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Insulating Antiferromagnet



A conventional 
metal:

the Fermi liquid

M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,
S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)

SM

FL

SM

FL



“Undoped”
Anti-

ferromagnet



Anti-
ferromagnet
with p holes
per square



Filled
Band



Anti-
ferromagnet
with p holes
per square

But relative to 
the band 

insulator, there 
are 1+ p holes
per square, and 

so a Fermi 
liquid has a 

Fermi surface of 
size 1+ p



Fermi liquid
Area enclosed by 

Fermi surface =1+p

M. Platé, J. D. F. Mottershead, I. S. Elfimov, D. C. Peets, Ruixing Liang, D. A. Bonn, W. N. Hardy,
S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)
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Pseudogap

2. Pseudogap 
metal 

at low p

Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana,
Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.-X. Shen, Science 307, 901 (2005)
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Is the higher temperature pseudogap 
(with ``Fermi arc'' spectra) described by

(A)   Thermal fluctuations of the low 
temperature orders (superconductivity, 

density wave, antiferromagnetism…)
OR

(B)   A new type of metal, which can be stable 
(in principle) as a quantum ground state

OR
(C)  The possibilities (A) and (B) are merely 

two limits of the same physics?
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Is the higher temperature pseudogap 
(with ``Fermi arc'' spectra) described by

(A)   Thermal fluctuations of the low 
temperature orders (superconductivity, 

density wave, antiferromagnetism…)
OR

(B)   A new type of metal, which can be stable 
(in principle) as a quantum ground state

OR
(C)  The possibilities (A) and (B) are merely 

two limits of the same physics?

Answer (B) must have “emergent” gauge fields,
and these are (in principle) detectable in low 

temperature experiments. There are also 
qualitative differences between (A) and (B) at 

higher temperatures.



1. Emergent gauge fields and long-range 
entanglement in insulators

2.  Fractionalized Fermi liquids (FL*)
Quasiparticles with a non-Luttinger volume, 
      and emergent gauge fields 

3.  The pseudogap metal of the 
            cuprate superconductors
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Insulating spin liquid 

An insulator 
with 

emergent 
gauge fields 

and 
long-range 

entanglement

L. Pauling, Proceedings of the Royal Society London A 196, 343 (1949)
P. W. Anderson, Materials Research Bulletin 8, 153 (1973)
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Place 
insulator 

on a torus;

Ground state degeneracy 
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“topological” 
states nearly 

degenerate with 
the ground state: 

number of 
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red line is 
conserved 
modulo 2
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Place 
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on a torus;

to change dimer 
number parity 

across red line, it 
is necessary to 
create a pair of 
unpaired spins 
and move them 

around the 
sample.
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The sensitivity

of the

degeneracy to

the global

topology

indicates

long-range

quantum

entanglement
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insulator 

on a torus;

Ground state degeneracy 
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The

degenerate

states are

conjugate to

the flux of an

emergent

gauge field

piercing

the cycles of

the torus



n̂1

n̂2

n̂3

n̂4

Emergent gauge fields 

E. Fradkin and S.  A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990) 
G. Baskaran and P.  W.  Anderson, Phys. Rev. B 37, 580(R) (1988) 

Local constraint on dimer number operators:

n̂1 + n̂2 + n̂3 + n̂4 = 1.

Identify dimer number with an ‘electric’ field,

ˆ

Ei↵ = (�1)

i
x

+i
y

n̂i↵,

(↵ = x, y); the constraint becomes ‘Gauss’s Law’:

�↵
ˆ

Ei↵ = (�1)

i
x

+i
y

.

The theory of the dimers is compact U(1) quantum electrodynam-

ics in the presence of static background charges. The compact the-

ory allows the analog of Dirac’s magnetic monopoles as tunneling

events/excitations.



