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Gapped quantum matter    
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Conformal quantum matter
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Compressible quantum matter
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• Consider an infinite, continuum,
translationally-invariant quantum system with a glob-
ally conserved U(1) chargeQ (the “electron density”)
in spatial dimension d > 1.

• Describe zero temperature phases where dhQi/dµ 6=
0, where µ (the “chemical potential”) which changes
the Hamiltonian, H, to H � µQ.

• Compressible systems must be gapless.

• Conformal systems are compressible in d = 1, but
not for d > 1.
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One compressible state is the solid (or 
“Wigner crystal” or “stripe”). 

This state breaks translational symmetry.

Compressible quantum matter
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Another familiar compressible state is 
the superfluid. 

This state breaks the global U(1) 
symmetry associated with Q

Condensate of 
fermion pairs

Compressible quantum matter
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The only compressible phase of traditional 
condensed matter physics which does not 
break the translational or U(1) symmetries 

is the Landau Fermi liquid 

Compressible quantum matter
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• Fermi wavevector obeys the Luttinger relation kdF ⇠ Q, the

fermion density

• Sharp particle and hole of excitations near the Fermi surface

with energy ! ⇠ |q|z, with dynamic exponent z = 1.

• The phase space density of fermions is e↵ectively one-dimensional,

so the entropy density S ⇠ T . It is useful to write this is as S ⇠
T (d�✓)/z

, with violation of hyperscaling exponent ✓ = d� 1.

The Fermi liquid

L = f†
✓
@⌧ � r2

2m
� µ

◆
f

+ 4 Fermi terms
�� kF !
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Hyperscaling is the property that the free energy density F = �(1/V ) logZ
has the canonical scaling dimension. For a classical thermal system at its
critical temperature in D spatial dimensions placed in a finite box of size
L, we have (Casimir; Fisher, de Gennes 1978):

F = F1 � ec L�D,

where ec is a universal constant. Similarly, moving away from the critical
point to a system with a finite correlation length ⇠, we have in an infinite
system

F = F1 � c̄ ⇠�D.

For systems which violate hyperscaling, we write

F = F1 � c̄ ⇠�(D�✓).

The simplest system which violates hyperscaling is the classical Ising model
for D � 4.

For a quantum system at a quantum critical point in d spatial dimen-
sions, T is the analog of 1/Lz, and so its free energy density obeys

F (T ) = F (0)� c̄ T (d+z�✓)/z.
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Logarithmic violation of “area law”: SE =

1

12

(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor 1/12 is universal: it is independent of the shape of the

entangling region, and of the strength of the interactions.

B

A P

Entanglement entropy of the Fermi liquid

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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= U/t

Bose-Hubbard model at integer filling
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CFT3 of the XY model:

L = |@ |2 + s| |2 + u| |4
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Bosons with correlated hopping
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Bosons with correlated hopping at half-filling

H = �t
X

⇥ij⇤

b†i bj +
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Insulator with modulation 
in boson bond-density

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

= U/t
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Insulator with modulation 
in boson bond-density

O.I. Motrunich and A. Vishwanath, Phys. Rev. B 70, 075104 (2004).
T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004).

= U/t
‘Deconfined’ critical point: boson fractionalizes b ⇠ z1z2, and the

fractionalized bosons are coupled to an emergent U(1) gauge field

L = |(@µ� iAµ)z1|2+ |(@µ+ iAµ)z2|2+s(|z1|2+ |z2|2)+u(|z1|2+ |z2|2)2�v|z1|2|z2|2
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Bosons with correlated hopping close to half-filling
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Bosons with correlated hopping close to half-filling

H = �t
X

⇥ij⇤

b†i bj +
U

2

X

i

ni(ni � 1) + w
X

ijk��⇤
b†i b

†
kbjb�

Af Af = hQi

O. I. Motrunich and M. P. A. Fisher,  Phys. Rev. B 75, 235116 (2007)
L. Huijse and S. Sachdev,   Phys. Rev. D 84, 026001 (2011)

S. Sachdev, arXiv:1209.1637

Q = b†b

• NFL, the non-Fermi liquid Bose metal. The z1, z2
quanta fermionize into f1, f2, each of which forms

a Fermi surface. Both fermions are gauge-charged,

and so the Fermi surfaces are partially “hidden”.
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15

