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Ground state has long-range Néel order 

Square lattice antiferromagnet

H =
�

�ij�

Jij
�Si · �Sj

Order parameter is a single vector field �ϕ = ηi
�Si

ηi = ±1 on two sublattices

��ϕ� �= 0 in Néel state.
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Hole-
doped
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doped

Resistivity
∼ ρ0 +ATn

Electron-doped cuprate superconductors

Figure prepared by K. Jin and and R. L. Greene
based on N. P. Fournier, P. Armitage, and

R. L. Greene, Rev. Mod. Phys. 82, 2421 (2010).
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Iron pnictides: 
a new class of high temperature superconductors
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Ishida, Nakai, and Hosono
arXiv:0906.2045v1
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S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, 
S. L. Bud'ko, P. C. Canfield, J. Schmalian,  R. J. McQueeney, A. I. Goldman, 

Physical Review Letters 104, 057006 (2010).

Iron pnictides: 
a new class of high temperature superconductors
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1. Phenomenology of the onset of antiferromagnetism 
    in a metal
      Quantum criticality of Fermi surface reconstruction,   
               and the phase diagram in a magnetic field

2.  Strongly-coupled quantum criticality in metals
     “Mechanism” of higher temperature superconductivity

3.  Theory of the competition between 
      superconductivity and antiferromagnetism

Outline
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Fermi surface+antiferromagnetism

The electron spin polarization obeys
�

�S(r, τ)
�

= �ϕ(r, τ)eiK·r

where K is the ordering wavevector.

+

Metal with “large” 
Fermi surface
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Metal with “large” Fermi surface
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Fermi surfaces translated by K = (π,π).
Friday, June 3, 2011



Electron and hole pockets in
antiferromagnetic phase with ��ϕ� �= 0

Friday, June 3, 2011



Metal with “large” 
Fermi surface

Fermi surface+antiferromagnetism

��ϕ� = 0

Metal with electron 
and hole pockets

Increasing SDW order

��ϕ� �= 0

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Increasing interaction
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Nd2−xCexCuO4

T. Helm, M. V. Kartsovnik, 
M. Bartkowiak, N. Bittner, 

M. Lambacher, A. Erb, J. Wosnitza, 
and R. Gross, 

Phys. Rev. Lett. 103, 157002 (2009). 

Quantum oscillations

Increasing SDW order

s

Friday, June 3, 2011



N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002).

Photoemission in Nd2-xCexCuO4
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Metal with electron 
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Increasing SDW order

��ϕ� �= 0

s
S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 

A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).
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SDW quantum critical point is unstable to d-wave superconductivity
This instability is stronger than that in the BCS theory

M. A. Metlitski and
S. Sachdev,
Physical Review
B 82, 075128 (2010)
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Similar phase diagram for CeRhIn5

G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223.
Tuson Park, F. Ronning, H. Q. Yuan, M. B. Salamon, R. Movshovich, 
J. L. Sarrao, and J. D. Thompson, Nature 440, 65 (2006) 
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Physical Review B 81, 140505(R) (2010)

Suchitra E. Sebastian, N. Harrison, 
M. M. Altarawneh, Ruixing Liang, D. A. Bonn, 

W. N. Hardy, and G. G. Lonzarich

Evidence for small Fermi pockets in hole-doped cuprates

Original observation:
N. Doiron-Leyraud, C. Proust, 

D. LeBoeuf, J. Levallois, 
J.-B. Bonnemaison, R. Liang, 

D. A. Bonn, W. N. Hardy, 
and L. Taillefer,  

Nature 447, 565 (2007)
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Metal with “large” Fermi surface
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Fermi surfaces translated by K = (π,π).
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Unconventional pairing at and near hot spots

∆
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Unconventional pairing at and near hot spots

∆
−∆

�
c†kαc

†
−kβ

�
= εαβ∆(cos kx − cos ky)
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BCS theory

1 + λe-ph log
�ωD

ω

�

Electron-phonon
coupling

Debye
frequency

Implies
Tc ∼ ωD exp (−1/λ)
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Antiferromagnetic fluctuations: weak-coupling

1 +

�
U

t

�2

log

�
EF

ω

�

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)

Enhancement of pairing susceptibility by interactions

Cooper
logarithm
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Antiferromagnetic fluctuations: weak-coupling
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Applies in a Fermi liquid
as repulsive interaction U → 0.

