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Outline of Lectures

I. Magnetic quantum phase 
transitions in Mott insulators: 

paramagnetic states with 
confinement and deconfinement 
of spinons, and charge stripe 
order.

II. Non-magnetic impurities in two-
dimensional antiferromagnets and 
superconductors:

NMR and neutron scattering 
experiments with and without 
Zn/Li impurities

III. Quantum phase transitions in d-
wave superconductors:

Photo-emission experiments and 
the case for fluctuating
pairing order.
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Lecture I

1. Neel and paramagnetic states of the 
coupled ladder antiferromagnet.

Coherent state path integral and field 
theory for the quantum phase 
transition

2. Paramagnets on the square lattice.

Confinement of spinons and bond-
centered charge stripe order. 
Generalization to magnetic transitions 
in d-wave superconductors

3.    Magnetically ordered and 
paramagnetic states on strongly 
frustrated square lattices and the 
triangular lattice.

Non-collinear spin correlations and 
the deconfinement of spinons.

Magnetic quantum phase transitions in 
Mott insulators:



I.1 Neel and paramagnetic states of the 
coupled ladder antiferromagnet

S=1/2 spins on coupled 2-leg ladders
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Follow ground state as a function of λ

10 ≤≤ λ

JλJ

(Katoh and Imada; 
Tworzydlo, Osman, van Duin and Zaanen)



 close to 1λ
Square lattice antiferromagnet

Experimental realization: 42CuOLa

Ground state has long-range
magnetic (Neel) order 
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Excitations:  2 spin waves
Quasiclassical wave dynamics at low T

(Chakravarty et al, 1989;
Tyc et al, 1989)



 close to 0λ
Weakly coupled ladders

Paramagnetic ground state 0iS =
�
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Excitation: S=1, φα particle (collective mode)

Energy dispersion away from
antiferromagnetic wavevector
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Quantum 
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Spin gap ∆res Neel order 0N



Nearly-critical paramagnets 

λ is close to λ c

Quantum field theory:

αφ 3-component antiferromagnetic 
order parameter

Oscillations of       about zero (for r > 0)  
spin-1 collective mode

αφ

T=0 spectrum
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Coupling g approaches fixed-point value under
renormalization group flow: beta function (ε = 3-d) :

Only relevant perturbation � r
strength is measured by the spin gap ∆

∆res and c completely determine entire 
spectrum of quasi-particle peak and 
multiparticle continua, the S matrices for 
scattering between the excitations, 
and T > 0 modifications.
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N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989)
O. P. Sushkov, J. Oitmaa, and Z. Weihong, 
condmat/0007329.
M.S.L. du Croo de Jongh, J.M.J. van Leeuwen, W. van
Saarloos, cond-mat/0002116.

Spin-Peierls state
�Bond-centered charge stripe�
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Neel state
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Square lattice with first (J1) and second (J2) 
neighbor exchange interactions

I.2 Paramagnets on the square lattice



Quantum dimer model �
D. Rokhsar and S. Kivelson Phys. Rev. Lett. 61, 2376 (1988)

N. Read and S. Sachdev Phys. Rev. B 42, 4568 (1990). 

Quantum �entropic� effects prefer one-dimensional 
striped structures in which the largest number of singlet 
pairs can resonate. The state on the upper left has more 
flippable pairs of singlets than the one on the lower left.
These effects always lead to a broken square lattice 
symmetry near the transition to the Neel state (more 
generally, this behavior is generic near magnetically 
ordered states with a collinear spin polarization)



Excitations
Stable S=1 particle 

Energy dispersion
2 2 2 2
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∆
→∆ Spin gap

S=1/2 spinons are linearly confined by the 
line of  �defect� singlet pairs between them



I.3  Paramagnets on the triangular and frustrated square 
lattices � spinon deconfinement

P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974).
S. Sachdev, Phys. Rev. B 45, 12377 (1992). 
G. Misguich and C. Lhuillier, cond-mat/0002170.
R. Moessner and S.L. Sondhi, cond-mat/0007378. 

Translationally invariant �spin liquid� state obtained 
by a quantum transition from a magnetically ordered 
state with co-planar spin polarization. Transition to 
confined states is described by a Z2 gauge theory

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
R. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991).
X.G. Wen, Phys. Rev. B 44, 2664 (1991).
T. Senthil and M.P.A. Fisher, Phys. Rev. B 62, 7850 (2000).



