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| i ) Ground state of entire system,

⇢ = | ih |

⇢A = TrB⇢ = density matrix of region A

Entanglement entropy SE = �Tr (⇢A ln ⇢A)
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| i ) Ground state of entire system,

⇢ = | ih |

Take | i = 1p
2
(|"iA |#iB � |#iA |"iB)

Then ⇢A = TrB⇢ = density matrix of region A
=

1
2 (|"iA h"|A + |#iA h#|A)

Entanglement entropy SE = �Tr (⇢A ln ⇢A)
= ln 2

Entanglement entropy



Band insulators
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Entanglement entropy of a band insulator



SE = aP � b exp(�cP )

where P is the surface area (perimeter)

of the boundary between A and B.

B

Entanglement entropy of a band insulator

A P



Logarithmic violation of “area law”: SE = CE kFP ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor CE is independent of the shape of the entangling

region, and dependent only on IR features of the theory.
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Entanglement entropy of Fermi surfaces

B. Swingle,  Physical Review Letters 105, 050502 (2010)
Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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• Entanglement entropy obeys SE = aP � �, where

� is a shape-dependent universal number associated

with the CFT3.

Entanglement at the quantum critical point

B

A P

M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009); H. Casini, 	


M. Huerta, and R. Myers, JHEP 1105:036, (2011); I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598
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G. Vidal, Phys. Rev. Lett. 99, 220405 (2007)
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D-dimensional
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Entanglement entropy = 	


Number of links on 

optimal surface 
intersecting minimal 

number of links.
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Tensor network representation of entanglement	


  at quantum critical point

Brian Swingle, arXiv:0905.1317
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String theory near 	


a D-brane
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Emergent direction	


of AdS4
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Emergent direction	


of AdS4 Brian Swingle, arXiv:0905.1317
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Field theories in d + 1 spacetime dimensions are
characterized by couplings g which obey the renor-
malization group equation

u
dg

du
= �(g)

where u is the energy scale. The RG equation is
local in energy scale, i.e. the RHS does not depend
upon u.
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Holography

Key idea: ) Implement u as an extra dimension,

and map to a local theory in d+2 spacetime dimensions.

We identify the extra-dimensional co-ordinate r = 1/u.
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Holography

xi

For a relativistic CFT in d spatial dimensions, the

proper length, ds, in the holographic space is fixed by

demanding the scale transformation (i = 1 . . . d)

xi ! ⇣xi , t ! ⇣t , ds ! ds
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Holography
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This gives the unique metric

ds

2
=

1

r

2

�
�dt

2
+ dr

2
+ dx

2
i

�

This is the metric of anti-de Sitter space AdSd+2.
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Holography and Entanglement
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S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

Associate entanglement entropy with an observer in the enclosed 
spacetime region, who cannot observe “outside” : i.e. the region is 
surrounded by an imaginary horizon.
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measures	



entanglement	


entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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• Computation of minimal surface area yields

SE = aP � �,
where � is a shape-dependent universal number.

xi

M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009); H. Casini, 	


M. Huerta, and R. Myers, JHEP 1105:036, (2011); I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598
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xi

Consider a metric which transforms under rescaling as

xi ! ⇣ xi, t ! ⇣

z
t, ds ! ⇣

✓/d
ds.

Recall: conformal matter has ✓ = 0, z = 1, and the metric is

anti-de Sitter

Generalized holography
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dr
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i

◆

The most general such metric is

Generalized holography
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Generalized holography

This is the most general metric which is invariant under the

scale transformation

xi ! ⇣ xi

t ! ⇣

z
t

ds ! ⇣

✓/d
ds.

This identifies z as the dynamic critical exponent (z = 1 for

“relativistic” quantum critical points). We will see shortly

that ✓ is the violation of hyperscaling exponent.

We have used reparametrization invariance in r to define it so

that it scales as

r ! ⇣

(d�✓)/d
r .

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)



ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the
“area” of the horizon, and so S ⇠ r�d

h

r

Generalized holography
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r

Under rescaling r ! ⇣(d�✓)/dr, and the

temperature T ⇠ t�1
, and so

S ⇠ T (d�✓)/z
= T deff/z

where ✓ = d�de↵ , the “dimension deficit”, is now identified

as the violation of hyperscaling exponent.

Generalized holography



L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).
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The null energy condition (stability condition for gravity)

yields a new inequality

z � 1 +

✓

d

The non-Fermi liquid in d = 2 has ✓ = d�1, and this implies

z � 3/2. So the lower bound is precisely the value obtained

for the non-Fermi liquid!

