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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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Excitations of the insulator:

S =
�

d2rdτ
�
|∂τψ|2 + v2|�∇ψ|2 + (g − gc)|ψ|2 +

u

2
|ψ|4

�

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Quantum critical transport 

M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)                                                             
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

σ =
Q2

h
× [Universal constant O(1) ]

(Q is the “charge” of one boson)

Transport co-oefficients not determined
by collision rate, but by

universal constants of nature

Conductivity
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Describe charge transport using Boltzmann theory of in-
teracting bosons:

dv

dt
+

v

τc
= F.

This gives a frequency (ω) dependent conductivity

σ(ω) =
σ0

1− iω τc

where τc ∼ �/(kBT ) is the time between boson collisions.

Also, we have σ(ω → ∞) = σ∞, associated with the den-
sity of states for particle-hole creation (the “optical con-
ductivity”) in the CFT3.

Quantum critical transport 
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.
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However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices
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Boltzmann theory of bosons
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Boltzmann theory of vortices

σ∞1/τcv

1/σ0v

Re[σ(ω)]

ω
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J. McGreevy, arXiv0909.0518

Why AdSd+2 ?
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For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion
(i = 1 . . . d)

xi → ζxi , t → ζt , ds → ds

This gives the unique metric

ds2 =
1

r2
�
−dt2 + dr2 + dx2

i

�

Reparametrization invariance in r has been used
to the prefactor of dx2

i equal to 1/r2. This fixes
r → ζr under the scale transformation. This is
the metric of the space AdSd+2.

Why AdSd+2 ?
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AdS4 theory of “nearly perfect fluids”

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,

Phys. Rev. D 75, 085020 (2007).

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.
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AdS4 theory of “nearly perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

We include all possible 4-derivative terms: after suitable field

redefinitions, the required theory has only one dimensionless

constant γ (L is the radius of AdS4):

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab
+

γL2

e2
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.

Stability and causality constraints restrict |γ| < 1/12.
The parameters e2 and γ can be determined from OPE co-

efficients of CFT of interest.
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

• The γ > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

• The γ < 0 result can be interpreted
as the transport of vortex-like
excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• The γ = 0 case is the exact result for the large N limit
of SU(N) gauge theory with N = 8 supersymmetry (the
ABJM model). The ω-independence is a consequence of
self-duality under particle-vortex duality (S-duality).
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 New insights and solvable models for diffusion and 
transport of strongly interacting systems near quantum critical 
points

 The description is far removed from, and complementary 
to, that of the quantum Boltzmann equation which builds on 
the quasiparticle/vortex picture.

 Prospects for experimental tests of frequency-dependent, 
non-linear, and non-equilibrium transport   
 

Quantum criticality and conformal field theories 
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• Consider an infinite, continuum,

translationally-invariant quantum system with a glob-

ally conserved U(1) chargeQ (the “electron density”)

in spatial dimension d > 1.

• Describe zero temperature phases where d�Q�/dµ �=
0, where µ (the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

• Compressible systems must be gapless.

• Conformal quantum matter is compressible in

d = 1, but not for d > 1.

Compressible quantum matter
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The only compressible phase of traditional 
condensed matter physics which does not 
break the translational or U(1) symmetries 

is the Landau Fermi liquid 
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Graphene

Conformal quantum matter
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Compressible quantum matter

Fermi Liquid 
with a 

Fermi surface
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• The only low energy excitations are long-lived quasiparticles
near the Fermi surface.

Fermi Liquid 
with a 

Fermi surface

Compressible quantum matter
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• Luttinger relation: The total “volume (area)” A enclosed
by the Fermi surface is equal to �Q�.

A

Fermi Liquid 
with a 

Fermi surface

Compressible quantum matter
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The Fermi Liquid (FL)

L = f†
σ

�
∂τ − ∇2

2m
− µ

�
fσ + 4 Fermi terms

A =
�
f†
σfσ

�
= �Qσ�

Gf =
1

ω − vF (k − kF ) + iω2

A
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=

• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aµ.

