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An Intrinsic Bond-Centered Electronic
Glass with Unidirectional Domains
in Underdoped Cuprates
Y. Kohsaka,1 C. Taylor,1 K. Fujita,1,2 A. Schmidt,1 C. Lupien,3 T. Hanaguri,4 M. Azuma,5
M. Takano,5 H. Eisaki,6 H. Takagi,2,4 S. Uchida,2,7 J. C. Davis1,8*

Removing electrons from the CuO2 plane of cuprates alters the electronic correlations sufficiently
to produce high-temperature superconductivity. Associated with these changes are spectral-weight
transfers from the high-energy states of the insulator to low energies. In theory, these should be
detectable as an imbalance between the tunneling rate for electron injection and extraction—a
tunneling asymmetry. We introduce atomic-resolution tunneling-asymmetry imaging, finding
virtually identical phenomena in two lightly hole-doped cuprates: Ca1.88Na0.12CuO2Cl2 and
Bi2Sr2Dy0.2Ca0.8Cu2O8+d. Intense spatial variations in tunneling asymmetry occur primarily at the
planar oxygen sites; their spatial arrangement forms a Cu-O-Cu bond-centered electronic pattern
without long-range order but with 4a0-wide unidirectional electronic domains dispersed
throughout (a0: the Cu-O-Cu distance). The emerging picture is then of a partial hole localization
within an intrinsic electronic glass evolving, at higher hole densities, into complete delocalization
and highest-temperature superconductivity.

Metallicity of the cuprate CuO2 planes
derives (1) from both oxygen 2p and
copper 3d orbitals (Fig. 1A). Coulomb

interactions lift the degeneracy of the relevant
d-orbital, producing lower and upper d-states sepa-
rated by the Mott-Hubbard energy U (Fig. 1B).
The lower d-states and oxygen p-state become
hybridized, yielding a correlated insulator with
charge-transfer gapD (Fig. 1B). The “hole-doping”
process, which generates highest-temperature su-
perconductivity, then removes electrons from the
CuO2 plane, creating new hole-like electronic
states with predominantly oxygen 2p character
(2). This is a radically different process than hole-
doping a conventional semiconductor because,
when an electron is removed from a correlated
insulator, the states with which it was correlated
are also altered fundamentally. Numerical
modeling of this process (3) indicates that when
n holes per unit cell are introduced, the correlation
changes generate spectral-weight transfers from
both filled and empty high-energy bands—
resulting in the creation of ~2n new empty states

just above the chemical potential m (Fig. 1B). But
precisely how these spectral-weight transfers
result in cuprate high-temperature supercon-
ductivity remains controversial.

Recently, it has been proposed that these
doping-induced correlation changes might be
observable directly as an asymmetry of electron
tunneling currents with bias voltage (4, 5)—
electron extraction at negative sample bias being
strongly favored over electron injection at posi-
tive sample bias. Such effects should be de-
tectable with a scanning tunneling microscope
(STM). The STM tip-sample tunneling current
is given by

Iðr→, z, V Þ ¼ f ðr→, zÞ
Z

eV

0
Nðr→, EÞdE ð1Þ

where z is the tip’s surface-normal coordinate, V
is the relative sample-tip bias, and Nðr→,EÞ is
the sample’s local-density-of-states (LDOS) at
lateral locations r→ and energy E. Unmeasurable
effects due to the tunneling matrix elements, the
tunnel-barrier height, and z variations from elec-
tronic heterogeneity are contained in f ðr→, zÞ (see
supporting online text 1). For a simple metallic
system where f ðr→, zÞ is a featureless constant,
Eq. 1 shows that spatial mapping of the dif-
ferential tunneling conductance dI=dV ðr→,V Þ
yields Nðr→,E ¼ eV Þ. However, for the strongly
correlated electronic states in a lightly hole-
doped cuprate, the situation is much more
complex. In theory (4), the correlations cause
the ratio Z(V) of the average density-of-states
for empty states NðE ¼ þeV Þ to that of filled
states NðE ¼ −eV Þ to become asymmetric by
an amount

ZðV Þ ≡ NðE ¼ þeV Þ
NðE ¼ −eV Þ

≈
2n

1þ n
ð2Þ

Spectral-weight sum rules (5) also indicate that
the ratio Rðr→Þ of the energy-integrated Nðr→,EÞ
for empty states E > 0 to that of filled states E < 0
is related to n by

Rðr→Þ ≡

Z
Wc

0
Nðr→,EÞ dE

Z
0

−∞
Nðr→,EÞdE

¼ 2nðr→Þ
1 − nðr→Þ

þ O
nt
U

! "
ð3Þ

Here t is in-plane hopping rate and Wc satisfies
“all low-energy scales” < Wc < U.

As a test of such ideas, we show in Fig. 1C
the predicted evolution of the tunneling
asymmetry (TA) with n from (4), and in Fig.
1D we show the measured evolution of spatially
averaged TA in a sequence of lightly hole-doped
Ca2-xNaxCuO2Cl2 samples with different x. We
see that the average TA is indeed large at low x
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Fig. 1. (A) Relevant electronic
orbitals of the CuO2 plane: Cu 3d
orbitals are shown in orange and
oxygen 2p orbitals are shown
in blue. A single plaquette of
four Cu atoms is shown within
the dashed square box, and a
single Cu-O-Cu unit is within
the dashed oval. (B) Schematic
energy levels in the CuO2 plane
and the effects of hole doping
upon it. (C) The expected tun-
neling asymmetry between elec-
tron extraction (negative bias)
and injection (positive bias) from
(4) where low values of Z occur at
low hole densities n. (D) Mea-
sured doping dependence of
average tunneling asymmetry
in Ca2-xNaxCuO2Cl2. a.u., arbi-
trary units.
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direct test of such ideas has not been possible
because neither the real-space electronic struc-
ture of the ECG state, nor that of an individual
“cluster,” could be determined directly as no
suitable imaging techniques existed.

Design of TA studies in Ca1.88Na0.12CuO2Cl2
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d. STM-based im-
aging might appear an appropriate tool to ad-
dress such issues. But dI/dV imaging is fraught

with problems in lightly doped cuprates. For
example, a standard dI/dV image, although well
defined, is not a direct image of the LDOS (see
supporting online text 1). Moreover, there are
theoretical concerns that, in Ca2-xNaxCuO2Cl2,
the topmost CuO2 plane may be in an “extraor-
dinary” state (34) or that interference between
two tunneling trajectories through the 3pz-Cl
orbitals adjacent to a dopant Na+ ion may cause

rotational symmetry breaking in the tunneling
patterns (35).

The new proposals (4, 5) for tunneling
asymmetry measurements provide a notable
solution to problems with standard dI/dV
imaging because Eqs. 2 and 3 have a crucial
practical advantage. If we define the ratios
Zðr→, V Þ and Rðr→, V Þ in terms of the tunneling
current

Zðr→,V Þ ≡
dI
dV ðr

→, z, þV Þ
dI
dV ðr

→, z,−V Þ
ð4aÞ

Rðr→, V Þ ≡ Iðr→, z, þV Þ
Iðr→, z, −V Þ ð4bÞ

we see immediately from Eq. 1 that the un-
known effects in f ðr→, zÞ are all canceled out
by the division process. Thus, Zðr→, V Þ and
Rðr→, V Þ not only contain important physical
information (4, 5) but, unlike Nðr→, EÞ, are also
expressible in terms of measurable quantities
only. We have confirmed that the unknown
factors f ðr→, zÞ are indeed canceled out in Eq. 4
(see supporting online text and figures 2).