Emergent gauge fields 

n̂1

n̂2

n̂3

n̂4

S. Sachdev and M. Vojta, J. Phys. Soc. Jpn 69, Supp. B, 1 (1999)

R. A. Jalabert and S. Sachdev, Phys. Rev. B 44, 686 (1991)

Including dimers connecting the same sublattice leads to a

Z2 gauge theory in the presence of Berry phases of static

background charges. This has a stable deconfined phase in

2+1 dimensions. By varying parameters it can undergoes

a confinement transition to a valence bond solid, described

by a frustrated Ising model.
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2. Pseudogap 
metal 

at low p

Kyle M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana,
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per square



Anti-
ferromagnet
with p holes
per square

Can we get 
a Fermi 

surface of 
size p?

(and full square 
lattice 

symmetry)



Spin liquid
with density 
p of spinless, 
charge +e  
“holons”.

These can form 
a Fermi surface 
of size p, but 
this is not 
visible in 
electron 

photo-emission

S.A. Kivelson, D.S. Rokhsar and J.P. Sethna, PRB 35, 8865 (1987)

N. Read and B. Chakraborty, PRB 40, 7133 (1989)
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Fractionalized Fermi liquid (FL*) 

Mobile 
S=1/2, charge 
+e fermionic 
dimers: form 

a Fermi 
surface of 

size p visible 
in electron 

photo-
emission

R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil, PRB 75, 235122 (2007)
S. Sachdev PRB 49, 6770 (1994); X.-G. Wen and P. A. Lee PRL 76, 503 (1996)

M. Punk, A. Allais, and S. Sachdev, PNAS 112, 9552 (2015) 
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(Chan et al., PRL 113, 177005 (2014).

• Charge density wave instabilities of FL* have wave vector and
form-factors which agree with STM/X-ray observations in
DW region (D. Chowdhury and S. Sachdev, PRB 90, 245136
(2014)).

• T -independent positive Hall co-e�cient, RH , corresponding
to carrier density p in the higher temperature pseudogap
(Ando et al., PRL 92, 197001 (2004)) and in recent mea-
surements at high fields, low T , and around p ⇡ 0.16 in
YBCO (Proust-Taillefer-UBC collaboration, Badoux et al.,
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Cuprate high-Tc superconductors exhibit enigmatic behavior in the
nonsuperconducting state. For carrier concentrations near “opti-
mal doping” (with respect to the highest Tcs) the transport and
spectroscopic properties are unlike those of a Landau–Fermi liquid.
On the Mott-insulating side of the optimal carrier concentration,
which corresponds to underdoping, a pseudogap removes quasi-
particle spectral weight from parts of the Fermi surface and causes
a breakup of the Fermi surface into disconnected nodal and anti-
nodal sectors. Here, we show that the near-nodal excitations of
underdoped cuprates obey Fermi liquid behavior. The lifetime τ(ω,
T) of a quasi-particle depends on its energy ω as well as on the
temperature T. For a Fermi liquid, 1/τ(ω, T) is expected to collapse
on a universal function proportional to (h#ω)2 + (pπkBT)

2. Magneto-
transport experiments, which probe the properties in the limit ω =
0, have provided indications for the presence of a T2 dependence
of the dc (ω = 0) resistivity of different cuprate materials. How-
ever, Fermi liquid behavior is very much about the energy depen-
dence of the lifetime, and this can only be addressed by
spectroscopic techniques. Our optical experiments confirm the
aforementioned universal ω- and T dependence of 1/τ(ω, T), with
p∼ 1.5. Our data thus provide a piece of evidence in favor of a Fermi
liquid-like scenario of the pseudogap phase of the cuprates.

optical spectroscopy | superconductivity | mass renormalization |
self energy

The compound HgBa2CuO4+δ (Hg1201) is the single-layer
cuprate that exhibits the highest Tc (97 K). We therefore

measured the optical conductivity of strongly underdoped single
crystals of Hg1201 ðTc = 67 KÞ. Here we are interested in the
optical conductivity of the CuO2 layers. We therefore express the
optical conductivity as a 2D sheet conductance GðωÞ= dcσðωÞ,
where dc is the interlayer spacing. The real part of the sheet
conductance normalized by the conduction quantum G0 = 2e2=h
is shown in Fig. 1. As seen in the figure, a gap-like suppression
below 140 meV is clearly observable for temperatures below Tc
and remains visible in the normal state up to ∼250 K. This is a
clear optical signature of the pseudogap. We also observe the
zero-energy mode due to the free charge carrier response, which
progressively narrows upon lowering the temperature. In mate-
rials where the charge carrier relaxation is dominated by impu-
rity scattering, the width of this “Drude” peak corresponds to the
relaxation rate of the charge carriers. Relaxation processes
arising from interactions have the effect of replacing the constant
(frequency-independent) relaxation rate with a frequency-
dependent one. The general expression for the optical conduc-
tivity of interacting electrons is then

