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Modern quantum materials realize a
remarkably rich set of electronic phases.
This school will explore the many new
concepts and methods which have
been developed in recent years, moving
beyond the traditional paradigms of
Fermi liquid theory and spontaneous
symmetry breaking. In particular, long-
range quantum entanglement appears
in topological and quantum-critical
states, and the school will discuss new
techniques required to describe their
observable properties.
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A mean field theory
of strange metals
and gapless spin liquids,
and its connection to
black holes
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Conventional quantum matter:

|. Ground states connected adiabatically to
independent electron states

2. Boltzmann-Landau theory of quasiparticles

Luttinger’s theorem:
volume enclosed by
Er the Fermi surface =
E density of all electrons
0 (mod 2 per unit cell).
Obeyed in overdoped

cuprates




Topological quantum matter:

|. Ground states disconnected from independent

electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

(a) The fractional quantum Hall effect: the ground state is
described by Laughlin’s wavefunction, and the

excitations are quasiparticles which carry fractional
charge.

(b) The pseudogap metal: proposed to have electron-like
quasiparticles but on a “small” Fermi surface which
does not obey the Luttinger theorem.



Quantum matter without quasiparticles:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. No quasiparticles

Strange metals:

Such metals are found, most prominently, near optimal
doping in the the cuprate high temperature superconductors.



Quantum matter without quasiparticles:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. No quasiparticles

Strange metals:

Such metals are found, most prominently, near optimal
doping in the the cuprate high temperature superconductors.

But how can we be sure that no quasiparticles exist in a
given system! Perhaps there are some exotic quasiparticles
inaccessible to current experiments........



Local thermal equilibration or
phase coherence time, 7,:

e There is an lower bound on 7, in all many-body quantum
systems of order A/(kgT),

n
O_
o= YL oT

and the lower bound is realized by systems
without quasiparticles.

e In systems with quasiparticles, 7, is parametrically larger
at low 17
e.g. in Fermi liquids 7, ~ 1/T°%,
and 1n gapped insulators 7, ~ e/ (kBT) where A is the
energy gap.

S. Sachdev, Quantum Phase Transitions, Cambridge (1999)



A bound on quantum chaos:

e The time over which a many-body quantum
system becomes “chaotic” is given by 77 =
1/Ar, where Az, is the “Lyapunov exponent”
determining memory of initial conditions. This
LYAPUNOV TIME obeys the rigorous lower bound

>1 h
-
L_QWkBT

A.l. Larkin and Y. N. Ovchinnikov, |ETP 28, 6 (1969)
J. Maldacena, S. H. Shenker and D. Stanford, arXiv:1503.01409



A bound on quantum chaos:

e The time over which a many-body quantum
system becomes “chaotic” is given by 77 =
1/Ar, where Az, is the “Lyapunov exponent”
determining memory of initial conditions. This
LYAPUNOV TIME obeys the rigorous lower bound

>1 h
-
L_QWkBT

Quantum matter without quasiparticles
~ fastest possible many-body quantum chaos
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Strange metals
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J. A. N. Bruin, H. Sakai, R. S. Perry, A. P. Mackenzie, Science. 339, 804 (2013)
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e Black holes have a “ring-down” time, 7,., in which they radiate
energy, and stabilize to a ‘featureless’ spherical object. This time
can be computed in Einstein’s general relativity theory.

e For this black hole 7,, = 7.7 milliseconds. (Radius of black hole
= 183 km; Mass of black hole = 62 solar masses.)
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e ‘Featureless’ black holes have a Bekenstein-Hawking
entropy, and a Hawking temperature, T}.
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e Lixpressed in terms of the Hawking temperature,
the ring-down time is 7. ~ h/(kgTy) !

e For this black hole Ty =~ 1 nK.