To address the material-specific theoret-
ical concerns (34, 35), we have designed a
sequence of identical TA-imaging exper-
iments in two radically different cuprates:
strongly underdoped Ca1.88Na0.12CuO2Cl2
(Na-CCOC; critical temperature Tc ~ 21 K)
and Bi2Sr2Dy0.2Ca0.8Cu2O8+d (Dy-Bi2212; Tc ~
45 K). As indicated schematically in Fig. 2, B
and C, they have completely different crystal-
lographic structure, chemical constituents, and
dopant species and sites in the termination
layers lying between the CuO2 plane and the
STM tip. Na-CCOC has a single CuO2 layer

Fig. 4. (A and D) R maps of Na-CCOC and Dy-Bi2212, respectively (taken at 150 mV from areas in
the blue boxes of Fig. 3, C and D). The fields of view are (A) 5.0 nm by 5.3 nm and (B) 5.0 nm by
5.0 nm. The blue boxes in (A) and (D) indicate areas of Fig. 4, B and C, and Fig. 4, E and F,
respectively. (B and E) Higher-resolution R map within equivalent domains from Na-CCOC and Dy-
Bi2212, respectively (blue boxes of Fig. 4, A and D). The locations of the Cu atoms are shown as
black crosses. (C and F) Constant-current topographic images simultaneously taken with Fig. 4, B
and E, respectively. Imaging conditions are (C) 50 pA at 600 mV and (F) 50 pA at 150 mV. The
markers show atomic locations, used also in Fig. 4, B and E. The fields of view of these images are
shown in Fig. 3, A and B, as orange boxes.

Fig. 5. (A) Locations relative to
the O and Cu orbitals in the CuO2
plane where each dI/dV spectrum
at the surfaces of Fig. 4, C and F,
and shown in Fig. 5B, is mea-
sured. Spectra are measured
along equivalent lines labeled
1, 2, 3, and 4 in both domains
of Fig. 4, B and E, and Fig. 5A.
(B) Differential tunneling con-
ductance spectra taken along
parallel lines through equiv-
alent domains in Na-CCOC and
Dy-Bi2212. All spectra were
taken under identical junction conditions (200 pA, 200 mV). Numbers (1 to 4)
correspond to trajectories where these sequences of spectra were taken.
Locations of the trajectories, relative to the domains, are shown between
Fig. 4B (C) and 4E (F) by arrows.

9 MARCH 2007 VOL 315 SCIENCE www.sciencemag.org1382
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Magnetic-field-induced charge-stripe order in the
high-temperature superconductor YBa2Cu3Oy
TaoWu1, Hadrien Mayaffre1, Steffen Krämer1, Mladen Horvatić1, Claude Berthier1, W. N. Hardy2,3, Ruixing Liang2,3, D. A. Bonn2,3

& Marc-Henri Julien1

Electronic charges introduced in copper-oxide (CuO2) planes
generate high-transition-temperature (Tc) superconductivity but,
under special circumstances, they can also order into filaments
called stripes1. Whether an underlying tendency towards charge
order is present in all copper oxides and whether this has any
relationship with superconductivity are, however, two highly con-
troversial issues2,3. To uncover underlying electronic order, mag-
netic fields strong enough to destabilize superconductivity can be
used. Such experiments, including quantum oscillations4–6 in
YBa2Cu3Oy (an extremely clean copper oxide in which charge
order has not until now been observed) have suggested that super-
conductivity competes with spin, rather than charge, order7–9. Here
we report nuclear magnetic resonance measurements showing that
high magnetic fields actually induce charge order, without spin
order, in the CuO2 planes of YBa2Cu3Oy. The observed static, uni-
directional, modulation of the charge density breaks translational
symmetry, thus explaining quantum oscillation results, and we
argue that it is most probably the same 4a-periodic modulation
as in stripe-ordered copper oxides1. That it develops only when
superconductivity fades away and near the same 1/8 hole doping
as in La22xBaxCuO4 (ref. 1) suggests that charge order, although
visibly pinned by CuO chains in YBa2Cu3Oy, is an intrinsic pro-
pensity of the superconducting planes of high-Tc copper oxides.
The ortho II structure of YBa2Cu3O6.54 (p5 0.108, where p is the

hole concentration per planar Cu) leads to two distinct planar Cu
NMR sites: Cu2F are those Cu atoms located below oxygen-filled
chains, and Cu2E are those below oxygen-empty chains10. The main
discovery of ourwork is that, on cooling in a fieldH0 of 28.5 T along the
c axis (that is, in the conditions for which quantum oscillations are
resolved; see Supplementary Materials), the Cu2F lines undergo a
profound change, whereas theCu2E lines do not (Fig. 1). To first order,
this change can be described as a splitting of Cu2F into two sites having
both different hyperfine shiftsK5 Æhzæ/H0 (where Æhzæ is the hyperfine
field due to electronic spins) and quadrupole frequencies nQ (related to
the electric field gradient). Additional effects might be present (Fig. 1),
but they areminor in comparisonwith the observed splitting. Changes
in field-dependent and temperature-dependent orbital occupancy (for
example dx2{y2 versus dz2{r2 ) without on-site change in electronic
density are implausible, and any change in out-of-plane charge density
or lattice would affect Cu2E sites as well. Thus, the change in nQ can
only arise from a differentiation in the charge density between Cu2F
sites (or at the oxygen sites bridging them). A change in the asymmetry
parameter and/or in the direction of the principal axis of the electric
field gradient could also be associated with this charge differentiation,
but these are relatively small effects.
The charge differentiation occurs below Tcharge5 506 10K for

p5 0.108 (Fig. 1 and Supplementary Figs 9 and 10) and 676 5K for
p5 0.12 (Supplementary Figs 7 and 8). Within error bars, for each of
the samples Tcharge coincides with T0, the temperature at which the
Hall constant RH becomes negative, an indication of the Fermi surface

reconstruction11–13. Thus, whatever the precise profile of the static
charge modulation is, the reconstruction must be related to the trans-
lational symmetry breaking by the charge ordered state.
The absence of any splitting or broadening of Cu2E lines implies a

one-dimensional character of the modulation within the planes and
imposes strong constraints on the charge pattern. Actually, only two
types of modulation are compatible with a Cu2F splitting (Fig. 2). The
first is a commensurate short-range (2a or 4a period) modulation
running along the (chain) b axis. However, this hypothesis is highly
unlikely: to the best of our knowledge, no such modulation has ever
been observed in the CuO2 planes of any copper oxide; it would there-
fore have to be triggered by a charge modulation pre-existing in the
filled chains. A charge-density wave is unlikely because the finite-size
chains are at best poorly conducting in the temperature and doping
range discussed here11,14. Any inhomogeneous charge distribution
such as Friedel oscillations around chain defects would broaden rather
than split the lines. Furthermore, we can conclude that charge order
occurs only for high fields perpendicular to the planes because the
NMR lines neither split at 15T nor split in a field of 28.5 T parallel
to the CuO2 planes (along either a or b), two situations in which
superconductivity remains robust (Fig. 1). This clear competition
between charge order and superconductivity is also a strong indication
that the charge ordering instability arises from the planes.
Theonlyother patterncompatiblewithNMRdata is an alternationof

more and less charged Cu2F rows defining a modulation with a period
of four lattice spacings along the a axis (Fig. 2). Strikingly, this corre-
sponds to the (site-centred) charge stripes found in La22xBaxCuO4 at
doping levels near p5 x5 0.125 (ref. 1). Being a proven electronic
instability of the planes, which is detrimental to superconductivity2,
stripe ordernot onlyprovides a simple explanationof theNMRsplitting
but also rationalizes the striking effect of the field. Stripe order is also
fully consistent with the remarkable similarity of transport data in
YBa2Cu3Oy and in stripe-ordered copper oxides (particularly the
dome-shaped dependence ofT0 around p5 0.12)11–13. However, stripes
must be parallel from plane to plane in YBa2Cu3Oy, whereas they are
perpendicular in, for example, La22xBaxCuO4. We speculate that this
explains why the charge transport along the c axis in YBa2Cu3Oy

becomes coherent in high fields below T0 (ref. 15). If so, stripe fluctua-
tions must be involved in the incoherence along c above T0.
Once we know the doping dependence of nQ (ref. 16), the difference

