Equilibrium dynamics of entangled states near quantum critical points

Physical Review Letters **78**, 843 (1997); **78**, 2220 (1997); **95**, 187201 (2005).

Kedar Damle (TIFR, Mumbai) Subir Sachdev (Harvard) Peter Young (UCSC)

Talk online at http://sachdev.physics.harvard.edu

- Theory for a quantum system with strong correlations: describe phases on either side of g_c by expanding in deviation from the quantum critical point.
- Critical point is (often) a novel (entangled) state of matter without quasiparticle excitations
- Critical excitations control dynamics in the wide *quantum-critical* region at non-zero temperatures.

Important property of ground state at $g=g_c$: temporal and spatial <u>scale invariance</u>; characteristic energy scale at other values of $g: \Delta \sim |g - g_c|^{zv}$

I. Quantum Ising Chain

Degrees of freedom: j = 1...N qubits, N "large" $|\uparrow\rangle_{j}, |\downarrow\rangle_{j}$ or $|\rightarrow\rangle_{j} = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{j} + |\downarrow\rangle_{j}), \ |\leftarrow\rangle_{j} = \frac{1}{\sqrt{2}} (|\uparrow\rangle_{j} - |\downarrow\rangle_{j})$

Hamiltonian of decoupled qubits:

$$H_0 = -Jg\sum_j \sigma_j^x$$

Coupling between qubits:

$$H_{1} = -J \sum_{j} \sigma_{j}^{z} \sigma_{j+1}^{z}$$

$$(| \rightarrow \rangle_{j} \langle \leftarrow | + | \leftarrow \rangle_{j} \langle \rightarrow |) (| \rightarrow \rangle_{j+1} \langle \leftarrow | + | \leftarrow \rangle_{j+1} \langle \rightarrow |)$$

Prefers neighboring qubits are *either* $|\uparrow\rangle_{j}|\uparrow\rangle_{j+1}$ or $|\downarrow\rangle_{j}|\downarrow\rangle_{j+1}$ (not entangled)

Full Hamiltonian

$$H = H_0 + H_1 = -J\sum_j \left(g\sigma_j^x + \sigma_j^z\sigma_{j+1}^z\right)$$

leads to entangled states at g of order unity

LiHoF₄

Lowest excited states:

$$\left|\ell_{j}\right\rangle = \left|\cdots \rightarrow \rightarrow \rightarrow \leftarrow_{j} \rightarrow \rightarrow \rightarrow \rightarrow \cdots\right\rangle + \cdots$$

Coupling between qubits creates "flipped-spin" *quasiparticle* states at momentum p

$$|p\rangle = \sum_{j} e^{ipx_{j}/\hbar} |\ell_{j}\rangle$$

Excitation energy $\varepsilon(p) = \Delta + 4J \sin^{2}\left(\frac{pa}{2\hbar}\right) + O(g^{-1})$
Excitation gap $\Delta = 2gJ - 2J + O(g^{-1})$
 $-\frac{\hbar\pi}{a}$
 p
 $\frac{\hbar\pi}{a}$

Entire spectrum can be constructed out of multi-quasiparticle states

At T > 0, collisions between quasiparticles broaden pole to a Lorentzian of width $1/\tau_{\varphi}$ where the *phase coherence time* τ_{φ}

is given by
$$\frac{1}{\tau_{\varphi}} = \frac{2k_{B}T}{\pi\hbar}e^{-\Delta/k_{B}T}$$

S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997)

Quantum mechanical S-matrix has a universal form at low momenta (in one dimension)

Strongly-coupled qubits $(g \ll 1)$

Ground states:

 $|G\uparrow\rangle = |\cdots\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\uparrow\downarrow\rangle$

 $-\frac{g}{2} | \cdots \uparrow \cdots \rangle - \cdots$

Ferromagnetic moment $N_0 = \langle G | \sigma^z | G \rangle \neq 0$

Second state $|G\downarrow\rangle$ obtained by $\uparrow \Leftrightarrow \downarrow$ $|G\downarrow\rangle$ and $|G\uparrow\rangle$ mix only at order g^N

Lowest excited states: domain walls

$$\left| d_{j} \right\rangle = \left| \cdots \uparrow \uparrow \uparrow \uparrow \uparrow_{j} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \rangle + \cdots \right\rangle$$

Coupling between qubits creates new "domainwall" *quasiparticle* states at momentum *p*

$$\left| p \right\rangle = \sum_{j} e^{ipx_{j}/\hbar} \left| d_{j} \right\rangle$$

Excitation energy $\varepsilon(p) = \Delta + 4Jg \sin^{2}\left(\frac{pa}{2\hbar}\right) + O\left(g^{2}\right)$

Excitation gap $\Delta = 2J - 2gJ + O(g^2)$

Dynamic Structure Factor $S(p, \omega)$: Strongly-coupled qubits $(g \ll 1)$ Cross-section to flip a $|\rightarrow\rangle$ to a $|\leftarrow\rangle$ (or vice versa) while transferring energy $\hbar \omega$ and momentum *p*

At T > 0, motion of domain walls leads to a finite *phase coherence time* τ_{φ} , and broadens coherent peak to a width $1/\tau_{\varphi}$ where $\frac{1}{\tau_{\varphi}} = \frac{2k_B T}{\pi \hbar} e^{-\Delta/k_B T}$

