Quasiparticle damping and
quantum phase transitions in
d-wave superconductors

*M. Vojta
*Y. Zhang

Transparencies on-line at
http://pantheon.yale.edu/~subir/newton.pdf

Phys. Rev. Lett. 83,3916 (1999).

. Quantum Phase Transitions,
. Cambridge University Press

Yale niversity



http://pantheon.yale.edu/~subir
http://arxiv.org/abs/cond-mat/0003163
http://pantheon.yale.edu/~subir/qptweb/toc.html

Photoemission on BSSCO

(Valla et al Science 285, 2110 (1999))
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Im2 ~ k,T for haw <k,T
Im2 ~ hew for hew > k,T

“Marginal Fermi liquid” (Varma et al 1989)
but only for nodal quasi-particles — strong k
dependence at low temperatures

Origin of 1nelastic scattering ?

In a Fermi1 liquid
ImX ~7°

In a BCS d-wave superconductor

ImS> ~ 17T’




THz conductivity of BSCCO
(Corson et al cond-mat/0003243)

0 50 100
Temperature [K]

Quantum-critical damping of
quasi-particles




Proximity to a quantum-critical point

Superconducting 7,

Quantum
critical

d-wave Superconducting
superconductor state X
>

g

(Crossovers analogous to those near quantum phase
transitions in boson models
Weichmann et al 1986, Chakravarty ef al 1989)

Relaxational dynamics in quantum critical region
(Sachdev+Ye, 1992)
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Example: quantum Ising chain
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Necessary conditions

Quantum-critical point should be below its
upper-critical dimension and obey
hyperscaling.

Critical field theory should not be free —
required to obtain damping in the scaling limit.
Combined with (1) this implies that
characteristic relaxation times ~ 71/ Kk v

Nodal quasi-particles should be part of the
critical-field theory.

Quasi-particles along (1,0), (0,1) should not
couple to critical degrees of freedom.




‘ Outline ‘

1. d-wave superconductors
2. Candidates for X:

a) Superconductivity + charge density
order (charge stripes)

Staggered-flux (or orbital

antiferromagnet) order + d-wave
superconductivity (breaks T — time-

reversal symmetry).

(d+is)-wave superconductivity
(breaks T)

d._.+id,, wave superconductivity
(breaks T)
. Phase diagram of #-J model with Sp(V)
symmetry, N large.




1. d-wave superconductors

Gapless Fermi Points in a
d-wave superconductor at
wavevectors (K ,+K)

K=0.391m
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2a. Charge stripe order

Charge density
- iGx iGy J
op Re\_CDxe +® e

If G#2K fermions
do not couple
efficiently to the
order parameter and
are not part of the
critical theory

Action for quantum fluctuations of order parameter

So = [ dwdr[|0,0, + (0,0, + VO, + [V,

50 (102 4 12, ) + 3 (1] + |2, ')
+ 0| @, [’ Dy ]

2
Coupling to fermions ~ A [dxdT|®,[ W
and A is irrelevant at the critical point

2d+1-2/
Im> ~ 747"

N T(between2and3) fOI' 2/3 <P < 1




Coupling between ® , @ , ¥,, W, in critical field theory

S\I@ = /dd[IJdT )\0 + Co) ( Z\Ifl + (Dyéab\lfga’f \Iflb>

(Mo = Co) (Do UEr"Wy + gy Va7 Uy )

+ H.c.]

(related work with spin-density
wave order parameter: Balents,
Fisher and Nayak 1998)




Central point: couplings A, and (, take non-
zero fixed-point values 1n the critical field
theory

Strong inelastic scattering of nodal-quasiparticles
in the scaling limit

Nodal quasiparticle lifetime ~% / k,T

Momentum conservation inhibits scattering of
quasi-particles along (1,0), (0,1) directions

However: Commensurability condition
G=2K appears to require fine-tuning and is
not supported by experiments.