Antiferromagnet on the Shastry-Sutherland lattice

Experimentally realized by SrCu2(BO3)2

Attractive candidate for accessing states with 
spin-charge separation

S. Sachdev, C.-H. Chung, and J.B. Marston, to appear



Lecture II

1. Impurities in the coupled ladder 
antiferromagnet

Berry phases and properties across the 
bulk quantum phase transition

2. Impurities in paramagnets with and 
without spinon deconfinement square.

3.    From quantum paramagnets to d-wave 
superconductors.

Nature of magnetic ordering 
transition; fate of charge stripe order 
and non-magnetic impurities.

4. Experiments on d-wave 
superconductors.

NMR on Zn/Li impurities; neutron 
scattering measurements of phonon 
spectra and collective spin excitations; 
effective of Zn impurities on 
collective spin resonance

Non-magnetic impurities in two-
dimensional antiferromagnets and 

superconductors



Make anyany localized deformation e.g. remove a spin

X

Susceptibility impbA χχχ +=
(A = area of system)

In paramagnetic phase as 0→T
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For a general impurity impχ defines the value of S

II.1 Impurities in the coupled-ladder 
antiferromagnet



Orientation of �impurity� spin -- )(ταn

Action of �impurity� spin

(unit vector)
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Boundary quantum field theory: 

Dirac monopole function

Recall -
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Coupling γ approaches also approaches a fixed-point 
value under the renormalization group flow

No new relevant perturbations on the boundary;
All other boundary perturbations are irrelevant �

e.g. 

∆ and c completely determine spin 
dynamics near an impurity �

No new parameters are necessary !

(Sengupta, 97
Sachdev+Ye, 93
Smith+Si 99)Beta function:
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cλλ =point critical at the properties Universal
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This last relationship holds in the multi-channel 
Kondo problem because the magnetic response of the 
screening cloud is negligible due to an exact 
�compensation� property. There is no such property 
here, and naïve scaling applies. This leads to 

TkB
imp

numberUniversal=χ

Curie response of an irrational spin

η� is a new boundary scaling dimension
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In the Neel phase

stiffnessspin
numberUniversal=⊥impχ

( ) 2/1 stiffnessspin sysxs ρρρ =
Bulk susceptibility vanishes while impurity 
susceptibility diverges as 0→sρ

    
3
2

3
        

 toleadsaveragingthermal,0 At

imp

2

 imp ⊥+=

>

χχ
Tk

S
T

B



Finite density of impurities impn

Relevant perturbation � strength determined by only 
energy scale that is linear in         and contains only 
bulk parameters

impn

∆
≡Γ

2
imp )( cn �

Two possible phase diagrams
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Fate of collective mode peak
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Without impurities

With impurities

Φ Universal scaling function. We computed
it in a �self-consistent, non-crossing� approximation 

Predictions: Half-width of line 
Universal asymmetric lineshape

Γ≈



Spinon confinement implies that free S=1/2 
moments must form near each impurity

Zn or Li impurities substitute for Cu ions

Zn

Zn

Zn

Zn

II.2a. Impurities in square lattice 
paramagnets with confinement



II.2b. Impurities in paramagnets with spinon 
deconfinement

P. Fazekas and P.W. Anderson, Phil Mag 30, 23 (1974).
S. Sachdev, Phys. Rev. B 45, 12377 (1992). 
G. Misguich and C. Lhuillier, cond-mat/0002170.
R. Moessner and S.L. Sondhi, cond-mat/0007378. 

�Spin
Liquid�
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Constraints from momentum conservation 
in d-wave superconductors

αφCollective magnetic excitations,       , are not 
damped by fermionic Bogoliubov quasiparticles



(A) Insulating Neel state (or collinear SDW at 
wavevector Q)               insulating quantum 
paramagnet

⇔
(B) d-wave superconductor with collinear 

SDW at wavevector Q d-wave 
superconductor (paramagnet)

⇔

As 0 there is a quantum phase transition
to a magnetically ordered state

∆ →

Transition (B) is in the same universality class as 
(A) provided Ψh fermions remain gapped at 

quantum-critical point.



