
General Director: 
David Gross 
UCSB 

Director:
Subir Sachdev
Harvard University

Codirectors:
Erez Berg 
Weizmann Institute of Science

Dror Orgad 
The Hebrew University

NEW HORIZONS IN 
QUANTUM MATTER

The 34th Jerusalem School in Theoretical Physics

Speakers:
Erez Berg 
Weizmann Institute of Science

 27.12, 2016 ! 5.1, 2017

Modern quantum materials realize a 
remarkably rich set of electronic phases. 
This school will explore the many new 
concepts and methods which have 
been developed in recent years, moving 
beyond the traditional paradigms of 
Fermi liquid theory and spontaneous 
symmetry breaking. In particular, long-
range quantum entanglement appears 
in topological and quantum-critical 
states, and the school will discuss new 
techniques required to describe their 
observable properties.

Andrey Chubukov
University of Minnesota

Antoine Georges  
Collège de France

Sean Hartnoll  
Stanford University

Steve Kivelson  
Stanford University

Subir Sachdev
Harvard University

Nati Seiberg
IAS, Princeton

Senthil Todadri
MIT

For more details: 
www.as.huji.ac.il/horizons-in-quantum

Photo  credit © Frans Lanting / www.lanting.com



A mean field theory  
of strange metals  

and gapless spin liquids,  
and its connection to  

black holes

CIFAR Quantum Materials Program Meeting 

Collège de France, Paris, October 5-7, 2016  

Subir Sachdev

HARVARDTalk online: sachdev.physics.harvard.edu



E

Metal
Metal

carrying
a current

Insulator
Superconductor

k

E

Metal
Metal

carrying
a current

Insulator
Superconductor

k

Metals

Conventional quantum matter:

1. Ground states connected adiabatically to
independent electron states

2. Boltzmann-Landau theory of quasiparticles

Luttinger’s theorem: 
volume enclosed by 
the Fermi surface = 
density of all electrons 
(mod 2 per unit cell).
Obeyed in overdoped 
cuprates



Topological quantum matter:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

(a) The fractional quantum Hall effect: the ground state is 
described by Laughlin’s wavefunction, and the 
excitations are quasiparticles which carry fractional 
charge.

(b) The pseudogap metal: proposed to have electron-like 
quasiparticles but on a “small” Fermi surface which 
does not obey the Luttinger theorem.



Quantum matter without quasiparticles:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Quasiparticle structure of excited states2. No quasiparticles

Strange metals:

Such metals are found, most prominently, near optimal 
doping in the the cuprate high temperature superconductors.

But how can we be sure that no quasiparticles exist in a 
given system? Perhaps there are some entangled 

quasiparticles inaccessible to current experiments……..
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S. Sachdev, Quantum Phase Transitions, Cambridge (1999)

Local thermal equilibration or

phase coherence time, ⌧':

• There is an lower bound on ⌧' in all many-body quantum

systems of order ~/(kBT ),

⌧' > C
~

kBT
,

and the lower bound is realized by systems

without quasiparticles.

• In systems with quasiparticles, ⌧' is parametrically larger

at low T ;
e.g. in Fermi liquids ⌧' ⇠ 1/T 2

,

and in gapped insulators ⌧' ⇠ e�/(kBT )
where � is the

energy gap.



A. I. Larkin and Y. N. Ovchinnikov, JETP 28, 6 (1969)

J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409 

A bound on quantum chaos:

• The time over which a many-body quantum

system becomes “chaotic” is given by ⌧L =

1/�L, where �L is the “Lyapunov exponent”

determining memory of initial conditions. This

Lyapunov time obeys the rigorous lower bound

⌧L � 1

2⇡

~
kBT



Quantum matter without quasiparticles

⇡ fastest possible many-body quantum chaos
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J. A. N. Bruin, H. Sakai, R. S. Perry, A. P. Mackenzie, Science. 339,  804 (2013)
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Strange metals
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• Black holes have a “ring-down” time, ⌧r, in which they radiate

energy, and stabilize to a ‘featureless’ spherical object. This time

can be computed in Einstein’s general relativity theory.

• For this black hole ⌧r = 7.7 milliseconds. (Radius of black hole

= 183 km; Mass of black hole = 62 solar masses.)
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• ‘Featureless’ black holes have a Bekenstein-Hawking
entropy, and a Hawking temperature, TH .
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• Expressed in terms of the Hawking temperature,
the ring-down time is ⌧r ⇠ ~/(kBTH) !

• For this black hole TH ⇡ 1 nK.