2b. Orbaital antiferromagnet

Checkerboard pattern of spontaneous currents:

(Affleck+Marston 1988, Schulz 1989,
Wang, Kotliar, Wang, 1990, Wen+Lee, 1996)

T-breaking Ising order parameter

<c£+G,ack,a> = i¢(cosk, —cosk,) ; G=(m,m)

(Nayak, 2000)
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For K#172, only coupling to nodal
quasiparticles is ~@ YW : this leads to

2d+1-2/Vy,
Im2~T sine

1.83
~T

For completeness: assume K=1v2.

Additional coupling:
¢€ab [i\PlaTmay\Iflb —+ i\IjgaTxax\Ifgb —+ HC] .

The presence of the spatial derivative
makes this coupling irrelevant.

Damping of nodal quasiparticles arises from
irrelevant corrections to critical field theory

2+ sin
Im> ~ T sine




2¢. (d+is)-wave superconductivity

(Kotliar, 1989)
T-breaking Ising order parameter @

(ckre—ky) = Ag(cosk, — cosky) + ip(cos k, + cos k).

Effective action:

2
Sy = [dwdr E(@T@? + (Vo) + 307 + %cp‘*]

Efficient coupling to nodal quasi-particles (generically)

Spy = /ddCEdT 2o (U908, + Ui,

Coupling A, takes a non-zero fixed-point
value 1n the critical field theory

Strong inelastic scattering of nodal-quasiparticles
in the scaling limit

Nodal quasiparticle lifetime ~ 71/ kT

However: strong scattering of quasi-particles also
along (1,0), (0,1) directions




2d.d._. +id,, -wave superconductivity

(Rokhsar 1993, Laughlin 1994)
T-breaking Ising order parameter @

(ckre—ky) = Ap(cosk, —cosk,) + i¢sink, sink,.

Effective action:

- d 1 )y, C 2, 50 2 U0 4

Efficient coupling to nodal quasi-particles (generically)

Sps = /ddade o (Wi w, — W w,)]

Coupling A, takes a non-zero fixed-point
value 1n the critical field theory

Strong inelastic scattering of nodal-quasiparticles
in the scaling limit

Nodal quasiparticle lifetime ~ 71/ kT

Moreover: no scattering of quasi-particles along
o (1,0),(0,1) directions !




Gapped quasiparticles:

Below T, : negligible damping

Above T.: damping from strong coupling to
superconducting phase and SDW fluctuations.

T

Brillouin
zone

Nodal quasiparticles:

Below T, : damping from fluctuations tod ,_, +id
X -y Xy

order

Above T.: same mechanism applies as long as
quantum-critical length < superconducting phase
coherence length. Quasiparticles do not couple to
phase or SDW fluctuations.




Results from expansion in €=3-d for transition from d

to a’xz_y2 + ldxy

T>0 fermion Green’s function:
N ck how

X
(k, 7)™ "\ k,T " k,T

v o b b b b Ly Ly

G, (k,w)=




T>0 fermion Green’s function:
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T>0 fermion Green’s function:
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3. Phase diagram of an extended t-J model

Extended t-J model on the square lattice

H = Z\. ljla ja ZJSZ

[>]

Plot phase diagram of stable ground
states as a function of:

(1) Doping 0

J, (second neighbor)

(2) Frustration :
J, (first neighbor)

OR

N, where spin symmetry

sU(2) - sp(v)




Schematic phase diagram

hole density = 0.5/unit length

C broken

N

Doping &

S broken for all 30, large N




Time-reversal symmetry breaking and
charge-ordering in a d-wave
superconductor.

Sample phase diagram along A,

Wigner crystal

Stripes

Coulomb repulsion V/1¢




Charge ordering wavevector K

Ordering wavevector of bond-
centered stripes




Conclusions

Classification of quantum-critical points
leading to critical damping of quasiparticles
in superconductor

Most attractive possibility: T breaking
transition from a d R superconductor to
ad, ,%id, superconductor

y

Leads to quantum-critical damping along
(1,1), and no damping along (1,0), with no
unnatural fine-tuning.

