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Fermi surface+antiferromagnetism

Metal with “large”
Fermi surface

The electron spin polarization obeys

<§(r, 7')> = J(r, 7)eBT

where K is the ordering wavevector.
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Fermi surface+antiferromagnetism

—
(P) # 0 ($) =0
Metal with electron Metal with “large”
and hole pockets Fermi surface

Increasing interaction

S. Sachdev, A.V. Chubukov, and A. Sokol, Phys. Rev.B 51, 14874 (1995).
A.V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).
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Quantum oscillations

NdZ—a;' Cem CU.O4

T. Helm, M.V. Kartsovnik,
M. Bartkowiak, N. Bittner,
M. Lambacher, A. Erb, J].Wosnitza,
and R. Gross,
Phys. Rev. Lett. 103, 157002 (2009).
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Photoemission in Nd»..Ce.CuO.

N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002).
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Spin-fermion model: Electrons with dispersion ey
interacting with fluctuations of the antiferromagnetic
order parameter .
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Spin-fermion model: Electrons with dispersion ey
interacting with fluctuations of the antiferromagnetic
order parameter .
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Coupling between fermions

and antiferromagnetic order:
A2 ~ U, the Hubbard repulsion
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A technical aside......

Hertz-Moriya-Millis theory

Integrate out fermions and obtain an effective action for the
boson field ¢ alone. Because the fermions are gapless, this is
potentially dangerous, and will lead to non-local terms in the ¢
effective action. Hertz focused on only the simplest such non-
local term. However, there are an infinite number of non-local
terms at higher order, and these lead to a breakdown of the
Hertz theory in d = 2.

Ar.Abanov and A.V. Chubukov, Phys. Rev. Lett. 93,255702 (2004).
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A technical aside......

We need to perform an RG analysis on a local theory of both
the fermions and the . It appears that such a theory can be
analyzed using a 1/N expansion, where N is the number of
fermion flavors. At two-loop order, the 1/N expansion is well-
behaved, and we can determine consistent RG flow equations.
However, at higher loops we find corrections to the renormal-
izations which require summation of all planar graphs even at
the leading order in 1//N, and the 1/N expansion appears to be
organized as a genus expansion of random surfaces. But even
this genus expansion breaks down in the renormalization of a
quartic coupling of ¢. In the following, I will describe some of
the two loop results.

M.A. Metlitski and S. Sachdey, Phys. Rev. B 85,075127 (2010)
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Metal with “large” Fermi surface
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Fermi surfaces translated by K = (7, 7).




“Hot” spots

Tuesday, May 17, 2011



Low energy theory for critical point near hot spots
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Low energy theory for critical point near hot spots
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Theory has fermions 11 5 (with Fermi velocities v o)
and boson order parameter ¢,
interacting with coupling A

Vi Vo

>
<

1 fermions o fermions
occupied occupied
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Theory has fermions 11 5 (with Fermi velocities v o)
and boson order parameter ¢,
interacting with coupling A

V1 V9

>]{;:E

Fermi lines
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Critical point theory is strongly coupled in d = 2
Results are independent of coupling A

Vi Vo

M.A. Metlitski and S. Sachdey, Phys. Rev. B 85,075127 (2010)

Tuesday, May 17, 2011



Critical point theory is strongly coupled in d = 2
Results are independent of coupling A

A. ). Millis, Phys. Rev. B 45, 13047 (1992)
Ar.Abanov and A.V. Chubukov, Phys. Rev. Lett. 93,255702 (2004)
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Critical point theory is strongly coupled in d = 2
Results are independent of coupling A

Gfermion —

Z(k”)

iw — v (k)

M.A. Metlits

L Z(ky) ~vr(k)) ~ ky

¢ and S. Sachdev, Phys. Rev. B 85, 075127 (2010)
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Unconventional pairing at and near hot spots
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BCS theory

Implies
T. ~wpexp(—1/A)




Enhancement of pairing susceptibility by interactions

Antiferromagnetic fluctuations: weak-coupling

Applies in a Fermi liquid Fermi
as repulsive interaction U — 0. energy

Implies

1.~ Epexp (— (t/U)Q)

D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34,8190 (1986)
K. Miyake, S. Schmitt-Rink, and C. M.Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)

V.]. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
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Enhancement of pairing susceptibility by interactions

Spin density wave quantum critical point

1 4 ° log? EF
| (1 + a?) 5 W

M.A. Metlitski and S. Sachdeyv, Phys. Rev. B 85,075127 (2010)
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Enhancement of pairing susceptibility by interactions

Spin density wave quantum critical point

1 4 ° log? EF
| (1 + a?) 5 W

M.A. Metlitski and S. Sachdeyv, Phys. Rev. B 85,075127 (2010)
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Enhancement of pairing susceptibility by interactions

Spin density wave quantum critical point

@7 EF
1 - log? [ ==
r(1+a%) ° (w>

M.A. Metlitski and S. Sachdeyv, Phys. Rev. B 85,075127 (2010)
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Enhancement of pairing susceptibility by interactions

Spin density wave quantum critical point

4

(1 + a?) W

Fermi
energy

o = tan 0, where 260 is
the angle between Fermi lines.