The Sachdev-Ye-Kitaev Figure credit: L. Balents
(SYK) model: '

e A theory of a
strange metal

e Has a dual
representation

as a black hole

......................
cove
-
-

e Fastest possible
quantum chaos

h
27T]{TBT

with T, —



SY model
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Ji; are independent random variables with J—@] = 0 and J—ZZJ = J?
N — oo at M = 2 yields spin-glass ground state.
N — oo and then M — oo yields critical spin liquid

S.Sachdev and J.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model
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Jij.ke are independent random variables with J;;..¢ = 0 and |J;;.x¢]? = J?

N — oo yields critical strange metal.
S.Sachdev and J.Ye, PRL 70, 3339 (1993)

A. Kitaey, unpublished; S. Sachdev, PRX 5, 041025 (2015)



SYK model

1

N
0o (2N)3/2 > Jumecicee, —u)_cic,
0,7,k 0=1 g

cic; +cjc; =0 cicj- + c;.ci = 04

1
Q = — CTC- Cold atom realization:
N &=
1
W

|. Danshita, M. Hanada, and
M. Tezuka, arXiv:1606.02454
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A fermion can move only by entangling with another fermion:
the Hamiltonian has “nothing but entanglement”.
S.Sachdev and J.Ye, PRL 70, 3339 (1993)

A. Kitaey, unpublished; S. Sachdev, PRX 5, 041025 (2015)




SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

Feynman graph expansion in J;; , and graph-by-graph average,
yields exact equations in the large N limit:

Low frequency analysis shows that the solutions must be gapless
and obey

1 A

o) =p— Vit Gle)= -~

for some complex A. The ground state is a non-Fermi liquid, with
a continuously variable density O.

S.Sachdev and |.Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

e T =0 Green’s function G ~ 1/4/7
S.Sachdev and ].Ye, Phys. Rev. Lett. 70, 3339 (1993)



SYK model

e T =0 Green’s function G ~ 1/4/7

e I > 0 Green’s function implies conformal invariance
. 1/2
G ~ 1/(8111(7TT7‘)) / A. Georges and O. Parcollet PRB 59, 5341 (1999)



SYK model

e T =0 Green’s function G ~ 1/4/7

e I > 0 Green’s function implies conformal invariance

G ~ 1/(sin(nT7))/?

e Non-zero entropy as T'— 0, S(T"— 0) = NSy + ...
A. Georges, O. Parcollet, and S. Sachdey, Phys. Rev. B 63, 134406 (2001)



SYK model

' 18
——large N exact

15 ——Boson N=12
——EDN=8 16 | ——Boson N=16 | |
ED N=12 ] 10 Fermion N=12
—ED N=16 st JMNCIN ee Fermion N=16
14r st ) taa i
i 0

12 -

10 -

m(G)J

.
4,
g t‘ 'k QQQ N
ARIA .
L o
:
%
1

- 0
wlJ wlJ

Large N solution of equations for G and > agree well with exact diagonal-
ization of the finite N Hamiltonian = no spin-glass order

However, exact diagonalization of the same model with hard-core bosons
indicates the presence of spin-glass order in the ground state.

W. Fu and S. Sachdev, PRB 94,035135 (2016)



SYK model

T = 0 Green’s function G ~ 1/4/7

T > 0 Green’s function implies conformal invariance

G ~ 1/(sin(nT7))/?
Non-zero entropy as T'— 0, S(T'— 0) = NSy + . ..

These features indicate that the SYK model is dual to
the low energy limit of a quantum gravity theory ot black
holes with AdSs near-horizon geometry. The Bekenstein-
Hawking entropy is IV.S. S. Sachdev, PRL 105, 151602 (2010)

The dependence of Sy on the density @ matches the be-
havior of the Wald-Bekenstein-Hawking entropy of AdSs
horizons in a large class of gravity theories.