Figure credit: L. BalentsThe Sachdev-Ye-Kitaev
(SYK) model:

• A theory of a
strange metal

• Has a dual
representation
as a black hole

• Fastest possible
quantum chaos

with ⌧L =
~

2⇡kBT



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

SY model

H =
1

(NM)1/2

NX

i,j=1

MX

↵,�=1

JijŜi↵�Ŝj�↵

Ŝi↵� ⌘ c†i↵ci�

ci↵cj� + cj�ci↵ = 0 , ci↵c
†
j� + c†j�ci↵ = �ij�↵�

1

M

X

↵

c†i↵ci↵ = Q

Jij are independent random variables with Jij = 0 and J2
ij = J2

N ! 1 at M = 2 yields spin-glass ground state.

N ! 1 and then M ! 1 yields critical spin liquid
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A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

Jij;k` are independent random variables with Jij;k` = 0 and |Jij;k`|2 = J2

N ! 1 yields critical strange metal.

SYK model
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A fermion can move only by entangling with another fermion:
the Hamiltonian has “nothing but entanglement”.

Cold atom realization: 
I. Danshita, M. Hanada, and 
M. Tezuka, arXiv:1606.02454

SYK model



S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)

Feynman graph expansion in Jij.., and graph-by-graph average,

yields exact equations in the large N limit:

G(i!) =
1

i! + µ� ⌃(i!)
, ⌃(⌧) = �J2G2

(⌧)G(�⌧)

G(⌧ = 0

�
) = Q.

Low frequency analysis shows that the solutions must be gapless

and obey

⌃(z) = µ� 1

A

p
z + . . . , G(z) =

Ap
z

for some complex A. The ground state is a non-Fermi liquid, with

a continuously variable density Q.

SYK model

⌃ =
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• T = 0 Green’s function G ⇠ 1/
p
⌧

• T > 0 Green’s function implies conformal invariance
G ⇠ 1/(sin(⇡T ⌧))1/2

• Non-zero entropy as T ! 0, S(T ! 0) = NS0 + . . .

• These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdS2 near-horizon geometry. The Bekenstein-
Hawking entropy is NS0.

• The dependence of S0 on the density Q matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdS2
horizons in a large class of gravity theories.

S. Sachdev and J. Ye, Phys. Rev. Lett. 70, 3339 (1993)
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A. Georges, O. Parcollet, and S. Sachdev, Phys. Rev. B 63, 134406 (2001)

SYK model



W. Fu and S. Sachdev, PRB 94, 035135 (2016)

A better understanding of the above facts can be reached from the perspective of symmetry-

protected topological (SPT) phases. As shown recently in Ref. 14, the complex SYK model can be

thought of as the boundary of a 1D SPT system in the symmetry class AIII. The periodicity of 4

in N arises from the fact that we need to put 4 chains to gap out the boundary degeneracy without

breaking the particle-hole symmetry. In the Majorana SYK case, the symmetric Hamiltonian can

be constructed as a symmetric matrix in the Cli↵ord algebra Cl0,N�1, and the Bott periodicity

in the real representation of the Cli↵ord algebra gives rise to a Z8 classification[14]. Here, for

the complex SYK case, we can similarly construct the Cli↵ord algebra by dividing one complex

fermion into two Majorana fermions, and then we will have a periodicity of 4.

A. Green’s function

From the above definition of retarded Green’s function, we can relate them to the imaginary

time Green’s function as defined in Eq. (16), GR(!) = G(i!n ! ! + i⌘). In Fig. 3, we show a
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FIG. 3. Imaginary part of the Green’s function in real frequency space from large N and exact diagonal-

ization. The inset figure is zoomed in near ! = 0.

.

comparison between the imaginary part of the Green’s function from large N , and from the exact

diagonalization computation. The spectral function from ED is particle-hole symmetric for all N ,

11

We identify the infinite time limit of GB as the Edward-Anderson order parameter qEA, which can

characterize long-time memory of spin-glass:

qEA = lim
t!1

GB(t) (49)

Then qEA 6= 0 indicates that GB(!) ⇠ �(!). This is quite di↵erent from the fermionic case, where

we have GF (z) ⇠ 1/
p
z; this inverse square-root behavior also holds in the bosonic case without

spin glass order [1]. Fig. 10 is our result from ED, with a comparison between GB with GF . It is

evident that the behavior of GB is qualitatively di↵erent from GF , and so an inverse square-root

behavior is ruled out. Instead, we can clearly see that, as system size gets larger, GB’s peak value

increases much faster than the GF ’s peak value. This supports the presence of spin glass order.
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FIG. 10. Imaginary part of Green’s function for hardcore boson and fermion model. The peak near the

center gets much higher in the boson model when system size gets larger. The inset figure is zoomed in

near ! = 0.

