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Theory of (ordinary) metals
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Theory of (ordinary) metals



A quasiparticle is an “excited lump” in the many-
electron state which responds just like an ordinary 
particle. 

R.D. Mattuck

Quasiparticles:



The quasiparticle idea is the key reason for the many 
successes of quantum condensed matter physics:

 Fermi liquid theory of metals, insulators, semiconductors

 Theory of superconductivity (pairing of quasiparticles)

 Theory of disordered metals and insulators (diffusion and 
localization of quasiparticles)

 Theory of metals in one dimension (collective modes as 
quasiparticles)

 Theory of the fractional quantum Hall effect (quasiparticles 
which are `fractions’ of an electron)

Quantum matter with quasiparticles:
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Quantum matter without quasiparticles



“Strange”,

“Bad”,

or “Incoherent”,

metal has a resistivity, ⇢, which obeys

⇢ ⇠ T ,

and

⇢ � h/e2

(in two dimensions),

where h/e2 is the quantum unit of resistance.



“Strange”,

“Bad”,

or “Incoherent”,

metal has a resistivity, ⇢, which obeys

⇢ ⇠ T ,

and

⇢ � h/e2

(in two dimensions),

where h/e2 is the quantum unit of resistance.



TSDW 
Tc

 

T0 

2.0 

0 

α"

1.0 SDW 

Superconductivity 

BaFe2(As1-xPx)2 

Resistivity
⇠ ⇢0 +AT↵

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, 
R. Okazaki, H. Shishido, H. Ikeda, H. Takeya, K. Hirata, 
T. Terashima, and Y. Matsuda,  PRB 81, 184519 (2010)

AF 
+nematic

Strange
(or “bad”

or “incoherent”)
Metal

Quantum matter without quasiparticles

⇢ ⇠ T
⇢ � h/e2



• Note: The electron liquid in one dimension and the fractional
quantum Hall state both have quasiparticles; however, the quasi-
particles do not have the same quantum numbers as an electron.

Quantum matter with quasiparticles:

• Quasiparticles are additive excitations:

The low-lying excitations of the many-body system

can be identified as a set {n↵} of quasiparticles with

energy "↵

E =

P
↵ n↵"↵ +

P
↵,� F↵�n↵n� + . . .

In a lattice system ofN sites, this parameterizes the energy

of ⇠ e↵N states in terms of poly(N) numbers.



Quantum matter with quasiparticles:

• Quasiparticles eventually collide with each other. Such

collisions eventually leads to thermal equilibration in a

chaotic quantum state, but the equilibration takes a long

time. In a Fermi liquid, this time diverges as

⌧eq ⇠ ~EF

(kBT )2
, as T ! 0,

where EF is the Fermi energy.
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Quantum Ising models
Qubits with states |"i

i

, |#i
i

, on the sites, i, of a regular lattice.

�z |"i = |"i , �z |#i = � |#i
�x |"i = |#i , �x |#i = |"i

H = �J

0

@
X

hiji

�z

i

�z

j

+ g
X

i

�x

i

!

For g = 0, ground state is a ferromagnet:

|Gi = |· · · """"" · · · i or |· · · ##### · · · i

For g � 1, unique ‘paramagnetic’ ground state:

|Gi = |· · ·!!!!! · · · i

where

|!i = 1p
2

(|"i+ |#i) , | i = 1p
2

(|"i � |#i)



Quantum Ising models
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FIG. 5. Non-zero temperature properties of the Ising quantum spin chain which models CoNb2O6

shown in Fig. 1. Shown are theoretical computations from the exactly solvable spin chain with
nearest-neighbor exchange. The color plot indicates the value of the (4~c/⇡k

B

)(d⇠�1/dT ), where
⇠ is the spin correlation length and c is the velocity of spin excitations; this dimensionless number
has a T dependence similar to that of the T derivative of ⌧�1

eq of non-integrable strongly-interacting
quantum critical points. Also indicated are typical spin configurations in the two low temperature
regimes. For g < g

c

, we have the ferromagnetic configurations of Eq. (1) separated by domain walls,
while for g > g

c

we have the paramagnetic state of Eq. (2) with its ‘reversed spin’ excitations; here
|!i = (| "i+ | #i)/

p
2 and | i = (| "i � | #i)/

p
2.

Given its smallest value of ⌧eq, quantum criticality realizes the perfect fluid5.

