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Possible origins of the pseudogap in the 
cuprate superconductors:

• “Phase fluctuations”, “preformed pairs”                        
Complex order parameter:   Ψsc

• “Charge/valence-bond/pair-density/stripe” order
Order parameters:                                          

(density ρ represents any observable invariant under 
spin rotations, time-reversal, and spatial inversion)

•“Spin liquid”……………
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Order parameters are not independent

Ginzburg-Landau-Wilson approach to competing order parameters 
(combine order parameters into a “superspin”):
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Distinct symmetries of order parameters permit couplings only 
between their energy densities (there are no symmetries which 
“rotate” two order parameters into each other)

S. Sachdev and E. Demler, Phys. Rev. B 69, 144504 (2004). 



Predictions of LGW theory
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Non-superconducting quantum phase must have 
some other “order”:

• Charge order in an insulator

• Fermi surface in a metal

• “Topological order” in a spin liquid

• ……………

This requirement is not captured by LGW theory.
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A. Superfluid-insulator transitions of bosons 

on the square lattice at fractional filling
Dual vortex theory and 
the magnetic space group.

B. Application to a short-range pairing model for 
the cuprate superconductors

Charge order and d-wave superconductivity 
in an effective theory for the spin S=0 sector.

C. Implications for STM



A. Superfluid-insulator transitions of bosons   
on the square lattice at fractional filling 

Dual vortex theory and                                
the magnetic space group.



Bosons at density f = 1
Weak interactions: 

superfluidity

Strong interactions: 
Mott insulator which 
preserves all lattice 

symmetries

LGW theory: continuous quantum transitions between these states
M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



Bosons at density f = 1/2  (equivalent to S=1/2 AFMs)

Weak interactions: superfluidity

Strong interactions: Candidate insulating states
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C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) 
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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Superfluid-insulator transition of hard core bosons at f=1/2 
(Neel-valence bond solid transition of S=1/2 AFM)

A. W. Sandvik, S. Daul, R. R. P. Singh, and  D. J. Scalapino, Phys. Rev. Lett. 89, 247201 (2002)
Large scale (> 8000 sites) numerical study of the destruction of superfluid (i.e. 

magnetic Neel) order at half filling with full square lattice symmetry

VBS insulator

Superfluid
(Neel) order

g=

( ) ( )i j i j i j k l i j k l
ij ijkl

H J S S S S K S S S S S S S S+ − − + + − + − − + − +

⊂

= + − +∑ ∑



Boson-vortex duality

Quantum 
mechanics of two-

dimensional 
bosons: world 

lines of bosons in 
spacetime

x
y

τ

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989); 



Boson-vortex duality

Classical statistical 
mechanics of a  
“dual” three-
dimensional  

superconductor:
vortices in a 

“magnetic” field

x
y

z

Strength of “magnetic” field = density of bosons 
= f flux quanta per plaquette

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981); D.R. Nelson, Phys. Rev. Lett. 60, 
1973 (1988); M.P.A. Fisher and D.-H. Lee, Phys. Rev. B 39, 2756 (1989); 



Boson-vortex duality
Statistical mechanics of dual superconductor is invariant 

under the square lattice space group:
,  :  Translations by a lattice spacing in the ,  directions

 :  Rotation by 90 degrees.
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Strength of “magnetic” field = density of bosons 
= f flux quanta per plaquette



Boson-vortex duality

At density = /  ( ,  relatively 
prime integers) there are  species 
of vortices,  (with =1 ),  
associated with  gauge-equivalent 
regions of the Brillouin zone
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Boson-vortex duality

2
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The  vortices form a  representation of the space group

        :    ;    :

1                   :

i f
x y

q
i mf

m
m

q projective

T T e

R e
q

π

π

ϕ ϕ ϕ ϕ

ϕ ϕ

+

=

→ →

→ ∑

Hofstäder spectrum of dual “superconducting” order

At density = /  ( ,  relatively 
prime integers) there are  species 
of vortices,  (with =1 ),  
associated with  gauge-equivalent 
regions of the Brillouin zone

f p q p q
q

q
q

ϕ …

See also X.-G. Wen, Phys. Rev. B 65, 165113 (2002) 



Boson-vortex duality

The  fields characterize  superconducting and charge orderbothϕ

Superconductor insulator : 0 0  ϕ ϕ= ≠
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Charge order: 

Status of space group symmetry determined by 
2density operators  at wavevectors ,
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Boson-vortex duality

The  fields characterize  superconducting and charge orderbothϕ

2
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Competition between superconducting and charge orders:

"  LGW" theory of the  fields with the action
invariant under the projective transformations:
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Immediate benefit: There is no intermediate   
“disordered” phase with neither order                           
(or without “topological” order).
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Phase diagram of S=1/2 square lattice antiferromagnet
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Analysis of “extended LGW” theory of projective representation
Spatial structure of insulators for q=4 (f=1/4 or 3/4)

unit cells; 

,  ,  ,  
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B. Application to a short-range pairing model 
for the cuprate superconductors                    

Charge order and d-wave superconductivity in 
an effective theory for the spin S=0 sector.



