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Maxwell's equations: 150 years of light
A century and a half ago, James Clerk Maxwell submitted a long paper to the Royal Society containing his
famous equations. Inspired by Michael Faraday’s experiments and insights, the equations unified
electricity, magnetism and optics. Their far-reaching consequences for our civilisation, and our universe,
are still being explored
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T he chances are that you are reading this article on some kind of electronic technology. You
are definitely seeing it via visible light, unless you have a braille or audio converter. And it
probably got to you via wifi or a mobile phone signal. All of those things are understood in

terms of the relationships between electric charges and electric and magnetic fields
summarised in Maxwell’s equations, published by the Royal Society in 1865, 150 years ago.

Verbally, the equations can be summarised as something like: 

Electric and magnetic fields make electric charges move. Electric charges cause electric fields, but
there are no magnetic charges. Changes in magnetic fields cause electric fields, and vice versa.

The equations specify precisely how it all happens, but that is the gist of it.

Last week I was at a meeting celebrating the anniversary at the Royal Society in London, and
was privileged to see the original manuscript, which is not generally on public view.

It was submitted in 1864 but, in a situation familiar to scientists everywhere, was held up in
peer review. There’s a letter, dated March 1865, from William Thomson (later Lord Kelvin)
saying he was sorry for being slow, that he’d read most of it and it seemed pretty good
(“decidely suitable for publication”).

The equations seem to have been very much a bottom-up affair, in that Maxwell collected
together a number of known laws which were used to describe various experimental results,
and (with a little extra ingredient of his own) fitted them into a unified framework. What is
amazing is how much that framework then reveals, both in terms of deep physical principles,
and rich physical phenomena.

Fields and Waves

The equations show that electric and magnetic fields can exist even in the absence of electric
charges. A changing electric field causes a changing magnetic field, which will cause more
changes in the electric field, and so on. Mathematically this is expressed in the fact that the
equations can be rearranged and combined to get a new kind of equation, that describes a

, The Guardian
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Modern point-of-view:

Electromagnetic gauge fields are needed to describe 
the long-range quantum entanglement of the 
“vacuum”.

Electrons in crystals provide a new “vacuum”, and 
their interactions can naturally lead to quantum 
states which have long-range quantum entanglement, 
and require “emergent” gauge fields.
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A conventional 
metal:

the Fermi liquid

M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,
S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)
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1. Emergent gauge fields and long-range 
entanglement in insulators

2.   Theory of ordinary metals: Fermi liquids (FL)
(a) Quasiparticles
(b) Luttinger theorem for volume enclosed by Fermi surface

3.  Fractionalized Fermi liquids (FL*)
Quasiparticles with a non-Luttinger volume, 
      and emergent gauge fields 

4.  The pseudogap metal of the 
            cuprate superconductors
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P. W. Anderson, Materials Research Bulletin 8, 153 (1973)
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Emergent gauge fields 

E. Fradkin and S.  A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990) 
G. Baskaran and P.  W.  Anderson, Phys. Rev. B 37, 580(R) (1988) 

Local constraint on dimer number operators:

n̂1 + n̂2 + n̂3 + n̂4 = 1.

Identify dimer number with an ‘electric’ field,

ˆ

Ei↵ = (�1)

i
x

+i
y

n̂i↵,

(↵ = x, y); the constraint becomes ‘Gauss’s Law’:

�↵
ˆ

Ei↵ = (�1)

i
x

+i
y

.

The theory of the dimers is compact U(1) quantum electrodynam-

ics in the presence of static background charges. The compact the-

ory allows the analog of Dirac’s magnetic monopoles as tunneling

events/excitations.



Emergent gauge fields 

n̂1

n̂2

n̂3

n̂4

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991); R. A. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 
(1991); X.-G. Wen, Phys. Rev. B 44, 2664 (1991); S. Sachdev and M. Vojta, J. Phys. Soc. Jpn 69, Supp. B, 1 (1999)

Including dimers connecting the same sublattice leads to a

Z2 gauge theory in the presence of Berry phases of static

background charges. This has a stable deconfined phase in

2+1 dimensions. By varying parameters it can undergoes

a confinement transition to a valence bond solid, described

by a frustrated Ising model.
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• Hall co-e�cient
RH = �1/((Fermi volume)⇥ e).
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But relative to 
the band 

insulator, there 
are 1+ p holes
per square, and 

so a Fermi 
liquid has a 

Fermi surface of 
size 1+ p



Fermi liquid
Area enclosed by 

Fermi surface =1+p

M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,
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Fermi liquid
Hall co-efficient

M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,
S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)
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RH = +1/((1 + p)e).