DnQ5 3206 50 kHz for p5 0.108 implies a charge density variation
as small as Dp5 0.036 0.01 hole between Cu2Fa and Cu2Fb. A
canonical stripe description (Dp5 0.5 hole) is therefore inadequate
at the NMR timescale of ,1025 s, at which most (below T0) or all
(above T0) of the charge differentiation is averaged out by fluctuations
faster than 105 s21. This should not be a surprise: themetallic nature of
the compound at all fields is incompatible with full charge order, even
if this order is restricted to the direction perpendicular to the stripes17.
Actually, there is compelling evidence of stripe fluctuations down to
very low temperatures in stripe-ordered copper oxides18, and indirect

1Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UJF-UPS-INSA, 38042 Grenoble, France. 2Department of Physics and Astronomy, University of British Columbia, Vancouver,
British Columbia V6T1Z1, Canada. 3Canadian Institute for Advanced Research, Toronto, Ontario M5G1Z8, Canada.
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field gradient could also be associated with this charge differentiation,
but these are relatively small effects.
The charge differentiation occurs below Tcharge5 506 10K for

p5 0.108 (Fig. 1 and Supplementary Figs 9 and 10) and 676 5K for
p5 0.12 (Supplementary Figs 7 and 8). Within error bars, for each of
the samples Tcharge coincides with T0, the temperature at which the
Hall constant RH becomes negative, an indication of the Fermi surface

reconstruction11–13. Thus, whatever the precise profile of the static
charge modulation is, the reconstruction must be related to the trans-
lational symmetry breaking by the charge ordered state.
The absence of any splitting or broadening of Cu2E lines implies a

one-dimensional character of the modulation within the planes and
imposes strong constraints on the charge pattern. Actually, only two
types of modulation are compatible with a Cu2F splitting (Fig. 2). The
first is a commensurate short-range (2a or 4a period) modulation
running along the (chain) b axis. However, this hypothesis is highly
unlikely: to the best of our knowledge, no such modulation has ever
been observed in the CuO2 planes of any copper oxide; it would there-
fore have to be triggered by a charge modulation pre-existing in the
filled chains. A charge-density wave is unlikely because the finite-size
chains are at best poorly conducting in the temperature and doping
range discussed here11,14. Any inhomogeneous charge distribution
such as Friedel oscillations around chain defects would broaden rather
than split the lines. Furthermore, we can conclude that charge order
occurs only for high fields perpendicular to the planes because the
NMR lines neither split at 15T nor split in a field of 28.5 T parallel
to the CuO2 planes (along either a or b), two situations in which
superconductivity remains robust (Fig. 1). This clear competition
between charge order and superconductivity is also a strong indication
that the charge ordering instability arises from the planes.
Theonlyother patterncompatiblewithNMRdata is an alternationof

more and less charged Cu2F rows defining a modulation with a period
of four lattice spacings along the a axis (Fig. 2). Strikingly, this corre-
sponds to the (site-centred) charge stripes found in La22xBaxCuO4 at
doping levels near p5 x5 0.125 (ref. 1). Being a proven electronic
instability of the planes, which is detrimental to superconductivity2,
stripe ordernot onlyprovides a simple explanationof theNMRsplitting
but also rationalizes the striking effect of the field. Stripe order is also
fully consistent with the remarkable similarity of transport data in
YBa2Cu3Oy and in stripe-ordered copper oxides (particularly the
dome-shaped dependence ofT0 around p5 0.12)11–13. However, stripes
must be parallel from plane to plane in YBa2Cu3Oy, whereas they are
perpendicular in, for example, La22xBaxCuO4. We speculate that this
explains why the charge transport along the c axis in YBa2Cu3Oy

becomes coherent in high fields below T0 (ref. 15). If so, stripe fluctua-
tions must be involved in the incoherence along c above T0.
Once we know the doping dependence of nQ (ref. 16), the difference

DnQ5 3206 50 kHz for p5 0.108 implies a charge density variation
as small as Dp5 0.036 0.01 hole between Cu2Fa and Cu2Fb. A
canonical stripe description (Dp5 0.5 hole) is therefore inadequate
at the NMR timescale of ,1025 s, at which most (below T0) or all
(above T0) of the charge differentiation is averaged out by fluctuations
faster than 105 s21. This should not be a surprise: themetallic nature of
the compound at all fields is incompatible with full charge order, even
if this order is restricted to the direction perpendicular to the stripes17.
Actually, there is compelling evidence of stripe fluctuations down to
very low temperatures in stripe-ordered copper oxides18, and indirect

1Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UJF-UPS-INSA, 38042 Grenoble, France. 2Department of Physics and Astronomy, University of British Columbia, Vancouver,
British Columbia V6T1Z1, Canada. 3Canadian Institute for Advanced Research, Toronto, Ontario M5G1Z8, Canada.
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evidence (explaining the rotational symmetry breaking) over a broad
temperature range in YBa2Cu3Oy (refs 14, 19–22). Therefore, instead
of being a defining property of the ordered state, the small amplitude of
the charge differentiation is more likely to be a consequence of stripe
order (the smectic phase of an electronic liquid crystal17) remaining
partly fluctuating (that is, nematic).
In stripe copper oxides, charge order at T5Tcharge is always accom-

panied by spin order at Tspin,Tcharge. Slowing down of the spin

fluctuations strongly enhances the spin–lattice (1/T1) and spin–spin
(1/T2) relaxation rates between Tcharge and Tspin for

139La nuclei. For
themore strongly hyperfine-coupled 63Cu, the relaxation rates become
so large that the Cu signal is gradually ‘wiped out’ on cooling below
Tcharge (refs 18, 23, 24). In contrast, the 63Cu(2) signal here in
YBa2Cu3Oy does not experience any intensity loss and 1/T1 does not
show any peak or enhancement as a function of temperature (Fig. 3).
Moreover, the anisotropy of the linewidth (Supplementary
Information) indicates that the spins, although staggered, align mostly
along the field (that is, c axis) direction, and the typical width of the
central lines at base temperature sets an uppermagnitude for the static
spin polarization as small as gÆSzæ# 23 1023mB for both samples in
fields of,30T. These consistent observations rule out the presence of
magnetic order, in agreement with an earlier suggestion based on the
presence of free-electron-like Zeeman splitting6.
In stripe-ordered copper oxides, the strong increase of 1/T2 on

cooling below Tcharge is accompanied by a crossover of the time decay
of the spin-echo from the high-temperature Gaussian form
exp(2K(t/T2G)2) to an exponential form exp(2t/T2E)18,23. A similar
crossover occurs here, albeit in a less extreme manner because of the
absence ofmagnetic order: 1/T2 sharply increases belowTcharge and the
decay actually becomes a combination of exponential and Gaussian
decays (Fig. 3). In Supplementary Information we provide evidence
that the typical values of the 1/T2E below Tcharge imply that antiferro-
magnetic (or ‘spin-density-wave’) fluctuations are slow enough to
appear frozen on the timescale of a cyclotron orbit 1/vc< 10212 s.
In principle, such slow fluctuations could reconstruct the Fermi sur-
face, provided that spins are correlated over large enough distances25,26

(see also ref. 9). It is unclear whether this condition is fulfilled here. The
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Figure 4 | Phase diagram of underdoped YBa2Cu3Oy. The charge ordering
temperature Tcharge (defined as the onset of the Cu2F line splitting; blue open
circles) coincides with T0 (brown plus signs), the temperature at which the Hall
constant RH changes its sign. T0 is considered as the onset of the Fermi surface
reconstruction11–13. The continuous line represents the superconducting
transition temperature Tc. The dashed line indicates the speculative nature of
the extrapolation of the field-induced charge order. The magnetic transition
temperatures (Tspin) are frommuon-spin-rotation (mSR) data (green stars)27.T0
and Tspin vanish close to the same critical concentration p5 0.08. A scenario of
field-induced spin order has been predicted for p. 0.08 (ref. 8) by analogy with
La1.855Sr0.145CuO4, for which the non-magnetic ground state switches to
antiferromagnetic order in fields greater than a few teslas (ref. 7 and references
therein).Ourwork, however, shows that spin order does not occur up to,30T.
In contrast, the field-induced charge order reported here raises the question of
whether a similar field-dependent charge order actually underlies the field
dependence of the spin order in La22xSrxCuO4 and YBa2Cu3O6.45. Error bars
represent the uncertainty in defining the onset of theNMR line splitting (Fig. 1f
and Supplementary Figs 8–10).
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Figure 3 | Slow spin fluctuations instead of spin order. a, b, Temperature
dependence of the planar 63Cu spin-lattice relaxation rate 1/T1 for p5 0.108
(a) and p5 0.12 (b). The absence of any peak/enhancement on cooling rules
out the occurrence of a magnetic transition. c, d, Increase in the 63Cu spin–spin
relaxation rate 1/T2 on cooling below,Tcharge, obtained from a fit of the spin-
echo decay to a stretched form s(t) / exp(2(t/T2)