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ

The Non-Fermi Liquid (NFL)
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The simplest example of 
an exotic compressible phase 

(a “strange metal”) 
is realized by 

fermions with a Fermi surface 
coupled to an Abelian 

or non-Abelian gauge field. 
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The theory of this strange metal is strongly coupled 
in two spatial dimensions, and the traditional field-

theoretic expansion methods break down.

S.-S. Lee, Phys. Rev. B 80, 165102 (2009)
M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

The simplest example of 
an exotic compressible phase 

(a “strange metal”) 
is realized by 

fermions with a Fermi surface 
coupled to an Abelian 

or non-Abelian gauge field. 
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A

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ

The Non-Fermi Liquid (NFL)
• The location of the Fermi surfaces is well defined,

and the Luttinger relation applies as before.

• The singularity of the Green’s function upon ap-
proaching the Fermi surface is described by the
scaling form

G−1
f = q1−ηF (ω/qz)

where q = |k|−kF is the distance from the Fermi
surface. So fermions disperse transverse to the
Fermi surface with dynamic exponent z.

• To three-loop order, we find η �= 0 and z = 3/2.

• The entropy density of the non-Fermi liquid S ∼
T 1/z, because the density of fermion states is ef-
fectively one dimensional.

A

A =
�
f†
σfσ

�
= �Qσ�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Study the large N limit of a SU(N) 
gauge field coupled to 

adjoint (matrix) fermions at 
a non-zero chemical potential 
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r

J. McGreevy, arXiv0909.0518

Holography of non-Fermi liquids
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Consider the following (most) general metric for the
holographic theory

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

This metric transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1
for “relativistic” quantum critical points).

What is θ ? (θ = 0 for “relativistic” quantum criti-
cal points).

Holography of non-Fermi liquids
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Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

r
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

Under rescaling r → ζ(d−θ)/dr, and the
temperature T ∼ t−1, and so

S ∼ T (d−θ)/z

So θ is the “violation of hyperscaling” exponent.
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Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573

A non-Fermi liquid has gapless fermionic
excitations on the Fermi surface, which
disperse in the single transverse direction
with dynamic critical exponent z, with en-
tropy density ∼ T 1/z. So we expect com-
pressible quantum states to have an effec-
tive dimension d− θ with

θ = d− 1

S.-S. Lee, Phys. Rev. B 80, 165102 (2009)
M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

• The entanglement entropy exhibits logarithmic vio-
lation of the area law only for this value of θ !

• The co-efficient of the logarithmic term is consistent
with the Luttinger relation.

• Many other features of the holographic theory are
consistent with a boundary theory which has “hid-
den” Fermi surfaces of gauge-charged fermions.

θ = d− 1
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• The entanglement entropy exhibits logarithmic vio-
lation of the area law only for this value of θ !

• The metric can be realized as the solution of a Einstein-
Maxwell-Dilaton theory with no explicit fermions.
The density of the “hidden Fermi surfaces” of the
boundary gauge-charged fermions can be deduced
from the electric flux leaking to r → ∞.

Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023; L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573
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− dt2
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�

θ = d− 1

K. Goldstein, S. Kachru, S. Prakash, and S. P. Trivedi JHEP 1008, 078 (2010)
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• The co-efficient of the logarithmic term in the entan-
glement entropy is insensitive to all short-distance
details, and depends only upon the fermion density.

• These two methods of deducing with fermion density
are consistent with the Luttinger relation !
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N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023; L. Huijse, S. Sachdev, B. Swingle, arXiv:1112.0573

Inequalities

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law of entanglement entropy is obeyed for

θ ≤ d− 1.

The “null energy condition” of the gravity theory yields

z ≥ 1 +
θ

d
.

Remarkably, for d = 2, θ = d − 1 and z = 1 + θ/d, we obtain
z = 3/2, the same value associated with the field theory.
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Conclusions

Non-Fermi liquid metallic states 
are experimentally ubiquitous, but 

pose difficult strong-coupling 
problems to conventional methods 

of field theory
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Conclusions

String theory and holography offer 
a remarkable new approach to 

describing “strange metal” states 
with long-range quantum 

entanglement.
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Conclusions

Presented evidence for holographic 
dual of a Fermi surface coupled to 
Abelian or non-Abelian guage fields
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