We also illustrate the similar T > 0 crossovers for the Ising chain found in CoNb2O6 in

Fig. 5. The quantum spin chain with only nearest-neighbor exchange couplings is exactly

solvable, and we plot a quantity closely related to the temperature derivative of ⌧�1
eq for

generic quantum critical points: these clearly illustrate the 3 regimes of Fig. 4, including

the central regime of quantum criticality.

The behavior in Eq. (4) can be detected in experiments by measuring various response

functions as a function of both frequency (!) and T . Then we expect6 these results to

depend only upon the single variable ~!/k
B

T . Inelastic neutron scattering experiments on

insulating compounds with spin-1/2 ions on one-dimensional and geometrically frustrated

two-dimensional lattices7, as well as metallic copper oxides8 and heavy-fermion compounds9

near the doping levels at which antiferromagnetic long-range order vanishes have revealed

that this function scales with the ratio !/T .

The transport properties of the quantum critical region also enjoy a great deal of uni-

versality. This is expected from our reasoning above, because the values of the transport

coe�cients depend on the same processes which establish local equilibrium. We mention

10

d⇠�1

dT

• In one dimension, quasiparticles exist even at the quantum

critical point: there is a non-local transformations from the

qubits to a system of free fermions.

Ferromagnet Paramagnet

One 
dimension

CoNb2O6



Quantum Ising models
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Two 
dimensions

Wilson-Fisher CFT3

at T > 0

• In two dimensions, the “quantum critical” region provides us the first

example of a system without a quasiparticle description. This is de-

scribed by a strongly-coupled conformal field theory (CFT) in 2+1

dimensions, and dynamic properties cannot be computed accurately.



Quantum Ising models

g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

CFT3 at T>0

Ferromagnet
Quantum
Paramagnet

Tc

• In two dimensions, the “quantum critical” region provides us the first

example of a system without a quasiparticle description. This is de-

scribed by a strongly-coupled conformal field theory (CFT) in 2+1

dimensions, and dynamic properties cannot be computed accurately.

⌧eq = #
~
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                S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

Two 
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A simple model of a metal with quasiparticles

Pick a set of random positions



Place electrons randomly on some sites

A simple model of a metal with quasiparticles



Electrons move one-by-one randomly

A simple model of a metal with quasiparticles
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Electrons move one-by-one randomly

A simple model of a metal with quasiparticles



H =
1

(N)1/2

NX

i,j=1

tijc
†
i cj + . . .

cicj + cjci = 0 , cic
†
j + c†jci = �ij

1

N

X

i

c†i ci = Q

Fermions occupying the eigenstates of a 
N x N random matrix

tij are independent random variables with tij = 0 and |tij |2 = t2

A simple model of a metal with quasiparticles



A simple model of a metal with quasiparticles

!

Let "↵ be the eigenvalues of the matrix tij/
p
N .

The fermions will occupy the lowest NQ eigen-

values, upto the Fermi energy EF . The density

of states is ⇢(!) = (1/N)

P
↵ �(! � "↵).

EF

⇢(!)



A simple model of a metal with quasiparticles

Quasiparticle

excitations with

spacing ⇠ 1/N
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body levels with energy

E =

NX
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n↵"↵,

where n↵ = 0, 1. Shown
are all values of E for a

single cluster of size

N = 12. The "↵ have a

level spacing ⇠ 1/N .
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The Sachdev-Ye-Kitaev (SYK) model

Pick a set of random positions



Place electrons randomly on some sites

The SYK model



Entangle electrons pairwise randomly

The SYK model
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Entangle electrons pairwise randomly

The SYK model



This describes both a strange metal and a black hole!

The SYK model



A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981))

The SYK model

H =
1

(2N)3/2

NX

i,j,k,`=1

Uij;k` c
†
i c

†
jckc` � µ

X

i

c†i ci

cicj + cjci = 0 , cic
†
j + c†jci = �ij

Q =
1

N

X

i

c†i ci

Uij;k` are independent random variables with Uij;k` = 0 and |Uij;k`|2 = U2

N ! 1 yields critical strange metal.



GPS:   A. Georges, O. Parcollet, and S. Sachdev, 
PRB 63, 134406 (2001)

Many-body

level spacing ⇠
2

�N
= e�N ln 2

W. Fu and S. Sachdev, PRB 94, 035135 (2016)

Non-quasiparticle

excitations with

spacing ⇠ e�Ns0

There are 2

N
many body levels

with energy E, which do not

admit a quasiparticle

decomposition. Shown are all

values of E for a single cluster of

size N = 12. The T ! 0 state

has an entropy SGPS = Ns0
with

s0 =

G

⇡
+

ln(2)

4

= 0.464848 . . .

