Quantum critical transport, duality, and M-theory

hep-th/0701036

Christopher Herzog (Washington) Pavel Kovtun (UCSB) Subir Sachdev (Harvard) Dam Thanh Son (Washington)

Talks online at http://sachdev.physics.harvard.edu

FIG. 1. Evolution of the temperature dependence of the sheet resistance R(T) with thickness for a Bi film deposited onto Ge. Fewer than half of the traces actually acquired are shown. Film thicknesses shown range from 4.36 to 74.27 Å.

D. B. Haviland, Y. Liu, and A. M. Goldman, *Phys. Rev. Lett.* **62**, 2180 (1989)

Trap for ultracold ⁸⁷Rb atoms

Velocity distribution of ⁸⁷Rb atoms

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Velocity distribution of ⁸⁷Rb atoms

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

<u>Outline</u>

- 1. Boson Hubbard model conformal field theory (CFT)
- 2. Hydrodynamics of CFTs
- 3. Duality
- 4. SYM₃ with N=8 supersymmetry

<u>Outline</u>

- 1. Boson Hubbard model conformal field theory (CFT)
- 2. Hydrodynamics of CFTs
- 3. Duality
- 4. SYM₃ with N=8 supersymmetry

Boson Hubbard model

Degrees of freedom: Bosons, b_i^{\dagger} , hopping between the sites, j, of a lattice, with short-range repulsive interactions.

$$H = -t \sum_{\langle ij \rangle} b_i^{\dagger} b_j - \mu \sum_j n_j + \frac{U}{2} \sum_j n_j (n_j - 1) + \cdots$$
$$n_j \equiv b_j^{\dagger} b_j \qquad \qquad \text{M.PA. Fisher, P.H}$$
G. Grinstein, an
Phys. Rev. B 40

B. Weichmann. d D.S. Fisher *Phys. Rev. B* **40**, 546 (1989).

For small
$$\frac{U}{t}$$
, superfluid
For large $\frac{U}{t}$, insulator

The insulator:

Density of particles = density of holes \Rightarrow "relativistic" field theory for ψ :

$$S = \int d^3x \left[|\partial_{\mu}\psi|^2 + s|\psi|^2 + \frac{u}{2}|\psi|^4 \right]$$

Insulator $\Leftrightarrow \langle \psi \rangle = 0$
Superfluid $\Leftrightarrow \langle \psi \rangle \neq 0$

<u>Outline</u>

- 1. Boson Hubbard model conformal field theory (CFT)
- 2. <u>Hydrodynamics of CFTs</u>
- 3. Duality
- 4. SYM₃ with N=8 supersymmetry

CFT correlator of U(1) current J_{μ} in 2+1 dimensions

$$\left\langle J_{\mu}(p)J_{\nu}(-p)\right\rangle = K\sqrt{p^{2}}\left(\eta_{\mu\nu}-\frac{p_{\mu}p_{\nu}}{p^{2}}\right)$$

K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions

Application of Kubo formula shows that

$$\sigma = \frac{4e^2}{h} 2\pi K$$

M. P. A. Fisher, *Phys. Rev. Lett.* **65**, 923 (1990)

However: computation is at T = 0, with $\omega \to 0$, while experimental measurements are for $\hbar \omega \ll k_{\scriptscriptstyle B} T$ However: computation is at T = 0, with $\omega \to 0$, while experimental measurements are for $\hbar \omega \ll k_{\scriptscriptstyle B} T$

Does this matter ?

CFT correlator of U(1) current J_{μ} in 1+1 dimensions

Charge density correlation at T = 0:

$$\left\langle J_{R}(x,\tau)J_{R}(0)\right\rangle \sim \frac{1}{\left(\tau+ix\right)^{2}}$$
$$\left\langle J_{t}(k,\omega)J_{t}(-k,-\omega)\right\rangle \sim \frac{k^{2}}{k^{2}-\omega^{2}}$$

CFT correlator of U(1) current J_{μ} in 1+1 dimensions

Charge density correlation at $T \ge 0$:

$$\left\langle J_{R}(x,\tau)J_{R}(0)\right\rangle \sim \frac{\pi^{2}T^{2}}{\sin^{2}(\pi T(\tau+ix))}$$
$$\left\langle J_{t}(k,i\omega_{n})J_{t}(-k,-i\omega_{n})\right\rangle \sim \frac{k^{2}}{k^{2}+\omega_{n}^{2}}$$