Unlike the fermionic case, P 2 = 1 for allN in the bosonic model. We can apply similar symmetry

argument as in Ref. [14]: for the half-filled sector (only in even N cases), the level statistics obeys

the Wigner-Dyson distribution of Gaussian orthogonal random matrix ensembles, while in other

filling sectors, it obeys distribution of Gaussian unitary random matrix ensembles.

Our thermal entropy results for bosons are similar to the fermionic results: although the entropy

eventually approaches 0 at zero temperature, there is still a trend of a larger low temperature

entropy residue as the system size gets larger.

18

Large N solution of equations for G and ⌃ agree well with exact diagonal-
ization of the finite N Hamiltonian ) no spin-glass order

However, exact diagonalization of the same model with hard-core bosons
indicates the presence of spin-glass order in the ground state.

SYK model



S. Sachdev, PRL 105, 151602 (2010)

SYK model

• T = 0 Green’s function G ⇠ 1/
p
⌧

• T > 0 Green’s function implies conformal invariance
G ⇠ 1/(sin(⇡T ⌧))1/2

• Non-zero entropy as T ! 0, S(T ! 0) = NS0 + . . .

• These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory of black
holes with AdS2 near-horizon geometry. The Bekenstein-
Hawking entropy is NS0.

• The dependence of S0 on the density Q matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdS2
horizons in a large class of gravity theories.

S. Sachdev, PRX 5, 041025 (2015)



Holographic Metals and the Fractionalized Fermi Liquid
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We show that there is a close correspondence between the physical properties of holographic metals

near charged black holes in anti–de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the

lattice Anderson model. The latter phase has a ‘‘small’’ Fermi surface of conduction electrons, along with

a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids

are states of matter at nonzero density realizing the near-horizon, AdS2 ! R2 physics of Reissner-

Nordström black holes.

DOI: 10.1103/PhysRevLett.105.151602 PACS numbers: 11.25.Tq, 75.10.Kt, 75.30.Mb

There has been a flurry of recent activity [1–10] on the
holographic description of metallic states of nonzero den-
sity quantum matter. The strategy is to begin with a
strongly interacting conformal field theory (CFT) in the
ultraviolet (UV), which has a dual description as the
boundary of a theory of gravity in anti–de Sitter (AdS)
space. This CFT is then perturbed by a chemical potential
(!) conjugate to a globally conserved charge, and the
infrared (IR) physics is given a holographic description
by the gravity theory. For large temperatures T " !, such
an approach is under good control, and has produced a
useful hydrodynamic description of the physics of quan-
tum criticality [11]. Much less is understood about the low
temperature limit T # !: a direct solution of the classical
gravity theory yields boundary correlation functions de-
scribing a non-Fermi liquid metal [4], but the physical
interpretation of this state has remained obscure. It has a
nonzero entropy density as T ! 0, and this raises concerns
about its ultimate stability.

This Letter will show that there is a close parallel
between the above theories of holographic metals, and a
class of mean-field theories of the ‘‘fractionalized Fermi
liquid’’ (FFL) phase of the lattice Anderson model.

The Anderson model (specified below) has been a popu-
lar description of intermetallic transition metal or rare-
earth compounds: it describes itinerant conduction elec-
trons interacting with localized resonant states represent-
ing d (or f) orbitals. The FFL is an exotic phase of the
Anderson model, demonstrated to be generically stable in
Refs. [12,13]; it has a ‘‘small’’ Fermi surface whose vol-
ume is determined by the density of conduction electrons
alone, while the d electrons form a fractionalized spin
liquid state. The FFL was also found in a large spatial
dimension mean-field theory by Burdin et al. [14], and is
the ground state needed for a true ‘‘orbital-selective Mott
transition’’ [15]. The FFL should be contrasted from the
conventional Fermi liquid (FL) phase, in which there is a
‘‘large’’ Fermi surface whose volume counts both the con-
duction and d electrons: the FL phase is the accepted de-
scription of many ‘‘heavy fermion’’ rare-earth intermetal-

lics. However, recent experiments on YbRh2ðSi0:95Ge0:05Þ2
have observed an unusual phase for which the FFL is an
attractive candidate [16].
Here, we will describe the spin liquid of the FFL by the

gapless mean-field state of Sachdev and Ye [17] (SY). We
will then find that physical properties of the FFL are
essentially identical to those of the present theories of
holographic metals. Similar comments apply to other gap-
less quantum liquids [18] which are related to the SY state.
This agreement implies that nonzero density matter de-
scribed by the SY (or a related) state is a realization of the
near-horizon, AdS2 ! R2 physics of Reissner-Nordström
black holes.
We begin with a review of key features of the present