II.3. Quantum paramagnets to d-wave 
superconductors: evolution with density of mobile 
carriers of density δ

A. Doping a paramagnet with confinement

Condensate of hole pairs

B. Doping a deconfined paramagnet

If holes are bosons, single hole condensation leads 
to a superconductor with some exotic properties

E. Fradkin and S. Kivelson, Mod. Phys. Lett B 4, 225 (1990).
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). 

Flux trapping (T. Senthil and M.P.A. Fisher, Phys. Rev. Lett. 86, 292 
(2001))
hc/(2e) flux quantum (S. Kivelson, D.S. Rokhsar and J.P. Sethna, 

Europhys. Lett. 6, 353 (1988))
Stable hc/e vortices (S. Sachdev, Phys. Rev. B 45, 389 (1992); 

N. Nagaosa and P.A. Lee, Phys. Rev. B 45, 966 (1992))



Phase diagram for case A

Superconductivity coexists with charge stripe 
order in region without magnetic order
S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991). 
M. Vojta and S. Sachdev, Phys. Rev. Lett. 83, 3916 (1999).
M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. B 62, 6721 (2000)
See also J. Zaanen, Physica C 217, 317 (1999),
S. Kivelson, E. Fradkin and V. Emery, Nature 393, 550 (1998),
S. White and D. Scalapino, Phys. Rev. Lett. 80, 1272 (1998); 81, 3227 (1998).



Neutron scattering 
measurements of phonon 
spectrum of superconducting
La1.85Sr0.15CuO4 by  
R. J. McQueeney,  Y. Petrov, 
T. Egami, M. Yethiraj, 
G. Shirane, and Y. Endoh, 
Phys. Rev. Lett. 82, 628 (1999)

Oxygen

Copper

Thanks to S. Kivelson

Stripe correlations in the superconductor



Computation of 
phonon spectrum by 
McQueeney et al
using a simple model 
based on lattice 
modulation below

Evidence for coexistence of  spin-Peierls 
order and 

�d-wave� superconductivity.
S. Sachdev & N. Read, Int. J. Mod. Phys. B 5, 219 (1991). 



Spin-1 collective mode in                    - little observable
damping at low T. Coupling to superconducting 
quasiparticles unimportant.

Continuously connected to S=1 
particle in confined Mott insulator

732 OCuYBa

S=1 resonance mode in  YBCO

H.F. Fong, B. Keimer, D. Reznik, 
D.L. Milius, and I.A. Aksay,       
Phys. Rev. B 54, 6708 (1996)



δ

Spin liquid with 
spinon deconfinement

d-wave 
superconductor

Case B

No moments form near Zn or Li ions 
substituted for Cu and impurity response 

evolves smoothly

δ

d-wave 
superconductor

Case A

Moments form near each Zn or Li. 

This moment is quenched at a quantum phase 
transition at δ=δc.

Striped insulator with 
spinon confinement

Zn or Li impurities in doped Mott insulators

δc

D. Withoff and E. Fradkin, Phys. Rev. Lett. 64, 1835 (1990).
C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 57, 14254 (1998).



J. Bobroff, H. Alloul, W.A. MacFarlane, P. Mendels,
N. Blanchard, G. Collin, and J.-F. Marucco, cond-mat/0010234.

Inverse local susceptibility of 
isolated Li impurities in YBCO

NMR on Zn/Li impurities

7Li NMR below Tc

II.4. Recent experiments on d-wave 
superconductors



Moments measured by 
analysis of Knight shifts

M.-H. Julien, T. Feher,         
M. Horvatic, C. Berthier,
O. N. Bakharev, P. Segransan, 
G. Collin, and J.-F. Marucco,
Phys. Rev. Lett. 84, 3422 
(2000); also earlier work of 
the group of H. Alloul and the 
original experiment of 
A.M Finkelstein, V.E. Kataev, 
E.F. Kukovitskii, and 
G.B. Teitel�baum, Physica C 
168, 370 (1990).