Conformal mapping of plane to cylinder with circumference 1/T

CFT correlator of U(1) current J_{μ} in 1+1 dimensions

Charge density correlation at $T \ge 0$:

$$\left\langle J_{R}(x,\tau)J_{R}(0)\right\rangle \sim \frac{\pi^{2}T^{2}}{\sin^{2}(\pi T(\tau+ix))}$$
$$\left\langle J_{t}(k,i\omega_{n})J_{t}(-k,-i\omega_{n})\right\rangle \sim \frac{k^{2}}{k^{2}+\omega_{n}^{2}}$$
$$\left\langle J_{t}(k,\omega)J_{t}(-k,-\omega)\right\rangle \sim \frac{k^{2}}{k^{2}-\omega^{2}}$$

Conformal mapping of plane to cylinder with circumference 1/T

However: computation is at T = 0, with $\omega \to 0$, while experimental measurements are for $\hbar \omega \ll k_{\scriptscriptstyle B} T$

Does this matter ?

However: computation is at T = 0, with $\omega \to 0$, while experimental measurements are for $\hbar \omega \ll k_{\scriptscriptstyle R} T$

Does this matter ?

For CFTs in 1+1 dimensions: NO Correlators of conserved charges are independent of the ratio $\frac{\hbar \omega}{k_B T}$

No diffusion of charge, and no hydrodynamics

However: computation is at T = 0, with $\omega \to 0$, while experimental measurements are for $\hbar \omega \ll k_{\scriptscriptstyle B} T$

Does this matter ? For CFTs in 2+1 dimensions: YES However: computation is at T = 0, with $\omega \to 0$, while experimental measurements are for $\hbar \omega \ll k_{\scriptscriptstyle B} T$

Does this matter ?

For CFTs in 2+1 dimensions: YES

 $\frac{\hbar}{k_B T}$ is a characteristic *decoherence* or *collision* time

 $\hbar \omega \gg k_B T$: Collisionless physics

 $\hbar \omega \ll k_B T$: Hydrodynamic, collision-dominated transport

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

For $|\omega - k| \gg k_B T/\hbar$ we should have collisionless conformal behavior

$$\langle J_t(k,\omega)J_t(-k,-\omega)\rangle_{\rm ret} = K \frac{k^2}{\sqrt{k^2 - \omega^2}}$$

while for $\omega, k \ll k_B T/\hbar$ we should have hydrodynamics:

$$\langle J_t(k,\omega)J_t(-k,-\omega)\rangle_{\rm ret} = \chi \frac{Dk^2}{-i\omega + Dk^2}$$

Conductivity obeys Einstein relation $(\hbar/4e^2)\sigma = D\chi \neq K$

K. Damle and S. Sachdev, *Phys. Rev. B* 56, 8714 (1997).

CFT correlator of U(1) current J_{μ} in 2+1 dimensions

$$\left\langle J_{\mu}(p)J_{\nu}(-p)\right\rangle = K\sqrt{p^{2}}\left(\eta_{\mu\nu}-\frac{p_{\mu}p_{\nu}}{p^{2}}\right)$$

K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions

Application of Kubo formula shows that

$$\sigma = \frac{4e^2}{h} 2\pi K$$

CFT correlator of U(1) current J_{μ} at T = 0

$$\left\langle J_{\mu}(p)J_{\nu}(-p)\right\rangle = K\sqrt{p^{2}}\left(\eta_{\mu\nu}-\frac{p_{\mu}p_{\nu}}{p^{2}}\right)$$

K: a universal number analogous to the level number of the Kac-Moody algebra in 1+1 dimensions

Application of Kubo formula shows that

$$\sigma\left(\frac{\omega}{T} = \infty\right) = \frac{4e^2}{h} 2\pi K$$

CFT correlator of U(1) current J_{μ} at T > 0

$$\left\langle J_{\mu}\left(k,\omega\right)J_{\nu}\left(-k,-\omega\right)\right\rangle = \sqrt{k^{2}-\omega^{2}}\left(P_{\mu\nu}^{T}K^{T}\left(k,\omega\right)+P_{\mu\nu}^{L}K^{L}\left(k,\omega\right)\right)$$