For suitable interactions, we can have the boson, b, fractionalize into two fermions
f1,2 :

b ! f1f2

This implies the e↵ective theory for f1,2 is invariant under the U(1) gauge transfor-
mation

f1 ! f1e
i✓(x,⌧) , f2 ! f2e

�i✓(x,⌧)

Consequently, the e↵ective theory of the Bose metal has an emergent gauge field
A

µ

and has the structure

L = f†
1

✓
@
⌧

� iA
⌧

� (r� iA)2

2m
� µ

◆
f1 + f†

2

✓
@
⌧

+ iA
⌧

� (r+ iA)2

2m
� µ

◆
f2

The gauge-dependent f1,2 Green’s functions have Fermi surfaces obeying A
f

=
hQi. However, these Fermi surfaces are not directly observable because it is gauge-
dependent. Nevertheless, gauge-independent operators, such as b or b†b, will exhibit
Friedel oscillations associated with fermions scattering across these hidden Fermi
surfaces.

Non-Fermi liquid Bose Metal
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⇥| q
|�

�� kF !

FL 
Fermi 
liquid

• kdF ⇥ Q, the fermion density

• Sharp fermionic excitations

near Fermi surface with

⇥ ⇥ |q|z, and z = 1.

• Entropy density S ⇥ T (d��)/z

with violation of hyperscaling

exponent � = d� 1.

• Entanglement entropy

SE ⇥ kd�1
F P lnP .
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excitations with z = 3/2
to three loops.
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P. A. Lee, Phys. Rev. Lett. 63, 680 (1989)
M. A. Metlitski and S. Sachdev,
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• ~A fluctuation at wavevector ~q couples most e�ciently to fermions

near ±~k0.

• Expand fermion kinetic energy at wavevectors about ±~k0. In
Landau gauge

~A = (a, 0).

Field theory of non-Fermi liquid
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Field theory of non-Fermi liquid

• In Landau gauge, write Ai = (✏ijqj/|q|)a(~q). Then the correlators of a(~q)
obey a matrix-model-like clustering property w.r.t. di↵erent orientations of ~q:

ha(~q1)a(~q2)a(~q3) . . . a(~qn)i =
Y

↵

ha(~q↵1)a(~q↵2) . . .i

where all momenta for a given ↵ are collinear to each other, and those with

↵ 6= � are non-collinear.

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
Friday, October 26, 12



L[ ±, a] =

 †
+

�
@
⌧

� i@
x

� @2
y

�
 + +  †

�
�
@
⌧

+ i@
x

� @2
y

�
 �

�a
⇣
 †
+ + �  †

� �

⌘
+

1

2g2
(@

y

a)2

Field theory of non-Fermi liquid
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Simple scaling argument for z = 3/2.
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� �

⌘
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y
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Field theory of non-Fermi liquid

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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X X
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X X

Under the rescaling x ! x/s, y ! y/s

1/2
, and ⌧ ! ⌧/s

z
, we

find invariance provided

a ! a s

 !  s

(2z+1)/4

g ! g s

(3�2z)/4

So the action is invariant provided z = 3/2.
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Logarithmic violation of “area law”: SE = CE kFP ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor CE is expected to be universal but 6= 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B

A P

Entanglement entropy of the non-Fermi liquid

B. Swingle,  Physical Review Letters 105, 050502 (2010)
Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B

A P

Entanglement entropy of the non-Fermi liquid

B. Swingle,  Physical Review Letters 105, 050502 (2010)
Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)
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⇥| q
|�

�� kF !
⇥| q

|�

�� kF !

• kdF ⇥ Q, the fermion density

• Sharp fermionic excitations

near Fermi surface with

⇥ ⇥ |q|z, and z = 1.

• Entropy density S ⇥ T (d��)/z

with violation of hyperscaling

exponent � = d� 1.

• Entanglement entropy

SE ⇥ kd�1
F P lnP .

FL 
Fermi 
liquid

NFL
Bose
metal 

• Hidden Fermi
surface with kdF ⇠ Q.

• Di↵use fermionic
excitations with z = 3/2
to three loops.

• S ⇠ T (d�✓)/z

with ✓ = d� 1.

• SE ⇠ kd�1
F P lnP .
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Consider the metric which transforms under rescaling as

xi ! ⇣ xi

t ! ⇣

z
t

ds ! ⇣

✓/d
ds.

