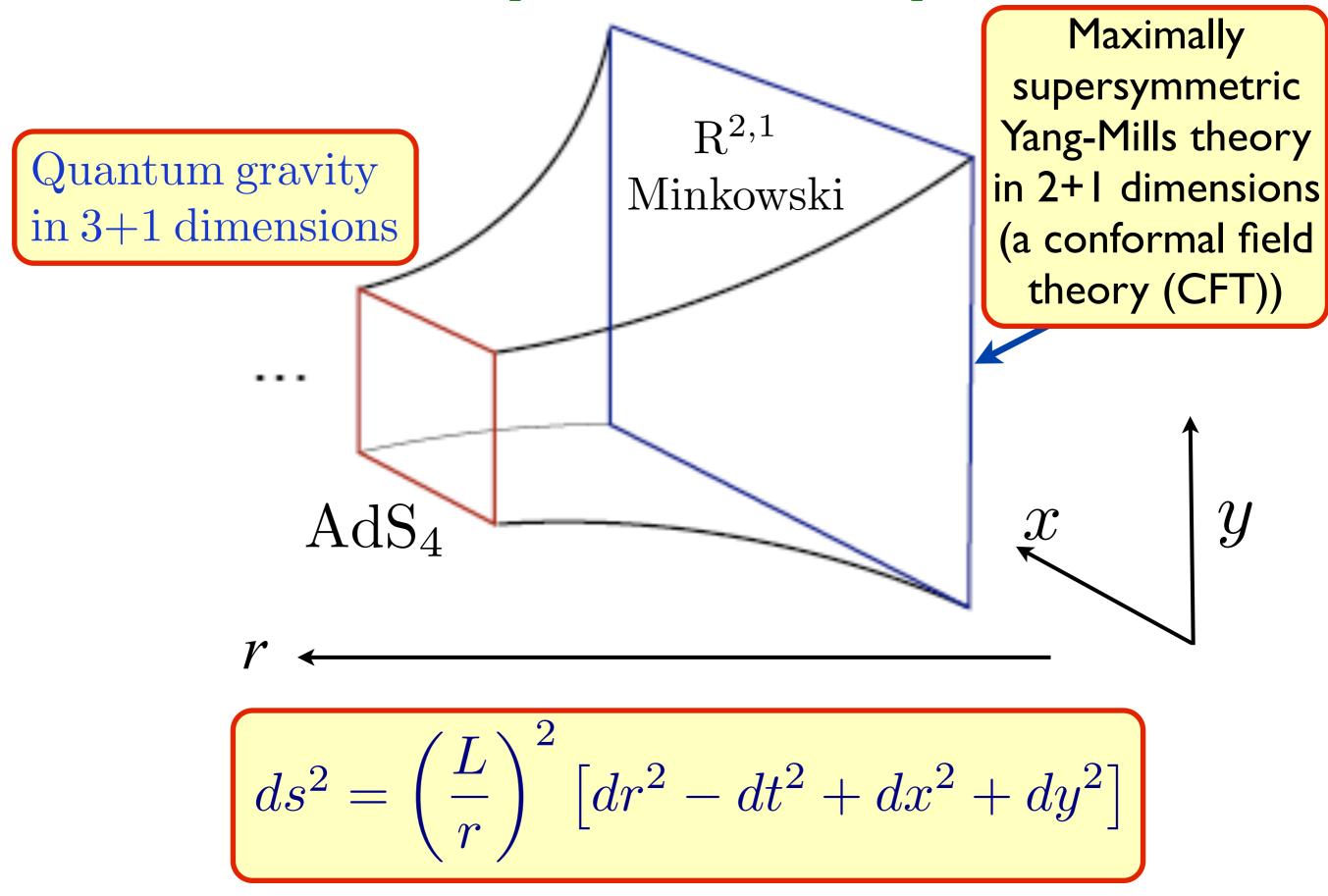
• The ring-down is predicted by General Relativity to happen in a time $\frac{8\pi GM}{c^3} \sim 8$ milliseconds. Curiously this happens to equal $\frac{\hbar}{k_B T_H}$: so the ring down can also be viewed as the approach of a quantum system to thermal equilibrium at the fastest possible rate.