The projectors are defined by

$$P_{ij}^{T} = \delta_{ij} - \frac{k_i k_j}{k^2}$$
 and $P_{\mu\nu}^{L} = \eta_{\mu\nu} - \frac{p_{\mu} p_{\nu}}{p^2} - P_{\mu\nu}^{T}$; $p = (k, \omega)$

while $K^{L,T}(k,\omega)$ are universal functions of \mathscr{O}_T and k_T

Application of Kubo formula shows that

$$\sigma\left(\frac{\omega}{T}\right) = \frac{4e^2}{h} 2\pi K^T\left(0,\omega\right) = \frac{4e^2}{h} 2\pi K^L\left(0,\omega\right)$$

$$S = \int d^2x \int_0^{1/T} d\tau \left[|\partial_\mu \psi|^2 + s |\psi|^2 + \frac{u}{2} |\psi|^4 \right]$$

Insulator $\Leftrightarrow \langle \psi \rangle = 0$
Superfluid $\Leftrightarrow \langle \psi \rangle \neq 0$

$$\mathcal{S} = \int d^2x \int_0^{1/T} d\tau \left[|\partial_\mu \psi|^2 + s |\psi|^2 + \frac{u}{2} |\psi|^4 \right]$$

Insulator $\Leftrightarrow \langle \psi \rangle = 0$
Superfluid $\Leftrightarrow \langle \psi \rangle \neq 0$

<u>Outline</u>

- 1. Boson Hubbard model conformal field theory (CFT)
- 2. Hydrodynamics of CFTs
- 3. Duality
- 4. SYM₃ with N=8 supersymmetry

Density of particles = density of holes \Rightarrow "relativistic" field theory for ψ :

$$S = \int d^3x \left[|\partial_{\mu}\psi|^2 + s|\psi|^2 + \frac{u}{2}|\psi|^4 \right]$$

Insulator $\Leftrightarrow \langle \psi \rangle = 0$
Superfluid $\Leftrightarrow \langle \psi \rangle \neq 0$

Approaching the transition from the superfluid Excitations of the superfluid: (A) **Spin waves**

With $\psi \sim e^{i\theta}$, action for spin waves is

$$\mathcal{S}_{sw} = rac{
ho_s}{2} \int d^3 x (\partial_\mu \theta)^2$$

Dual form: After a Hubbard-Stratonovich transformation, write

$$S_{sw} = \int d^3x \left[\frac{1}{2\rho_s} J^2_\mu + i J_\mu \partial_\mu \theta \right]$$

Integrating over θ yields $\partial_{\mu}J_{\mu} = 0$. Solve, by writing

$$J_{\mu} = \epsilon_{\mu\nu\lambda} \partial_{\nu} A_{\lambda}$$

leading to

$$S_{sw} = \int d^3x \left[\frac{1}{2\rho_s} (\epsilon_{\mu\nu\lambda} \partial_\nu A_\lambda)^2 \right]$$

Spin waves are dual to a U(1) gauge theory in 2+1 dimensions

Approaching the transition from the superfluid Excitations of the superfluid: (B) Vortices

A vortex is a point-like object. We can therefore define a local field operator, φ , which annihilates a vortex.

Approaching the transition from the superfluid Excitations of the superfluid: (B) Vortices

A vortex is a point-like object. We can therefore define a local field operator, φ , which annihilates a vortex.

Each vortex is the source of an 'electric field' \vec{E} associated with the U(1) gauge field A_{μ} .

Consequently, φ carries +1 U(1) gauge charge.

Approaching the transition from the superfluidExcitations of the superfluid: Spin wave and vortices φ : vortex annihilation operator.

 $\epsilon_{\mu\nu\lambda}\partial_{\nu}A_{\lambda}$: boson current $\sim i\psi^*\partial_{\mu}\psi - i\partial_{\mu}\psi^*\psi$.