theory of holographic metals. The UV physics is holo-
graphically described by a Reissner-Nordström black
hole in AdS4. In the IR, the low-energy physics is captured
by the near-horizon region of the black hole, which has a
AdS2 ! R2 geometry [4]. The UV theory can be written as
a SUðNcÞ gauge theory, but we will only use gauge-
invariant operators to describe the IR physics. We use a
suggestive condensed matter notation to represent the IR,
anticipating the correspondence we make later. We probe
this physics by a ‘‘conduction electron’’ ck" (where k is a
momentum and " ¼" , # a spin index), which will turn out
to have a Fermi surface at a momentum k ' jkj ¼ kF. The
IR physics of this conduction electron is described by the
effective Hamiltonian [4,7]

H ¼ H0 þH1½d; c* þHAdS (1)

H0 ¼
X

"

Z d2k

4#2 ð"k +!Þcyk"ck"; (2)

with ck" canonical fermions and "k their dispersion, and

H1½d; c* ¼
X

"

Z d2k

4#2 ½Vkd
y
k"ck" þ V,

kc
y
k"dk"*; (3)

with Vk a ‘‘hybridization’’ matrix element. The dk" are
nontrivial operators controlled by the strongly coupled IR

PRL 105, 151602 (2010)
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SYK and AdS2

⇣
~x

⇣ = 1
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density Q

T 2

AdS2 ⇥ T

2

ds

2 = (d⇣2 � dt

2)/⇣2 + d~x

2

Gauge field: A = (E/⇣)dt

Einstein-Maxwell theory

+ cosmological constant



A. Georges and O. Parcollet
PRB 59, 5341 (1999) 

A. Kitaev, unpublished
S. Sachdev, PRX 5, 041025 (2015)

After integrating the fermions, the partition function can be writ-

ten as a path integral with an action S analogous to a Luttinger-

Ward functional

Z =

Z
DG(⌧1, ⌧2)D⌃(⌧1, ⌧2) exp(�NS)

S = ln det [�(⌧1 � ⌧2)(@⌧1 + µ)� ⌃(⌧1, ⌧2)]

+

Z
d⌧1d⌧2⌃(⌧1, ⌧2)

⇥
G(⌧2, ⌧1) + (J2/2)G2

(⌧2, ⌧1)G
2
(⌧1, ⌧2)

⇤

At frequencies ⌧ J , the time derivative in the determinant is less

important, and without it the path integral is invariant under the

reparametrization and gauge transformations

⌧ = f(�)

G(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�1/4 g(�1)

g(�2)
G(�1,�2)

⌃(⌧1, ⌧2) = [f 0
(�1)f

0
(�2)]

�3/4 g(�1)

g(�2)
⌃(�1,�2)

where f(�) and g(�) are arbitrary functions.

A. Georges, O. Parcollet, and S. Sachdev, 
Phys. Rev. B 63, 134406 (2001)

SYK model
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Let us write the large N saddle point solutions of S as

Gs(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�1/2 , ⌃s(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)

�3/2.

These are not invariant under the reparametrization symmetry but are in-

variant only under a SL(2,R) subgroup under which

f(⌧) =
a⌧ + b

c⌧ + d
, ad� bc = 1.

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode

Expand about the saddle point by writing

G(⌧1, ⌧2) = [f 0
(⌧1)f

0
(⌧2)]

1/4Gs(f(⌧1)� f(⌧2))

(and similarly for ⌃) and obtain an e↵ective action for f(⌧). This action

does not vanish because of the time derivative in the determinant which is

not reparameterization invariant.

SYK model

J. Maldacena and D. Stanford, arXiv:1604.07818
See also  A. Kitaev, unpublished, and  J. Polchinski and  V. Rosenhaus, arXiv:1601.06768
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Connections of SYK to gravity and AdS2

horizons

• Reparameterization and gauge

invariance are the ‘symmetries’ of

the Einstein-Maxwell theory of

gravity and electromagnetism

• SL(2,R) is the isometry group of AdS2.
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See also  A. Kitaev, unpublished, and  J. Polchinski and  V. Rosenhaus, arXiv:1601.06768

Let us write the large N saddle point solutions of S as

Gs(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)
�1/2 , ⌃s(⌧1 � ⌧2) ⇠ (⌧1 � ⌧2)

�3/2.

These are not invariant under the reparametrization symmetry but are in-

variant only under a SL(2,R) subgroup under which

f(⌧) =
a⌧ + b

c⌧ + d
, ad� bc = 1.