Black holes

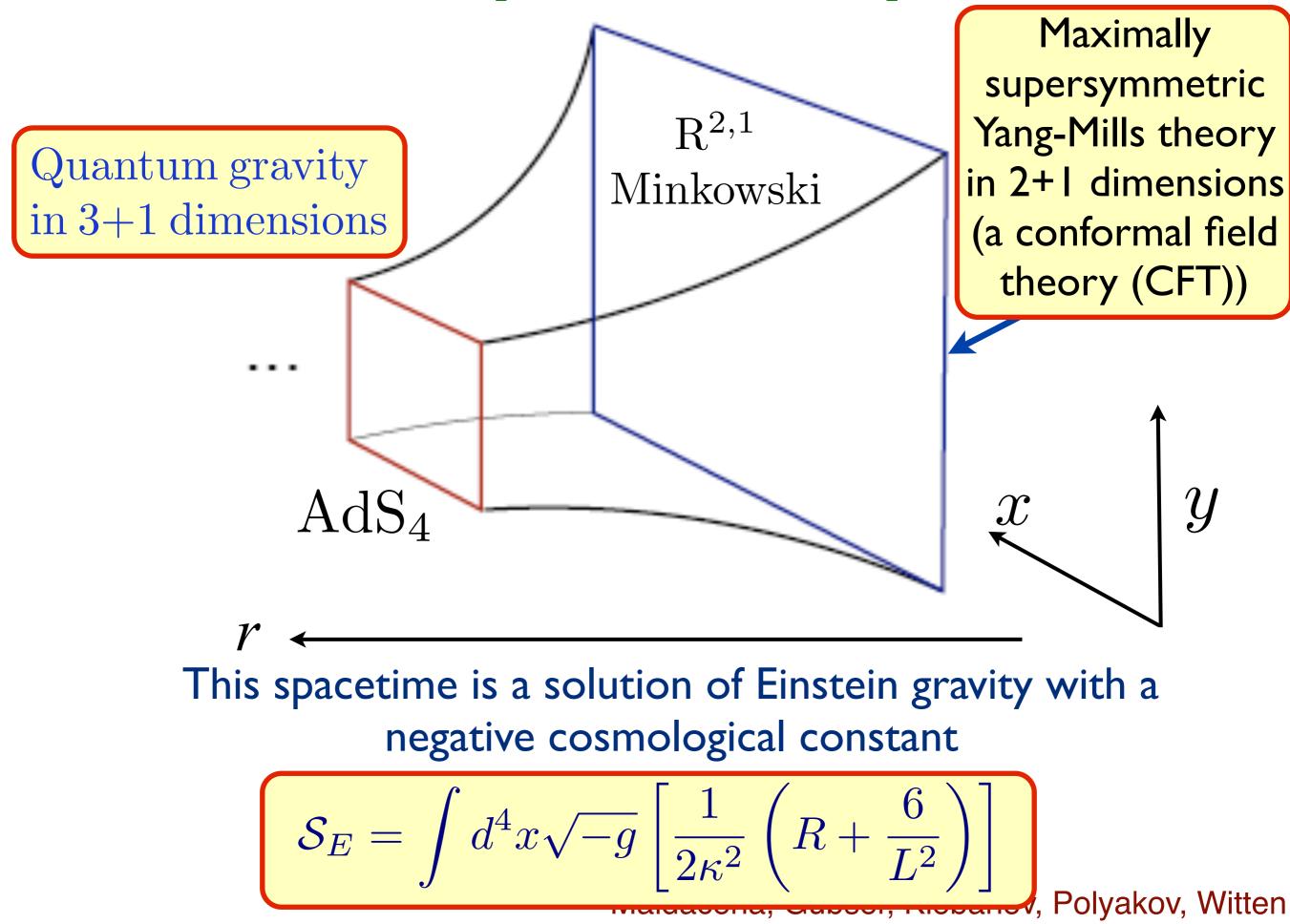
- Black holes have an entropy and a temperature, T_H .
- The entropy is proportional to their surface area.
- They relax to thermal equilibrium in a time $\sim \hbar/(k_B T_H)$.



