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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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Excitations of the insulator:

S =
�

d2rdτ
�
|∂τψ|2 + v2|�∇ψ|2 + (g − gc)|ψ|2 +

u

2
|ψ|4

�

M.P. A. Fisher,  P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989).
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Quantum critical transport 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”
with shortest possible
equilibration time, τeq

τeq = C �
kBT

where C is a universal constant

Thursday, September 15, 2011



Quantum critical transport 

M.P.A. Fisher, G. Grinstein, and S.M. Girvin, Phys. Rev. Lett. 64, 587 (1990)                                                             
K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

σ =
Q2

h
× [Universal constant O(1) ]

(Q is the “charge” of one boson)

Transport co-oefficients not determined
by collision rate, but by

universal constants of nature

Conductivity
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Describe charge transport using Boltzmann theory of in-
teracting bosons:

dv

dt
+

v

τc
= F.

This gives a frequency (ω) dependent conductivity

σ(ω) =
σ0

1− iω τc

where τc ∼ �/(kBT ) is the time between boson collisions.

Also, we have σ(ω → ∞) = σ∞, associated with the den-
sity of states for particle-hole creation (the “optical con-
ductivity”) in the CFT3.

Quantum critical transport 
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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So far, we have described the quantum critical point using
the boson particle and hole excitations of the insulator.
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However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices
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TKT
�ψ� �= 0 �ψ� = 0
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However, we could equally well describe the conductivity

using the excitations of the superfluid, which are vortices.

These are quantum particles (in 2+1 dimensions) which

described by a (mirror/e.m.) “dual” CFT3 with an emer-

gent U(1) gauge field. Their T > 0 dynamics can also be

described by a Boltzmann equation:

Conductivity = Resistivity of vortices

M.P.A. Fisher, Physical Review Letters 65, 923 (1990)
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Boltzmann theory of bosons

σ0

σ∞

ω

1/τc

Re[σ(ω)]
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Boltzmann theory of vortices

σ∞1/τcv

1/σ0v

Re[σ(ω)]

ω
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Boltzmann theory of bosons
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Vector large N expansion for CFT3

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

�ω
kBT

1

; Σ → a universal functionσ =
Q2

h
Σ

�
�ω
kBT

�

O(N)

O(1/N)

Re[σ(ω)]
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1.  Conformal quantum matter       

             The AdS4 - Schwarzschild black brane
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Field theories in D spacetime dimensions are char-

acterized by couplings g which obey the renormal-

ization group equation

u
dg

du
= β(g)

where u is the energy scale. The RG equation is

local in energy scale, i.e. the RHS does not depend

upon u.
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Field theories in D spacetime dimensions are char-

acterized by couplings g which obey the renormal-

ization group equation

u
dg

du
= β(g)

where u is the energy scale. The RG equation is

local in energy scale, i.e. the RHS does not depend

upon u.

Key idea: ⇒ Implement u as an extra dimen-
sion, and map to a local theory in D+1 dimensions.
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At the RG fixed point, β(g) = 0, the D dimen-
sional field theory is invariant under the scale trans-
formation

xµ → xµ/b , u→ b u
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At the RG fixed point, β(g) = 0, the D dimen-
sional field theory is invariant under the scale trans-
formation

xµ → xµ/b , u→ b u

This is an invariance of the metric of the theory in

D + 1 dimensions. The unique solution is

ds2
=

� u

L

�2
dxµdxµ + L2 du2

u2
.

Or, using the length scale z = L2/u

ds2
= L2 dxµdxµ + dz2

z2
.

This is the space AdSD+1, and L is the AdS radius.
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J. McGreevy, arXiv0909.0518
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Emergent direction as a representation of an 
entanglement tensor network

B. Swingle, arXiv:0905.1317
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AdS/CFT correspondence

AdS4-Schwarzschild black-brane

S =

�
d4x

√
−g

�
1

2κ2

�
R+

6

L2

��
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AdS/CFT correspondence

A 2+1 
dimensional 
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critical point
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AdS/CFT correspondence

A 2+1 
dimensional 
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quantum 
critical point
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quantum critical 
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AdS/CFT correspondence

A 2+1 
dimensional 
system at its 

quantum 
critical point

Black-brane at 
temperature of 

2+1 dimensional 
quantum critical 

system

Friction of quantum 
criticality = waves 

falling into black brane 

AdS4-Schwarzschild black-brane
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AdS4 theory of “nearly perfect fluids”

C. P. Herzog, P. K. Kovtun, S. Sachdev, and D. T. Son,

Phys. Rev. D 75, 085020 (2007).