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode

Expand about the saddle point by writing

G(⌧1, ⌧2) = [f 0
(⌧1)f

0
(⌧2)]

1/4Gs(f(⌧1)� f(⌧2))

(and similarly for ⌃) and obtain an e↵ective action for f(⌧). This action

does not vanish because of the time derivative in the determinant which is

not reparameterization invariant.

SYK model



SYK model

Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished

The couplings are given by thermodynamics (⌦ is the grand potential)
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The correlators of the density fluctuations, Q(⌧), and the energy fluctua-

tions �E � µ�Q(⌧) are time independent and given by
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One can also derive the thermodynamic properties from the large-N saddle point free

energy:

F

N
=

1

�


� log Pf (@⌧ � ⌃) +

1

2

Z
d⌧

1

d⌧
2

✓
⌃(⌧

1

, ⌧
2

)G(⌧
1

, ⌧
2

)� J2

4
G(⌧

1

, ⌧
2

)4
◆�

(8)

= U � S
0

T � �

2
T 2 + . . . (9)

In the second line we write the free energy in a low temperature expansion,3 where U ⇡
�0.0406J is the ground state energy, S

0

⇡ 0.232 is the zero temperature entropy [32, 4],

and �T = cv = ⇡↵
K

16

p
2�J

⇡ 0.396
�J

is the specific heat [11]. The entropy term can be derived

by inserting the conformal saddle point solution (2) in the e↵ective action. The specific

heat can be derived from knowledge of the leading (in 1/�J) correction to the conformal

saddle, but the energy requires the exact (numerical) finite �J solution.

3 The generalized SYK model

In this section, we will present a simple way to generalize the SYK model to higher di-

mensions while keeping the solvable properties of the model in the large-N limit. For

concreteness of the presentation, in this section we focus on a (1 + 1)-dimensional ex-

ample, which describes a one-dimensional array of SYK models with coupling between

neighboring sites. It should be clear how to generalize, and we will discuss more details of

the generalization to arbitrary dimensions and generic graphs in section 6.

3.1 Definition of the chain model

k

j

J 0
jklm

m

l
k l

j m

Jjklm

Figure 1: A chain of coupled SYK sites: each site contains N � 1 fermion with SYK
interaction. The coupling between nearest neighbor sites are four fermion interaction with
two from each site.

3Starting at T 3.77, this expansion is expected to also involve non-integer powers given by the dimensions
of irrelevant operators in the model.

6

Coupled SYK models

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832
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The coupled SYK models realize a diffusive, 
metal with no quasiparticle excitations.

(a “strange metal”)

Coupled SYK models

Wenbo Fu, Yingfei Gu, S. Sachdev, unpublished



• Graphene

Strange metal transport

Theoretical predictions inspired by holography

Comparison with experiments
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Transport in Strange Metals 
For a strange metal
with a “relativistic” Hamiltonian,
hydrodynamic, holographic,
and memory function methods yield
Lorentz ratio L = /(T�)

=
v2FH⌧imp

T 2�Q

1

(1 + e2v2FQ2⌧imp/(H�Q))
2

Q ! electron density; H ! enthalpy density
�Q ! quantum critical conductivity
⌧imp ! momentum relaxation time from impurities.
Note that for a clean system (⌧imp ! 1 first),
the Lorentz ratio diverges L ⇠ 1/Q4,
as we approach “zero” electron density at the Dirac point.
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FIG. 1. Temperature and density dependent electrical and thermal conductivity. (A) Resistance versus gate voltage
at various temperatures. (B) Electrical conductivity (blue) as a function of the charge density set by the back gate for di↵erent
bath temperatures. The residual carrier density at the neutrality point (green) is estimated by the intersection of the minimum
conductivity with a linear fit to log(�) away from neutrality (dashed grey lines). Curves have been o↵set vertically such that
the minimum density (green) aligns with the temperature axis to the right. Solid black lines correspond to 4e2/h. At low
temperature, the minimum density is limited by disorder (charge puddles). However, above Tdis ⇠ 40 K, a crossover marked
in the half-tone background, thermal excitations begin to dominate and the sample enters the non-degenerate regime near
the neutrality point. (C-D) Thermal conductivity (red points) as a function of (C) gate voltage and (D) bath temperature
compared to the Wiedemann-Franz law, �TL0 (blue lines). At low temperature and/or high doping (|µ| � kBT ), we find the
WF law to hold. This is a non-trivial check on the quality of our measurement. In the non-degenerate regime (|µ| < kBT )
the thermal conductivity is enhanced and the WF law is violated. Above Tel�ph ⇠ 80 K, electron-phonon coupling becomes
appreciable and begins to dominate thermal transport at all measured gate voltages. All data from this figure is taken from
sample S2 (inset 1E).