AdS/CFT correspondence at zero temperature

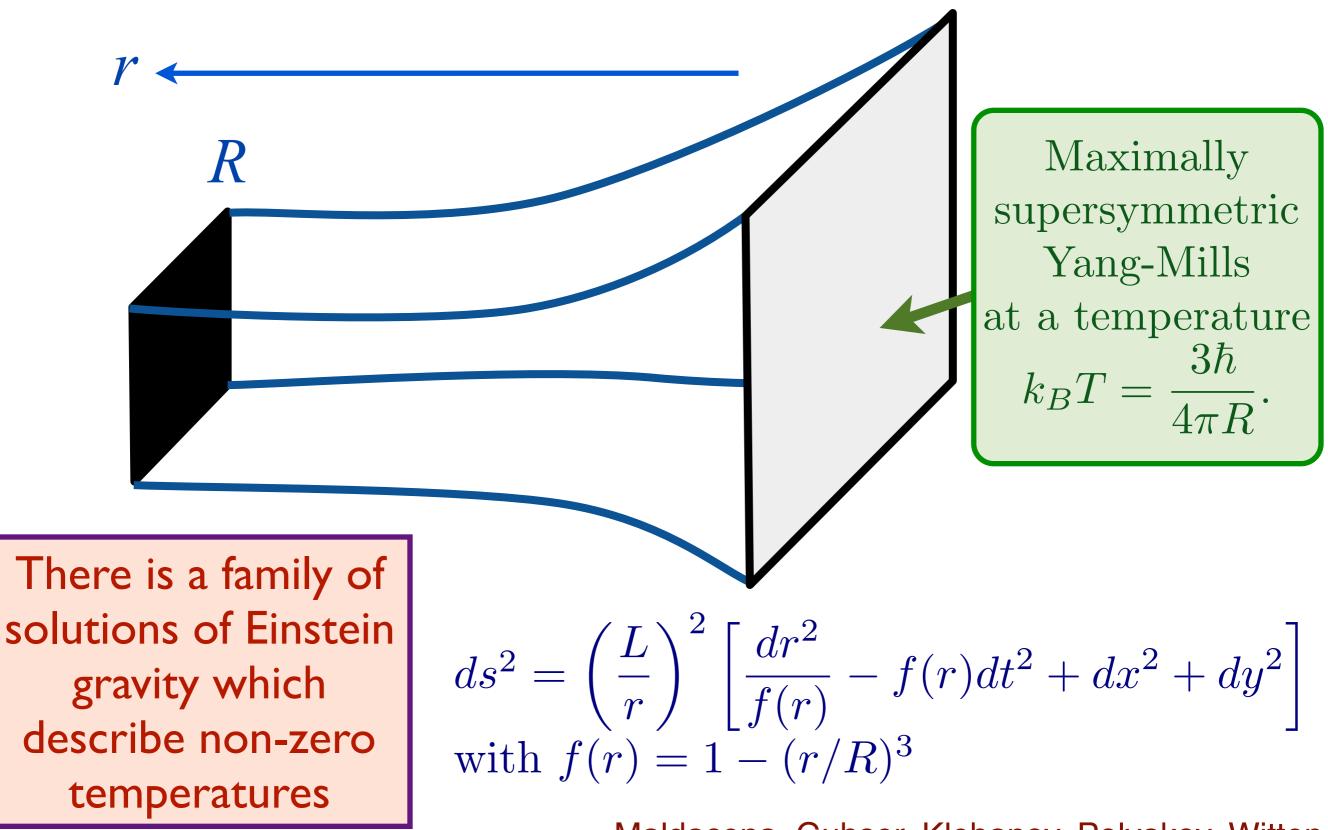


AdS/CFT correspondence