A convenient derivation of the effective 
theory of short-range pairs is provided by the 

doped quantum dimer model
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Density of holes = δ

E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990).



Duality mapping of doped dimer model shows:

(a) Superfluid, insulator, and supersolid ground states 
of a theory which obeys the magnetic algebra
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Duality mapping of doped dimer model shows:

(b) At δ = 0, the ground state is a Mott insulator with 
valence-bond-solid (VBS) order. This associated 
with f=1/2 and the algebra  

                       x y y xT T T T= −

or



Duality mapping of doped dimer model shows:

(c) At larger δ , the ground state is a d-wave 
superfluid. The structure of the “extended LGW” 
theory of the competition between superfluid and 
solid order is identical to that of bosons on the 
square lattice with density f. These bosons can 
therefore be viewed as d-wave Cooper pairs of 
electrons. The phase diagrams of part (A) can 
therefore be applied here.
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g = parameter controlling strength of quantum 
fluctuations in a semiclassical theory of the 
destruction of Neel order

Global phase diagram

La2CuO4

Neel order



g
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Neel order

Global phase diagram
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or

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
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Global phase diagram
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Present “Extended LGW” 
theory for interplay between 
charge order and d-wave 
superconductivity

δHole density
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Microscopic mean-field theory 
in the large N limit of a theory 

with Sp(2N) symmetry

S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 
219 (1991); M. Vojta and S. Sachdev, Phys. Rev. 
Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, 
104505 (2002).
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S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 
219 (1991); M. Vojta and S. Sachdev, Phys. Rev. 
Lett. 83, 3916 (1999); M. Vojta, Phys. Rev. B 66, 
104505 (2002).



C. Implications for STM



Vortex-induced LDOS of Bi2Sr2CaCu2O8+δ integrated 
from 1meV to 12meV

100Å

b
7 pA

0 pA

J. Hoffman E. W. Hudson, K. M. Lang,                     
V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, 
and J. C. Davis, Science 295, 466 (2002).



LDOS of Bi2Sr2CaCu2O8+δ at 100 K.
M. Vershinin, S. Misra, S. Ono, Y. Abe, Y. Ando, and A. Yazdani, Science, 303, 1995 (2004).



Energy integrated 
LDOS (between 65 
and 150 meV) of 

strongly underdoped
Bi2Sr2CaCu2O8+δ at 
low temperatures, 

showing only regions 
without 

superconducting 
“coherence peaks”

K. McElroy, D.-H. Lee, J. E. Hoffman, K. M Lang, E. W. Hudson, H. Eisaki, 
S. Uchida, J. Lee, J.C. Davis, cond-mat/0404005.



STM of LDOS modulations (filtered) in Bi2Sr2CaCu2O8+δ

C. Howald, H. Eisaki, N. Kaneko, M. Greven,and A. Kapitulnik, 
Phys. Rev. B 67, 014533 (2003).



Pinning of charge order in a superconductor
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The projective transformation properties of vortices imply that each 
vortex carries the quantum numbers of density wave order. The 
vacuum fluctuations of vortex-anti-vortex produce density wave 
modulations which are observable near pinning sites at wavevectors
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Charge order in a magnetic field

   Recompute modulation in  theory but
   in sector with  "charge" = number of vortices.
   Additional density wave order parameter appears 
   as a halo around pinned vortices.

same
ϕ



Conclusions
I. Description of the competition between superconductivity and 

charge order in term of defects (vortices). Theory naturally 
excludes “disordered” phase with no order.

II. Vortices carry the quantum numbers of both superconductivity 
and the square lattice space group (in a projective 
representation).

III. Vortices carry halo of charge order, and pinning of 
vortices/anti-vortices leads to a unified theory of STM 
modulations in zero and finite magnetic fields.

IV. Conventional picture: density wave order is responsible for the 
transport energy gap, and for the appearance of the Mott 
insulator.  New picture: Mott localization of charge carriers is 
more fundamental, and (weak) density wave order emerges 
naturally in theory of the Mott transition.
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