Enhancement of pairing susceptibility by interactions

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
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�

Enhancement of pairing susceptibility by interactions
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Spin density wave quantum critical point
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Fermi
energy

α = tan θ, where 2θ is
the angle between Fermi lines.

Independent of interaction strength
U in 2 dimensions.

Enhancement of pairing susceptibility by interactions

(see also  Ar. Abanov, A. V. Chubukov, and A. M. Finkel'stein, Europhys. Lett. 54, 488 (2001)) 
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Enhancement of pairing susceptibility by interactions
Spin density wave quantum critical point
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• log2 singularity arises from Fermi lines;
singularity at hot spots is weaker.

• Interference between BCS and quantum-critical logs.

• Momentum dependence of self-energy is crucial.

• Not suppressed by 1/N factor in 1/N expansion.
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Write down a Landau-Ginzburg action for the quantum fluctua-
tions of the SDW order (�ϕ) and superconductivity (∆):

S =

�
d
2
rdτ

�
1

2
(∂τ �ϕ)

2 +
c
2

2
(∇x�ϕ)

2 +
s

2
�ϕ
2 +

u

4

�
�ϕ
2
�2

+ κ �ϕ
2 |∆|2

�

+

�
d
2
r

�
|(∇x − i(2e/�c)A)∆|2 − |∆|2 + |∆|4

2

�

where κ > 0 is the repulsion between the two order parameters,
and ∇×A = H is the applied magnetic field.

Competition between superconductivity (SC) and spin-density wave (SDW) order
Phenomenological quantum theory of competing orders

E. Demler, S. Sachdev and Y. Zhang, Phys. Rev. Lett. 87, 067202 (2001).
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Competition between superconductivity (SC) and spin-density wave (SDW) order
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Compute the SDW susceptibility, χ, in the superconduct-
ing state. As ∆ → 0, we find

χ(∆) = χ(0)− C|∆|

where C is a universal constant dominated by the vicinity
of the hot spots.

Competition between superconductivity (SC) and spin-density wave (SDW) order
Fermi surface theory of competing orders

E. G. Moon and S. Sachdev, Phy. Rev. B 82, 104516 (2010)
Friday, June 3, 2011



Competition between superconductivity (SC) and spin-density wave (SDW) order
Fermi surface theory of competing orders

E. G. Moon and S. Sachdev, Phy. Rev. B 82, 104516 (2010)

s0c

SDW metal
with Fermi pockets

�ϕ� �= 0 No SC
∆ = 0

s

Large Fermi
surface metal

�ϕ� = 0

Friday, June 3, 2011



Competition between superconductivity (SC) and spin-density wave (SDW) order
Fermi surface theory of competing orders

E. G. Moon and S. Sachdev, Phy. Rev. B 82, 104516 (2010)
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Relaxation and equilibration times ∼ �/kBT are robust
properties of strongly-coupled quantum criticality

Theory of quantum criticality in the cuprates
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surface

Strange
Metal

Spin density wave (SDW)

d-wave
superconductor

Small Fermi
pockets with 

pairing fluctuations

SDW quantum critical point is unstable to d-wave superconductivity
This instability is stronger than that in the BCS theory

M. A. Metlitski and
S. Sachdev,
Physical Review
B 82, 075128 (2010)

Theory of quantum criticality in the cuprates
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Competition between SDW order and superconductivity
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  Can quantum fluctuations near the loss of 
antiferromagnetism induce higher temperature 
superconductivity ?

  If so, why is there no antiferromagnetism in the 
hole-doped cuprates near the point where the 
superconductivity is strongest ?

  What is the physics of the strange metal  ?

Questions
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Proposal: strongly-coupled quantum criticality of 
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