Pseudogap

2. Pseudogap 
metal 

at low p

Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana,
Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.-X. Shen, Science 307, 901 (2005)
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with a Fermi 

surface size of p 
and not 1+p

.e.g. Hall
co-e�cient
RH = +1/(pe).



1. Emergent gauge fields and long-range 
entanglement in insulators

2.   Theory of ordinary metals: Fermi liquids (FL)
(a) Quasiparticles
(b) Luttinger theorem for volume enclosed by Fermi surface

3.  The FL* phase:
Quasiparticles with a non-Luttinger volume, 
      and emergent gauge fields 

4.  The pseudogap metal of the 
            cuprate superconductors



Anti-
ferromagnet
with p holes
per square



Anti-
ferromagnet
with p holes
per square

Can we get 
a Fermi 
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size p?

(and full square 
lattice 

symmetry)



Spin liquid
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FL* 

Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2



Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

FL* 



Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

FL* 



Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

FL* 



Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

FL* 



Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

FL* 



Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

FL* 



Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

FL* 



Place FL* 
on a torus:

Ground state degeneracy 



Place 
insulator 

on a torus;

Ground state degeneracy 

Place FL* 
on a torus:

obtain 
“topological” 
states nearly 

degenerate with 
quasiparticle 

states: number 
of dimers 

crossing red line 
is conserved 

modulo 2

T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004)



Place FL* 
on a torus:

obtain 
“topological” 
states nearly 

degenerate with 
quasiparticle 

states: number 
of dimers 

crossing red line 
is conserved 

modulo 2

T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004)

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

2

FL* 



Place FL* 
on a torus:

obtain 
“topological” 
states nearly 

degenerate with 
quasiparticle 

states: number 
of dimers 

crossing red line 
is conserved 

modulo 2

T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004)

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

0

FL* 



Place FL* 
on a torus:

obtain 
“topological” 
states nearly 

degenerate with 
quasiparticle 

states: number 
of dimers 

crossing red line 
is conserved 

modulo 2

T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004)

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

0

FL* 



Place FL* 
on a torus:

obtain 
“topological” 
states nearly 

degenerate with 
quasiparticle 

states: number 
of dimers 

crossing red line 
is conserved 

modulo 2

T. Senthil, M. Vojta, and S. Sachdev, Phys. Rev. B 69, 035111 (2004)

= (|"#i � |#"i) /
p
2 = (|" �i+ |� "i) /

p
2

2

FL* 
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  Additional low energy quantum states on a torus 
not associated with quasiparticle excitations i.e. 
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A new metal - FL*:
with electron-like 
quasiparticles on a 
Fermi surface of 

size p and emergent 
gauge fields
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FL

Pseudogap

Y. Qi and S. Sachdev, Phys. Rev. B 81, 115129 (2010)
M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015)
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• Density wave instabilities of FL* have wave vector
and form-factors which agree with STM/X-ray obser-
vations in DW region (D. Chowdhury and S. Sachdev,
PRB 90, 245136 (2014)).

• T -independent positive Hall co-e�cient, RH , corre-
sponding to carrier density p in the higher tempera-
ture pseudogap (Ando et al., PRL 92, 197001 (2004))
and in recent measurements at high fields, low T , and
around p ⇡ 0.16 in YBCO (Proust-Taillefer-UBC col-
laboration, Badoux et al., arXiv:1511.08162).
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The high T FL* can help explain the 
“d-form factor density wave” observed at low T

D. Chowdhury and S.S., Phys. Rev. B 90, 245136 (2014).
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Fig. 2 | Field dependence of the Hall coefficient in YBCO.  

Hall coefficient of YBCO at various fixed temperatures, as indicated, plotted as 

RH vs H / Hvs, where Hvs(T) is the vortex-lattice melting field above which RH 

becomes non-zero, for two dopings: p = 0.15 (top panel) and p = 0.16 (bottom 

panel). Upon cooling, we see that RH decreases and eventually becomes 

negative at p = 0.15, while it never drops at p = 0.16. 
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There is a general and fundamental relationship 
between these two characteristics. Promising 
indications that such a metal describes the 
pseudogap of the cuprate supercondutors 
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