Note: stable ground state of cuprates can
always be a d 2 superconductor; only need
thermal/quantum fluctuations to d, ,+id,
order in quantum-critical region.

Experimental update: Tafuri+Kirtley (cond-mat/0003106)
claim signals of T breaking near non-magnetic impurities

in YBCO films




Quantum impurities 1n 2+1
dimensional conformal field
theories:
application to Zn impurities

*M. Voijta
C. Buragohain

Transparencies on-line at
http://pantheon.yale.edu/~subir/newton.pdf

Science 286, 2479 (1999).

: Quantum Phase Transitions,
. Cambridge University Press

Yale niversity



http://pantheon.yale.edu/~subir/qptweb/toc.html
http://pantheon.yale.edu/~subir
http://arxiv.org/abs/cond-mat/9912020

Deformation of quantum coherence by a dilute
concentration of impurities 7,

Magnetic impurities in a Fermi liquid

Quasipartic

rimp (8) ~

le scattering rate
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Pair-breaking in a non s-wave superconductor

Abrikosov-Gorkov pair-breaking parameter

rimp (Asc )
A

SC

n =

— superconducting pairing energy




Magnetic quantum phase
transitions 1n two dimensions

(A) Insulating Neel state (or collinear SDW at
wavevector Q) <«  1nsulating quantum
paramagnet

(B) d-wave superconductor with collinear
SDW at wavevector Q < d-wave
superconductor (paramagnet)

Resonant $=1 collective mode in paramagnet

pure

e (BYF  =QatT =0

pure

(\ (A =0atT =0

if Q# separation between low
energy nodal quasi-particle
excitations. However, our
theory applies also for

[ 70

pure

W

A . — Oas paramagnet approaches

e

quantum phase transition to magnetically

ordered state




Effect of arbitrary localized deformations
(“impurities”) of density n;,

Each impurity is characterized
by an integer/half-odd-integer S

As Ares -0

Correlation length &

C; — Universal numbers dependent only on §

C,=0; C,,, =1

Zn impurities in YBCO have $=1/2 ‘

“Swiss-cheese” model of quantum impurities (Uemura):

Inverse QQ of resonance ~ fractional volume of holes in
Swiss cheese.




(A) Paramagnetic and Neel ground states in two
dimensions --- coupled-ladder antiferromagnet.
Field theory of quantum phase transition.

Non-magnetic impurities (Zn or L1) in two-
dimensional paramagnets. Theory of host
quantum-critical point provides a controlled
expansion in A_/J and accounts for strongly
relevant self-interactions of the resonant mode.

Application to (B) d-wave superconductors.
Comparison with, and predictions for, expts




1. Paramagnetic and Neel states in insulators

S=1/2 spins on coupled 2-leg ladders

<jj>

Follow ground state as a function of A

0<A<]




A =1

Square lattice antiferromagnet

Experimental realization: La,Cu0O,

BH

Ground state has long-range
magnetic (Neel) order

(8,)=(=1)""N, 20

l

Excitations: 2 spin waves

Quasiclassical wave dynamics at low T

(Chakravarty et al, 19809;
Tyc et al, 1989)




|

Decoupled 2-leg ladders

Allow J ¢

@ >=414)+1)

Quantum paramagnet

ground state for
J <<

Qualitatively similar
ground state for all

J/




Excited states

Triplet (S=1) particle (collective mode)

Energy dispersion away from
antiferromagnetic wavevector

g = AI’GS +

2712
ck

2A

Ies

A, — Spin gap




Quantum
paramagnet

(S)

Neel order NV,




Nearly-critical paramagnets

A is close to A

Quantum field theory:
1
[ d'adr |5 ((V202)? + ¢2(0,00)" +167)

+2 ()

¢, —> 3-component antiferromagnetic
order parameter

r>0 =—p A<A,
r<0 =—% A>A,

Oscillations of &, about zero (for r > 0)

—p spin-1 collective mode
A

Imy (k,w) A

T=0 spectrum




Coupling g approaches fixed-point value under
renormalization group flow: beta function (€ = 3-d) :

11g°
6

—€g +

Only relevant perturbation — r
strength 1s measured by the spin gap A

A . and ¢ completely determine entire

| spectrum of quasi-particle peak and

- multiparticle continua, the S matrices for
 scattering between the excitations,

and 7 > 0 modifications.