a), for p5 0.108 (c) and
p5 0.12 (d). e, f, Stretching exponent a for p5 0.108 (e) and p5 0.12 (f). The
deviation from a5 2 on cooling arises mostly from an intrinsic combination of
Gaussian and exponential decays, combined with some spatial distribution of
T2 values (Supplementary Information). The grey areas define the crossover
temperature Tslow below which slow spin fluctuations cause 1/T2 to increase
and to become field dependent; note that the change of shape of the spin-echo
decay occurs at a slightly higher (,115K) temperature than Tslow. Tslow is
slightly lower thanTcharge, which is consistentwith the slow fluctuations being a
consequence of charge-stripe order. The increase of a at the lowest
temperatures probably signifies that the condition cÆhz2æ1/2tc= 1, where tc is
the correlation time, is no longer fulfilled, so that the associated decay is no
longer a pure exponential. We note that the upturn of 1/T2 is already present at
15T, whereas no line splitting is detected at this field. The field therefore affects
the spin fluctuations quantitatively but not qualitatively. g, Plot of NMR signal
intensity (corrected for a temperature factor 1/T and for the T2 decay) against
temperature. Open circles, p5 0.108 (28.5T); filled circles, p5 0.12 (33.5T).
The absence of any intensity loss at low temperatures also rules out the presence
of magnetic order with any significant moment. Error bars represent the added
uncertainties in signal analysis, experimental conditions andT2measurements.
All measurements are with H | | c.
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Figure 2: Experimental quantum oscillations for different angles compared with simulations
for a two fundamental-warped cylinder model. (A) Measured oscillations in the contactless
conductivity plotted versus 1/B cos θ (the projection of the field along the ĉ-axis) at θ =0, 1.3,
11.3, 12, 16.3, 18, 21.3, 26.3, 31.3, 36.3, 38, 41.3, 45.2, 46.3, 48, 49, 49.4, 50.1, 50.6, 51.4,
51.5, 52, 52.3, 52.5, 52.9, 53.1, 54.4, 54.9, 55.5, 56, 56.2, 56.95, 57.2, 57.4, 58.15, 58.2, 59.4,
59.6, 60.6, 61.2, 61.4, 61.7, 62.5, 62.6, 62.7, 63.2, 63.4, 63.7, 64.1, 64.5, 65.5, 66, 66.3, 68.1,
69.4 and 70.6◦, all at φ ≈ 45◦. The inset shows a schematic of the angles θ and φ with respect
to the crystalline axes. (B) Simulated oscillations at the same angles and fields as (A) for two
Fermi surface cylinders exhibiting a fundamental warping [21, 22, 23, 24], for parameters listed
in [31] previously fit to the restricted experimental range within the dotted line accessed in
earlier experiments. The striking amplitude enhancement expected in the vicinity of the Yamaji
angle in B is absent in the experimental data in A. (C) A schematic showing the degeneracy
in the cyclotron orbit cross-sectional area yielding an amplitude enhancement at the Yamaji
angle (green). (D) Schematic of experimentally measured quantum oscillations in β-(ET)2IBr2
from [18], for which θYamaji ≈ − 18◦. Here, the same fundamental sinusoidal warping occurs
for two slightly different Fermi surface cross-sections, giving rise to an additional beat.
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Twofold twisted Fermi surface from staggered order in
an underdoped high Tc superconductor
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We present quantum oscillation measurements in underdoped YBa2Cu3O6+x

over a broad range in magnetic fields tilted with respect to the planes and

rotated in-plane, which reveal that the fundamental warping of the Fermi sur-

face expected for the tetragonal symmetry of the YBa2Cu3O6+x Brillouin zone

is suppressed, and is instead replaced by a small amplitude warping of an

unexpected two-fold twisted symmetry. The twisted Fermi surface geometry

enables the unique identification of a staggered form of order that tranforms

the symmetry of the Brillouin zone, and importantly, locates the Fermi surface

pockets at the nodal region of the original Brillouin zone. The suppression of

the fundamental warping further provides a potential explanation for the ob-

served anisotropy in optical conductivity that characterises the pseudogap.
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Direct observation of competition between
superconductivity and charge density wave
order in YBa2Cu3O6.67

J. Chang1,2*, E. Blackburn3, A. T. Holmes3, N. B. Christensen4, J. Larsen4,5, J. Mesot1,2,
Ruixing Liang6,7, D. A. Bonn6,7, W. N. Hardy6,7, A. Watenphul8, M. v. Zimmermann8, E. M. Forgan3

and S. M. Hayden9

Superconductivity often emerges in the proximity of, or in
competition with, symmetry-breaking ground states such as
antiferromagnetism or charge density waves1–5 (CDW). A
number of materials in the cuprate family, which includes the
high transition-temperature (high-Tc) superconductors, show
spin and charge density wave order5–7. Thus a fundamental
question is to what extent do these ordered states exist
for compositions close to optimal for superconductivity.
Here we use high-energy X-ray diffraction to show that
a CDW develops at zero field in the normal state of
superconducting YBa2Cu3O6.67 (Tc = 67K). This sample has
a hole doping of 0.12 per copper and a well-ordered oxygen
chain superstructure8. Below Tc, the application of a magnetic
field suppresses superconductivity and enhances the CDW.
Hence, the CDW and superconductivity in this typical high-Tc
material are competing orders with similar energy scales,
and the high-Tc superconductivity forms from a pre-existing
CDW environment. Our results provide a mechanism for the
formation of small Fermi surface pockets9, which explain the
negative Hall and Seebeck effects10,11 and the ‘Tc plateau’12 in
this material when underdoped.

Charge density waves in solids are periodic modulations of con-
duction electron density. They are often present in low-dimensional
systems such as NbSe2 (ref. 4). Certain cuprate materials such as
La2�x�yNdySrxCuO4 (Nd-LSCO) and La2�xBaxCuO4 (LBCO) also
show charge modulations that suppress superconductivity near x =
1/8 (refs 6,7). In some cases, these are believed to be unidirectional
in the CuO2 plane, and have been dubbed ‘stripes’2,3. There is now a
mounting body of indirect evidence that charge and/or spin density
waves (static modulations) may be present at high magnetic fields
in samples with high Tc: quantum oscillation experiments on un-
derdoped YBa2Cu3Oy (YBCO) have revealed the existence of at least
one small Fermi surface pocket9,10, whichmay be created by a charge
modulation11. More recently, nuclear magnetic resonance (NMR)
studies have shown a magnetic-field-induced splitting of the Cu2F
lines of YBCO (ref. 13). An important issue is the extent towhich the
tendency towards charge order exists in high-Tc superconductors2,3.

Here we report a hard (100 keV) X-ray diffraction study, in
magnetic fields up to 17 T, of a detwinned single crystal of

1Institut de la Matière Complexe, Ecole Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland, 2Paul Scherrer Institut, Swiss Light
Source, CH-5232 Villigen PSI, Switzerland, 3School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK, 4Department of
Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark, 5Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232
Villigen PSI, Switzerland, 6Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada, 7Canadian Institute for Advanced
Research, Toronto, Canada, 8Hamburger Synchrotronstrahlungslabor (HASYLAB) at Deutsches Elektronen-Synchrotron (DESY), 22603 Hamburg,
Germany, 9H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK. *e-mail: johan.chang@epfl.ch.