at zero temperature



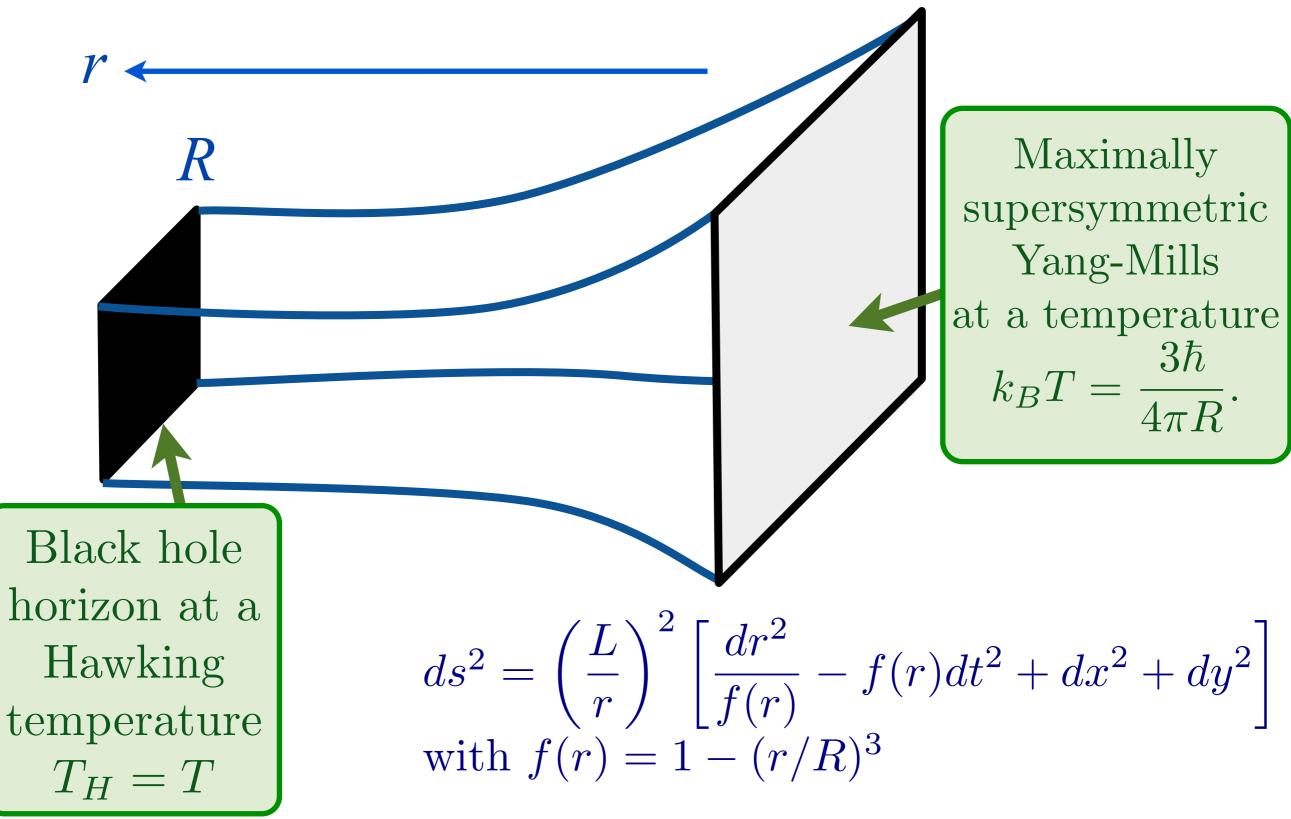
AdS/CFT correspondence at non-zero temperatures

