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Crossovers in transport properties of hole-doped cuprates
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Theory of quantum criticality in the cuprates
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Spin density wave theory

A spin density wave (SDW) is the spontaneous appearance
of an oscillatory spin polarization. The electron spin polar-
1zation 1s written as

S(r,m) = (r, 7)™
where ¢ is the SDW order parameter, and K is a fixed or-

dering wavevector. For simplicity we will consider the case
of K = (m, ), but our treatment applies to general K.




Spin density wave theory in hole-doped cuprates

< Increasing SDW order
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The amplitude of the SDW order parameter ¢
vanishes at the transition to the Fermi liquid.

S. Sachdey, A.V. Chubukov, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).




Spin density wave theory in hole-doped cuprates
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Theory of quantum criticality in the cuprates
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Theory of quantum criticality in the cuprates
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Theory of quantum criticality in the cuprates
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Phenomenological quantum theory of competition between
superconductivity (SC) and spin-density wave (SDWV) order

Write down a Landau-Ginzburg action for the quantum fluctua-
tions of the SDW order () and superconductivity (v):

S = / d*rdr

+/d2r
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where k > 0 is the repulsion between the two order parameters,
and V x A = H is the applied magnetic field.

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).
See also E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76, 909 (2004);

S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, 144516 (2002).
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Phenomenological quantum theory of competition between
superconductivity (SC) and spin-density wave (SDWV) order
A "Normal”

(Large Fermi
surface)

SDW
(Small Fermi
pockets)

e SDW order is more stable in the metal
than in the superconductor: xz,, > ;.

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).
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e For doping with x; < x < x,,, SDW order appears
at a quantum phase transition at H = Hgq,, > 0.

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).
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Quantum oscillations

Electron pockets in the Fermi surface of hole-doped
high-T. superconductors

David LeBoeuf', Nicolas Doiron-Leyraud', Julien Levallois®, R. Daou, J.-B. Bonnemaison', N. E. Hussey”, L. Balicas®,
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Phenomenological quantum theory of competition between
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Increasing SDW order
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Spin-fluctuation exchange theory of d-wave
superconductivity in the cuprates

<——Increasing SDW order

Fermions at the large Fermi surface exchange
Huctuations of the SDW order parameter .

D. J. Scalapino, E. Loh, and |. E. Hirsch, Phys. Rev. B 34,8190 (1986)



Pairing by SDWV fluctuation exchange

We now allow the SDW field ¢ to be dynamical, coupling to elec-

trons as

_ e =
Hyqw = — E , Pq - Ck,a9aBCk+K+q,5-

k,q,a,3

Exchange of a ¢ quantum leads to the effective interaction
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where the pairing interaction is

—
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with yp&? the SDW susceptibility and € the SDW correlation length.

D. J. Scalapino, E. Loh, and |. E. Hirsch, Phys. Rev. B 34,8190 (1986)



(d—wave pairing of the large Fermi surfaceJ
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D. J. Scalapino, E. Loh, and |. E. Hirsch, Phys. Rev. B 34,8190 (1986)




Approaching the onset of antiferromagnetism
T in the spin-fluctuation theory
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Ar.Abanov, A.V. Chubukov and J. Schmalian, Advances in Physics 52, 1 19 (2003).



Approaching the onset of antiferromagnetism
T in the spin-fluctuation theory

Quantum
~__ critical metal
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o . increases upon approaching the SDW transition.
SDW and SC orders do not compete, but attract each other.

e No simple mechanism for nodal-anti-nodal dichotomy.

Ar.Abanov, A.V. Chubukov and J. Schmalian, Advances in Physics 52, 1 19 (2003).
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Theory of underdoped cuprates

<——Increasing SDW order

Begin with SDW ordered state, and rotate to a frame
polarized along the local orientation of the SDW order ¢

>:R(ziw: : . . RTR=1




Theory of underdoped cuprates

21

With R = (

2| z}"

the theory is invariant under the
U(1) gauge transformation

2o — €02 3 Yp—e Yy o — el
and the SDW order is given by
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Theory of underdoped cuprates

Starting from the “SDW-fermion” model
with Lagrangian




Theory of underdoped cuprates
we obtain a U(1) gauge theory of

e fermions v, with U(1) charge p = +1 and pocket Fermi
surfaces,

EkpA> wkp
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Theory of underdoped cuprates
we obtain a U(1) gauge theory of

e fermions v, with U(1) charge p = +1 and pocket Fermi

surfaces,

e relativistic complex scalars z, with charge 1, represent-
ing the orientational fluctuations of the SDW order
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Theory of underdoped cuprates

we obtain a U(1) gauge theory of

e fermions v, with U(1) charge p = +1 and pocket Fermi
surfaces,

e relativistic complex scalars z, with charge 1, represent-
ing the orientational fluctuations of the SDW order

e Monopoles carrying Berry phases; onset of superconduc-
tivity leads to confinement via condensation of monopoles,
which induces charge order.