YBa2Cu3O6.67 (with ortho-VIII oxygen ordering8,12, Tc = 67K
and p = 0.12, where p is the hole concentration per planar
Cu). We find that a CDW forms in the normal state below
TCDW ⇡ 135K. The charge modulation has two fundamental
wave vectors qCDW = q1 = (�1,0,0.5) and q2 = (0,�2,0.5), where
�1 ⇡ 0.3045(2) and �2 ⇡ 0.3146(7), with no significant field- or
temperature-dependence of these values. The CDW gives rise
to satellites of the parent crystal Bragg peaks at positions such
as Q = (2 ± �1,0,0.5). Although the satellite intensities have a
strong temperature and magnetic field dependence, the CDW is
not field-induced and is unaffected by field in the normal state.
Below Tc it competes with superconductivity, and a decrease of
the CDW amplitude in zero field becomes an increase when
superconductivity is suppressed by field. A very recent paper14
reports complementary resonant soft X-ray scattering experiments
performed on (Y,Nd)Ba2Cu3O6+x as a function of doping and in
the absence of amagnetic field. The results are broadly in agreement
with our zero field data.

Figure 1a,g shows scans through the (2� �1,0,0.5) and (0,2�
�2,0.5) positions at T = 2K. Related peaks were observed at
(2+�1,0,0.5) and (4��1,0,0.5) (see Supplementary Fig. S3). The
incommensurate peaks are not detected above 150K (Fig. 1c). From
the peak width we estimate that the modulation has an in-plane
correlation length ⇠a ⇡ 95± 5Å (at 2 K and 17 T—see Methods).
The existence of four similar in-plane modulations (±�1,0) and
(0,±�2) indicates that the modulation is associated with the (nearly
square) CuO2 planes rather than the CuO chains. The present
experiment cannot distinguish between 1�q and 2�q structures,
that is, we cannot tell directly whether modulations along the a and
b directions co-exist in space or occur in different domains of the
crystal. However, Bragg peaks from the twoCDWcomponents have
similar intensities and widths (Fig. 1b,g) despite the orthorhombic
crystal structure, which breaks the symmetry between them. This
suggests that q1 and q2 are coupled, leading to the co-existence of
multiple wave vectors, as seen in other CDW systems such as NbSe2
(ref. 4). The scan along the c⇤ direction in Fig. 1d has broad peaks
close to l = ±0.5 reciprocal lattice units (r.l.u.), indicating that the
CDW is weakly correlated along the c direction, with a correlation
length ⇠c of approximately 0.6 lattice units.
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Figure 2 | Competition between charge–density-wave order and superconductivity. a, Temperature dependence of the peak intensity at (1.695, 0, 0.5)
(circles) and (0, 3.691, 0.5) (squares) for different applied magnetic fields. The square data points have been multiplied by a factor of four. In the normal
state, there is a smooth onset of the CDW order. In the absence of an applied magnetic field there is a decrease in the peak intensity below Tc. This trend
can be reversed by the application of a magnetic field. b, Magnetic field dependence of the lattice modulation peak intensity at (1.695,0,0.5) for different
temperatures. At T = 2 K, the peak intensity grows approximately linearly with magnetic field up to the highest applied field. c,d, Gaussian linewidth of the
(1.695, 0, 0.5) CDW modulation plotted versus temperature and field respectively. The raw linewidth, including a contribution from the instrumental
resolution, is field-independent in the normal state (T > Tc). In contrast, the CDW order becomes more coherent below Tc, once a magnetic field is applied.
This effect ceases once the amplitude starts to be suppressed owing to competition with superconductivity. The vertical dashed lines in a,c illustrate the
connection between these two features of the data that define the Tcusp temperatures. All other lines are guides to the eye. Error bars indicate standard
deviations of the fit parameters described in Methods.

The intensities of the incommensurate Bragg peaks are sensitive
to atomic displacements parallel to the total scattering vector
Q. The comparatively small contribution to Q along the c⇤

direction from l = 0.5 r.l.u. means that our signal for a (h,
0, 0.5) peak is dominated by displacements parallel to the a
direction. (There will also be displacements parallel to the c
direction but we are essentially insensitive to them in our present
scattering geometry). Our data indicate that the incommensurate
peaks are much stronger if they are satellites of strong Bragg
peaks of the form (⌧ = (2n,0,0)) at positions such as ⌧ ± q1.
This indicates that the satellites are caused by a modulation
of the parent crystal structure. The fact that the scattering is
peaked at l = ±0.5 r.l.u. means that neighbouring bilayers are
modulated in antiphase. The two simplest structures (Fig. 3a,b)
compatible with our data (see Supplementary Information) involve
the neighbouring CuO2 planes in the bilayer being displaced in
the same (bilayer-centred) or opposite (chain-centred) directions,
resulting in the maximum amplitude of the modulation being on
the CuO2 planes or CuO chains respectively. In their 2�q form,
these structures would lead to the in-plane ‘checkerboard’ pattern
shown in Fig. 3c. Scanning tunnelling microscopy studies of other
underdoped cuprates16 and of field-induced CDW correlations in
vortex cores17 also support the tendency towards checkerboard
formation18, although disorder can cause small stripe domains
to mimic checkerboard order19. Our observation of a CDW

may be related to phonon anomalies20, which suggest that in
YBCO near p⇡ 1/8 there are anomalies in the underlying charge
susceptibility for q⇡ (0,0.3).

Cuprate superconductors show strong spin correlations, and
the interplay between spin and charge correlations may be at the
heart of the high-Tc phenomenon. The spin correlations are largely
dynamic, with energies up to several hundred meV. YBa2Cu3O6+x
and La2�x(Ba,Sr)xCuO4+� show incommensurate magnetic order,
which can be enhanced by suppressing superconductivity with an
applied magnetic field21–24; this has some analogies with the CDW
order observed here. The magnetic order is static on the ⇠1meV
frequency scale of neutron diffraction and has been detected in
lightly doped YBa2Cu3O6+x for p 0.082 (ref. 21), and moderately
doped La2�xSrxCuO4 for p  0.14 (ref. 24). The YBa2Cu3O6.67
(p⇡ 1/8) sample studied here is expected to have a relatively large
spin gap, h̄! ⇡ 20meV (ref. 25), in its magnetic excitations at
low temperature, making it unlikely that it orders magnetically.
As discussed earlier, this is confirmed by other measurements13,14,
so the CDW does not seem to be accompanied by spin order.
Moreover, there is no obvious relationship between qCDW and the
wave vector of the incipient spin fluctuations qSF ⇡ (0.1,0) of
similarly doped samples25.

It is interesting to note that TCDW corresponds approximately
withTH (Fig. 4), the temperature at whichHall effectmeasurements
suggest that Fermi surface reconstruction begins26. A CDW that
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. a, Doping dependence of the antiferromagnetic ordering temperature TN, the incommensurate spin-density
wave order TSDW (green triangles; ref. 21), the superconducting temperature Tc and the pseudogap temperature T⇤ as determined from the Nernst effect30

(black squares) and neutron diffraction29 (purple squares). Notice that the Nernst effect30 indicates a broken rotational symmetry inside the pseudogap
region, whereas a translational symmetry preserving magnetic order is found by neutron scattering29. Below temperature scale TH (black circles), a larger
and negative Hall coefficient was observed26 and interpreted in terms of a Fermi surface reconstruction. Our X-ray diffraction experiments show that in
YBCO p = 0.12 incommensurate CDW order spontaneously breaks the crystal translational symmetry at a temperature TCDW that is twice as large as Tc.
TCDW is also much larger than TNMR (red squares), the temperature scale below which NMR observes field-induced charge order13. b, Field dependence of
TCDW (filled red circles) and Tcusp (open squares), the temperature below which the CDW is suppressed by superconductivity, compared with TH (open
black circle) and TVL (filled blue circles), the temperature where the vortex liquid state forms26. Error bars on TSDW, TH, TNMR, and T⇤ are explained in
refs 21,26,30,33. The error bars on TCDW and Tcusp reflect the uncertainty in determining the onset and suppression temperature of CDW order from Fig. 2.

these various orders are ‘intertwined’31. In this context, we can
view our present results as indicating that the electron system
has a tendency towards two ground states: a charge density
wave, which breaks translational symmetry and involves electron–
hole correlations, versus superconductivity, which breaks gauge
symmetry and involves electron–electron correlations.We note that
the q-vectors of the CDW lie close to the separation of pieces of
Fermi surface that have maximum superconducting gap at optimal
doping and have the same sign of the order parameter.