Gðω;TÞ= iπK
Zω+Mðω;TÞ

G0: [1]

The spectral weight K corresponds to minus the kinetic en-
ergy if the frequency integration of the experimental data is
restricted to intraband transitions. The effect of electron–electron
interactions and coupling to collective modes is described by
the memory function Mðω;TÞ=M1ðω;TÞ+ iM2ðω;TÞ, where
Z−1M2ðω;TÞ= 1=τðω;TÞ represents the dynamical (or optical) re-
laxation rate in the case of a Fermi liquid.
The zero frequency limit of the optical conductivity of Fig. 1

corroborates the recently reported temperature dependence of the
dc resistivity (1) as shown in Fig. 2. Because K is practically tem-
perature independent in the normal state (2), the low-temperature
T2 dependence of the resistivity is due to the quadratic tempera-
ture variation of M2ð0;TÞ= Z=τð0;TÞ. The infrared data confirm
that Hg1201 exhibits the lowest residual resistance among the
cuprates and a change to a linear temperature dependence above
T* associated with the sudden closing of a pseudogap (3, 4). Fig. 2B
shows this as a clear departure from the T2 curve at ∼5 × 104 K2.
The dc transport data, owing to the higher precision, allow for
Hg1201 crystals of the same composition and doping to identify
T*∼ 350 K as the temperature above which the resistivity has
a linear temperature dependence, and T**∼ 220 K as the tem-
perature below which the temperature dependence is purely qua-
dratic. Finally, superconducting fluctuations become noticeable
at T′∼ 85 K.
The doping dependences of K and of the coherent spectral

weight, defined as K*=K/(1+M1(ω,T)Zω)jω=0, are summarized
in Fig. 3 for a number of hole-doped cuprates. The theoretical
values of K based on the band parameters obtained from local
density approximation (LDA) ab initio calculations are about
a factor of 2 larger than the measured values, which is due to
strong correlation predicted by the Hubbard model for U=t≥ 4
(6). K decreases when the hole doping decreases, but does not
extrapolate to zero for zero doping in accordance with the
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χ″ðΩÞ, where spin (charge) refers to electron–hole pairs carrying
(no) net spin. χ″ðΩÞ can be strongly renormalized, but the
property that χ″ðΩÞ∝Ω in the limit Ω→ 0 is generic for Fermi
liquids (24). Integration of the susceptibility multiplied with the
interaction vertex I2χ″ðΩÞ over all possible decay channels from
zero to ξ leads us to conclude that indeed M2 ∝ ξ2, as reported
experimentally in the present article. In this description the
cross-over ξ0 corresponds to the energy where I2χ″ðΩÞ is trun-
cated, leading to a leveling off of M2 for ξ> ξ0. The strong
temperature dependence of M1ðω;TÞ is also a natural conse-
quence of this description; it was shown in ref. 36 that, in leading
orders of temperature, χ″ðΩÞ of a correlated Fermi liquid
decreases as a function of temperature.
In summary, we have shown from optical spectroscopy meas-

urements that the ungapped near-nodal excitations of underdoped
cuprate superconductors obey Fermi liquid behavior when mate-
rials with reduced amount of disorder are considered. This ob-
servation, which is at variance with some established paradigms,
provides leads toward understanding of themetallic state and high-
temperature superconductivity in these materials.