Independent of interaction strength
U in 2 dimensions.

(see also Ar.Abanov,A.V. Chubukov, and A. M. Finkel'stein, Europhys. Lett. 54,488 (2001))
M.A. Metlitski and S. Sachdey, Phys. Rev. B 85,075127 (2010)
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M.A. Metlitski
and S. Sachdey,
Phys. Rev. B 85,
075127 (2010)
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M.A. Metlitski
and S. Sachdey,
Phys. Rev. B 85,
075127 (2010)

Gfermion —

Jan g () s

Spin fluctuation Cooper
propagator logarithm
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s there a log? for
any other
susceptibility ?

Only one other
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Unconventional pairing at and near hot spots
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Unconventional particle-hole pairing at and near hot spots
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Enhancement of ® susceptibility by interactions

Spin density wave quantum critical point

E
1 - log? —
3m(1 + a?) W

e EEmergent pseudospin symmetry of low
energy theory also induces log” in a single
“d-wave” particle-hole channel. Fermi-surface

curvature reduces prefactor by 1/3.

e O corresponds to a 2kr bond-nematic order

M.A. Metlitski and S. Sachdey, Phys. Rev. B 85,075127 (2010)
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2kr bond-nematic order

“Bond density”
measures amplitude
for electrons to be

in spin-singlet

valence bond.

No modulations on sites, <ciacsa> is modulated
only for r # s.

<CL_Q/2’aCk Q/27a> = ®(cosk,; — cosky)
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2kr bond-nematic order

+1I
Local Ising nematic
order with an

envelope which
oscillates

N

No modulations on sites, <ciacsa> is modulated
only for r # s.

(

T
Ck—Q/Q,aCk
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2kr bond-nematic order
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2kr bond-nematic order

£

+1p

“Bond density”

measures amplitude

for electrons to be

25
in spin-singlet

£

T % valence bond.

4

No modulations on sites, <c;f.acsa> is modulated
only for r # s.

<CL_Q/2 L Ck Q/27a> = ®(cosk; — cosky)
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Electron on Fermi

surface away from
hot-spots
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Spin density wave
operator ¢

Electron on Fermi

surface away from
hot-spots
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Spin density wave
operator ¢

Electron on Fermi Electron not

surface away from
hot-spots

on
Fermi surface
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Spin density wave
operator ¢

Electron not | | Electron on Fermi
on surface away from

Electron on Fermi

surface away from

hot-spots Fermi surface hot-spots
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Electron on Fermi Electron on Fermi

surface away from surface away from
hot-spots hot-spots
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Electron on Fermi

surface away from
hot-spots

Composite

operator 2

Electron on Fermi
surface away from
hot-spots
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Electron on Fermi

surface away from
hot-spots

Composite

operator 2
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hot-spots
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Composite
operator g2

Electron on Fermi Electron on Fermi

surface away from surface away from
hot-spots hot-spots

All excitations are low energy




All electrons on

Fermi surface away
from hot-spots

High energy
¢ Hluctuation
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2kr bond-nematic
operator ¢, whose
fluctuations are
enhanced near the SDW

critical point
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2kr bond-nematic
operator ¢, whose

fluctuations are
enhanced near the SDW

critical point

All low energy
excitations in an
umklapp
process: this is
important for
transport
properties
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Consequences of composite operators

e Non-Fermi liquid spectral functions around
entire Fermi surface.

o Scattering off G and @* fluctuations leads
to strong scattering of electronic excitations,
but contribution to optical conductivity is
suppressed by vertex corrections. (Quasipar-
ticles break down at the hot spots, but sur-
vive elsewhere (at leading order).

e Strong contribution to optical conductivity,
o(w), arises from 2kr umklapp scattering.
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SDW quantum critical point is unstable to d-wave superconductivity
This instability is stronger than that in the BCS theory
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Temperature-doping phase diagram of the
iron pnictides:

BaFe,(As, P, INEEE

® TSDW
200 Strange .-
(04
=100

Resistivity |
o | ~PoT ATO:

S. Kasahara, T. Shibauchi, K. Hashimoto, K. lkada, S. Tonegawa, R. Okazaki, H. Shishido,
H. lkeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda,
Physical Review B 81, 184519 (2010)
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Quantum oscillations

NdZ—a;' Cem CU.O4

T. Helm, M.V. Kartsovnik,
M. Bartkowiak, N. Bittner,
M. Lambacher, A. Erb, J].Wosnitza,
and R. Gross,
Phys. Rev. Lett. 103, 157002 (2009).

