Superfluids and their vortices

Subir Sachdev

Talk online: http://pantheon.yale.edu/~subir

The reason for superflow: The Bose-Einstein condensate:

A macroscopic number of bosons occupy the lowest energy quantum state

Such a condensate also forms in systems of fermions, where the bosons are Cooper pairs of fermions:

Pair wavefunction in cuprates: $\Psi = \left(k_x^2 - k_y^2\right) \left(\left|\uparrow\downarrow\right\rangle - \left|\downarrow\uparrow\right\rangle\right)$ $\left\langle \vec{S} \right\rangle = 0$

What is Bose-Einstein condensation (BEC)?

High Temperature T: thermal velocity v density d⁻³ "Billiard balls"

Low Temperature T: De Broglie wavelength λ_{dB}=h/mv ∝ T^{-1/2} "Wave packets"

T=T_{crit}: Bose-Einstein Condensation λ_{dB} = d "Matter wave overlap"

T=0: Pure Bose condensate "Giant matter wave"

Velocity distribution function of ultracold ⁸⁷Rb atoms

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, *Science* **269**, 198 (1995)

⁸⁷Rb bosonic atoms in a magnetic trap and an optical lattice potential

The strength of the period potential can be varied in the experiment

Tunneling between neighboring minima is negligible and atoms remain localized in a well. However, the total wavefunction must be symmetric between exchange

Tunneling between neighboring minima is negligible and atoms remain localized in a well. However, the total wavefunction must be symmetric between exchange

Tunneling between neighboring minima is negligible and atoms remain localized in a well. However, the total wavefunction must be symmetric between exchange

 $\begin{aligned} \left| \text{Insulator} \right\rangle &= \left| \left| O \right| O \right| O \right| \right\rangle + \left| \left| O \right| O \right| O \right| O \right| O \\ &+ \left| \left| O \right| O \right| O \right| \right\rangle + \left| \left| O \right| O \right| O \right| O \\ &+ \left| \left| O \right| O \right| O \right| \right\rangle + \left| \left| O \right| O \right| O \right| O \\ \end{aligned}$

$|\mathbf{G}\rangle = e^{i\phi} \left(||\mathbf{O}| | |\rangle + || |\mathbf{O}| |\rangle + || |\mathbf{O}| \rangle \right)$

The ground state of a single particle is a zero momentum state, which is a quantum superposition of states with different particle locations. <u>The Bose-Einstein condensate in a weak periodic potential</u> Lowest energy state for many atoms

$$\begin{aligned} |\mathbf{BEC}\rangle &= |\mathbf{G}\rangle|\mathbf{G}\rangle \\ &= e^{3i\phi} \left(||\mathbf{O}|\mathbf{O}|\mathbf{O}\rangle + ||\mathbf{O}|\mathbf{O}|\mathbf{O}\rangle + ||\mathbf{O}|\mathbf{O}|\mathbf{O}\rangle + ||\mathbf{O}||\mathbf{O}|\mathbf{O}\rangle \right) \\ &+ ||\mathbf{O}||\mathbf{O}\rangle + ||\mathbf{O}||\mathbf{O}\rangle + ||\mathbf{O}||\mathbf{O}\rangle + ||\mathbf{O}||\mathbf{O}\rangle + ||\mathbf{O}||\mathbf{O}\rangle + ||\mathbf{O}||\mathbf{O}\rangle \right) \end{aligned}$$

Large fluctuations in number of atoms in each potential well – *superfluidity* (atoms can "flow" without dissipation)

The Bose-Einstein condensate in a weak periodic potential Lowest energy state for many atoms

 $|\mathbf{BEC}\rangle = |\mathbf{G}\rangle|\mathbf{G}\rangle|\mathbf{G}\rangle$ $=e^{3i\phi}\left(\left|\left|\bigcirc\right|\bigcirc\right|\right\rangle + \left|\left|\bigcirc\right|\bigcirc\right|\bigcirc\right\rangle + \left|\left|\bigcirc\right|\\0\right\rangle + \left|\left|\bigcirc\right|\\0\right\rangle + \left|\left|\bigcirc\right|\\0\right\rangle\right\rangle$ $+ \left| \begin{vmatrix} 0 \\ 0 \end{vmatrix} \right| \left| 0 \right| \right\rangle + \left| \begin{vmatrix} 0 \\ 0 \end{vmatrix} \right\rangle + \dots 27 \text{ terms} \right)$

Large fluctuations in number of atoms in each potential well – *superfluidity* (atoms can "flow" without dissipation)

- *superfluidity* (atoms can "flow" without dissipation)