< ln 2

where G is Catalan’s constant,

for the half-filled case Q = 1/2.

The SYK model
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No quasiparticles !

E 6=
P

↵ n↵"↵
+

P
↵,� F↵�n↵n� + . . .

The SYK model



The SYK model

• T = 0 fermion Green’s function is incoher-

ent: G(⌧) ⇠ ⌧�1/2
at large ⌧ . (Fermi liquids

with quasiparticles have the coherent: G(⌧) ⇠
1/⌧)

• T > 0 Green’s function has conformal invari-

ance: G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

• The last property indicates ⌧eq ⇠ ~/(kBT ),
and this has been found in a recent numeri-

cal study.

S. Sachdev and J. Ye, PRL 70, 3339 (1993)



The SYK model

• T = 0 fermion Green’s function is incoher-

ent: G(⌧) ⇠ ⌧�1/2
at large ⌧ . (Fermi liquids

with quasiparticles have the coherent: G(⌧) ⇠
1/⌧)

• T > 0 Green’s function has conformal invari-

ance: G ⇠ (T/ sin(⇡kBT ⌧/~))1/2

• The last property indicates ⌧eq ⇠ ~/(kBT ),
and this has been found in a recent numeri-

cal study.

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

A. Georges and O. Parcollet PRB 59, 5341 (1999)



A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, arXiv:1706.07803
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• If there are no quasiparticles, then

E 6=
X

↵

n↵"↵ +

X

↵,�

F↵�n↵n� + . . .

• If there are no quasiparticles, then

⌧eq = #

~
kBT

• Systems without quasiparticles are the fastest possible in reaching local

equilibrium, and all many-body quantum systems obey, as T ! 0

⌧eq > C
~

kBT
.

– In Fermi liquids ⌧eq ⇠ 1/T 2
, and so the bound is obeyed as T ! 0.

– This bound rules out quantum systems with e.g. ⌧eq ⇠ ~/(JkBT )1/2.
– There is no bound in classical mechanics (~ ! 0). By cranking up

frequencies, we can attain equilibrium as quickly as we desire.

                S. Sachdev, 
Quantum Phase Transitions, 

Cambridge (1999)

Quantum matter without quasiparticles:
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A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 23, 2017)

Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !
1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from

Ut
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A strongly correlated metal built from Sachdev-Ye-Kitaev models
Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)

A strongly correlated metal built from Sachdev-Ye-Kitaev models

Xue-Yang Song,1, 2 Chao-Ming Jian,2, 3 and Leon Balents2

1International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
2Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA
(Dated: May 8, 2017)

Strongly correlated metals comprise an enduring puzzle at the heart of condensed matter physics.
Commonly a highly renormalized heavy Fermi liquid occurs below a small coherence scale, while at
higher temperatures a broad incoherent regime pertains in which quasi-particle description fails. Despite
the ubiquity of this phenomenology, strong correlations and quantum fluctuations make it challenging to
study. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with random all-to-all
four-fermion interactions among N Fermion modes which becomes exactly solvable as N ! 1, exhibiting
a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence of quasi-
particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic hopping.
Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy
Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find
linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two
universal values as a function of temperature. Our work exemplifies an analytically controlled study of a
strongly correlated metal.

Prominent systems like the high-Tc cuprates and heavy
fermions display intriguing features going beyond the quasi-
particle description[1–9]. The exactly soluble SYK models
provide a powerful framework to study such physics. The
most-studied SYK4 model, a 0 + 1D quantum cluster of N
Majorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–25]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature
scale Ec ⌘ t2

0/U0[21, 26, 27] between a heavy Fermi liquid
and an incoherent metal. For T < Ec, the SYK2 induces a

Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[28], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[29, 30] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,
H =

X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from
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Low ‘coherence’ scale

Ec ⇠
t20
U

4

The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See Sec.B). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[31], the action (9)
yields the di↵usive form [32]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads (Sec. B)

iS ✏ =
X

p

Z +1

�1
d! ✏c,!(2i�!2T 2 � p2⇤3(!))✏q,�! + · · · , (12)

where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in Sec. B,
behaves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy dif-
fusion constant D✏ . This identification is seen from the corre-
lator for energy density modes "c/q ⌘ iN�S ✏

�✏̇c/q
,

DR"(p,!) =
i
2
h"c"qip,! = �NT 2�D✏ p2

i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (B2), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

(a)

(b)

FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
Ec

)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
⇡2

8 , in the two regimes.
The solid curves are guides to the eyes.