(Electrons near (0,7) and (77,0))




(Electrons near (0,7) and (77,0))

These electrons are represented by the low
energy limit of a single 14 fermion = g.
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(Electrons near (0,7) and (77,0))

In the theory, the g4 are unstable to a
simple s-wave pairing with

(g+9-) = A

For the physical electron operators, this
pairing implies ’

(c1re1))
(c21c2))

i.e. d-wave pairing !
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(Weak p-wave pairing of the hole pockets J




Photoemission in LBCO

¥

O 2nd BZ, 55 eV
A 1st BZ, N0 eV
V 3rd BZ, 110 eV

LEG with respect to the node (meV)

[cos(k,)-cos(k,)]/2

R.-H. He, K. Tanaka, S.-K. Mo, T. Sasagawa,
M. Fujita, T. Adachi, N. Mannella, K.Yamada,
Y. Koike, Z. Hussain and Z.-X. Shen,
Nature Physics 5, 1 19 (2008)
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A. Pushp, C.V. Parker; A. N. Pasupathy,
K. K. Gomes, S. Ono, J.Wen, Z. Xu,
G. Gu, and A.Yazdani,

Science 324, 1689 (2009)
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Unified theory
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Unified theory

The theory has SU(2) 0100005 U(2)cpin@U(L) e charee
@ (lattice space group) invariance,




Unified theory
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Unified theory

The theory has SU(2) 0100005 U(2)cpin@U(L) e charee
@ (lattice space group) invariance,
and matter content

e fermion v transforming as (2,1, 1), and with disper-
sion € from the band structure,

e relativistic complex scalar z transforming

as (2,2,0), representing orientational fluctuations of
SDW order,

o relativistic real scalar N transforming as (3,1,0),
measuring the local SDW amplitude,

K- r

e a Yukawa coupling between N and ), which ~ e’
because of space group transformations.




Unified theory

Conjectured phase diagram (assuming a phase with gapless
SU(2) photons is possible)

A

(2) #0 5 (N) #0
SDW order (Y £0 : (N)=0

small Fermi pockets Fermi liquid

M large Fermi surface

(2) =0 5 (N)#0 (2) =0 ; (N)=0
small critical Fermi pockets/ large critical Fermi surface
gapless U(1) photon gapless SU(2) photons




Unified theory

Conjectured phase diagram (assuming a phase with gapless
SU(2) photons is possible) Corventional
A Fermi liquid

phases
(2) #0 5 (N)#0 discussed earlier

small Fermi pockets Fermi liquid

M large Fermi surface

By =0 5 (N)#£0 () =0 ; (N)=0
small critical Fermi pockets/ large critical Fermi surface
gapless U(1) photon gapless SU(2) photons C




Unified theory

Conjectured phase diagram (assuming a phase with gapless
SU(2) photons is possible)

Conventional

A Fermi liquid
phases
(2) 70 5 (N)#0 discussed earlier

Fermi liquid
M large Fermi surface

small Fermi pockets

Phases with
A critical Fermi
’ surfaces and
gapless gauge
R modes
(2) =0 5 (N)#0 () =0 ; (N)=0
small critical Fermi pockets/ large critical Fermi surface
gapless U(1) photon gapless SU(2) photons C




Unified theory

Conjectured phase diagram (assuming a phase with gapless
SU(2) photons is possible)

Conventional

A Fermi liquid
phases
(2) 70 5 (N)#0 discussed earlier

Fermi liquid
M large Fermi surface

small Fermi pockets
Phases with

critical Fermi
surfaces and

A ’ gapless gauge
modes:
R AdS
(z) =0 ;3 (N)#0 (z) =0 ; (N)=0 description ?
small critical Fermi pockets/ large critical Fermi surface

gapless U(1) photon gapless SU(2) photons C
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U(l) theory
reproduces
all features
of the phase
diagram in
the
underdoped
regime
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Elusive optimal doping
quantum critical point has
been “hiding in plain sight”.

It is shifted to lower doping
by the onset of
superconductivity