Realization of the Dirac fluid in graphene requires that
the thermal energy be larger than the local chemical po-
tential µ(r), defined at position r: kBT & |µ(r)|. Impu-
rities cause spatial variations in the local chemical po-
tential, and even when the sample is globally neutral, it
is locally doped to form electron-hole puddles with finite
µ(r) [25–28]. Formation of the DF is further complicated
by phonon scattering at high temperature which can re-
lax momentum by creating additional inelastic scattering
channels. This high temperature limit occurs when the
electron-phonon scattering rate becomes comparable to
the electron-electron scattering rate. These two temper-
atures set the experimental window in which the DF and
the breakdown of the WF law can be observed.

To minimize disorder, the monolayer graphene samples
used in this report are encapsulated in hexagonal boron
nitride (hBN) [29]. All devices used in this study are
two-terminal to keep a well-defined temperature profile

[30] with contacts fabricated using the one-dimensional
edge technique [31] in order to minimize contact resis-
tance. We employ a back gate voltage Vg applied to
the silicon substrate to tune the charge carrier density
n = ne � nh, where ne and nh are the electron and hole
density, respectively (see supplementary materials (SM)).
All measurements are performed in a cryostat controlling
the temperature Tbath. Fig. 1A shows the resistance R

versus Vg measured at various fixed temperatures for a
representative device (see SM for all samples). From this,
we estimate the electrical conductivity � (Fig. 1B) using
the known sample dimensions. At the CNP, the residual
charge carrier density nmin can be estimated by extrap-
olating a linear fit of log(�) as a function of log(n) out
to the minimum conductivity [32]. At the lowest tem-
peratures we find nmin saturates to ⇠8⇥109 cm�2. We
note that the extraction of nmin by this method overesti-
mates the charge puddle energy, consistent with previous

J. Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, A. Harzheim, A. Lucas, S. Sachdev, Philip Kim, 
Takashi Taniguchi, Kenji Watanabe, T. A. Ohki, and Kin Chung Fong, Science 351, 1058 (2016)

Red dots: data

Blue line: value for L = L0
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bath temperatures. The residual carrier density at the neutrality point (green) is estimated by the intersection of the minimum
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the minimum density (green) aligns with the temperature axis to the right. Solid black lines correspond to 4e2/h. At low
temperature, the minimum density is limited by disorder (charge puddles). However, above Tdis ⇠ 40 K, a crossover marked
in the half-tone background, thermal excitations begin to dominate and the sample enters the non-degenerate regime near
the neutrality point. (C-D) Thermal conductivity (red points) as a function of (C) gate voltage and (D) bath temperature
compared to the Wiedemann-Franz law, �TL0 (blue lines). At low temperature and/or high doping (|µ| � kBT ), we find the
WF law to hold. This is a non-trivial check on the quality of our measurement. In the non-degenerate regime (|µ| < kBT )
the thermal conductivity is enhanced and the WF law is violated. Above Tel�ph ⇠ 80 K, electron-phonon coupling becomes
appreciable and begins to dominate thermal transport at all measured gate voltages. All data from this figure is taken from
sample S2 (inset 1E).

Realization of the Dirac fluid in graphene requires that
the thermal energy be larger than the local chemical po-
tential µ(r), defined at position r: kBT & |µ(r)|. Impu-
rities cause spatial variations in the local chemical po-
tential, and even when the sample is globally neutral, it
is locally doped to form electron-hole puddles with finite
µ(r) [25–28]. Formation of the DF is further complicated
by phonon scattering at high temperature which can re-
lax momentum by creating additional inelastic scattering
channels. This high temperature limit occurs when the
electron-phonon scattering rate becomes comparable to
the electron-electron scattering rate. These two temper-
atures set the experimental window in which the DF and
the breakdown of the WF law can be observed.

To minimize disorder, the monolayer graphene samples
used in this report are encapsulated in hexagonal boron
nitride (hBN) [29]. All devices used in this study are
two-terminal to keep a well-defined temperature profile

[30] with contacts fabricated using the one-dimensional
edge technique [31] in order to minimize contact resis-
tance. We employ a back gate voltage Vg applied to
the silicon substrate to tune the charge carrier density
n = ne � nh, where ne and nh are the electron and hole
density, respectively (see supplementary materials (SM)).
All measurements are performed in a cryostat controlling
the temperature Tbath. Fig. 1A shows the resistance R

versus Vg measured at various fixed temperatures for a
representative device (see SM for all samples). From this,
we estimate the electrical conductivity � (Fig. 1B) using
the known sample dimensions. At the CNP, the residual
charge carrier density nmin can be estimated by extrap-
olating a linear fit of log(�) as a function of log(n) out
to the minimum conductivity [32]. At the lowest tem-
peratures we find nmin saturates to ⇠8⇥109 cm�2. We
note that the extraction of nmin by this method overesti-
mates the charge puddle energy, consistent with previous