To leading order in a gradient expansion, charge transport in
an infinite set of strongly-interacting CFT3s can be described by
Einstein-Maxwell gravity/electrodynamics on AdS4-Schwarzschild

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.
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SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab

�
.

AdS4 theory of “nearly perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

We include all possible 4-derivative terms: after suitable field
redefinitions, the required theory has only one dimensionless
constant γ (L is the radius of AdS4):

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab +
γL2

e2
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.
Stability and causality constraints restrict |γ| < 1/12.
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

ω

4πT

γ = 0

γ =
1

12

γ = − 1

12

Re[σ(ω)]

σ∞

Thursday, September 15, 2011



0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

ω

4πT

γ = 0

γ =
1

12

γ = − 1

12

AdS4 theory of strongly interacting “perfect fluids”

• The γ > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

Re[σ(ω)]

σ∞
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AdS4 theory of strongly interacting “perfect fluids”

• The γ < 0 result can be interpreted
as the transport of vortex-like
excitations

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

Re[σ(ω)]

σ∞
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AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• The γ = 0 case is the exact result for the large N limit
of SU(N) gauge theory with N = 8 supersymmetry (the
ABJM model). The ω-independence is a consequence of
self-duality under particle-vortex duality (S-duality).

Re[σ(ω)]

σ∞

Thursday, September 15, 2011



0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

ω

4πT

γ = 0

γ =
1

12

γ = − 1

12

AdS4 theory of strongly interacting “perfect fluids”

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

• Stability constraints on the effective
theory (|γ| < 1/12) allow only a lim-
ited ω-dependence in the conductivity

Re[σ(ω)]

σ∞
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Theory for transport of conserved quantities in CFT3s:

SEM =

�
d4x

√
−g

�
− 1

4e2
FabF

ab +
γL2

e2
CabcdF

abF cd

�
,

where Cabcd is the Weyl curvature tensor.

General approach:

• Theory has 2 free dimensionless parameters: e2 and γ. We match
these to correlators of the CFT3 of interest at ω � T : e2 is determines
the current correlator �JµJν�, while γ determines the 3-point function
�TµνJρJσ�, where Tµν is the stress-energy tensor.

• We determine these ω � T correlators of the CFT3 by other methods
(e.g. vector large N expansion), and so obtain values of e2 and γ.

• We use SEM to extrapolate to transport properties for ω � T . This
step is traditionally carried out by descendants of the Boltzmann
equation.

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

AdS4 theory of “nearly perfect fluids”
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L. W. Engel, D. Shahar, C. Kurdak, and D. C. Tsui,
Physical Review Letters 71, 2638 (1993).

Frequency dependency of integer quantum Hall effect

Little frequency 
dependence,

and conductivity is 
close to self-dual

value
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1.  Conformal quantum matter       

             The AdS4 - Schwarzschild black brane

2.  Compressible quantum matter
         A.  Condensed matter vs. continuum QFTs

            

                               

            

Outline
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• Consider an infinite, continuum,

translationally-invariant quantum system

with a globally conserved U(1) charge Q
(the “electron density”) in spatial dimen-

sion d > 1.

• Describe zero temperature phases where

�Q� varies smoothly as a function of µ

(the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

Compressible quantum matter
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Compressible quantum matter

• Consider an infinite, continuum,

translationally-invariant quantum system

with a globally conserved U(1) charge Q
(the “electron density”) in spatial dimen-

sion d > 1.

• Describe zero temperature phases where

�Q� varies smoothly as a function of µ

(the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

Thursday, September 15, 2011



 Turning on a chemical potential on a CFT

Massless Dirac fermions
(e.g. graphene)

µ = 0
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 Turning on a chemical potential on a CFT

Massless Dirac fermions
(e.g. graphene)

Compressible 
phase is a 

Fermi Liquid 
with a 

Fermi surface
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The Fermi surface

Area A

This is the locus of zero energy singularities in momentum space
in the two-point correlator of fermions carrying charge Q.

G−1
fermion(k = kF ,ω = 0) = 0.

Luttinger relation: The total “volume (area)” A enclosed by the
Fermi surface is equal to �Q�. This is a key constraint which allows
extrapolation from weak to strong coupling.

Thursday, September 15, 2011



Another compressible state is the solid 
(or “Wigner crystal” or “stripe”). 

This state breaks translational symmetry.

Compressible quantum matter
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The only other familiar compressible 
state is the superfluid. 

