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This criterion can distinguish the phases when 
dynamical (or even gapless) matter fields are present

Topological quantum

field theory describes

degenerate states with

Z2 flux W = ±1 through

the holes of the torus



Compact U(1) lattice gauge theory
(Fradkin and Shenker, 1979)
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Higgs state with h�i 6= 0:
The phase of � winds by 2⇡
around the cycle of the torus,
trapping U(1) flux ⇡ in the
hole of the torus. This leads

to 4-fold degeneracy

(N. Read and S.S., 1991; X.-G. Wen, 1991; Bais, Van Driel, and de Wild Propitius 1992; 
T. Senthil and M.P.A. Fisher, 2000; J. Maldacena, G. Moore, N. Seiberg, 2001)
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Insulating 
Antiferromagnet

Néel order parameter n(xi, t) = ⌘iSi(t), where ⌘i = ±1 on two sublattices.
O(3) non-linear sigma model:
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where aµ is an emergent U(1) gauge field.
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Higgs phase with hz↵i 6= 0
Néel order wih Nambu-Goldstone
(spin-wave) gapless excitations.

Confined phase with hz↵i = 0

VBS order

(N. Read and S.S., 1989;  S.S. and R. Jalabert, 1990)

Theory for S = 1/2 antiferromagnet also has spin Berry phase terms
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To obtain a Z2 deconfined phase, we need to condense a Higgs field
with U(1) charge 2. The simplest route is to condense spin-singlet
pairs of long-wavelength spinons, z↵. There are two candidates for

such Higgs fields, corresponding to the operators

P ⇠ "↵�z↵@tz� , Qa ⇠ "↵�z↵@az� ,

with a = x, y. By gauge-invariance and symmetry, we obtain the
following e↵ective action with additional tuning parameters s1 and s2
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The broken symmetries co-existing with Z2 topological order are 
precisely those observed in the pseudogap phase of the cuprates
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Phase diagram at small g with hz↵i 6= 0
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Phase diagram of Sr2Ir1-xRhxO4

T. Qi et al., PRB 86, 125105 (2012)

J. P. Clancy et al., PRB 89, 054409 (2014)

Y. Cao et al., Nat. Commun. 7, 11367 (2016)

J. Jeong et al., arXiv:1701.06485 (2017)

Polarized neutron 
diffraction

L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao, and D. Hsieh, Nature Physics 12, 32 (2016)
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Begin with the “spin-fermion” model. Electrons ci↵ on the square

lattice with dispersion

Hc = �
X

i,⇢

t⇢

⇣
c

†
i,↵ci+v⇢,↵

+ c

†
i+v⇢,↵

ci,↵

⌘
� µ

X

i

c

†
i,↵ci,↵ +Hint

are coupled to an antiferromagnetic order parameter �

`
(i),

` = x, y, z

Hint = ��

X

i

⌘i�
`
(i)c

†
i,↵�

`
↵�ci,� + V�
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When �
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(i) =constant independent of i, we have long-range AFM,

and a gap in the fermion spectrum at the anti-nodes.



Begin with the “spin-fermion” model. Electrons ci↵ on the square

lattice with dispersion

Hc = �
X

i,⇢

t⇢

⇣
c

†
i,↵ci+v⇢,↵

+ c

†
i+v⇢,↵

ci,↵

⌘
� µ

X

i

c

†
i,↵ci,↵ +Hint

are coupled to an antiferromagnetic order parameter �

`
(i),

` = x, y, z

Hint = ��

X

i

⌘i�
`
(i)c

†
i,↵�

`
↵�ci,� + V�

where ⌘i = ±1 on the two sublattices.

When �

`
(i) =constant independent of i, we have long-range AFM,

and a gap in the fermion spectrum at the anti-nodes.