S. Sachdev and A.P. Young, Phys. Rev. Lett. 78, 2220 (1997)

Semiclassical theory for $C(x,t) = \operatorname{Tr}\left(e^{-H/T}e^{iHt/\hbar}\sigma_x^z e^{-iHt/\hbar}\sigma_0^z\right)$ Valid for $T \ll \Delta$ because quasiparticle spacing $\sim e^{\Delta/T}$ \gg de-Broglie wavelength $\sim T^{-1/2}$ (x,t) (0,0)Х

Semiclassical theory for $C(x,t) = \operatorname{Tr}\left(e^{-H/T}e^{iHt/\hbar}\sigma_x^z e^{-iHt/\hbar}\sigma_0^z\right)$ Valid for $T \ll \Delta$ because quasiparticle spacing $\sim e^{\Delta/T}$ \gg de-Broglie wavelength $\sim T^{-1/2}$ (x,t) (0,0) $C(x,t) = \left\langle \left(-1\right)^{\text{number of domain walls between (0,0) and } (x,t) \right\rangle$

No quasiparticles --- dissipative critical continuum

S. Sachdev and J. Ye, Phys. Rev. Lett. **69**, 2411 (1992). S. Sachdev and A.P. Young, Phys. Rev. Lett. **78**, 2220 (1997).

II. Quantum O(3) non-linear σ model

Quantum field theory of a unit vector field $\mathbf{n}(x,t)$, with the constraint $\mathbf{n}^2 = 1$. Imaginary time Feynman path integral

$$\mathcal{Z} = \int \mathcal{D}\mathbf{n}(x,\tau)\delta(\mathbf{n}^2 - 1)$$
$$\times \exp\left(-\frac{1}{2g}\int dx\int d\tau \left[c^2 \left(\partial_x \mathbf{n}\right)^2 + \left(\partial_\tau \mathbf{n}\right)^2\right]\right)$$

There is always an energy gap above the ground state $\Delta \sim \Lambda e^{-2\pi/g}$.

Excitations are quasi-particles with spin S = 1 (three-fold degenerate).

Quantum mechanical S-matrix has a universal form at low momenta (in one dimension)

Excitation energy Δ and linewidth Γ for Y₂BaNiO₅

C. Broholm et al. (unpublished)

Solid line for Γ – theory with no free parameters

III. Quantum sine-Gordon model

Quantum field theory of a "phase" field $\Phi(x,t)$. Imaginary time Feynman path integral

$$\mathcal{Z} = \int \mathcal{D}\Phi(x,\tau)$$

 $\times \exp\left(-\frac{c}{16\pi}\int d\tau dx \left[(\partial_x \Phi)^2 + \frac{1}{c^2}(\partial_\tau \Phi)^2 - g^2\cos(\gamma\Phi)\right]\right)$

We focus on the range $\gamma < 1$ where there is an energy gap, and the excitations consist of solitons and antisolitons.

In the semiclassical picture, $\Phi = 2\pi n/\gamma$ (*n* integer) over most space time. The value of *n* jumps by ±1 across solitons/anti-solitons. Quantum mechanical S-matrix has a universal form at low momenta (in one dimension)

III. Quantum sine-Gordon model

Given solitons with charges $m_k = \pm 1$ and the "zig-zag" trajectories $x_k(t)$, the sine-Gordon field is

$$\Phi(x,t) = \frac{2\pi}{\gamma} \sum_{k=1} m_k \theta(x - x_k(t)).$$

Averaging over trajectories, we found

$$C_{\Phi}(x,t) = \langle e^{i\eta\Phi(x,t)}e^{-i\eta\Phi(0,0)} \rangle$$

$$= e^{-(\tilde{q}_r + \tilde{q}_l)} \left[U_0(2i\tilde{q}_r\Theta, 2i\sqrt{\tilde{q}_r\tilde{q}_l}) + U_0(2i\tilde{q}_l\Theta, 2i\sqrt{\tilde{q}_r\tilde{q}_l}) - iU_1(2i\tilde{q}_r\Theta, 2i\sqrt{\tilde{q}_r\tilde{q}_l}) - iU_1(2i\tilde{q}_r\Theta, 2i\sqrt{\tilde{q}_r\tilde{q}_l}) - iU_1(2i\tilde{q}_r\Theta, 2i\sqrt{\tilde{q}_r\tilde{q}_l}) - I_0(2\sqrt{\tilde{q}_r\tilde{q}_l}) \right],$$

where $\Theta \equiv \cos(2\pi\eta/\gamma)$, $\tilde{q}_r = \rho \int_{-\infty}^{x/t} dv P(v)(x-vt)$, $\tilde{q}_l = \rho \int_{x/t}^{\infty} dv P(v)(x-vt)$, I_0 is the modified Bessel function, $U_{0,1}$ are the Lommel functions of two variables, ρ is the density of excitations, and P(v) is their Maxwell-Boltzmann velocity distribution.

At long distances and times, this correlator has a *diffusive* form $\sim t^{-1/2}e^{-x^2/(4Dt)}$ with $D \sim T^{-1/2}$.

Conclusions

- 1. Large, entangled quantum systems close to equilibrium have an "intrinsic" relaxation rate independent of the strength of the coupling to a heat bath.
- 2. This relaxation rate has a universal form near interacting quantum critical points
- 3. In one-dimensional systems

$$\tau_{\varphi} \sim \begin{cases} \frac{\hbar}{k_B T} e^{\frac{\Lambda}{k_B T}} & \text{in a gapped state} \\ \frac{\hbar}{k_B T} & \text{in a quantum-critical system} \end{cases}$$