Red dots: data

Blue line: value for L = L0

J. Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, A. Harzheim, A. Lucas, S. Sachdev, Philip Kim, 
Takashi Taniguchi, Kenji Watanabe, T. A. Ohki, and Kin Chung Fong, Science 351, 1058 (2016)
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in the half-tone background, thermal excitations begin to dominate and the sample enters the non-degenerate regime near
the neutrality point. (C-D) Thermal conductivity (red points) as a function of (C) gate voltage and (D) bath temperature
compared to the Wiedemann-Franz law, �TL0 (blue lines). At low temperature and/or high doping (|µ| � kBT ), we find the
WF law to hold. This is a non-trivial check on the quality of our measurement. In the non-degenerate regime (|µ| < kBT )
the thermal conductivity is enhanced and the WF law is violated. Above Tel�ph ⇠ 80 K, electron-phonon coupling becomes
appreciable and begins to dominate thermal transport at all measured gate voltages. All data from this figure is taken from
sample S2 (inset 1E).

Realization of the Dirac fluid in graphene requires that
the thermal energy be larger than the local chemical po-
tential µ(r), defined at position r: kBT & |µ(r)|. Impu-
rities cause spatial variations in the local chemical po-
tential, and even when the sample is globally neutral, it
is locally doped to form electron-hole puddles with finite
µ(r) [25–28]. Formation of the DF is further complicated
by phonon scattering at high temperature which can re-
lax momentum by creating additional inelastic scattering
channels. This high temperature limit occurs when the
electron-phonon scattering rate becomes comparable to
the electron-electron scattering rate. These two temper-
atures set the experimental window in which the DF and
the breakdown of the WF law can be observed.

To minimize disorder, the monolayer graphene samples
used in this report are encapsulated in hexagonal boron
nitride (hBN) [29]. All devices used in this study are
two-terminal to keep a well-defined temperature profile

[30] with contacts fabricated using the one-dimensional
edge technique [31] in order to minimize contact resis-
tance. We employ a back gate voltage Vg applied to
the silicon substrate to tune the charge carrier density
n = ne � nh, where ne and nh are the electron and hole
density, respectively (see supplementary materials (SM)).
All measurements are performed in a cryostat controlling
the temperature Tbath. Fig. 1A shows the resistance R

versus Vg measured at various fixed temperatures for a
representative device (see SM for all samples). From this,
we estimate the electrical conductivity � (Fig. 1B) using
the known sample dimensions. At the CNP, the residual
charge carrier density nmin can be estimated by extrap-
olating a linear fit of log(�) as a function of log(n) out
to the minimum conductivity [32]. At the lowest tem-
peratures we find nmin saturates to ⇠8⇥109 cm�2. We
note that the extraction of nmin by this method overesti-
mates the charge puddle energy, consistent with previous
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Graphene  hosts  a  unique  electron  system  that  due  to  weak  electron‐phonon  scattering  allows 
micrometer‐scale  ballistic  transport  even  at  room  temperature  whereas  the  local  equilibrium  is 
provided by  frequent electron‐electron collisions. Under these conditions, electrons can behave as a 
viscous  liquid  and  exhibit  hydrodynamic  phenomena  similar  to  classical  liquids.  Here  we  report 
unambiguous evidence  for  this  long‐sought  transport regime.  In particular, doped graphene exhibits 
an  anomalous  (negative)  voltage  drop  near  current  injection  contacts,  which  is  attributed  to  the 
formation of submicrometer‐size whirlpools in the electron flow. The viscosity of graphene’s electron 
liquid is found to be an order of magnitude larger than that of honey, in quantitative agreement with 
many‐body theory. Our work shows a possibility to study electron hydrodynamics using high quality 
graphene.   

 
 

Collective  behavior  of many‐particle  systems  that  undergo  frequent  inter‐particle  collisions  has  been 
studied for more than two centuries and is routinely described by the theory of hydrodynamics [1,2]. The 
theory  relies  only  on  the  conservation  of mass, momentum  and  energy  and  is  highly  successful  in 
explaining  the response of classical gases and  liquids  to external perturbations varying slowly  in space 
and  time.  More  recently,  it  has  been  shown  that  hydrodynamics  can  also  be  applied  to  strongly 
interacting quantum systems including ultra‐hot nuclear matter and ultra‐cold atomic Fermi gases in the 
unitarity limit [3‐6].   