AdS₄-Schwarzschild black-brane



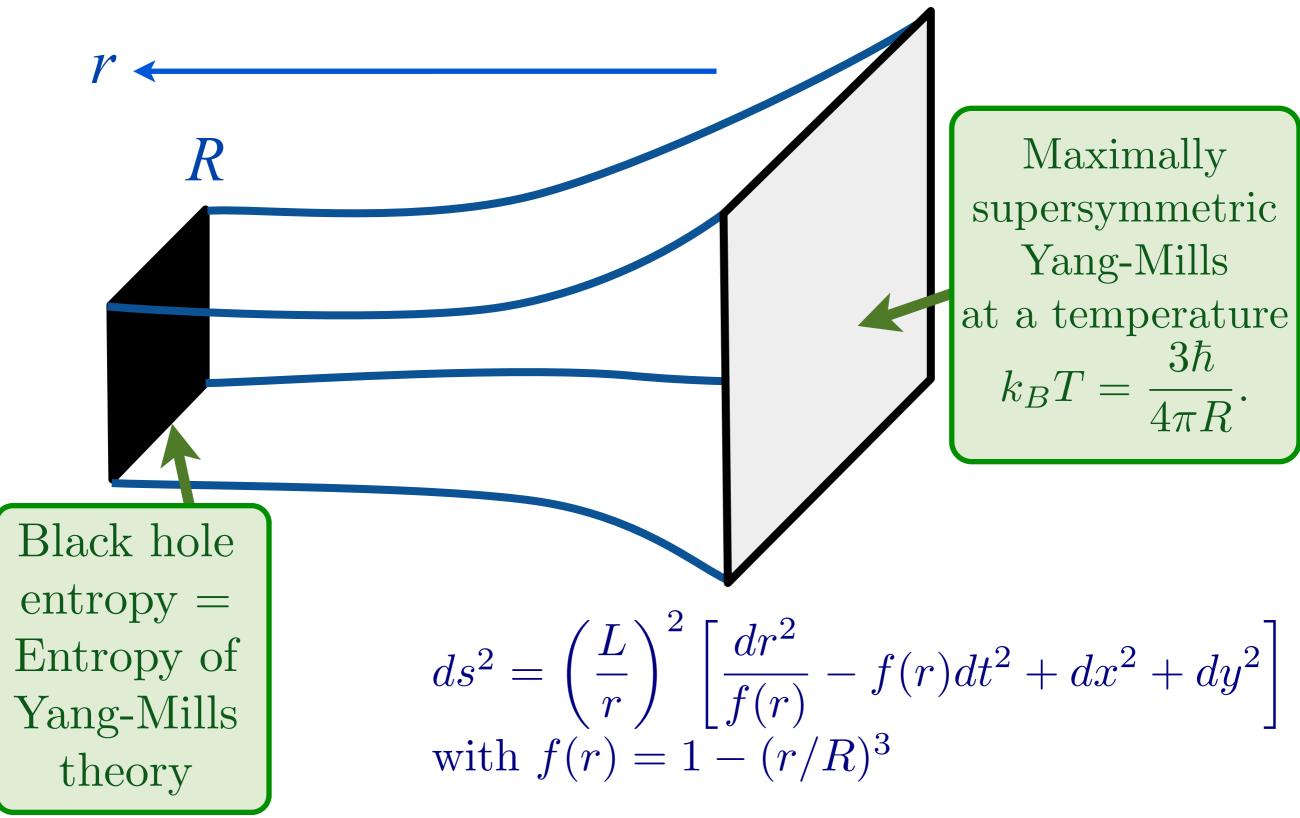
AdS/CFT correspondence at non-zero temperatures