This state breaks the global U(1) 
symmetry associated with Q

Condensate of 
fermion pairs

Compressible quantum matter
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Compressible quantum matter

Conjecture: All compressible states which preserve
translational and global U(1) symmetries must have
Fermi surfaces, but they are not necessarily
Fermi liquids.
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• Such states obey the Luttinger relation

�

�

q�A� = �Q�,

where the �’th Fermi surface has fermionic quasiparticles with
global U(1) charge q� and encloses area A�.

• Non-Fermi liquids have quasiparticles coupled to deconfined gauge
fields (or gapless bosonic modes at quantum critical points).

Compressible quantum matter

Conjecture: All compressible states which preserve
translational and global U(1) symmetries must have
Fermi surfaces, but they are not necessarily
Fermi liquids.
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Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .
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The 2 symmetries imply 2

Luttinger constraints. How-

ever, bosons at non-zero den-

sity invariably Bose condense

at T = 0, and so Ub(1) is

broken. So there is only the

single constraint on the f Fermi

surface. This describes mix-

tures of
3
He and

4
He.

Q = f†f
Qb = b†b

Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .
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Consider mixture of fermions f and bosons b.
There is a U(1)×Ub(1) symmetry
and 2 conserved charges:

A = �Q�
Q = f†f
Qb = b†b

Superfluid: �b� �= 0
Ub(1) broken; U(1) unbroken

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .
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S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .

f
c

b
Q = f†f
Qb = b†b

Increase the coupling g until the boson, b, and fermion, f ,
can bind into a ‘molecule’, the fermion c.
Decouple the interaction between b and f by a fermion c
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f
c

b

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

Q = f†f
Qb = b†b

Increase the coupling g until the boson, b, and fermion, f ,
can bind into a ‘molecule’, the fermion c.
Decouple the interaction between b and f by a fermion c

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 + 1

g
c†c− c†fb− cb†f† + . . .
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Ac Af

The b bosons
have bound
with f fermions
to form c
“molecules”

In a phase with Ub(1) unbroken, there is a Luttinger rela-

tion for each conserved U(1) charge. However, the boson,

b cannot have a Fermi surface in its Green’s function, and

so there is no area associated with it, although the boson

density is included in the Luttinger relation

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

Ac +Af =
�
f†f

�
= �Q�

Ac =
�
b†b

�
= �Qb�

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)
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s

Phase diagram of boson-fermion mixture

Normal: �b� = 0
U(1)×Ub(1) unbroken

Ac = �Qb�

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

A = �Q�

Superfluid: �b� �= 0
Ub(1) broken; U(1) unbroken

Af =

�Q−Qb�

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)
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• Now gauge Q−Qb by a dynamic gauge field Aa.
This leaves fermion c gauge-invariant

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .
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L = f†
�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
f

+ b†
�
∂τ + iAτ − (∇+ iA)2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .

(Need a background neutralizing charge)

• Now gauge Q−Qb by a dynamic gauge field Aa.
This leaves fermion c gauge-invariant
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s

Normal: �b� = 0
U(1)×Ub(1) unbroken

Ac = �Qb�

L = f†
�
∂τ − ∇2

2m
− µ

�
f

+ b†
�
∂τ − ∇2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .

S. Powell, S. Sachdev, and H. P. Büchler, Physical Review B 72, 024534 (2005)

A = �Q�

Superfluid: �b� �= 0
Ub(1) broken; U(1) unbroken

Af =

�Q−Qb�

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)

Phase diagram of boson-fermion mixture
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s

Phase diagram of U(1) gauge theory

Ac = �Qb�A = �Q�

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)

L = f†
�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
f

+ b†
�
∂τ + iAτ − (∇+ iA)2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .

Higgs/confining phase:
Fermi liquid (FL)

Deconfined phase:
Fractionalized

Fermi liquid (FL*)

Af =

�Q−Qb�

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)

Thursday, September 15, 2011



s

Ac = �Qb�A = �Q�

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)

L = f†
�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
f

+ b†
�
∂τ + iAτ − (∇+ iA)2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .

Higgs/confining phase:
Fermi liquid (FL)

Deconfined phase:
Fractionalized

Fermi liquid (FL*)

Af =

�Q−Qb�

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)

Phase diagram of U(1) gauge theory

Thursday, September 15, 2011



s

Ac = �Qb�A = �Q�

T. Senthil, M. Vojta, and S. Sachdev, Physical Review B 69, 035111 (2004)

L = f†
�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
f

+ b†
�
∂τ + iAτ − (∇+ iA)2

2mb
− µb

�
b+ s|b|2 +−g b†f†fb+ . . .