Methods
Our experiments used 100 keV hard X-ray synchrotron radiation from the
DORIS-III storage ring at DESY, Hamburg, Germany. We installed a recently
developed 17 T horizontal cryomagnet designed for beamline use on the triple-axis
diffractometer at beamline BW5. The sample was mounted by gluing it over a hole
in a temperature-controlled aluminium plate within the cryomagnet vacuum and
was thermally shielded by thin Al and aluminizedmylar foils glued to this plate. The
sample temperature could be controlled over the range ⇠2–300K. The incoming
and outgoing beams passed through 1mm thick aluminium cryostat vacuum
windows, which gave a maximum of ⇠ ±10� input and output angles relative to
the field direction, which was parallel to the sample c axis within <1�. Between
the beam access windows and the sample plate, there were further aluminium
foil thermal radiation shields at liquid nitrogen temperature. A 2mm square
aperture collimated the incoming beam, so that it passed mainly through the part
of the sample over the hole in the aluminium plate, greatly reducing background
scattering by the plate. Further slits before the analyser and the detector removed
scattering by the cryostat windows and nitrogen shields. The scattering plane
(a⇤–c⇤) was horizontal. The cryomagnet was mounted on a rotation stage with a
goniometer giving � tilt about the field axis. The sample was initially mounted
with its a axis nearly horizontal. The � goniometer allowed the exact alignment of
this axis using the (2 0 0) Bragg peak and could also be used for low-resolution
scans in the b⇤ direction. Magnetic fields were applied with the sample heated
above Tc; it was then field-cooled to base temperature. When fields were applied,
minor changes in the position and angle of the sample holder were observed; these
were corrected by use of horizontal and vertical motion stages under the cryostat
rotation stage, and by realigning on the (2 0 0) Bragg peak. During temperature
scans, realignment on the (2 0 0) Bragg peak was performed automatically at every
temperature point to ensure that all measurements were centred. After results
had been obtained with the a axis horizontal, the sample was remounted with
the b axis horizontal for further measurements. The YBa2Cu3O6.67 sample had
dimensions a⇥b⇥ c = 3.1⇥1.7⇥0.6mm3 and mass 18mg. The superconducting
transition temperature Tc = 67K (width: 10%–90%= 1.1K) was derived from
a zero-field-cooled magnetization curve at 0.1mT. The single crystal was 99%

detwinned and the Cu–O chains were ordered with the ortho-VIII structure by
standard procedures12.

The diffracted intensities from the CDW, shown in Fig. 1, are composed of
an incommensurate lattice modulation peak on a smoothly varying background.
The background along (h, 0, 0.5) mainly originates from the tails of the ortho-VIII
peaks (see Supplementary Information). It varies strongly from one Brillouin
zone to another; for example, the background around (2.7, 0, 0.5) is an order of
magnitude larger than around (1.7, 0, 0.5). The background has essentially no
field dependence (Fig. 1a–c) so subtracting the zero-field from high-field data is
a simple way to eliminate the background. This reveals the field-enhanced signal
inside the superconducting state (Fig. 1a–d).

As there is a weak temperature dependence in the background (Fig. 1a–c), it
is not possible to eliminate it by subtracting a high-temperature curve. Therefore,
to obtain the temperature dependences shown in Fig. 2, we fitted the data to
a Gaussian function G(Q) and modelled the background by a second-order
polynomial B(Q)= c0 + c1Q+ c2Q2. The constants c0, c1 and c2 have a small
but significant temperature dependence. The low counting statistics resulted in
Gaussians fitting equally well as other possible lineshapes such as Lorentzians.

The signal-to-background ratio is best for the (2� �1, 0, 0.5) peak due
the weaker structural ortho-VIII peak (see Supplementary Fig. S2). From the
Gaussian fits to the (2��1, 0, 0.5) satellite peak at 2 K and 17 T we can estimate
the correlation length ⇠ along the three crystal axis directions. We define ⇠ = 1/� ,
where � = (� 2

meas�� 2
R)0.5 is the measured Gaussian standard deviation corrected for

the instrument resolution �R and expressed in Å�1. Along the a axis direction, we
find � = 6.4⇥10�3 r.l.u. ⌘ 1.1⇥10�2 Å�1, and hence ⇠a = 95±5Å. Deconvolving
the poor instrumental resolution along the b axis direction for the (2��1, 0, 0.5)
peak yields a similar correlation length ⇠b ⇠ ⇠a.
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Thermodynamic phase diagram of static charge
order in underdoped YBa2Cu3Oy
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The interplay between superconductivity and any other
competing order is an essential part of the long-standing
debate on the origin of high-temperature superconductivity
in cuprate materials1,2. Akin to the situation in the heavy
fermions, organic superconductors and pnictides, it has been
proposed that the pairing mechanism in the cuprates comes
from fluctuations of a nearby quantum phase transition3.
Recent evidence for charge modulation4 and its associated
fluctuations5–7 in the pseudogap phase of YBa2Cu3Oy makes
charge order a likely candidate for a competing order. However,
a thermodynamic signature of the charge-ordering phase
transition is still lacking. Moreover, whether the charge
modulation is uniaxial or biaxial remains controversial. Here
we address both issues by measuring sound velocities in
YBa2Cu3O6.55 in high magnetic fields. We provide the first
thermodynamic signature of the competing charge-order phase
transition in YBa2Cu3Oy and construct a field–temperature
phase diagram. The comparison of different acoustic modes
indicates that the charge modulation is biaxial, which differs
from a uniaxial stripe charge order.

In most La-based cuprate superconductors, static order of both
spin and charge (so-called stripe order) has been unambiguously
identified by spectroscopic and thermodynamic probes1,2. At
low temperature, magnetic fields weaken superconductivity and
at the same time reinforce the magnitude of such orders8–10.
As the superconducting transition temperature (Tc) in the La-
based materials is substantially lower than in other cuprate
materials, it has been argued that stripe order is detrimental to
high-temperature superconductivity. In underdoped YBa2Cu3Oy
(YBCO), there is now compelling evidence of competing order
even though Tc = 94K at optimal doping. The discovery of
quantum oscillations11 combined with the negative Hall12 and
Seebeck13 coefficients at low temperature has demonstrated
that the Fermi surface of underdoped YBCO undergoes a
reconstruction at low temperature and consists of at least one
electron pocket. A comparative study of thermoelectric transport
in underdoped YBCO and in La1.8�xEu0.2SrxCuO4 (a cuprate in
which stripe order is well established) has been interpreted as
charge stripe order causing reconstruction of the Fermi surface at
low temperature14. High-field nuclear magnetic resonance (NMR)
measurements have revealed that the translational symmetry
of the CuO2 planes in YBCO is broken by the emergence
of a modulation of the charge density at low temperature4.
In addition, NMR measurements show that the modulation
is observed above a threshold magnetic field and suggest that
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charge order is most likely uniaxial4. In zero field, long-range
charge fluctuations in YBCO were recently observed with resonant
soft X-ray scattering (RSXS) up to 150K and 160K for p =
0.11 (ref. 5) and p = 0.133 (ref. 6), respectively, whereas hard
X-ray scattering experiments suggest that a charge order develops
below 135K for p = 0.12 (ref. 7). All measurements identify
charge fluctuations at two wave vectors corresponding to an
incommensurate periodicity of approximately 3.2 lattice units.
The identification of a thermodynamic phase transition is thus
important to determine where long-range charge order exists in the
phase diagram and particularly whether static order occurs only in
high magnetic fields.

Here we report sound velocity measurements, a thermodynamic
probe, in magnetic fields large enough to suppress superconduc-
tivity. The sound velocity is defined as vs =

p
cij/⇢, where ⇢ is the

density of the material, cij = @2F/@"i@"j (ref. 15), F is the free
energy and "i is the strain along direction i (in the contracted Voigt
notation). Changes in the elastic constants cij are expectedwhenever
a strain-dependent phase transition occurs. Owing to their high
sensitivity, sound velocity measurements are a powerful probe for
detecting such phase transitions, in particular charge ordering in
strongly correlated electron systems16.