⁸⁷Rb bosonic atoms in a magnetic trap and an optical lattice potential

The strength of the period potential can be varied in the experiment

<u>Superfluid-insulator quantum phase transition at *T*=0</u>

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Understanding superflow

The wavefunction of bosons at rest

 $\Psi(\mathbf{r}_1,\mathbf{r}_2,\mathbf{r}_3,\ldots,\mathbf{r}_N)$

The wavefunction of bosons flowing with velocity v_s

$$e^{i\frac{m}{\hbar}\mathbf{v}_{s} \cdot (\mathbf{r}_{1}+\mathbf{r}_{2}+\mathbf{r}_{3}+\ldots+\mathbf{r}_{N})}\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\ldots,\mathbf{r}_{N})$$
$$=e^{i\theta(\mathbf{r}_{1})+i\theta(\mathbf{r}_{2})+i\theta(\mathbf{r}_{3})+\ldots+i\theta(\mathbf{r}_{N})}\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3},\ldots,\mathbf{r}_{N})$$

where

$$\boldsymbol{v}_s = \frac{\hbar}{m} \nabla \boldsymbol{\theta}$$

(for non-Galilean invariant superfluids, the co-efficient of $\nabla \theta$ is modified)

Understanding superflow

Persistent currents

 $\oint \nabla \theta \, dx = 2\pi n$ C
No local change of the wavefunction can change the value of *n*

Supercurrent flows "forever"

Vortices in the superfluid

Magnus forces, duality, and point vortices as dual "electric" charges

Excitations of the superfluid: Vortices

The circulation of a vortex is quantized:

$$\oint \mathbf{v}_s \cdot d\mathbf{r} = \frac{\hbar}{m} \oint \nabla \theta \cdot d\mathbf{r} = n \frac{\hbar}{m}$$

where n is an integer.

Observation of quantized vortices in rotating ⁴He

E.J. Yarmchuk, M.J.V. Gordon, and R.E. Packard, *Observation of Stationary Vortex Arrays in Rotating Superfluid Helium*,
Phys. Rev. Lett. 43, 214 (1979).

Observation of quantized vortices in rotating ultracold Na

J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, *Observation of Vortex Lattices in Bose-Einstein Condensates*, Science **292**, 476 (2001).

Quantized fluxoids in $YBa_2Cu_3O_{6+y}$

J. C. Wynn, D. A. Bonn, B.W. Gardner, Yu-Ju Lin, Ruixing Liang, W. N. Hardy, J. R. Kirtley, and K. A. Moler, *Phys. Rev. Lett.* **87**, 197002 (2001).

In superconductors, vortices carry quantized magnetic flux:

$$\int \mathbf{B} \cdot d\mathbf{S} = n \frac{hc}{2e}$$

Excitations of the superfluid: Vortices

Central question:

In two dimensions, we can view the vortices as point particle excitations of the superfluid. What is the quantum mechanics of these "particles"?

In ordinary fluids, vortices experience the Magnus Force

 $F_{M} = (\text{mass density of air}) \cdot (\text{velocity of ball}) \cdot (\text{circulation})$

For a vortex in a superfluid, this is

$$\mathbf{F}_{M} = (m\rho) \left(\left(\mathbf{v}_{s} - \frac{d\mathbf{r}_{v}}{dt} \right) \times \hat{\mathbf{z}} \right) \left(\oint \mathbf{v}_{s} \cdot d\mathbf{r} \right)$$
$$= nh\rho \left(\mathbf{v}_{s} - \frac{d\mathbf{r}_{v}}{dt} \right) \times \hat{\mathbf{z}}$$

where ρ = number density of bosons \mathbf{v}_s = local velocity of superfluid \mathbf{r}_v = position of vortex For a vortex in a superfluid, this is

$$\begin{aligned} \mathbf{F}_{M} &= (m\rho) \left(\left(\mathbf{v}_{s} - \frac{d\mathbf{r}_{v}}{dt} \right) \times \hat{\mathbf{z}} \right) \left(\oint \mathbf{v}_{s} \cdot d\mathbf{r} \right) \\ &= nh\rho \left(\mathbf{v}_{s} - \frac{d\mathbf{r}_{v}}{dt} \right) \times \hat{\mathbf{z}} \\ &= n \left(\mathbf{E} + \frac{d\mathbf{r}_{v}}{dt} \times \mathbf{B} \right) \end{aligned}$$
where $\mathbf{E} = \rho \mathbf{v}_{s} \times \hat{\mathbf{z}}$ and $\mathbf{B} = -h\rho \hat{\mathbf{z}}$

Dual picture:

The vortex is a quantum particle with dual "electric" charge *n*, moving in a dual "magnetic" field of strength = $h \times$ (number density of Bose particles) ⁸⁷Rb bosonic atoms in a magnetic trap and an optical lattice potential

The strength of the period potential can be varied in the experiment

Upon approaching the insulator, the phase of the condensate becomes "uncertain".

Vortices cost less energy and vortex-antivortex pairs proliferate.

The quantum mechanics of vortices plays a central role in the superfluid-insulator quantum phase transition.