AdS₄-Schwarzschild black-brane

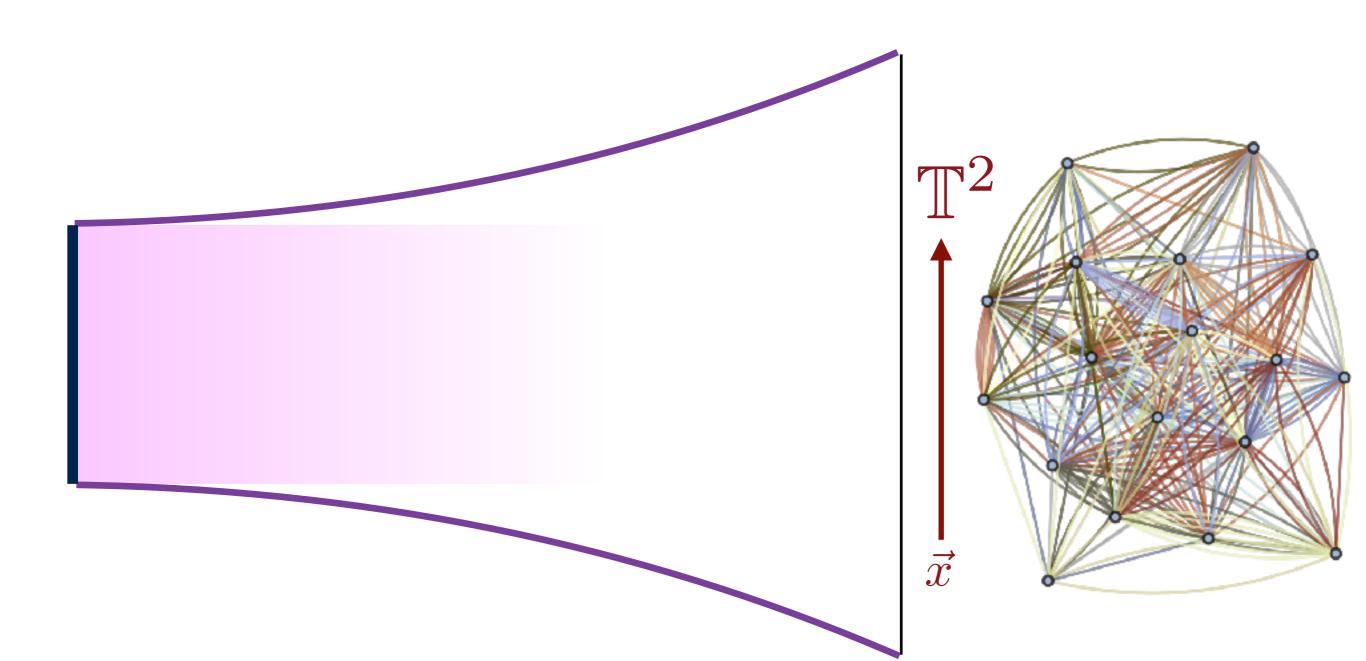


AdS/CFT correspondence at non-zero temperatures

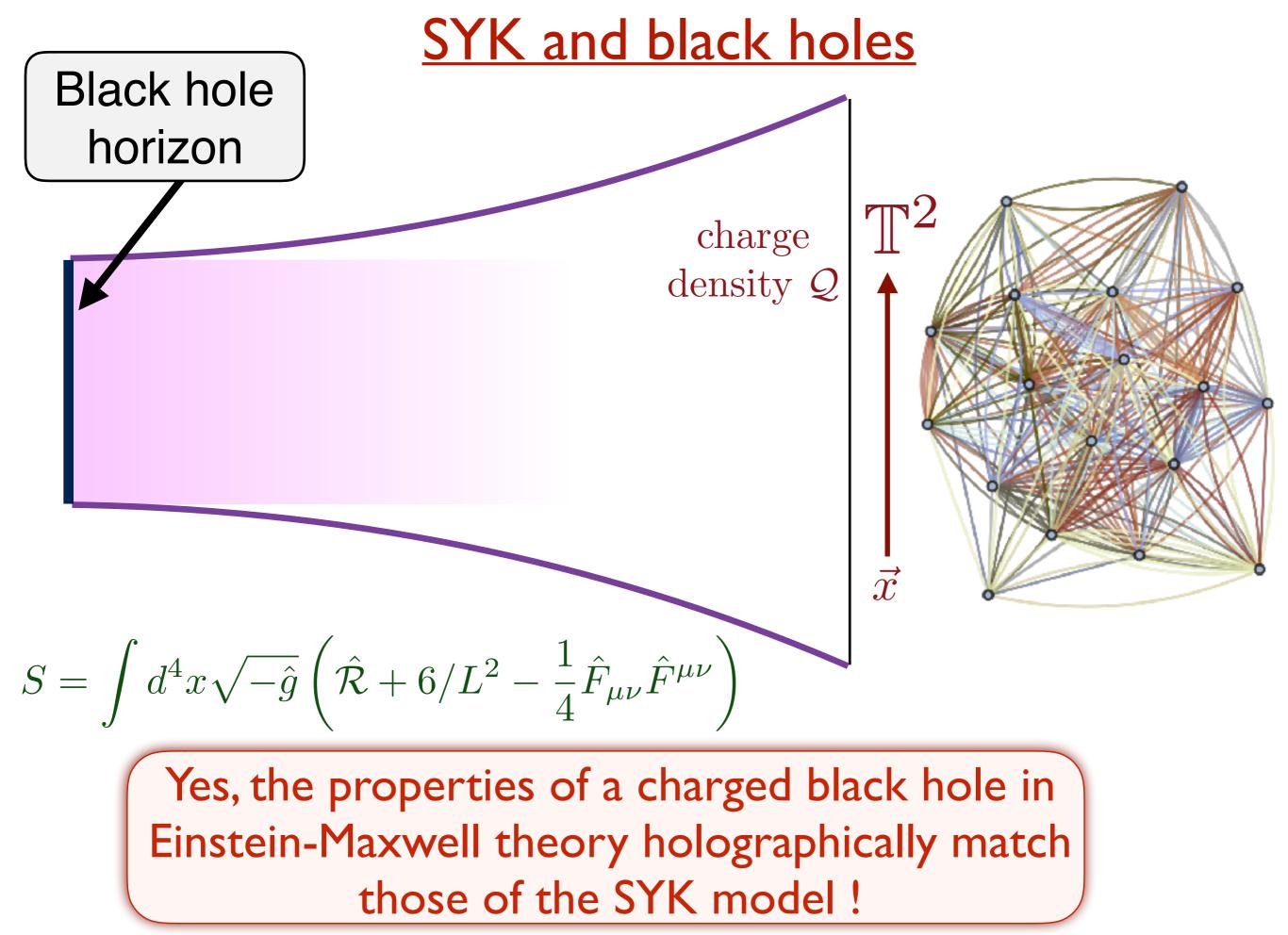
AdS₄-Schwarzschild black-brane



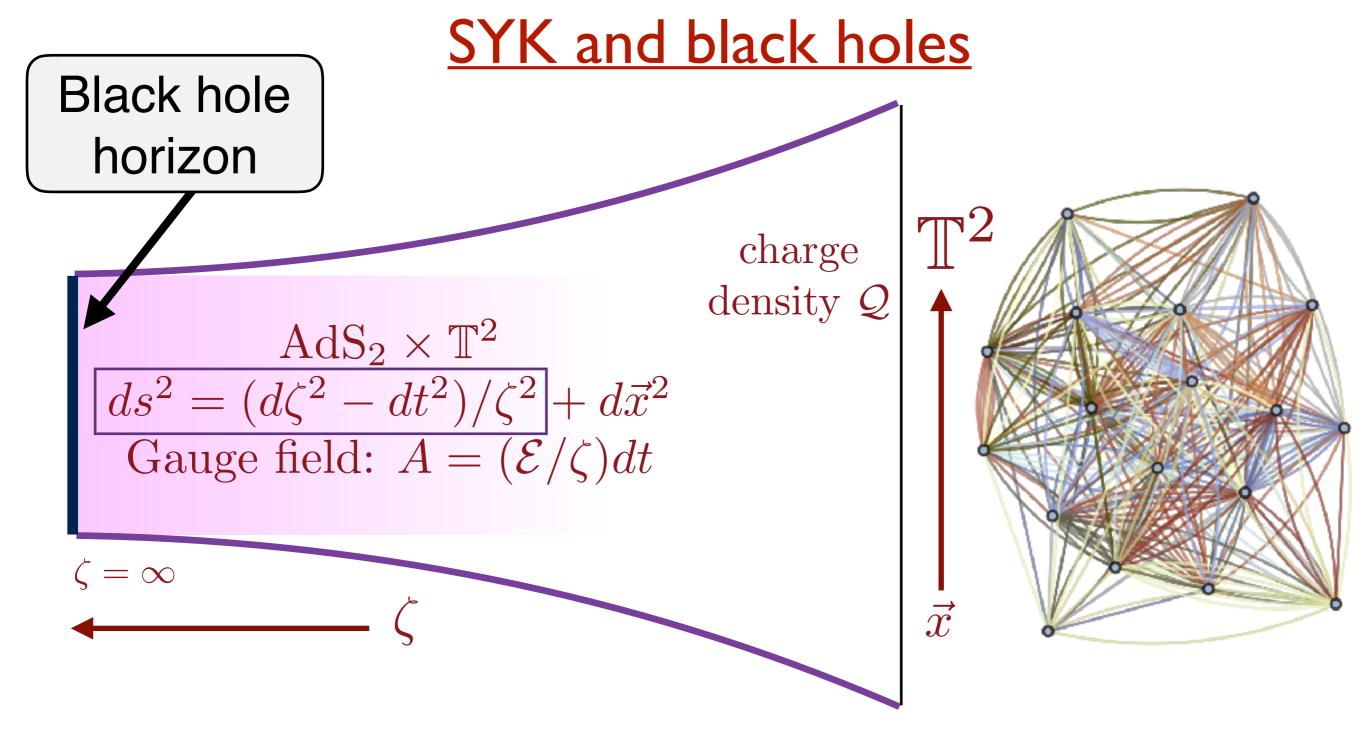
SYK and black holes



Is there a holographic quantum gravity dual of the SYK model ?



S. Sachdev, PRL 105, 151602 (2010)



Quantum gravity on the 1+1 dimensional spacetime AdS₂ (when embedded in AdS₄) is holographically matched to the 0+1 dimensional SYK model

S. Sachdev, PRL 105, 151602 (2010); A. Kitaev (unpublished); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857

Many-body quantum chaos

• Using holographic analogies, Shenker and Stanford introduced the "Lyapunov time", τ_L , the time over which a generic many-body quantum system loses memory of its initial state.

S. Shenker and D. Stanford, arXiv:1306.0622