S. Sachdev, PRX 5, 041025 (2015)



Einstein-Maxwell theory

+ cosmological constant
charge

AdS. x T density O
2

ds* = (d¢? — dt?*)/(? + dx?
Gauge field: A = (£/()dt

SYK and AdS>

S| = g

PHYSICAL REVIEW LETTERS [05, 151602 (2010)

S

Holographic Metals and the Fractionalized Fermi Liquid

Subir Sachdev

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 23 June 2010; published 4 October 2010)

We show that there 1s a close correspondence between the physical properties of holographic metals
near charged black holes in anti—de Sitter (AdS) space, and the fractionalized Fermi liquid phase of the
lattice Anderson model. The latter phase has a ““small” Fermi surface of conduction electrons, along with
a spin liquid of local moments. This correspondence implies that certain mean-field gapless spin liquids
are states of matter at nonzero density realizing the near-horizon, AdS, X R? physics of Reissner-
Nordstrom black holes.



SYK model

After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-
Ward functional

A / DG(Tl, TZ)DZ(TL 7-2) exp(—NS) A. Georges, O. Parcollet, and S. Sachdey,
Phys. Rev. B 63, 134406 (2001)

S =1Indet [6(T — 72)(0r, + 1) — 2(11,T2)]

+/d71d722(71,72) G(79,m1) + (J?/2)G*(72,71)G* (11, T2)]



SYK model

After integrating the fermions, the partition function can be writ-
ten as a path integral with an action S analogous to a Luttinger-

Ward functional

A / DG(Tl, TZ)DZ(TL 7-2) exp(—NS) A. Georges, O. Parcollet, and S. Sachdey,
Phys. Rev. B 63, 134406 (2001)

S =1Indet [6(m — 12)(FL + 1) — X(11, 7))
i /dTldTQZ(Tl,TQ) [G(Tg,ﬁ) + (J2/2)G2(7-2,Tl)G2(7-177-2)]

At frequencies < J, the time derivative in the determinant is less
important, and without it the path integral is invariant under the

reparametrization and gauge transformations A. Georges and O Parcollet
PRB 59, 5341 (1999)
T = f(O') A. Kitaev, unpublished
(o1) S. Sachdev, PRX 5, 041025 (2015)
—1/4 o)
Glri,m) = [ (01) /" (02)] " LI Glo1, 00)
g(o2)
—3/4 9(01
S(r1,m) = [F(00) £ (02)] " 27 (04, )
g(o2)

where f(o) and g(o) are arbitrary functions.



SYK model

Let us write the large IV saddle point solutions of S as

Gs(ri —m2) ~ (11 —72) 712 S(m — 1) ~ (11— 72) %2
These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

at + b

So the (approximate) reparametrization symmetry is spontaneously broken.

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

Let us write the large IV saddle point solutions of S as

f‘_i(’ﬁ —T‘)\N(’ﬁ —703_1/2 . Zg(’ﬁ —T‘)\N(’ﬁ —703_3/2.
o/ Connections of SYK to gravity and Adsgx -
val - horizons

e Reparameterization and gauge
So invariance are the ‘symmetries’ of .
she Einstein-Maxwell theory of
ocravity and electromagnetism

4L

k e SL(2,R) is the isometry group of Adsy

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

Let us write the large IV saddle point solutions of S as

—1/2

GS(Tl—TQ)N(Tl—TQ) ] ES(Tl_TQ)N(Tl—TQ)_S/Q.

These are not invariant under the reparametrization symmetry but are in-
variant only under a SL(2,R) subgroup under which

at + b

So the (approximate) reparametrization symmetry is spontaneously broken.

Reparametrization zero mode
Expand about the saddle point by writing

G(r1,72) = [f' (1) f ()]G (f(11) — f(72))

(and similarly for ) and obtain an effective action for f(7). This action
does not vanish because of the time derivative in the determinant which is
not reparameterization invariant.