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[33, 34].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary lin-
early with temperature: R⇣(T ) ⇠ c⇣ T . We analytically obtain
c' = 2p

⇡
and c" = 16

⇡5/2 (Supplementary Information), implying
that the Lorenz number, characterizing the Wiedemann-Franz
law, takes the unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0.
More generally, the scaling form (B2) implies that L is a uni-
versal function of T/Ec, verified numerically as shown in
Fig. 3b. The Lorenz number increases with lower tempera-
ture, saturating at T ⌧ Ec to the Fermi liquid value ⇡2/3.

Conclusion – We have shown that the SYK model pro-
vides a soluble source of strong local interactions which,
when coupled into a higher-dimensional lattice by ordinary
but random electron hopping, reproduces a remarkable num-

A strongly correlated metal built from Sachdev-Ye-Kitaev models
Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)
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but random electron hopping, reproduces a remarkable num-

Low ‘coherence’ scale

Ec ⇠
t20
U

For Ec < T < U , the

resistivity, ⇢, and
entropy density, s, are

⇢ ⇠ h

e2

✓
T

Ec

◆
, s = s0

A strongly correlated metal built from Sachdev-Ye-Kitaev models
Xue-Yang Song, Chao-Ming Jian, and L. Balents, arXiv:1705.00117

See also A. Georges and O. Parcollet PRB 59, 5341 (1999)



Black 
holes

• Black holes have an entropy

and a temperature, TH .

• The entropy is proportional

to their surface area.

• They relax to thermal equi-

librium in a time⇠ ~/(kBTH).
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• The ring-down is predicted by General Relativity to happen in a

time

8⇡GM

c3
⇠ 8 milliseconds. Curiously this happens to equal

~
kBTH

: so the ring down can also be viewed as the approach of a

quantum system to thermal equilibrium at the fastest possible rate.
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

There is a family of 
solutions of Einstein 

gravity which 
describe non-zero 

temperatures

ds
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kBT =

3~
4⇡R

.

Maldacena, Gubser, Klebanov, Polyakov, Witten
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SYK and black holes

T2

Is there a holographic quantum 
gravity dual of the SYK model ?
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charge
density Q

S. Sachdev, PRL 105, 151602 (2010)

T2

SYK and black holes

S =

Z
d

4
x

p
�ĝ

✓
R̂+ 6/L2 � 1

4
F̂µ⌫ F̂

µ⌫

◆

Black hole
horizon

Yes, the properties of a charged black hole in 
Einstein-Maxwell theory holographically match 

those of the SYK model !
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⇣ = 1

charge
density Q

T2

SYK and black holes
Black hole

horizon

AdS2 ⇥ T2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

Quantum gravity on the 1+1 dimensional spacetime AdS2 
(when embedded in AdS4) is holographically matched 

to the 0+1 dimensional SYK model

S. Sachdev, PRL 105, 151602 (2010); A. Kitaev (unpublished); J. Maldacena, D. Stanford, and Zhenbin Yang, arXiv:1606.01857



Many-body quantum chaos

A. Kitaev, unpublished
J. Maldacena and D. Stanford, 

arXiv:1604.07818

• Using holographic analogies, Shenker and Stanford

introduced the “Lyapunov time”, ⌧L, the time over

which a generic many-body quantum system loses

memory of its initial state.

• A shortest-possible time to reach quantum chaos was

established

⌧L � ~
2⇡kBT

• The SYK model, and black holes in Einstein gravity,

saturate the bound on the Lyapunov time

⌧L =

~
2⇡kBT

S. Shenker and D. Stanford, arXiv:1306.0622

          J. Maldacena, S. H. Shenker and 
D. Stanford, arXiv:1503.01409
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Quantum matter without quasiparticles:

• No quasiparticle

decomposition of low-lying states:

E 6=
P

↵ n↵"↵
+

P
↵,� F↵�n↵n� + . . .

• Thermalization and many-body chaos in

the shortest possible time of order ~/(kBT ).

• These are also characteristics of black holes

in quantum gravity.
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