We have measured several elastic constants (see Supplementary
Table S1 for the description of the elastic modes) in high
magnetic fields in an underdoped YBCO6.55 sample withTc =60.7K
corresponding to a hole doping p = 0.108 (ref. 17). Figure 1a,b
shows the field dependence of the relative variation of the
sound velocity 1vs/vs corresponding to the c11 mode, at different
temperatures. At T = 4.2K, the softening of the elastic constant at
the vortex lattice melting field Bm ⇡ 20 T corresponds to the first-
order melting transition from a vortex lattice to a vortex liquid18,19
(see Supplementary Information for more details). At T = 29.5K,
this anomaly shifts to lower field (Bm ⇡5 T) and because the pinning
potential becomes less effective, the magnitude of the change of
c11 at the melting transition becomes smaller20. At T = 29.5K and
above Bm, a sudden increase of the elastic constant can clearly be
resolved at Bco = 18 T, which corresponds to a thermodynamic
signature of a phase transition. Whereas Bco is almost temperature
independent at low temperature, it increases rapidly between 35 and
50 K (see red arrows in Fig. 1b). For T � 50K, no change of c11 can
be resolved up to the highest field. Owing to the difference in the
temperature dependence of Bm and Bco, the phase transition at Bco
cannot originate from vortices. Figure 2 shows the phase diagram in
which both Bm and Bco deduced from sound velocity measurements
are plotted as a function of temperature. The identification of this
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The interplay between superconductivity and any other
competing order is an essential part of the long-standing
debate on the origin of high-temperature superconductivity
in cuprate materials1,2. Akin to the situation in the heavy
fermions, organic superconductors and pnictides, it has been
proposed that the pairing mechanism in the cuprates comes
from fluctuations of a nearby quantum phase transition3.
Recent evidence for charge modulation4 and its associated
fluctuations5–7 in the pseudogap phase of YBa2Cu3Oy makes
charge order a likely candidate for a competing order. However,
a thermodynamic signature of the charge-ordering phase
transition is still lacking. Moreover, whether the charge
modulation is uniaxial or biaxial remains controversial. Here
we address both issues by measuring sound velocities in
YBa2Cu3O6.55 in high magnetic fields. We provide the first
thermodynamic signature of the competing charge-order phase
transition in YBa2Cu3Oy and construct a field–temperature
phase diagram. The comparison of different acoustic modes
indicates that the charge modulation is biaxial, which differs
from a uniaxial stripe charge order.

In most La-based cuprate superconductors, static order of both
spin and charge (so-called stripe order) has been unambiguously
identified by spectroscopic and thermodynamic probes1,2. At
low temperature, magnetic fields weaken superconductivity and
at the same time reinforce the magnitude of such orders8–10.
As the superconducting transition temperature (Tc) in the La-
based materials is substantially lower than in other cuprate
materials, it has been argued that stripe order is detrimental to
high-temperature superconductivity. In underdoped YBa2Cu3Oy
(YBCO), there is now compelling evidence of competing order
even though Tc = 94K at optimal doping. The discovery of
quantum oscillations11 combined with the negative Hall12 and
Seebeck13 coefficients at low temperature has demonstrated
that the Fermi surface of underdoped YBCO undergoes a
reconstruction at low temperature and consists of at least one
electron pocket. A comparative study of thermoelectric transport
in underdoped YBCO and in La1.8�xEu0.2SrxCuO4 (a cuprate in
which stripe order is well established) has been interpreted as
charge stripe order causing reconstruction of the Fermi surface at
low temperature14. High-field nuclear magnetic resonance (NMR)
measurements have revealed that the translational symmetry
of the CuO2 planes in YBCO is broken by the emergence
of a modulation of the charge density at low temperature4.
In addition, NMR measurements show that the modulation
is observed above a threshold magnetic field and suggest that
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charge order is most likely uniaxial4. In zero field, long-range
charge fluctuations in YBCO were recently observed with resonant
soft X-ray scattering (RSXS) up to 150K and 160K for p =
0.11 (ref. 5) and p = 0.133 (ref. 6), respectively, whereas hard
X-ray scattering experiments suggest that a charge order develops
below 135K for p = 0.12 (ref. 7). All measurements identify
charge fluctuations at two wave vectors corresponding to an
incommensurate periodicity of approximately 3.2 lattice units.
The identification of a thermodynamic phase transition is thus
important to determine where long-range charge order exists in the
phase diagram and particularly whether static order occurs only in
high magnetic fields.

Here we report sound velocity measurements, a thermodynamic
probe, in magnetic fields large enough to suppress superconduc-
tivity. The sound velocity is defined as vs =

p
cij/⇢, where ⇢ is the

density of the material, cij = @2F/@"i@"j (ref. 15), F is the free
energy and "i is the strain along direction i (in the contracted Voigt
notation). Changes in the elastic constants cij are expectedwhenever
a strain-dependent phase transition occurs. Owing to their high
sensitivity, sound velocity measurements are a powerful probe for
detecting such phase transitions, in particular charge ordering in
strongly correlated electron systems16.

We have measured several elastic constants (see Supplementary
Table S1 for the description of the elastic modes) in high
magnetic fields in an underdoped YBCO6.55 sample withTc =60.7K
corresponding to a hole doping p = 0.108 (ref. 17). Figure 1a,b
shows the field dependence of the relative variation of the
sound velocity 1vs/vs corresponding to the c11 mode, at different
temperatures. At T = 4.2K, the softening of the elastic constant at
the vortex lattice melting field Bm ⇡ 20 T corresponds to the first-
order melting transition from a vortex lattice to a vortex liquid18,19
(see Supplementary Information for more details). At T = 29.5K,
this anomaly shifts to lower field (Bm ⇡5 T) and because the pinning
potential becomes less effective, the magnitude of the change of
c11 at the melting transition becomes smaller20. At T = 29.5K and
above Bm, a sudden increase of the elastic constant can clearly be
resolved at Bco = 18 T, which corresponds to a thermodynamic
signature of a phase transition. Whereas Bco is almost temperature
independent at low temperature, it increases rapidly between 35 and
50 K (see red arrows in Fig. 1b). For T � 50K, no change of c11 can
be resolved up to the highest field. Owing to the difference in the
temperature dependence of Bm and Bco, the phase transition at Bco
cannot originate from vortices. Figure 2 shows the phase diagram in
which both Bm and Bco deduced from sound velocity measurements
are plotted as a function of temperature. The identification of this
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The interplay between superconductivity and any other
competing order is an essential part of the long-standing
debate on the origin of high-temperature superconductivity
in cuprate materials1,2. Akin to the situation in the heavy
fermions, organic superconductors and pnictides, it has been
proposed that the pairing mechanism in the cuprates comes
from fluctuations of a nearby quantum phase transition3.
Recent evidence for charge modulation4 and its associated
fluctuations5–7 in the pseudogap phase of YBa2Cu3Oy makes
charge order a likely candidate for a competing order. However,
a thermodynamic signature of the charge-ordering phase
transition is still lacking. Moreover, whether the charge
modulation is uniaxial or biaxial remains controversial. Here
we address both issues by measuring sound velocities in
YBa2Cu3O6.55 in high magnetic fields. We provide the first
thermodynamic signature of the competing charge-order phase
transition in YBa2Cu3Oy and construct a field–temperature
phase diagram. The comparison of different acoustic modes
indicates that the charge modulation is biaxial, which differs
from a uniaxial stripe charge order.