0.1 1 10 100
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E. M. Motoyama, G.Yu, |. M.Vishik, O. P. Vajk, P. K. Mang, and M. Greven,
Nature 445, 186 (2007).
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Similar phase diagram for CeRhlns

CeRhin,
PM
Q
o,
SC
R |
g
. \ & PM
= g\ AF Af - itinerant
T Af - localized y
3
2
15 0 1

G. Knebel, D.Aoki, and ]. Flouquet, arXiv:091 1.5223.
Tuson Park, F Ronning, H. Q.Yuan, M. B. Salamon, R. Movshovich,
J. L. Sarrao, and . D.Thompson, Nature 440, 65 (2006)
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Iron pnictides:

a new class of high temperature superconductors

150
Ba(Fe, Co ),As,
100 Tet
<
—
50
O
BalﬁezAs2 5
Unit cell : i

0O 0.02 0.04 0.06 0.08 0.10 0.12

X
S. Nandi, M. G. Kim, A. Kreyssig, R. M. Fernandes, D. K. Pratt, A. Thaler; N. Ni,

S. L. Bud'ko, P. C. Canfield, J. Schmalian, R.].McQueeney,A.|. Goldman,
Physical Review Letters 104,057006 (2010).
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- AF
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“ YBCO, .
T 4
5 7 SC
O -+ AF
SC
_ >
YBCO,,, YBCO,,. hole doping x

D. Haug, V. Hinkov, Y. Sidis, P. Bourges, N. B. Christensen, A. Ivanov,
T. Keller, C. T. Lin, and B. Keimer, New J. Phys. 12, 105006 (2010)
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Possible exotic intermediate phases
Fermi pockets without spin density wave order

.

Transform electrons to a
“rotating reference frame”,
quantizing spins in the direction of the
local antiferromagnetic order
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Possible exoti
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C intermediate phases
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Fermi pockets without spin density wave order

Transform electrons to a
“rotating reference frame”,
quantizing spins in the direction of the
local antiferromagnetic order

This is facilitated by writing the

vector anti

‘erromagnetic order parameter ¢

in terms of a bosonic spinor z,,

with o =7, ] and

—

P = 2. 008283
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Possible exotic intermediate phases
Fermi pockets without spin density wave order
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Possible exotic intermediate phases
Fermi pockets without spin density wave order
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Possible exotic intermediate phases
Fermi pockets without spin density wave order
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Possible exotic intermediate phases
Fermi pockets without spin density wave order
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Possible exotic intermediate phases
Fermi pockets without spin density wave order

CH
C\/

)

(
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2

The Hubbard model can be written
as a lattice gauge theory with a

SU( ) ,gXSU( )spln U(l)charge

invariance.

The SU(2),., is a gauge invariance,
while SU(2)spin X U(1)charge is a global symmetry

S. Sachdev, M. A. Metlitski,Y. Qi, and C. Xu, Physical Review B 80, 155129 (2009)
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Phases of SU(2) gauge theory
. AN
N v N/

small Fermi pockets Fermi liquid
kﬁé

(@) # 0

large Fermi surtace

(@) =0

Fermi liquid phases
considered so far

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Physical Review B 80, 155129 (2009)
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S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Physical Review B 80, 155129 (2009)
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Phases of SU(2) gauge theory
B Electron]i / \
/ k SDW order foped \ /
:( [ small Fermi pockets
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S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Physical Review B 80, 155129 (2009)
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Phases of SU(2) gauge theory / \
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Exotic non-Fermi liquid has Fermi pockets without long-range

antiferromagnetism, along with emergent gauge excitations
(a) (b)
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Conclusions

The quantum critical point describing
the onset of spin-density-wave order
in metals is strongly coupled
in two spatial dimensions, and displays
universal non-Fermi liquid physics
which is independent of
electron interaction strength.
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Conclusions

The quantum critical point has
an instability to
unconventional “d-wave” pairing, with a
universal log-squared enhancement
of the pairing susceptibility,
which is independent of
electron interaction strength.
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Conclusions

Composite operators lead to
non-Fermi liquid behavior
around entire Fermi surface
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Conclusions

Phenomenological phase diagram
in 2 magnetic field provides
a unified description of many
higher temperature superconductors
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