Increasing SDW order

Fermi surface size 1+p



Begin with the “spin-fermion” model. Electrons ci↵ on the square

lattice with dispersion

Hc = �
X

i,⇢

t⇢

⇣
c

†
i,↵ci+v⇢,↵

+ c

†
i+v⇢,↵

ci,↵

⌘
� µ

X

i

c

†
i,↵ci,↵ +Hint

are coupled to an antiferromagnetic order parameter �

`
(i),

` = x, y, z

Hint = ��

X

i

⌘i�
`
(i)c

†
i,↵�

`
↵�ci,� + V�

where ⌘i = ±1 on the two sublattices.

When �

`
(i) =constant independent of i, we have long-range AFM,

and a gap in the fermion spectrum at the anti-nodes.

Increasing SDW order

Increasing SDW order

Fermi surface size p



(A) Antiferromagnetic 
metal

(B) Fermi liquid with 
large Fermi surface

Increasing SDW orderIncreasing SDW order

h�i 6= 0 h�i = 0

LGW-Hertz criticality
of antiferromagnetism



(A) Antiferromagnetic 
metal

(B) Fermi liquid with 
large Fermi surface
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Criticality in Fe-based and 
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Can we get a stable zero temperature state 

with “fluctuating antiferromagnetism” and a 

Fermi surface of size p i.e. a pseudogap metal ?

Yes, provided the metal 
has topological order

T. Senthil, M. Vojta and S. Sachdev, PRB 69, 035111 (2004)



For fluctuating antiferromagnetism, we transform to a
rotating reference frame using the SU(2) rotation Ri
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in terms of fermionic “chargons”  s and a Higgs field Ha(i)
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The Higgs field is the AFM order in the rotating reference frame.
Note that this representation is ambiguous up to a
SU(2) gauge transformation, Vi
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Fluctuating antiferromagnetism

The simplest e↵ective Hamiltonian for the fermionic chargons is
the same as that for the electrons, with the AFM order replaced
by the Higgs field.

H = �
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⌘iH
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i,s�
a
ss0 i,s0 + VH

IF we can transform to a rotating reference frame in whichHa(i) =
a constant independent of i and time, THEN the  fermions in
the presence of fluctuating AFM will inherit the anti-nodal gap of
the electrons in the presence of static AFM.
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Fluctuating antiferromagnetism
We cannot always find a single-valued SU(2) rotation Ri to make
the Higgs field Ha(i) a constant !

Vortex in 
AFM order

A.V. Chubukov, T. Senthil and S. Sachdev, 
PRL 72, 2089 (1994);

S. Sachdev, E. Berg, S. Chatterjee, 
and Y. Schattner, PRB 94, 115147 (2016)
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We cannot always find a single-valued SU(2) rotation Ri to make
the Higgs field Ha(i) a constant !

R
Vortex in 

AFM order �R

A.V. Chubukov, T. Senthil and S. Sachdev, 
PRL 72, 2089 (1994);

S. Sachdev, E. Berg, S. Chatterjee, 
and Y. Schattner, PRB 94, 115147 (2016)

Topological order

The Higgs field 2 SO(3).
Vortices associated wi th ⇡1(SO(3)) = Z2 must be suppressed:

such a metal with “fluctuating antiferromagnetism” has
Z2 TOPOLOGICAL ORDER and a pseudogap.
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Criticality in Fe-based and 
electron-doped-cuprate 

materials LGW-Hertz criticality
of antiferromagnetism
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Properties of the hole-doped cuprates:

• The underdoped phase has broken reflection/time-

reversal/lattice-rotation symmetry, while preserv-

ing translational symmetry.

• The underdoped phase has a pseudogap i.e. no

gapless fermionic excitations near the anti-nodes.

• With increasing doping, the pseudogap disappears

at the same point as the broken symmetries.

These features can be explained by Z2 topological order

found near the square lattice Néel state:

• The topological order can intertwine with the bro-

ken symmetry.

• The topological order induce a pseudogap by non-

Luttinger volume Fermi surfaces.