Materials and Methods
Sample Preparation. Single crystals were grown using a flux method, char-
acterized, and heat treated to the desired doping level as described in refs. 37
and 38. The conductivity data in Fig. 1 are of a sample which has an onset
critical temperature of 67 K and a transition width of 2 K. The crystal surface
is oriented along the a–b plane with a dimension of about 1.51 × 1.22 mm2.
Hg1201 samples are hygroscopic. Therefore, the last stage of the prepara-
tion of the sample surface is done under a continuous flow of nitrogen,
upon which the sample is transferred to a high-vacuum chamber (10−7 mbar)

within a few minutes. Before each measurement the surface is carefully
checked for any evidence of oxidation.

Comparison with dc Resistivity. Transport measurements have been per-
formed using the four-terminal method. Due to the irregular shape of the
cleaved samples the absolute value of the dc resistivity can only be de-
termined with about 20% accuracy. However, we obtained very high relative
accuracy of the temperature dependence of the dc resistivity, as seen from
identical temperature dependences of samples of the same composition and
doping, regardless of having significantly different dimensions and shapes.
An independent check of the dc resistivity was obtained from the ω= 0 limit
of the experimental infrared optical conductivity (Fig. 2). The dc resistivity
had to be scaled by a factor of 0.66 to match the optical data, most likely due
to the aforementioned influence of the irregular shape of the crystals on the
absolute value of the measured dc resistances. The excellent match of the
two temperature dependences demonstrates the high quality of both dc
resistivity and optical conductivity data.
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• Optical conductivity ⇠ 1/(�i! + 1/⌧) with
1/⌧ ⇠ !2 + T 2, with carrier density p (Mirzaei et al., PNAS
110, 5774 (2013)).

• Magnetoresistance ⇢xx ⇠ ⌧�1
�
1 + aH2T 2

�
with ⌧ ⇠ T�2

(Chan et al., PRL 113, 177005 (2014).

• Charge density wave instabilities of FL* have wave vector and
form-factors which agree with STM/X-ray observations in
DW region (D. Chowdhury and S. Sachdev, PRB 90, 245136
(2014)).

• T -independent positive Hall co-e�cient, RH , corresponding
to carrier density p in the higher temperature pseudogap
(Ando et al., PRL 92, 197001 (2004)) and in recent mea-
surements at high fields, low T , and around p ⇡ 0.16 in
YBCO (Proust-Taillefer-UBC collaboration, Badoux et al.,
arXiv:1511.08162).
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In-Plane Magnetoresistance Obeys Kohler’s Rule in the Pseudogap Phase
of Cuprate Superconductors
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We report in-plane resistivity (ρ) and transverse magnetoresistance (MR) measurements for underdoped
HgBa2CuO4þδ (Hg1201). Contrary to the long-standing view that Kohler’s rule is strongly violated in
underdoped cuprates, we find that it is in fact satisfied in the pseudogap phase of Hg1201. The transverse MR
shows a quadratic field dependence, δρ=ρ0 ¼ aH2, with aðTÞ ∝ T−4. In combination with the observed
ρ ∝ T2 dependence, this is consistent with a single Fermi-liquid quasiparticle scattering rate. We show that
this behavior is typically masked in cuprates with lower structural symmetry or strong disorder effects.

DOI: 10.1103/PhysRevLett.113.177005 PACS numbers: 74.72.Kf, 74.25.fc, 74.72.Gh

The unusual metallic “normal state” of the cuprates has
remained an enigma. Atypical observations at odds with
Fermi-liquid theory have been made particularly in the so-
called strange-metal regime above the pseudogap (PG)
temperature T% [inset of Fig. 1(b)] [1]. In this regime, the
in-plane resistivity exhibits an anomalous extended linear
temperature dependence, ρ ∝ T [2], and the Hall effect is
often described as RH ∝ 1=T [3,4]. In order to account for
this anomolous behavior without abandoning a Fermi-
liquid formalism, some descriptions have been formulated
based on a scattering rate whose magnitude varies around
the in-plane Fermi surface, for example, due to anisotropic
umklapp scattering or coupling to a bosonic mode [1] (e.g.,
spin [5] or charge [6] fluctuations). Prominent non-Fermi-
liquid prescriptions, such as the two-lifetime picture [7] and
the marginal-Fermi liquid [8], have also been put forth. The
former implies charge-spin separation while the latter is a
signature of a proximate quantum critical point.
The transport behavior in the PG state (T < T%) has