Density of vortices = density of antivortices \Rightarrow "relativistic" field theory for φ :

$$S_{\text{dual}} = \int d^3x \Big[|(\partial_{\mu} - iA_{\mu})\varphi|^2 + \tilde{s}|\varphi|^2 + \frac{\tilde{u}}{2}|\varphi|^4 + \frac{1}{2\rho_s} (\epsilon_{\mu\nu\lambda}\partial_{\nu}A_{\lambda})^2 \Big]$$

Superfluid $\Leftrightarrow \langle \varphi \rangle = 0$

Insulator $\Leftrightarrow \langle \varphi \rangle \neq 0$

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)

C. Dasgupta and B.I. Halperin, Phys. Rev. Lett. 47, 1556 (1981)

Consequences of duality on CFT correlators of U(1) currents

$$\left\langle J_{\mu}(k,\omega)J_{\nu}(k,\omega)\right\rangle_{\mathcal{S}} = \sqrt{k^{2}-\omega^{2}}\left(P_{\mu\nu}^{T}K^{T}(k,\omega)+P_{\mu\nu}^{L}K^{L}(k,\omega)\right)$$
$$\left\langle \widetilde{J}_{\mu}(k,\omega)\widetilde{J}_{\nu}(k,\omega)\right\rangle_{\mathcal{S}_{\text{dual}}} = \sqrt{k^{2}-\omega^{2}}\left(P_{\mu\nu}^{T}\widetilde{K}^{T}(k,\omega)+P_{\mu\nu}^{L}\widetilde{K}^{L}(k,\omega)\right)$$

$$K^{L}(k,\omega)\widetilde{K}^{T}(k,\omega) = \frac{1}{4\pi^{2}}$$
$$K^{T}(k,\omega)\widetilde{K}^{L}(k,\omega) = \frac{1}{4\pi^{2}}$$

Application of Kubo formula shows that

$$\sigma\left(\frac{\omega}{T}\right) = \frac{4e^2}{h} 2\pi K^T\left(0,\omega\right) = \frac{4e^2}{h} 2\pi K^L\left(0,\omega\right)$$

<u>Outline</u>

- 1. Boson Hubbard model conformal field theory (CFT)
- 2. Hydrodynamics of CFTs
- 3. Duality
- 4. <u>SYM₃ with N=8 supersymmetry</u>

SYM_3 with $\mathcal{N} = 8$ supersymmetry and SU(N) gauge group

- Obtained by compactifying SYM_{10} on $R^3 \times T^7$: has a global SO(7) R-charge symmetry
- Contains a single dimensionful gauge coupling constant, g_{3D} .
- It is believed that g_{3D} flows in the infrared to a fixed point which defines a SCFT. The fixed point has strong universal interactions (like the Wilson-Fisher fixed point) but no relevant perturbation which preserves all (super)symmetries (unlike the Wilson-Fisher fixed point).
- The fixed point has an emergent global SO(8) R-charge symmetry.

AdS/CFT correspondence

- SU(N) SYM₃ is the low energy theory of Type IIA strings on N co-incident D2 branes
- Flow to strong coupling is captured by the lift to M theory.
- The SU(N) SYM₃ SCFT is described by M theory on N M2 branes
- The large N limit of the SCFT is described by eleven dimensional supergravity on $AdS_4 \times S^7$ – the SO(8) R-charge symmetry is explicitly realized.
- The correspondence extends also to T > 0. The supergravity theory acquires a black hole, and Hawking temperature of black hole \leftrightarrow temperature of SCFT

- Related to the dynamics of a 4-dimensional SO(8) gauge in the curved gravity background.
- SO(8) gauge field has a dimensionless coupling constant g_{4D} with the value

$$\frac{1}{g_{4D}^2} = \frac{\sqrt{2}}{6\pi} N^{3/2}$$

• SO(8) gauge field is weakly coupled in the large N limit and exact results can be obtained for all ω and k.

$$C_{tt}(k,\omega)\delta^{ab} = \left\langle J_t^a(k,\omega)J_t^b(-k,-\omega)\right\rangle_{\text{ret}}$$

For $|\omega - k| \gg T$ we have collisionless conformal behavior

$$C_{tt}(k,\omega) = \frac{1}{g_{4D}^2} \frac{k^2}{\sqrt{k^2 - \omega^2}}$$

$$C_{tt}(k,\omega)\delta^{ab} = \left\langle J_t^a(k,\omega)J_t^b(-k,-\omega)\right\rangle_{\text{ret}}$$

For $|\omega - k| \gg T$ we have collisionless conformal behavior

$$C_{tt}(k,\omega) = \frac{1}{g_{4D}^2} \frac{k^2}{\sqrt{k^2 - \omega^2}}$$

while for $\omega, k \ll T$ we have hydrodynamics:

$$C_{tt}(k,\omega) = \chi \frac{Dk^2}{-i\omega + Dk^2}$$

with $\chi = 4\pi T/(3g_{4D}^2)$ and

$$D = \frac{3}{4\pi T}$$

Note, exact result for a diffusion constant.

