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Fermi surface+antiferromagnetism

The electron spin polarization obeys
�

�S(r, τ)
�

= �ϕ(r, τ)eiK·r

where K is the ordering wavevector.

+

Metal with “large” 
Fermi surface

Tuesday, May 17, 2011



Metal with “large” 
Fermi surface

Fermi surface+antiferromagnetism

��ϕ� = 0

Metal with electron 
and hole pockets

Increasing SDW order

��ϕ� �= 0

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Increasing interaction
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Nd2−xCexCuO4

T. Helm, M. V. Kartsovnik, 
M. Bartkowiak, N. Bittner, 

M. Lambacher, A. Erb, J. Wosnitza, 
and R. Gross, 

Phys. Rev. Lett. 103, 157002 (2009). 

Quantum oscillations

Increasing SDW order

s
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N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002).

Photoemission in Nd2-xCexCuO4
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Spin-fermion model: Electrons with dispersion εk
interacting with fluctuations of the antiferromagnetic

order parameter �ϕ.

Z =

�
DcαD�ϕ exp (−S)

S =

�
dτ

�

k

c†kα

�
∂

∂τ
− εk

�
ckα

+

�
dτd2r

�
1

2
(∇r �ϕ)

2 +
s

2
�ϕ2 + . . .

�

− λ

�
dτ

�

i

�ϕi · (−1)ric†iα�σαβciβ
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Coupling between fermions

and antiferromagnetic order:

λ2 ∼ U , the Hubbard repulsion

Spin-fermion model: Electrons with dispersion εk
interacting with fluctuations of the antiferromagnetic

order parameter �ϕ.
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Hertz-Moriya-Millis theory

Integrate out fermions and obtain an effective action for the

boson field �ϕ alone. Because the fermions are gapless, this is

potentially dangerous, and will lead to non-local terms in the �ϕ
effective action. Hertz focused on only the simplest such non-

local term. However, there are an infinite number of non-local

terms at higher order, and these lead to a breakdown of the

Hertz theory in d = 2.

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).

A technical aside......
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A technical aside......

We need to perform an RG analysis on a local theory of both

the fermions and the �ϕ. It appears that such a theory can be

analyzed using a 1/N expansion, where N is the number of

fermion flavors. At two-loop order, the 1/N expansion is well-

behaved, and we can determine consistent RG flow equations.

However, at higher loops we find corrections to the renormal-

izations which require summation of all planar graphs even at

the leading order in 1/N , and the 1/N expansion appears to be

organized as a genus expansion of random surfaces. But even

this genus expansion breaks down in the renormalization of a

quartic coupling of �ϕ. In the following, I will describe some of

the two loop results.

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Tuesday, May 17, 2011



Metal with “large” Fermi surface
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Fermi surfaces translated by K = (π,π).
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“Hot” spots
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Low energy theory for critical point near hot spots
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Low energy theory for critical point near hot spots
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v1 v2

ψ2 fermions
occupied

ψ1 fermions
occupied

Theory has fermions ψ1,2 (with Fermi velocities v1,2)
and boson order parameter �ϕ,
interacting with coupling λ

kx

ky
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v1 v2

Theory has fermions ψ1,2 (with Fermi velocities v1,2)
and boson order parameter �ϕ,
interacting with coupling λ

kx

ky

“Hot spot”

Fermi lines
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v1 v2

kx

ky

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Critical point theory is strongly coupled in d = 2
Results are independent of coupling λ
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v1 v2

kx

ky

Critical point theory is strongly coupled in d = 2
Results are independent of coupling λ

Gfermion ∼ 1

i
√
ω − v.k

A.  J. Millis, Phys. Rev. B 45, 13047 (1992)
Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004)
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kx

ky

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Critical point theory is strongly coupled in d = 2
Results are independent of coupling λ

Gfermion =
Z(k�)

iω − vF (k�)k⊥
, Z(k�) ∼ vF (k�) ∼ k�

k⊥

k�
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Unconventional pairing at and near hot spots

∆
−∆

�
c†kαc

†
−kβ

�
= εαβ∆(cos kx − cos ky)
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BCS theory

1 + λe-ph log
�ωD

ω

�

Electron-phonon
coupling

Debye
frequency

Implies
Tc ∼ ωD exp (−1/λ)
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Fermi
energy

Antiferromagnetic fluctuations: weak-coupling

1 +

�
U

t

�2

log

�
EF

ω

�

Applies in a Fermi liquid
as repulsive interaction U → 0.

Implies

Tc ∼ EF exp
�
− (t/U)2

�

Enhancement of pairing susceptibility by interactions

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)
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Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of pairing susceptibility by interactions
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Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of pairing susceptibility by interactions
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Spin density wave quantum critical point
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log2
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Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Fermi
energy

α = tan θ, where 2θ is
the angle between Fermi lines.

Independent of interaction strength
U in 2 dimensions.