furthermore been complicated not only because of the
opening of the PG along portions of the Fermi surface, but
also due to possible superconducting (SC) [10], antiferro-
magnetic [5,11] and charge-spin stripe fluctuations [12].
Recent developments, however, suggest that T% marks a

phase transition [13] into a state with broken time-reversal
symmetry [14,15]. Additionally, the measurable extent of
SC fluctuations is likely limited to only a rather small
temperature range (≈ 30 K) above Tc [16,17]. These
strong indications that the PG regime is indeed a distinct
phase calls for a clear description of its intrinsic properties.
In fact, a simple ρ ¼ A2T2 dependence was recently

reported for underdoped HgBa2CuO4þδ (Hg1201) [9]. It
was also found that this Fermi-liquid-like behavior appears
below a characteristic temperature T%% [Tc < T%% < T%;
inset of Fig. 1(b)] and that the coefficient A2 per CuO2
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FIG. 1 (color online). (a) Temperature dependence of the in-
plane resistivity for two Hg1201 samples. Dotted lines are linear
fits to the high-temperature behavior. Inset: Magnetic suscep-
tibility shows Tc ¼ 70& 1 and 80.5& 0.5 K for the two samples,
HgUD70b (black) and HgUD81 (red). The Tc values are defined
as the midpoint of the transition, and the uncertainties correspond
to 90% of the transition width. (b) Resistivity plotted versus T2.
Dotted lines are fits to ρ ¼ A2T2. There is some uncertainty in the
conversion to units of ρ due to difficulties in measuring the exact
cleaved sample dimensions [9]. For consistency, we have
assumed the same magnitude of ρ for the two Tc ¼ 70 K
samples. Inset: Schematic temperature-hole doping phase dia-
gram. The superconducting (SC), strange metal (SM), and
pseudogap (PG) phases as well as the characteristic temperatures
T% and T%% are indicated. The circles represent the two doping
levels of the present study.
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We report in-plane resistivity (ρ) and transverse magnetoresistance (MR) measurements for underdoped
HgBa2CuO4þδ (Hg1201). Contrary to the long-standing view that Kohler’s rule is strongly violated in
underdoped cuprates, we find that it is in fact satisfied in the pseudogap phase of Hg1201. The transverse MR
shows a quadratic field dependence, δρ=ρ0 ¼ aH2, with aðTÞ ∝ T−4. In combination with the observed
ρ ∝ T2 dependence, this is consistent with a single Fermi-liquid quasiparticle scattering rate. We show that
this behavior is typically masked in cuprates with lower structural symmetry or strong disorder effects.
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The unusual metallic “normal state” of the cuprates has
remained an enigma. Atypical observations at odds with
Fermi-liquid theory have been made particularly in the so-
called strange-metal regime above the pseudogap (PG)
temperature T% [inset of Fig. 1(b)] [1]. In this regime, the
in-plane resistivity exhibits an anomalous extended linear
temperature dependence, ρ ∝ T [2], and the Hall effect is
often described as RH ∝ 1=T [3,4]. In order to account for
this anomolous behavior without abandoning a Fermi-
liquid formalism, some descriptions have been formulated
based on a scattering rate whose magnitude varies around
the in-plane Fermi surface, for example, due to anisotropic
umklapp scattering or coupling to a bosonic mode [1] (e.g.,
spin [5] or charge [6] fluctuations). Prominent non-Fermi-
liquid prescriptions, such as the two-lifetime picture [7] and
the marginal-Fermi liquid [8], have also been put forth. The
former implies charge-spin separation while the latter is a
signature of a proximate quantum critical point.
The transport behavior in the PG state (T < T%) has

furthermore been complicated not only because of the
opening of the PG along portions of the Fermi surface, but
also due to possible superconducting (SC) [10], antiferro-
magnetic [5,11] and charge-spin stripe fluctuations [12].
Recent developments, however, suggest that T% marks a