Generalized holography
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Application of the Ryu-Takayanagi minimal area formula to a dual

Einstein-Maxwell-dilaton theory yields

SE ⇠

8
<

:

P , for ✓ < d� 1

P lnP , for ✓ = d� 1

P ✓/(d�1) , for ✓ > d� 1

.

The non-Fermi liquid has log-violation of “area law”, and this ap-

pears precisely at the correct value ✓ = d� 1!

Moreover, the co-e�cient of P lnP computed holographically is in-

dependent of the shape of the entangling region just as expected for

a circular Fermi surface!!
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Begin with a CFT



Holographic representation: AdS4

S =

Z
d

4
x

p
�g
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A 2+1 
dimensional 

CFT
at T=0



Holographic representation: AdS4

A 2+1 
dimensional 

CFT
at T=0

ds

2 =

✓
L

r

◆2 
dr

2

f(r)
� f(r)dt2 + dx

2 + dy

2

�

with f(r) = 1



Apply a chemical potential



This is to be solved subject to the constraint

Aµ(r ! 0, x, y, t) = Aµ(x, y, t)

where Aµ is a source coupling to a conserved U(1) current Jµ

of the CFT3

S = SCFT + i

Z
dxdydtAµJµ

At non-zero chemical potential we simply require A⌧ = µ.

AdS4 theory of “nearly perfect fluids”
To leading order in a gradient expansion, charge transport in

an infinite set of strongly-interacting CFT3s can be described by

Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

Z
d

4
x

p
�g


� 1

4g

2
4

FabF
ab

�
.
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Electric flux

hQi
6= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)
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Electric flux

hQi
6= 0

The Maxwell-Einstein theory of the applied 
chemical potential yields a AdS4-Reissner-Nordtröm 
black-brane

At T = 0, we obtain an extremal black-brane, with

a near-horizon (IR) metric of AdS2 ⇥R

2

ds

2
=

L

2

6

✓
�dt

2
+ dr

2

r

2

◆
+ dx

2
+ dy

2

r

T. Faulkner, H. Liu, 	


J. McGreevy, 	


and D. Vegh, 	


arXiv:0907.2694



Einstein-Maxwell-dilaton theory

Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).
S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).
N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].
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with Z(�) = Z0e
↵�, V (�) = �V0e

���, as � ! 1.

Holography of a non-Fermi liquid
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Holography of a non-Fermi liquid

The r ! 1 limit of the metric of the Einstein-Maxwell-

dilaton (EMD) theory has the most general form with

✓ =

d2�

↵+ (d� 1)�

z = 1 +

✓

d
+

8(d(d� ✓) + ✓)2

d2(d� ✓)↵2
.
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Holography of a non-Fermi liquid

Computation of the entanglement entropy in the EMD

theory via the Ryu-Takayanagi formula for ✓ = d� 1

yields

SE = CEQ(d�1)/dP lnP

where CE is independent of UV details.

This is precisely as expected for a Fermi surface, when

combined with the Luttinger theorem!
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Holography of a non-Fermi liquid

Answer: need non-perturbative e↵ects of monopole operators

T. Faulkner and N. Iqbal, arXiv:1207.4208;

S. Sachdev, Phys. Rev. D 86, 126003 (2012)

Open questions:

• Is there any selection principle for the values of ✓ and
z ?

• What is the physical interpretation of metallic states
with ✓ 6= d� 1 ?

• Does the metallic state have a Fermi surface, and what
is kF ?

• Are there N2 Fermi surfaces of ‘quarks’ with kF ⇠ 1,
or 1 Fermi surface of a ‘baryon’ with kF ⇠ N2 ?

• Why is kF not observable as Friedel oscillations in cor-
relators of the density, and other gauge-neutral oper-
ators ?
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S. Sachdev, Phys. Rev. D 86, 126003 (2012)

Open questions:

• Is there any selection principle for the values of ✓ and
z ?

• What is the physical interpretation of metallic states
with ✓ 6= d� 1 ?

• Does the metallic state have a Fermi surface, and what
is kF ?

• Are there N2 Fermi surfaces of ‘quarks’ with kF ⇠ 1,
or 1 Fermi surface of a ‘baryon’ with kF ⇠ N2 ?

• Why is kF not observable as Friedel oscillations in cor-
relators of the density, and other gauge-neutral oper-
ators ?



 Strongly-coupled quantum criticality leads to a novel 
regime of quantum dynamics without quasiparticles.	


!

 The simplest examples are conformal field theories 
in 2+1 dimensions, realized by ultracold atoms in 
optical lattices.	


!

 Holographic theories provide an excellent 
quantitative description of quantum Monte studies of 
quantum-critical boson models	


!

 Exciting recent progress on the description of 
transport in metallic states without quasiparticles, via 
field theory and holography
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