Enhancement of pairing susceptibility by interactions

(see also  Ar. Abanov, A. V. Chubukov, and A. M. Finkel'stein, Europhys. Lett. 54, 488 (2001)) 
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2θ
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M. A. Metlitski 
and S. Sachdev, 
Phys. Rev. B 85, 
075127 (2010)

kx

ky

Gfermion =
Z(k�)

iω − vF (k�)k⊥
, Z(k�) ∼ vF (k�) ∼ k�

k⊥

k�

�
dk�

1

k2�

�
Z2(k�)

vF (k�)

�
log

k2�
ω
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kx

ky

Gfermion =
Z(k�)

iω − vF (k�)k⊥
, Z(k�) ∼ vF (k�) ∼ k�

k⊥

k�

�
dk�

1

k2�

�
Z2(k�)

vF (k�)

�
log

k2�
ω

Spin fluctuation
propagator

Cooper
logarithm

}
M. A. Metlitski 
and S. Sachdev, 
Phys. Rev. B 85, 
075127 (2010)
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Is there a log2 for 
any other 

susceptibility ?

Only one other
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Unconventional pairing at and near hot spots

∆
−∆

�
c†kαc

†
−kβ

�
= εαβ∆(cos kx − cos ky)
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Φ
−Φ

Unconventional particle-hole pairing at and near hot spots

�
c†k−Q/2,αck+Q/2,α

�
= Φ(cos kx − cos ky)

Q is ‘2kF ’
wavevector
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Spin density wave quantum critical point

1 +
α

3π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

• Emergent pseudospin symmetry of low
energy theory also induces log2 in a single
“d-wave” particle-hole channel. Fermi-surface
curvature reduces prefactor by 1/3.

• Φ corresponds to a 2kF bond-nematic order

Enhancement of Φ susceptibility by interactions
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!1

"1

No modulations on sites,
�
c†rαcsα

�
is modulated

only for r �= s.

�
c†k−Q/2,αck+Q/2,α

�
= Φ(cos kx − cos ky)

“Bond density” 
measures amplitude 
for electrons to be 

in  spin-singlet 
valence bond.

2kF bond-nematic order
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Electron on Fermi 
surface away from 

hot-spots
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Electron on Fermi 
surface away from 

hot-spots

Spin density wave
operator �ϕ
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Electron on Fermi 
surface away from 

hot-spots

Electron on Fermi 
surface away from 

hot-spots

Composite
operator �ϕ 2
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hot-spots
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surface away from 
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Electron on Fermi 
surface away from 

hot-spots

Electron on Fermi 
surface away from 

hot-spots

Composite
operator �ϕ 2

All excitations are low energy
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All electrons on 
Fermi surface away 

from hot-spots

High energy

�ϕ fluctuation
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A
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A

B C

D

D

C

B

A

2kF bond-nematic
operator Φ, whose
fluctuations are

enhanced near the SDW
critical point
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A

B C

D

D

C

B

A

2kF bond-nematic
operator Φ, whose
fluctuations are

enhanced near the SDW
critical point

All low energy 
excitations in an 

umklapp 
process: this is 
important for 

transport 
properties
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Consequences of composite operators

• Non-Fermi liquid spectral functions around
entire Fermi surface.

• Scattering off �ϕ and �ϕ 2 fluctuations leads
to strong scattering of electronic excitations,
but contribution to optical conductivity is
suppressed by vertex corrections. Quasipar-
ticles break down at the hot spots, but sur-
vive elsewhere (at leading order).

• Strong contribution to optical conductivity,
σ(ω), arises from 2kF umklapp scattering.

Tuesday, May 17, 2011
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Fluctuating
Fermi

pockets
Large
Fermi

surface

Strange
Metal

Spin density wave (SDW)

Underlying SDW ordering quantum critical point
in metal at x = xm

Increasing SDW order

T*
Quantum
Critical
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Large
Fermi

surface

Strange
Metal

Spin density wave (SDW)

d-wave
superconductor

Small Fermi
pockets with 

pairing fluctuations

SDW quantum critical point is unstable to d-wave superconductivity
This instability is stronger than that in the BCS theory

M. A. Metlitski and
S. Sachdev,
Physical Review
B 82, 075128 (2010)

Fluctuating, 
paired Fermi

pockets
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TSDW 
Tc

 

T0 

2.0 

0 

!"

1.0 SDW 

Superconductivity 

BaFe2(As1-xPx)2 

Temperature-doping phase diagram of  the 
iron pnictides: 

Resistivity
∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)

Strange
Metal
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Large
Fermi

surface

Strange
Metal

Spin density wave (SDW)

d-wave
superconductor

Small Fermi
pockets with 

pairing fluctuations

SDW quantum critical point is unstable to d-wave superconductivity
This instability is stronger than that in the BCS theory

M. A. Metlitski and
S. Sachdev,
Physical Review
B 82, 075128 (2010)

\

Fluctuating, 
paired Fermi

pockets
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Large
Fermi

surface

Strange
Metal

Spin density wave (SDW)

d-wave
superconductor

Small Fermi
pockets with 

pairing fluctuations E. G. Moon and
S. Sachdev, Phy.
Rev. B 80, 035117
(2009)

\

Competition between SDW order and superconductivity
moves the actual quantum critical point to x = xs < xm.