J. Maldacena and D. Stanford, arXiv:1604.07818
See also A. Kitaey, unpublished, and ]. Polchinski and V. Rosenhaus, arXiv:1601.06768



SYK model

. 1
With g(7) = e %(7) the action for ¢(7) and f(7) = —F tan(7wT (7 + €(7))

T

fluctuations is

o pUT o UT
S, s = 5/0 d7(67¢+i(27r8T)8Te)2—R/0 dr {f.7},

where { f, 7} is the Schwarzian:

_ S 3 (Y
=3 (5)

The couplings are given by thermodynamics (€2 is the grand potential)

0°() 0°()
K =— <—> . Y +HATEPK = — (—>
op? ) 1% )
Sy
2mE = ——=
& 50

Wenbo Fu,Yingfei Gu, S. Sachdeyv, unpublished



SYK model

. 1
With g(7) = e %(7) the action for ¢(7) and f(7) = —F tan(7nT' (7 + €(7))

T

fluctuations is

o pUT o UT
S, s = 5/0 d7(67¢+i(27r8T)8Te)2—R/0 dr {f.7},

where { f, 7} is the Schwarzian:

_ S 3 (Y
=3 (5)

The correlators of the density fluctuations, Q(7), and the energy fluctua-
tions 0 F — pudQ(7) are time independent and given by

( (0Q(7)0Q(0)) ((OE(T) = poQ(7))0Q(0)) /T ) _ Ty
(OE(T) = 10Q(7))0Q(0))  ((0E(7) = poQ(7))(0E£(0) — n0Q(0))) /T )

where 'y, i1s the static susceptibility matrix given by
[ —@Q/opt)r —620/(9Tow)
Xo =\ —T02Q/(0Tdy) —T(9°Q/0T?), )
Wenbo Fu,Yingfei Gu, S. Sachdeyv, unpublished



Coupled SYK models

ijlm jklm
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Figure 1: A chain of coupled SYK sites: each site contains N > 1 fermion with SYK
interaction. The coupling between nearest neighbor sites are four fermion interaction with
two from each site.

Yingfei Gu, Xiao-Liang Qi, and D. Stanford, arXiv:1609.07832



SYK model

The correlators of the density fluctuations, Q(7), and the energy fluctua-
tions 0 F — udQ(7) are time independent and given by

( (0Q(7)0Q(0)) (OE(T) = 10Q(7))0Q(0)) /T ) ~ Ty
(OE(T) = poQ(7))0Q(0))  ((0L(T) = poQ(7))(0E(0) — noQ(0))) /T )

where Y, 1s the static susceptibility matrix given by

y :< —(0°Q/op?)r  0°Q/(0T0p) )
s =\ To2Q/(0Top) —T(52Q/0T?), |

Coupled SYK models

( (D5 Q) (E—pQ;9Q)., /T )
(£ — pQ; Q>k,w (B — pQ; E — MQ>k,w /T

where the diffusivities are related to the thermoelectric conductivities by

the Einstein relations
o o) (87 1
b= ( ol kK > Xs -

Wenbo Fu,Yingfei Gu, S. Sachdeyv, unpublished

= [iw(—iw + DE*) ™" 4+ 1] xs



Coupled SYK models

( (D5 Q) (E—pQ; Q). /T )
(B —pQ; Q) (BE—puQE—pQ) /T

where the diffusivities are related to the thermoelectric conductivities by
the Einstein relations

= [iw(—iw + DE*) ™" + 1] x5

The coupled SYK models realize a diffusive,
metal with no quasiparticle excitations.
(a “strange metal”)

Wenbo Fu,Yingfei Gu, S. Sachdeyv, unpublished



e (Graphene

Strange metal transport
Theoretical predictions inspired by holography

Comparison with experiments



Predicted
G raphene “strange metal”

T(K) without quasiparticles
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K. Damle and S. Sachdev, PRB 56, 8714 (1997)
M. Miiller, L. Fritz, and S. Sachdev, PRB 78, 115406 (2008)
M. Miiller and S. Sachdev, PRB 78, 115419 (2008)



Graphene Predicted
strange metal

Impurity scattering dominates

K. Damle and S. Sachdev, PRB 56, 8714 (1997)
M. Miiller, L. Fritz, and S. Sachdev, PRB 78, 115406 (2008)
M. Miiller and S. Sachdev, PRB 78, 115419 (2008)



Transport in Strange Metals

For a strange metal
with a “relativistic” Hamiltonian,
hydrodynamic, holographic,
and memory function methods yield
Lorentz ratio L = k/(To)

v%?—[ﬂmp 1

1°0Q (1 + 20} Q?Mimp/ (Hog))”

Q — electron density; H — enthalpy density
oo — quantum critical conductivity
Timp — momentum relaxation time from impurities.
Note that for a clean system (7iy,p, — 0o first),

the Lorentz ratio diverges L ~ 1/Q*%,
as we approach “zero” electron density at the Dirac point.