This identifies z as the dynamic critical exponent (z = 1 for

“relativistic” quantum critical points).

✓ is the violation of hyperscaling exponent.

The most general choice of such a metric is

ds

2
=

1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2
+ dx

2
i

◆

We have used reparametrization invariance in r to choose so

that it scales as r ! ⇣

(d�✓)/d
r.

ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the
“area” of the horizon, and so S ⇠ r�d

h

r

Friday, October 26, 12



r

At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the
“area” of the horizon, and so S ⇠ r�d

h

Under rescaling r ! ⇣(d�✓)/dr, and the

temperature T ⇠ t�1
, and so

S ⇠ T (d�✓)/z
= T deff/z

where ✓ = d�de↵ measures “dimension deficit” in

the phase space of low energy degrees of a freedom.
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ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆

At T > 0, there is a horizon, and computation of its
Bekenstein-Hawking entropy shows

S ⇠ T (d�✓)/z.

So ✓ is indeed the violation of hyperscaling exponent as
claimed. For a compressible quantum state we should
therefore choose ✓ = d� 1.
No additional choices will be made, and all subsequent re-
sults are consequences of the assumption of the existence
of a holographic dual.

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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✓ = d� 1

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Holography of a non-Fermi liquid

The null energy condition (stability condition for gravity)

yields a new inequality

z � 1 +

✓

d

In d = 2, this implies z � 3/2. So the lower bound is

precisely the value obtained from the field theory.

N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).

ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆
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✓ = d� 1

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).

ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆

Application of the Ryu-Takayanagi minimal area formula to

a dual Einstein-Maxwell-dilaton theory yields

SE ⇠ P lnP

with a co-e�cient independent of the shape of the entangling
region. These properties are just as expected for a circular

Fermi surface.

Holography of a non-Fermi liquid
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Einstein-Maxwell-dilaton theory

Electric flux

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).
S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).
N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].

Er = hQi

Er = hQi

r

S =

Z
d

d+2
x

p
�g


1

22

✓
R� 2(r�)2 � V (�)

L

2

◆
� Z(�)

4e2
FabF

ab

�

with Z(�) = Z0e
↵�, V (�) = �V0e

���, as � ! 1.

Holography of a non-Fermi liquid
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r

Electric flux

Er = hQi

Er = hQi

C. Charmousis, B. Gouteraux, B. S. Kim, E. Kiritsis and R. Meyer, JHEP 1011, 151 (2010).
S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010).
N. Iizuka, N. Kundu, P. Narayan and S. P. Trivedi, arXiv:1105.1162 [hep-th].

Leads to metric ds

2
= L

2

✓
�f(r)dt

2
+ g(r)dr

2
+

dx

2
+ dy

2

r

2

◆

with f(r) ⇠ r

��
, g(r) ⇠ r

�
, �(r) ⇠ ln(r) as r ! 1.

Einstein-Maxwell-dilaton theory
Holography of a non-Fermi liquid
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ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆

The r ! 1 metric has the above form with

✓ =

d2�

↵+ (d� 1)�

z = 1 +

✓

d
+

8(d(d� ✓) + ✓)2

d2(d� ✓)↵2
.

Note z � 1 + ✓/d.

In the present theory, we have to choose ↵ or � so

that ✓ = d� 1.

Needed: a dynamical quantum analysis which auto-

matically selects this value of ✓.

Holography of a non-Fermi liquid
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✓ = d� 1

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

ds

2 =
1

r

2

✓
� dt

2

r

2d(z�1)/(d�✓)
+ r

2✓/(d�✓)
dr

2 + dx

2
i

◆
Holography of a non-Fermi liquid

Using the Einstein-Maxwell-dilaton theory we obtain a more

precise result for the entanglement entropy

SE = CE Q(d�1)/dP ln(Q(d�1)/dP )

where the co-e�cient CE is independent of all UV details

(e.g. boundary conditions on the dilaton), but depends on z
and other IR characteristics. These properties are just as ex-

pected for a circular Fermi surface with a Fermi wavevector

obeying Q ⇠ kdF .
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Hidden 
Fermi 

surfaces
of “quarks”

This is a “bosonization” of the hidden Fermi surface

Holography of a non-Fermi liquid

r

Electric flux

Er = hQi

Er = hQi
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Holography of a non-Fermi liquid

Can we see the Fermi surface directly via “Friedel oscillations” 
in density (or related) correlations ?
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Holography of a non-Fermi liquid

Can we see the Fermi surface directly via “Friedel oscillations” 
in density (or related) correlations ?