Higgs/confining phase:
Fermi liquid (FL)

Deconfined phase:
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• FL phase: Fermi surface of gauge-
neutral fermions encloses total global
charge Q

• FL* phase: Fermi surface of gauge
neutral fermions encloses only part
of the global charge Q

P. Coleman, I. Paul, and J. Rech, Physical Review B 72, 094430 (2005)
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Fermi liquid (FL*)
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Similar to theories obtained by adding a
chemical potential to CFTs (with non-Abelian
gauge fields) with known gravity duals

Phase diagram of U(1) gauge theory
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Separating onset of SDW order and the 
heavy Fermi liquid in the Kondo lattice 

Magnetic Metal: 
f-electron moments

and 
c-conduction electron 

Fermi surface

��ϕ� �= 0

f

c

Heavy Fermi liquid 
with “large” Fermi 

surface of 
hydridized f and 

c-conduction 
electrons

��ϕ� = 0

f+c

c

f

Fractionalized Fermi 
liquid (FL*) phase
with no symmetry 

breaking and “small” 
Fermi surface

��ϕ� = 0

T. Senthil, S. Sachdev, and M. Vojta, Phys. Rev. Lett. 90, 216403 (2003)
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Fermi surface

Fermi surface reconstruction
in a single band model
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and hole pockets

Increasing SDW order

��ϕ� �= 0

Thursday, September 15, 2011



Metal with “large” 
Fermi surface

Metal with electron 
and hole pockets

Increasing SDW order

��ϕ� �= 0 ��ϕ� = 0

Separating onset of SDW order
and Fermi surface reconstruction 

Thursday, September 15, 2011



Metal with “large” 
Fermi surface

Metal with electron 
and hole pockets

Increasing SDW order

��ϕ� �= 0 ��ϕ� = 0

Fractionalized Fermi 
liquid (FL*) phase
with no symmetry 

breaking and “small” 
Fermi surface

��ϕ� = 0

Separating onset of SDW order
and Fermi surface reconstruction 

Electron and/or hole 
Fermi pockets form in 
“local” SDW order, but 
quantum fluctuations 
destroy long-range

SDW order

Y. Qi and S. Sachdev, Physical Review B 81, 115129 (2010);  M. Punk and S. Sachdev, to appear;
see also T. C. Ribeiro and X.-G. Wen, Physical Review B 74, 155113 (2006)
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1.  Conformal quantum matter       

             The AdS4 - Schwarzschild black brane

2.  Compressible quantum matter
         A.  Condensed matter vs. continuum QFTs

            

                               

            

Outline
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AdS4-Schwarzschild black-brane
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S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

AdS4-Reissner-Nordtröm black-brane
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Electric flux

�Q�
�= 0

At T = 0, we obtain an extremal black-brane, with
a near-horizon (IR) metric of AdS2 ×R2

ds2 =
L2

6

�
−dt2 + dr2

r2

�
+ dx2 + dy2

AdS4-Reissner-Nordtröm black-brane

Thursday, September 15, 2011



This state appears stable in the presence of matter
fields (with large enough bulk mass). The single-particle
Green’s function of the boundary theory has the IR
(small ω) limit

G−1(k,ω) = A(k) +B(k)ωνk

where A(k), B(k), and νk are smooth functions of k.

For bosons, we require A(k) > 0 for stability.

For fermions, if A(k) changes sign at a k = kF , we
have a Fermi surface at k = kF . This Fermi surface is
non-Fermi liquid like.

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

Properties of AdS2 X R2

Thursday, September 15, 2011



T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694

Properties of AdS2 X R2

Lee; Denef, Hartnoll, Sachdev; Cubrovic, Zaanen, Schalm; Faulkner, Polchinski

This state appears stable in the presence of matter
fields (with large enough bulk mass). The single-particle
Green’s function of the boundary theory has the IR
(small ω) limit

G−1(k,ω) = A(k) +B(k)ωνk

where A(k), B(k), and νk are smooth functions of k.

For bosons, we require A(k) > 0 for stability.

For fermions, if A(k) changes sign at a k = kF , we
have a Fermi surface at k = kF . This Fermi surface is
non-Fermi liquid like.

Thursday, September 15, 2011



This state appears stable in the presence of matter
fields (with large enough bulk mass). The single-particle
Green’s function of the boundary theory has the IR
(small ω) limit

G−1(k,ω) = A(k) +B(k)ωνk

where A(k), B(k), and νk are smooth functions of k.

For bosons, we require A(k) > 0 for stability.