Fluctuating, 
paired Fermi

pockets
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surface)

SDW
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pockets)

SC+
SDW

Small Fermi
pockets with 

pairing fluctuations
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surface

Strange
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d-wave
SC

T

Tsdw

Fluctuating, 
paired Fermi

pockets

T*
E. Demler, S. Sachdev
and Y. Zhang, Phys.
Rev. Lett. 87,
067202 (2001).
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surface)

SDW
(Small Fermi
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Small Fermi
pockets with 

pairing fluctuations
Large
Fermi

surface

Strange
Metal

d-wave
SC

T

Tsdw

Fluctuating, 
paired Fermi

pockets

T*

Neutron scatter-

ing experiments on

Nd2−xCexCuO4 show

that at low fields

xs = 0.14, while

quantum oscilla-

tions at high fields

show that xm = 0.165.

Quantum
Critical

E. Demler, S. Sachdev
and Y. Zhang, Phys.
Rev. Lett. 87,
067202 (2001).
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Nd2−xCexCuO4

T. Helm, M. V. Kartsovnik, 
M. Bartkowiak, N. Bittner, 

M. Lambacher, A. Erb, J. Wosnitza, 
and R. Gross, 

Phys. Rev. Lett. 103, 157002 (2009). 

Quantum oscillations

Increasing SDW order

s
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E. M. Motoyama, G. Yu, I. M. Vishik, O. P.  Vajk, P. K. Mang, and M. Greven,
Nature 445, 186 (2007).

Nd2−xCexCuO4
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Similar phase diagram for CeRhIn5

G. Knebel, D. Aoki, and J. Flouquet, arXiv:0911.5223.
Tuson Park, F. Ronning, H. Q. Yuan, M. B. Salamon, R. Movshovich, 
J. L. Sarrao, and J. D. Thompson, Nature 440, 65 (2006) 
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Ishida, Nakai, and Hosono
arXiv:0906.2045v1
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S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler, N. Ni, 
S. L. Bud'ko, P. C. Canfield, J. Schmalian,  R. J. McQueeney, A. I. Goldman, 

Physical Review Letters 104, 057006 (2010).

Iron pnictides: 
a new class of high temperature superconductors
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There is a much
larger shift from
xm to xs in the

hole-doped
cuprates.
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evidence for the 

predicted
 quantum phase 
transition line 

from SC to SC+SDW 
in a magnetic field
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hole doping x

YBCO6.5

YBCO6.45
YBCO6.35

SC

   SC
+

AF
m

ag
ne

tic
 fi

el
d 
H

AF

D. Haug, V. Hinkov, Y. Sidis, P. Bourges, N. B. Christensen, A. Ivanov,

T. Keller, C. T. Lin, and B. Keimer, New J. Phys. 12, 105006 (2010)
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This opens a wide
intermediate regime
for new physics:

bond-nematic order,
T -breaking,

fractionalization and
Mott physics etc.
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Transform electrons to a
 “rotating reference frame”, 

quantizing spins in the direction of the 
local antiferromagnetic order

Possible exotic intermediate phases
         Fermi pockets without spin density wave order
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Transform electrons to a
 “rotating reference frame”, 

quantizing spins in the direction of the 
local antiferromagnetic order

Possible exotic intermediate phases
         Fermi pockets without spin density wave order

This is facilitated by writing the
vector antiferromagnetic order parameter �ϕ

in terms of a bosonic spinor zα,
with α =↑, ↓ and

�ϕ = z∗α�σαβzβ .
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Possible exotic intermediate phases
         Fermi pockets without spin density wave order

Spinless
fermions
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         Fermi pockets without spin density wave order

SU(2)spin
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Possible exotic intermediate phases
         Fermi pockets without spin density wave order

U(1)charge
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U × U−1

SU(2)s;gauge
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Possible exotic intermediate phases
         Fermi pockets without spin density wave order

The Hubbard model can be written

as a lattice gauge theory with a

SU(2)s;g×SU(2)spin×U(1)charge

invariance.

The SU(2)s;g is a gauge invariance,

while SU(2)spin×U(1)charge is a global symmetry

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Physical Review B 80, 155129 (2009)
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Phases of SU(2) gauge theory

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Physical Review B 80, 155129 (2009)
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(C)

(D)

Increasing SDW order

Increasing SDW order

��ϕ� = 0
��ϕ� �= 0

Fermi liquid phases 
considered so far
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Exotic non-Fermi liquid has Fermi pockets without long-range 
antiferromagnetism, along with emergent gauge excitations
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Conclusions

The quantum critical point describing 
the onset of spin-density-wave order 

in metals is strongly coupled 
in two spatial dimensions, and displays 

universal non-Fermi liquid physics 
which is independent of 

electron interaction strength. 
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Conclusions

The quantum critical point has 
an instability to 

unconventional “d-wave” pairing, with a 
universal log-squared enhancement 

of the pairing susceptibility, 
which is independent of 

electron interaction strength.
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Conclusions

Composite operators lead to 
non-Fermi liquid behavior 

around entire Fermi surface
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Conclusions

Phenomenological phase diagram
in a magnetic field provides 

a unified description of many 
higher temperature superconductors
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