Monopoles in the 2+1 dimensional bulk U(1) gauge field acquire a

Berry phase determined by the boundary U(1) charge density Q, and

a dilute gas theory of monopoles leads to Friedel oscillations with

h⇢(x)⇢(0)i ⇠ cos(2kFx)

|x|2�F

T. Faulkner and N. Iqbal, arXiv:1207.4208

Spatial dimension d=1
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Holography of a non-Fermi liquid

Can we see the Fermi surface directly via “Friedel oscillations” 
in density (or related) correlations ?

T. Faulkner and N. Iqbal, arXiv:1207.4208

Monopoles in the 2+1 dimensional bulk U(1) gauge field acquire a

Berry phase determined by the boundary U(1) charge density Q, and

a dilute gas theory of monopoles leads to Friedel oscillations with

h⇢(x)⇢(0)i ⇠ cos(2kFx)

|x|2�F

Exact solution of adjoint Dirac fermions at non-zero density coupled

to a SU(Nc) gauge field: low energy theory has an emergent N = (2, 2)
supersymmetry, the global U(1) symmetry becomes the R-symmetry,

and there are Friedel oscillations with

�F = 1/3 for all Nc � 2

R. Gopakumar, A. Hashimoto, I.R. Klebanov, S. Sachdev, and K. Schoutens, arXiv:1206.4719

Spatial dimension d=1
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Holography of a non-Fermi liquid

Can we see the Fermi surface directly via “Friedel oscillations” 
in density (or related) correlations ?

S. Sachdev, arXiv:1209.1637

Spatial dimension d=2
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Holography of a non-Fermi liquid

Can we see the Fermi surface directly via “Friedel oscillations” 
in density (or related) correlations ?

S. Sachdev, arXiv:1209.1637

• For every CFT in 2+1 dimensions with a globally conserved

U(1), we can define a monopole operator which transforms as a

scalar under conformal transformations.

e.g. for the XY model, we insert a monopole at xm by including

a fixed background gauge flux ↵µ so that

L = |(@µ � i↵µ) |2 + s| |2 + u| |4

where the flux �µ = ✏µ⌫�@⌫↵� obeys

@µ�µ = 2⇡�(x� xm) , ✏µ⌫�@⌫(⌦�⌫) = 0

where the CFT lives on the conformally flat space with is ds

2
=

⌦

�2
dx

2
µ.

Spatial dimension d=2
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Holography of a non-Fermi liquid

Can we see the Fermi surface directly via “Friedel oscillations” 
in density (or related) correlations ?

S. Sachdev, arXiv:1209.1637

• In the holographic theory, we have a bulk scalar field �m (con-

jugate to the monopole operator of the CFT) which carries the

charge of the S-dual of the 4-dimensional bulk U(1) gauge field:

Sm =

Z
d

4
x

p
�g

h
|(r� 2⇡i

e
A)�m|2 + . . .

i

where

e
F = d

e
A = ⇤F = ⇤dA.

Spatial dimension d=2
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Holography of a non-Fermi liquid

Can we see the Fermi surface directly via “Friedel oscillations” 
in density (or related) correlations ?

S. Sachdev, arXiv:1209.1637

• When a chemical potential is applied to the boundary

CFT, �m experiences a magnetic flux. Consequently

condensation of �m leads to a vortex-lattice-like state,

which corresponds to the formation of a crystal in the

CFT. The crystal has unit Q charge per unit cell.

• We expect that a vortex-liquid-like state of the �m will

yield the Friedel oscillations of the Fermi surface, with

the correct Fermi wavevector. We are working on the

theory of such a state . . .

Spatial dimension d=2
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Conclusions
Compressible quantum matter

Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.

After fixing ✓ = d�1 to obtain thermal entropy density S ⇠ T 1/z
, we found

• Log violation of the area law in entanglement entropy, SE .

• Leading-log SE independent of shape of entangling region.

• The d = 2 bound z � 3/2, compared to z = 3/2 in three-loop field

theory.

• Evidence for Luttinger theorem in prefactor of SE .

• Monopole operators lead to crystalline state, and have the correct

features to yield Friedel oscillations of a Fermi surface.
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