For fermions, if A(k) changes sign at a k = kF , we
have a Fermi surface at k = kF . This Fermi surface is
non-Fermi liquid like.

Properties of AdS2 X R2

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
Lee; Denef, Hartnoll, Sachdev; Cubrovic, Zaanen, Schalm; Faulkner, Polchinski

Thursday, September 15, 2011



This state appears stable in the presence of matter
fields (with large enough bulk mass). The single-particle
Green’s function of the boundary theory has the IR
(small ω) limit

G−1(k,ω) = A(k) +B(k)ωνk

where A(k), B(k), and νk are smooth functions of k.

For bosons, we require A(k) > 0 for stability.

For fermions, if A(k) changes sign at a k = kF , we
have a Fermi surface at k = kF . This Fermi surface is
non-Fermi liquid like.

Properties of AdS2 X R2

There is a deficit in the 
Luttinger count. This suggests 

there are ``hidden Fermi 
surfaces'' of gauge-charged 
particles as in a FL* phase.

S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).
L. Huijse and S. Sachdev, Phys. Rev. D 84, 026001 (2011)

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
Lee; Denef, Hartnoll, Sachdev; Cubrovic, Zaanen, Schalm; Faulkner, Polchinski
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Interpretation of AdS2 

CFT on graphene
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Interpretation of AdS2 

Add “matter” one-at-a-time: honeycomb lattice with a vacancy.

There is a zero energy quasi-bound state with |ψ(r)| ∼ 1/r.
We represent this by a localized fermion field χα(τ).
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S =

�
d3xLCFT −

�
dτLimp

Limp = χ†
α
∂χα

∂τ
− κχ†

ασ
a
αβχβ ϕ

a(r = 0, τ)

AdS2: “Boundary” conformal field theory obtained
when κ flows to a fixed point κ → κ∗.

S. Sachdev, C. Buragohain, and M. Vojta, Science 286, 2479 (1999)

CFT

Interpretation of AdS2 

Vacancy in 
graphene
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Interpretation of AdS2 X R2

Solve electronic models in the limit of large 
number of nearest-neighbors

Bethe 
lattice

Thursday, September 15, 2011



Bethe 
lattice

Interpretation of AdS2 X R2

Theory is expressed as a “quantum spin’’ coupled 
to an “environment”: 

solution is often a boundary CFT in 0+1 dimension
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lattice
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Theory is expressed as a “quantum spin’’ coupled 
to an “environment”: 

solution is often a boundary CFT in 0+1 dimension

Environment

Quantum spin
Bethe 
lattice
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Interpretation of AdS2 X R2

Exponents are determined by self-consistency 
condition between “spin” and “environment”.

Environment

Quantum spin
Bethe 
lattice
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Artifacts of AdS2 X R2

• The large-neighbor-limit solution matches with those of the
AdS2 ×R2 holographic solutions:

– A non-zero ground state entropy.

– Single fermion self energies are momentum independent,
and their singular behavior is the same on and off the
Fermi surface.

– A marginal Fermi liquid spectrum for fermionic quasi-
particles (for the holographic solution, this requires tun-
ing a free parameter).

– The low energy sector has conformally invariant corre-
lations.

T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, arXiv:0907.2694
S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010).
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AdS4-Reissner-Nordtröm black-brane

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)
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Near-horizon AdS2 X R2
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�

In a confining phase, the horizon disappears, 
the charge density is delocalized in the bulk spacetime,
and a Fermi liquid phase is obtained on the boundary

Beyond AdS2 X R2 S. Sachdev
arXiv:1107.5321
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In a confining phase, the horizon disappears, 
the charge density is delocalized in the bulk spacetime,
and a Fermi liquid phase is obtained on the boundary

Beyond AdS2 X R2 S. Sachdev
arXiv:1107.5321

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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 New insights and solvable models for diffusion and 
transport of strongly interacting systems near quantum critical 
points

 The description is far removed from, and complementary 
to, that of the quantum Boltzmann equation which builds on 
the quasiparticle/vortex picture.

 Prospects for experimental tests of frequency-dependent, 
non-linear, and non-equilibrium transport   
 

Conclusions

Quantum criticality and conformal field theories 

Thursday, September 15, 2011



 The Reissner-Nordström solution provides the simplest 
holographic theory of a compressible state. The solution is 
similar to those of (extended) DMFT.

 Much current work on realizing Fermi liquid (FL), 
fractionalized Fermi liquid (FL*), and non-Fermi liquid (nFL) 
phases

Conclusions

Compressible quantum matter
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