6.732 OCuYBa

Berry phases of precessing spins do not cancel 
between the sublattices in the vicinity of the 
impurity: net uncancelled phase of S=1/2

Zn impurity in



H. F. Fong, P. Bourges, 
Y. Sidis, L. P. Regnault, 
J. Bossy,  A. Ivanov, 
D.L. Milius, I. A. Aksay, 
and B. Keimer,        
Phys. Rev. Lett. 82, 1939 
(1999)

 Zn0.5%  OCuYBa 732 +

Zn



H. F. Fong, P. Bourges, 
Y. Sidis, L. P. Regnault, 
J. Bossy,  A. Ivanov, 
D.L. Milius, I. A. Aksay, 
and B. Keimer,        
Phys. Rev. Lett. 82, 1939 
(1999)

 Zn0.5%  OCuYBa 732 +

0.125    meV, 5   
eV 2.0                

meV 40                

005.0                imp

=∆Γ=Γ�

=
=∆

=

c

n

�

Quoted half-width = 4.25 meV



Lecture III

1. Motivation from photo-emission 
experiments.

2. Field theories for low energy 
fermionic excitations near quantum 
phase transitions.

Classification of all possible spin 
singlet order parameters with zero 
total momentum 

3. Renormalization group analysis.

Selection of order

Quantum phase transitions in d-wave 
superconductors
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Photoemission on BSSCO 
(Valla et al Science 285, 2110 (1999))

Quantum-critical 
damping of quasi-
particles along (1,1) 



Goal: Classify theories in which, with 
minimalminimal fine tuning, a d-wave 
superconductor has a fermionic 
quasiparticle momentum distribution 
curve (MDC), at the nodal points, 
with a width proportional to  Bk T

In a Fermi liquid, MDC width 2~ T

In a BCS d-wave superconductor, 
MDC width 3~ T



Proximity to a quantum-critical point

T

ssc

Superconducting Tc

d-wave 
superconductor

Superconducting
state X 

Quantum
criticalXT



Necessary conditions

1. Quantum-critical point should be below its upper-
critical dimension and obey hyperscaling. 

2. Nodal quasi-particles should be part of the critical-
field theory. 

3. Critical field theory should not be free � required 
to obtain damping in the scaling limit. 



Low energy fermionic excitations of a
d-wave superconductor

Gapless Fermi Points in a 
d-wave superconductor at
wavevectors 

K=0.391π
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2a. Charge stripe order

Charge density
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If                 fermions 
do not couple 
efficiently to the 
order parameter and 
are not part of the 
critical theory

KG 2≠

Action for quantum fluctuations of order parameter

SΦ =
∫
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A spin-singlet, fermion bilinear, 
zero momentum order parameter for X

is preferred.

If ordering wavevector does not connect 
two nodal points, nodal fermions are not 
part of the critical theory, and do not 
suffer critical damping.

Similar reasoning can be used to argue 
against magnetic order parameters and the 

staggered-flux order.
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Order parameter for  should be a component of

 (fermion pairing) 
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 (excitonic order)
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Ising order parameter φ (except for case (G))

Quantum field theory for critical point

Coupling to nodal fermions
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Main results

Only cases 

have renormalization group fixed points with 
a non-zero interaction strength between 

the bosonic order parameter mode and the 
nodal fermions.  

Only cases (A) and (B) satisfy
conditions 1,2,3 

2 2 2 2

2 2 2 2

    pairing an(A)

(B

d

 pairing)
x y x y

xyx y x y

d d is

d d id
− −

− −

⇔ +

⇔ +

xyd pairing vanishes along the (1,0),(0,1) 
directions, and so only case (B) does not 
strongly scatter the anti-nodal quasiparticles

xydTransition to         pairing is expected with 
increasing J2



Conclusions

1. Argued that many properties of the 
superconductor can be understood by adiabatic 
continuity from  a reference paramagnetic Mott 
insulator with confinement � such a state 
requires S=1 spin resonance, broken 
translational symmetry (stripe order), and 
moments near non-magnetic impurities.

2. Clear NMR evidence for S=1/2 moment near 
non-magnetic impurities.

3. Quantitative comparison of neutron scattering 
experiments on Zn impurities with theory.

4. Evidence for theoretically predicted bond-
centered stripe correlations in paramagnetic 
phase with d-wave superconductivity.

5. Damping of nodal quasiparticles may be 
associated with proximity to a quantum critical 
point to a                    superconductor. Such a 
state is expected at larger second neighbor 
exchange.  
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