In principle, the hydrodynamic approach can also be employed to describe many‐electron phenomena in 
condensed matter physics [7‐13]. The theory becomes applicable if electron‐electron scattering provides 
the  shortest  spatial  scale  in  the  problem  such  that  ℓee ≪ ܹ, ℓ  where  ℓee  is  the  electron‐electron 
scattering length, ܹ  the sample size,  ℓ ≡  ୊߬ݒ the mean free path,   ୊ݒ the Fermi velocity, and  ߬  the 
mean free time with respect to momentum‐non‐conserving collisions such as those involving impurities, 
phonons, etc. The above  inequalities are difficult to meet experimentally.  Indeed, at  low temperatures 
(ܶ)  ℓee   varies  approximately  as  ∝ ܶିଶ   reaching  a  micrometer  scale  below  a  few  K  [14],  which 
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Figure 1. Viscous backflow in doped graphene. (a,b) Steady‐state distribution of current injected through 
a narrow slit for a classical conducting medium with zero   ߥ (a) and a viscous Fermi liquid (b). (c) Optical 
micrograph of one of our SLG devices. The schematic explains  the measurement geometry  for vicinity 
resistance.  (d,e)  Longitudinal  conductivity   ௫௫ߪ and  ܴ୚  for  this device as a  function of  ݊  induced by 
applying gate voltage.  ܫ ൌ 0.3	PA;  ܮ ൌ 1	Pm. For more detail, see Supplementary Information.   

To  elucidate  hydrodynamics  effects, we  employed  the  geometry  shown  in  Fig.  1c.  In  this  case,   is	ܫ
injected through a narrow constriction into the graphene bulk, and the voltage drop  ୚ܸ  is measured at 
the nearby side contacts located only at the distance   1~ܮ Pm away from the  injection point. This can 
be considered as nonlocal measurements, although stray currents are not exponentially small  [24]. To 
distinguish from the proper nonlocal geometry [24], we refer to the linear‐response signal measured in 
our  geometry  as  “vicinity  resistance”,  ܴ୚ ൌ ୚ܸ/ܫ.  The  idea  is  that,  in  the  case  of  a  viscous  flow, 
whirlpools emerge as shown  in Fig. 1b, and  their appearance can  then be detected as sign reversal of 

୚ܸ, which  is positive for the conventional current  flow (Fig. 1a) and negative for viscous backflow  (Fig. 
1b). Fig. 1e shows examples of  ܴ୚  for  the same SLG device as  in Fig. 1d, and other devices exhibited 
similar behavior (Supplementary Fig. 1). One can see that, away from the charge neutrality point (CNP), 
ܴ୚  is indeed negative over a large range of  ܶ  and that the conventional behavior is recovered at room 
ܶ.   

Figure 2 details our observations further by showing maps  ܴ୚ሺ݊, ܶሻ  for SLG and BLG. Near room  ܶ, SLG 
devices exhibited positive  ܴ୚  that evolved qualitatively similar  to  longitudinal  resistivity  ௫௫ߩ ൌ  ௫௫ߪ/1
as expected  for a classical electron  system.  In contrast,  ܴ୚  was  found negative over a  large  range of 
ܶ ൏ 250  K and for  ݊  away from the CNP. The behavior was slightly different for BLG (Fig. 2b) reflecting 
the different electronic spectrum but again  ܴ୚  was negative over a large range of  ݊  and  ܶ. Two more 
ܴ୚  maps are provided  in Supplementary Figure 9.  In total, six multiterminal devices were  investigated 
showing the vicinity behavior that was highly reproducible for both different contacts on a same device 
and different devices, although we note  that  the electron backflow was more pronounced  for devices 
with highest   ߤ and lowest charge inhomogeneity.   

Science 351, 1055 (2016)

See also L. Levitov and G. Falkovich, Nature Physics 12, 672 (2016)



Search for signatures of Navier-Stokes hydrodynamic flow 

Experiment:  Successively narrow the channel in factors of 2, measuring the 
resistance after every step. 
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351,$1061$(2016)$

Signature of Navier-Stokes hydrodynamic flow in PdCoO2



Entangled quantum matter without quasiparticles

• Is there a connection between

strange metals and black holes?

Yes, e.g. the SYK model.

• Why do they have the same

equilibration time ⇠ ~/(kBT )?
Strange metals don’t have

quasiparticles and thermalize rapidly;

Black holes are “fast scramblers”.

• Theoretical predictions for strange metal

transport in graphene agree well with experiments