$$C_{tt}(k,\omega)\delta^{ab} = \left\langle J_t^a(k,\omega)J_t^b(-k,-\omega)\right\rangle_{\text{ret}}$$

For $|\omega - k| \gg T$ we have collisionless conformal behavior

$$C_{tt}(k,\omega) = \frac{1}{g_{4D}^2} \frac{k^2}{\sqrt{k^2 - \omega^2}}$$

while for $\omega, k \ll T$ we have hydrodynamics:

$$C_{tt}(k,\omega) = \chi \frac{Dk^2}{-i\omega + Dk^2}$$

with $D = 3/(4\pi T)$ and $\chi = 4\pi T/(3g_{4D}^2)$.

$$C_{tt}(k,\omega)\delta^{ab} = \left\langle J_t^a(k,\omega)J_t^b(-k,-\omega)\right\rangle_{\text{ret}}$$

For $|\omega - k| \gg T$ we have collisionless conformal behavior

$$C_{tt}(k,\omega) = \frac{1}{g_{4D}^2} \frac{k^2}{\sqrt{k^2 - \omega^2}}$$

while for $\omega, k \ll T$ we have hydrodynamics:

$$C_{tt}(k,\omega) = \chi \frac{Dk^2}{-i\omega + Dk^2}$$

with $D = 3/(4\pi T)$ and $\chi = 4\pi T/(3g_{4D}^2)$.

Notice, however, that $D\chi = 1/g_{4D}^2$! This is *unexpected* and implies $\sigma(\omega/T \to 0) = \sigma(\omega/T \to \infty)$.

$$\left\langle J^{a}_{\mu}\left(k,\omega\right)J^{b}_{\nu}\left(-k,-\omega\right)\right\rangle = \delta^{ab}\sqrt{k^{2}-\omega^{2}}\left(P^{T}_{\mu\nu}K^{T}\left(k,\omega\right)+P^{L}_{\mu\nu}K^{L}\left(k,\omega\right)\right)$$

The self-duality of the 4D SO(8) gauge fields leads to

$$K^L(k,\omega)K^T(k,\omega) = \frac{N^3}{18\pi^2}$$

$$\left\langle J^{a}_{\mu}\left(k,\omega\right)J^{b}_{\nu}\left(-k,-\omega\right)\right\rangle = \delta^{ab}\sqrt{k^{2}-\omega^{2}}\left(P^{T}_{\mu\nu}K^{T}\left(k,\omega\right)+P^{L}_{\mu\nu}K^{L}\left(k,\omega\right)\right)$$

The self-duality of the 4D SO(8) gauge fields leads to

$$K^L(k,\omega)K^T(k,\omega) = \frac{N^3}{18\pi^2}$$

Analyticity of correlations at T > 0 implies

$$K^T(0,\omega) = K^L(0,\omega),$$

and so the conductivity

$$\sigma(\omega/T) = K^T(0,\omega) = K^L(0,\omega) = \sqrt{\frac{N^3}{72\pi^2}}$$

is frequency independent.

$$\left\langle J^{a}_{\mu}\left(k,\omega\right)J^{b}_{\nu}\left(-k,-\omega\right)\right\rangle = \delta^{ab}\sqrt{k^{2}-\omega^{2}}\left(P^{T}_{\mu\nu}K^{T}\left(k,\omega\right)+P^{L}_{\mu\nu}K^{L}\left(k,\omega\right)\right)$$

The self-duality of the 4D SO(8) gauge fields leads to

$$K^L(k,\omega)K^T(k,\omega) = \frac{N^3}{18\pi^2}$$

Open questions

- 1. Does $K^L K^T$ = constant (*i.e.* holographic self-duality) hold for SYM₃ SCFT at finite N ?
- 2. Is there any CFT_3 with an Abelian U(1) current whose conductivity can be determined by self-duality ? (unlikely, because global and topological U(1) currents are interchanged under duality).
- 3. Is there any CFT₃ solvable by AdS/CFT which is not (holographically) self-dual ?
- 4. Is there an AdS_4 description of the hydrodynamics of the O(N) Wilson-Fisher CFT₃? (can use 1/N expansion to control strongly-coupled gravity theory).