Many-body quantum chaos

- Using holographic analogies, Shenker and Stanford introduced the "Lyapunov time", τ_L , the time over which a generic many-body quantum system loses memory of its initial state. S. Shenker and D. Stanford, arXiv:1306.0622
- A shortest-possible time to reach quantum chaos was established

$$\tau_L \ge \frac{\hbar}{2\pi k_B T}$$

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409

Many-body quantum chaos

- Using holographic analogies, Shenker and Stanford introduced the "Lyapunov time", τ_L , the time over which a generic many-body quantum system loses memory of its initial state. S. Shenker and D. Stanford, arXiv:1306.0622
- A shortest-possible time to reach quantum chaos was established

$$\tau_L \ge \frac{\hbar}{2\pi k_B T}$$

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409

• The SYK model, and black holes in Einstein gravity, saturate the bound on the Lyapunov time

$$\tau_L = \frac{\hbar}{2\pi k_B T}$$

A. Kitaev, unpublished J. Maldacena and D. Stanford, arXiv:1604.07818 Quantum matter without quasiparticles:

- No quasiparticle decomposition of low-lying states: $E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha}$ $+ \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$
- Thermalization and many-body chaos in the shortest possible time of order $\hbar/(k_B T)$.

Quantum matter without quasiparticles:

- No quasiparticle decomposition of low-lying states: $E \neq \sum_{\alpha} n_{\alpha} \varepsilon_{\alpha}$ $+ \sum_{\alpha,\beta} F_{\alpha\beta} n_{\alpha} n_{\beta} + \dots$
- Thermalization and many-body chaos in the shortest possible time of order $\hbar/(k_B T)$.
- These are also characteristics of black holes in quantum gravity.