2. Quantum impurities in nearly-critical

paramagnets

Make any localized deformation of
antiferromagnet; e.g. remove a spin

H_1H

Susceptibility X = AX, + Xi,
(A = area of system)

In paramagnetic phase as 7 — 0
A A kT S(S +1
Xb _( 5 628 je res ;Ximp - ( )
cIT 3k, T
For a general impurity X, defines the value of S

lim(S, (7)

[ -0

—

b (O)> =m”> %0




Orientation of “impurity” spin -- #, (T ) (unit vector)

Action of “impurity” spin

dn,,

Simp = /dT [iSAa(n)? — SN0 (T)palz = 0,7)

A, (n) = Dirac monopole function

Boundary quantum field theory: S b+ S imp

Recall -

Si= [ dtudr [ ((V.0af + 3060 + %)

+2.62)°]




Coupling y approaches also approaches a fixed-point

value under the renormalization group flow
(Sengupta, 97
. Sachdev+Ye, 93
Beta function: Smith+Si 99)

No new relevant perturbations on the boundary;
All other boundary perturbations are irrelevant —

e.g.

A [d1g(x=0,1)

(This 1s the simplest allowed boundary perturbation
for §=0 — its irrelevance implies C,, = 0)

A, and ¢ completely determine spin
dynamics near an impurity —
No new parameters are necessary !




Universal properties at the critical point A = A,

R
(and m =|A = A, ™

£ 1 ,
T

This last relationship holds in the multi-channel
Kondo problem because the magnetic response of the
screening cloud is negligible due to an exact
“compensation” property. There is no such property
here, and naive scaling applies. This leads to

However X

_ Universal number

X imp kB T

Curie response of an irrational spin




xo = CokpT/(R*c?)
lep Cl/(kBT)

\ /

7

_ (A/(WTL2 2))6 A/kgT
S(S +1)/(3kgT)

/

N/ |
VR’
A

C

In the Neel phase
_ Universal number
impd —

spin stiffness
spin stiffness o, = (psx P, )l/ ?

Bulk susceptibility vanishes while impurity
susceptibility diverges as 0, — 0

At T >0, thermal averaging leads to
2

= +_v.
Kimp 3k, T 37




Relevant perturbation — strength determined by only
energy scale that is linear in n, - and contains only
bulk parameters

r nimp (hc)z
A

1CS

Two possible phase diagrams

r/A . =0"

Magnetic long-range order

Quantum paramagnet

I
3

(a)

[ /A, =constant

Magnetic long-range order

Quantum

paramagnet
>

S




Fate of collective mode peak

Without impurities A (G, w) = N2

1cs

_C()Z

i iy A how T
With impurities Y (G,w) = ——@ :
p X ( ) AzI'CS ( Ares AI'CS ]

® —» Universal scaling function. We computed
it in a “self-consistent, non-crossing’”” approximation

40 -

[iA=005 | [IA=0,1]

fad
=
L T

s

I
=
L | T

Im @(havA, T7A)

ho ! A

Predictions: Half-width of line = [
Universal asymmetric lineshape




3. AEEIication to d-wave suEerconductors
(YBCO)

Zn impurity in YBa,Cu,O,,

Moments measured by

byt
analysis of Knight shifts Magne’[ic ‘ t J
Field H t O t
M.-H. Julien, T. Feher,

M. Horvatic, C. Berthier, l, t J,
O. N. Bakharev, P. Segransan,

G. Collin, and J.-F. Marucco, 1 4 ?
Phys. Rev. Lett. 84, 3422

(2000); also earlier work of

the group of H. Alloul

Berry phases of precessing spins do not cancel
between the sublattices in the vicinity of the
impurity: net uncancelled phase of $=1/2

. Pepin and Lee: Modeled Zn impurity as a potential scatterer
in the unitarity limit, and obtained quasi-bound states at the

' Fermi level.