S. A. Hartnoll, P. K. Kovtun, M. Miiller, and S. Sachdev, PRB 76, 144502 (2007)
M. Miiller and S. Sachdev, PRB 78, 115419 (2008)



J. Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, A. Harzheim, A. Lucas, S. Sachdev, Philip Kim,
Takashi Taniguchi, Kenji Watanabe, T. A. Ohki, and Kin Chung Fong, Science 351, 1058 (2016)

Red dots: data
Blue line: value for L = Ly
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J. Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, A. Harzheim, A. Lucas, S. Sachdev, Philip Kim,
Takashi Taniguchi, Kenji Watanabe, T. A. Ohki, and Kin Chung Fong, Science 351, 1058 (2016)
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Blue line: value for L = Ly

40 K

O — (

20K

Thermal Conductivity (nW/K)

[

o
(n
o
o
(n



J. Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, A. Harzheim, A. Lucas, S. Sachdev, Philip Kim,
Takashi Taniguchi, Kenji Watanabe, T. A. Ohki, and Kin Chung Fong, Science 351, 1058 (2016)
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J. Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, A. Harzheim, A. Lucas, S. Sachdey,

Philip Kim, Takashi Taniguchi, Kenji Watanabe, T. A. Ohki, and Kin Chung Fong,
Science 351, 1058 (2016)

Strange metal in graphene

Tbath (K)

n (10° cm?) Wiedemann-Franz
obeyed



J. Crossno, Jing K. Shi, Ke Wang, Xiaomeng Liu, A. Harzheim, A. Lucas, S. Sachdey,

Philip Kim, Takashi Taniguchi, Kenji Watanabe, T. A. Ohki, and Kin Chung Fong,
Science 351, 1058 (2016)

Strange metal in graphene

Tbath (K)

n (10° cm?) Wiedemann-Franz
violated !



Strange metal in graphene Science 351, 1055 (2016)

Negative local resistance due to viscous electron backflow in graphene

D. A. Bandurin', I. Torre*?, R. Krishna Kumar™* M. Ben Shalom®>, A. Tomadin®, A. Principi7, G. H. Auton’,
E. Khestanova™”, K. S. Novoselov’, I. V. Grigorieval, L. A. Ponomarenko™* A. K. Geim', M. Polini*®

n (10" cm™)

Figure 1. Viscous backflow in doped graphene. (a,b) Steady-state distribution of current injected through
a narrow slit for a classical conducting medium with zero v (a) and a viscous Fermi liquid (b). (c) Optical
micrograph of one of our SLG devices. The schematic explains the measurement geometry for vicinity
resistance. (d,e) Longitudinal conductivity o,, and Ry for this device as a function of n induced by
applying gate voltage. I = 0.3 uA; L = 1 um. For more detail, see Supplementary Information.

See also L. Levitov and G. Falkovich, Nature Physics 12, 672 (2016)



Signature of Navier-Stokes hydrodynamic flow in PdCoO»

thinning cuts

Experiment: Successively narrow the channel in factors of 2, measuring the
resistance after every step.

P.J.W. Moll, P. Kushwaha, N. Nandi, B. Schmidt and A.P. Mackenzie, Science
351, 1061 (2016)



Entangled quantum matter without quasiparticles

e Is there a connection between

strange metals and black holes?
Yes, e.g. the SYK model.

e Why do they have the same
equilibration time ~ h/(kpT)?
Strange metals don’t have
quasiparticles and thermalize rapidly;
Black holes are “fast scramblers”.

e Theoretical predictions for strange metal
transport in graphene agree well with experiments