phase transition [13] into a state with broken time-reversal
symmetry [14,15]. Additionally, the measurable extent of
SC fluctuations is likely limited to only a rather small
temperature range (≈ 30 K) above Tc [16,17]. These
strong indications that the PG regime is indeed a distinct
phase calls for a clear description of its intrinsic properties.
In fact, a simple ρ ¼ A2T2 dependence was recently

reported for underdoped HgBa2CuO4þδ (Hg1201) [9]. It
was also found that this Fermi-liquid-like behavior appears
below a characteristic temperature T%% [Tc < T%% < T%;
inset of Fig. 1(b)] and that the coefficient A2 per CuO2
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FIG. 1 (color online). (a) Temperature dependence of the in-
plane resistivity for two Hg1201 samples. Dotted lines are linear
fits to the high-temperature behavior. Inset: Magnetic suscep-
tibility shows Tc ¼ 70& 1 and 80.5& 0.5 K for the two samples,
HgUD70b (black) and HgUD81 (red). The Tc values are defined
as the midpoint of the transition, and the uncertainties correspond
to 90% of the transition width. (b) Resistivity plotted versus T2.
Dotted lines are fits to ρ ¼ A2T2. There is some uncertainty in the
conversion to units of ρ due to difficulties in measuring the exact
cleaved sample dimensions [9]. For consistency, we have
assumed the same magnitude of ρ for the two Tc ¼ 70 K
samples. Inset: Schematic temperature-hole doping phase dia-
gram. The superconducting (SC), strange metal (SM), and
pseudogap (PG) phases as well as the characteristic temperatures
T% and T%% are indicated. The circles represent the two doping
levels of the present study.
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Electrical evidence for Fermi surface of long-
lived quasiparticles of density p
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• Optical conductivity ⇠ 1/(�i! + 1/⌧) with
1/⌧ ⇠ !2 + T 2, with carrier density p (Mirzaei et al., PNAS
110, 5774 (2013)).

• Magnetoresistance ⇢xx ⇠ ⌧�1
�
1 + aH2T 2

�
with ⌧ ⇠ T�2

(Chan et al., PRL 113, 177005 (2014).

• Charge density wave instabilities of FL* have wave vector and
form-factors which agree with STM/X-ray observations in
DW region (D. Chowdhury and S. Sachdev, PRB 90, 245136
(2014)).

• T -independent positive Hall co-e�cient, RH , corresponding
to carrier density p in the higher temperature pseudogap
(Ando et al., PRL 92, 197001 (2004)) and in recent mea-
surements at high fields, low T , and around p ⇡ 0.16 in
YBCO (Proust-Taillefer-UBC collaboration, Badoux et al.,
arXiv:1511.08162).
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High field, low T
measurements show a
positive Hall co-e�cient
corresponding to
carriers of density 1 + p
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High field, low T
measurements show a
positive Hall co-e�cient
corresponding to
carriers of density p.
This is likely due to the
presence of antiferro-
magnetic order.
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Fig. 2 | Field dependence of the Hall coefficient in YBCO.  

Hall coefficient of YBCO at various fixed temperatures, as indicated, plotted as 

RH vs H / Hvs, where Hvs(T) is the vortex-lattice melting field above which RH 

becomes non-zero, for two dopings: p = 0.15 (top panel) and p = 0.16 (bottom 

panel). Upon cooling, we see that RH decreases and eventually becomes 

negative at p = 0.15, while it never drops at p = 0.16. 
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Fractionalized Fermi liquid (FL*) 

We have described a metal with:

  A Fermi surface of electrons enclosing volume p, 
and not the Luttinger volume of 1+p
  Additional low energy quantum states on a torus 
not associated with quasiparticle excitations i.e. 
emergent gauge fields



Fractionalized Fermi liquid (FL*) 

We have described a metal with:

  A Fermi surface of electrons enclosing volume p, 
and not the Luttinger volume of 1+p
  Additional low energy quantum states on a torus 
not associated with quasiparticle excitations i.e. 
emergent gauge fields

There is a general and fundamental relationship 
between these two characteristics. Promising 
indications that such a metal describes the 
pseudogap of the cuprate supercondutors 