. Our approach: Each bound state captures only one electron

and this yields a Berry phase of S=1/2; residual potential

. scattering of quasiparticles is not in the unitarity limit.




Additional low-energy spin fluctuations in a
d-wave superconductor

Nodal quasiparticles W

 Bulk coupling between W and @is forbidden by
momentum conservation.

Gapless Fermi Points in a
d-wave superconductor at
wavevectors (£ K,+K)

K=0.391m

(We also have a theory for the case
Q=(2K,2K): scaling forms are the
same, but scaling functions and

exponents change)

Quasiparticle energy ~ 100 meV

* There 1s a Kondo coupling | between moment around
impurity and W: J S n, T g’y

However, because density of states vanishes linearly at the
Fermi level, there is no Kondo screening for any finite J,,

(below a finite J;) with (without) particle-hole symmetry
(Withoff+Fradkin, Chen+Jayaprakash, Buxton+Ingersent)




Wapnelc Resonance
1

H. F. Fong,
B. Keimer,
D. Reznik,
D. L. Milius,
and

I. A. Aksay,
Phys. Rev.
B 54, 6708
(1996)

IntareTly {counts / 10min)

FIG. & Unpalatized beatn, constant-Q data [Q=13/2,1/2,—1.7]]
of 1the 40 me¥Y maghelic tesohahce obiained by subilacting the sig-
hal below T, fiom the T=100 K backgtound. The lines ave fits 1o
Caussians, as desciibed 10 the text. For clanly snccessive scans ale

offsel by 100,

Spin-1 collective mode in YBa,Cu,0, - little observable
damping at low T =% coupling to superconducting
quasiparticles unimportant, and spin correlations in
some regions of phase space are like those of a
paramagnet. Nodal quasiparticles are at momenta
(=K,=£K) and do not couple to spin-1 collective mode at
(TLTT) unless K=112




YBa,Cu,0, +0.5% Zn
200

c) 22K—94
H. F. Fong, P. Bourges, 150 |
Y. Sidis, L. P. Regnault, ~ 100 |
J. Bossy, A. Ivanov, —~
D.L. Milius, I. A. Aksay, 50 |
and B. Keimer,
Phys. Rev. Lett. 82, 1939 0 & 4

(1999) _sg
3
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40
E (meV)

Ny, = 0.005
A =40 meV
hc=0.2eV

= [=5meV, /A =0.125

1SS

| Quoted half-width = 4.25 meV

=
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Applicability to d-wave superconductor

Extended t-J model on the square lattice

H = Z\. ljla ja ZJSZ

[>]

Plot phase diagram of stable ground
states as a function of:

(1) Doping 0

J, (second neighbor)

(2) Frustration :
J, (first neighbor)

OR

N, where spin symmetry

su(2) - sp(v)




Schematic phase diagram

hole density = 0.5/unit length

C broken

N

Doping &

S broken for all 30 , large N




The magnetic ordering transition

0=0

Spin-Peierls state

Neel state C broken;

M broken Bond-centered charge
density wave (“stripe”)

O >
=04 J,1J,

[

Second-order
quantum phase
transition (?)

(Read and Sachdev, PRL 62, 1694 (1989)
Kotov et al, PRB 60, 14613 (1999)
Singh et al, PRB 60, 7278 (1999))




Conclusions

Universal 7=0 damping of S=1 collective
mode by non-magnetic impurities.

n. (he)?
Linewidth: I lmpA (7e)

1cs

independent of impurity parameters.

New interacting boundary conformal field
theory in 2+1 dimensions

Universal irrational spin near the impurity
at the critical point.