In most La-based cuprate superconductors, static order of both
spin and charge (so-called stripe order) has been unambiguously
identified by spectroscopic and thermodynamic probes1,2. At
low temperature, magnetic fields weaken superconductivity and
at the same time reinforce the magnitude of such orders8–10.
As the superconducting transition temperature (Tc) in the La-
based materials is substantially lower than in other cuprate
materials, it has been argued that stripe order is detrimental to
high-temperature superconductivity. In underdoped YBa2Cu3Oy
(YBCO), there is now compelling evidence of competing order
even though Tc = 94K at optimal doping. The discovery of
quantum oscillations11 combined with the negative Hall12 and
Seebeck13 coefficients at low temperature has demonstrated
that the Fermi surface of underdoped YBCO undergoes a
reconstruction at low temperature and consists of at least one
electron pocket. A comparative study of thermoelectric transport
in underdoped YBCO and in La1.8�xEu0.2SrxCuO4 (a cuprate in
which stripe order is well established) has been interpreted as
charge stripe order causing reconstruction of the Fermi surface at
low temperature14. High-field nuclear magnetic resonance (NMR)
measurements have revealed that the translational symmetry
of the CuO2 planes in YBCO is broken by the emergence
of a modulation of the charge density at low temperature4.
In addition, NMR measurements show that the modulation
is observed above a threshold magnetic field and suggest that
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charge order is most likely uniaxial4. In zero field, long-range
charge fluctuations in YBCO were recently observed with resonant
soft X-ray scattering (RSXS) up to 150K and 160K for p =
0.11 (ref. 5) and p = 0.133 (ref. 6), respectively, whereas hard
X-ray scattering experiments suggest that a charge order develops
below 135K for p = 0.12 (ref. 7). All measurements identify
charge fluctuations at two wave vectors corresponding to an
incommensurate periodicity of approximately 3.2 lattice units.
The identification of a thermodynamic phase transition is thus
important to determine where long-range charge order exists in the
phase diagram and particularly whether static order occurs only in
high magnetic fields.

Here we report sound velocity measurements, a thermodynamic
probe, in magnetic fields large enough to suppress superconduc-
tivity. The sound velocity is defined as vs =

p
cij/⇢, where ⇢ is the

density of the material, cij = @2F/@"i@"j (ref. 15), F is the free
energy and "i is the strain along direction i (in the contracted Voigt
notation). Changes in the elastic constants cij are expectedwhenever
a strain-dependent phase transition occurs. Owing to their high
sensitivity, sound velocity measurements are a powerful probe for
detecting such phase transitions, in particular charge ordering in
strongly correlated electron systems16.

We have measured several elastic constants (see Supplementary
Table S1 for the description of the elastic modes) in high
magnetic fields in an underdoped YBCO6.55 sample withTc =60.7K
corresponding to a hole doping p = 0.108 (ref. 17). Figure 1a,b
shows the field dependence of the relative variation of the
sound velocity 1vs/vs corresponding to the c11 mode, at different
temperatures. At T = 4.2K, the softening of the elastic constant at
the vortex lattice melting field Bm ⇡ 20 T corresponds to the first-
order melting transition from a vortex lattice to a vortex liquid18,19
(see Supplementary Information for more details). At T = 29.5K,
this anomaly shifts to lower field (Bm ⇡5 T) and because the pinning
potential becomes less effective, the magnitude of the change of
c11 at the melting transition becomes smaller20. At T = 29.5K and
above Bm, a sudden increase of the elastic constant can clearly be
resolved at Bco = 18 T, which corresponds to a thermodynamic
signature of a phase transition. Whereas Bco is almost temperature
independent at low temperature, it increases rapidly between 35 and
50 K (see red arrows in Fig. 1b). For T � 50K, no change of c11 can
be resolved up to the highest field. Owing to the difference in the
temperature dependence of Bm and Bco, the phase transition at Bco
cannot originate from vortices. Figure 2 shows the phase diagram in
which both Bm and Bco deduced from sound velocity measurements
are plotted as a function of temperature. The identification of this
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Figure 1 | Field dependence of the sound velocity in underdoped
YBa2Cu3Oy

. a,b, Field dependence of the longitudinal mode c11

(propagation q and polarization u of the sound wave along a axis) in
underdoped YBCO (p= 0.108) at different temperatures from T= 4.2 K to
T= 24.9 K (a), and from T= 29.5 K to T= 50 K (b). The curves are shifted
for clarity. The measurements were performed in static magnetic field up to
28 T. Black arrows indicate the field Bm corresponding to the vortex lattice
melting. At low temperature, the loss of the vortex lattice compression
modulus can be estimated and is in agreement with previous studies (see
Supplementary Information). For T> 40 K, Bm cannot be resolved. Red
arrows indicate the field Bco where the charge-order phase transition
occurs. This transition is not related to vortex physics because it is also
seen in acoustic modes c44 and c55 (Fig. 3 and Supplementary Fig. S3),
which are insensitive to the flux line lattice because those modes involve
atomic motions parallel to the vortex flux lines (u kH k c).

phase stabilized by the magnetic field above Bco is straightforward.
High-field NMR measurements in YBCO at similar doping have
shown that charge order develops above a threshold field Bco >15 T
and below T RMN

co = 50± 10K (ref. 4). Given the similar field and
temperature scales, it is natural to attribute the anomaly seen in
the elastic constant at Bco to the thermodynamic transition towards
the static charge order.

The phase diagram in Fig. 2 shares common features with the
theoretical phase diagram of superconductivity in competition

0
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Figure 2 | Thermodynamic phase diagram. Magnetic field–temperature
phase diagram of underdoped YBCO (p= 0.108) obtained from the
anomalies seen in the elastic constant c11 (Fig. 1). Black squares indicate the
transition from a vortex lattice to a vortex liquid at Bm, which cannot be
resolved above 40 K. Red circles correspond to the phase transition
towards static charge order at Bco, as observed in c11. The error bars on the
field scale Bm (Bco) correspond to the width of the transition in the
derivative (raw data) of c11(B). The charge-order transition is almost
temperature independent up to ⇡40 K. Above 40 K the field scale Bco at
which charge order sets in rises. In the Supplementary Information, we
argue that the overall behaviour of the charge-order phase boundary in this
B–T diagram is consistent with a theoretical model of superconductivity in
competition with a density-wave state21. The green diamond is the
temperature TNMR

co = 50± 10 K at which NMR experiments detect the onset
of a charge modulation at a field B= 28.5 T in YBCO at doping p= 0.11
(ref. 4). Within the error bars, this onset temperature agrees with our
findings. Dashed lines are guides to the eye.

with a density-wave order21 (see discussion in the Supplementary
Information). For T below 40K or so, static charge order sets
in only above a threshold field of 18 T, akin to the situation in
La2�xSrxCuO4 (x = 0.145) in which a magnetic field is necessary
to destabilize superconductivity and to drive the system to a
magnetically ordered state9. Close to the onset temperature of
static charge order, Tco, the threshold field Bco sharply increases
and the phase boundary tends to become vertical. This is in
agreement with the theoretical phase of competing order with
superconductivity that predicts that superconducting fluctuations
have no significant effect on charge order in this part of
the phase diagram.

We now turn to the analysis of the symmetry of the charge
modulation. In the framework of the Landau theory of phase
transitions, an anomaly in the elastic constant occurs at a phase
transition only if a coupling in the free energy Fc = gmnQm "n (where
m and n are integers and gmn is a coupling constant) between the
order parameter Q and the strain " is symmetry allowed, that is,
only if Qm and "n transform according to the same irreducible
representation22. In Fig. 3 we compare the field dependence at
T = 20K of four different modes c11, c44, c55 and c66 that display
an anomaly at Bco. To explain the presence of such coupling for
all these modes, we rely on group theory arguments. YBCO is
an orthorhombic system (point group D2h), and given the even
character of the strains we have only to consider the character table
of point groupD2 shown in Table 1.

To represent the different symmetric charge modulations that
transform according to each irreducible representation of the point
groupD2 and to determine to which acoustic mode they couple, we
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Fermi surface+antiferromagnetism

The electron spin polarization obeys
�

⌃S(r, �)
⇥

= ⌃⇥(r, �)eiK·r

where K is the ordering wavevector.

+

Metal with “large” 
Fermi surface
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H = �
X

i<j

tijc
†
i↵cj↵ + U

X
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ni" �
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2

◆✓
ni# �
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2

◆
� µ

X

i

c†i↵ci↵

tij ! “hopping”. U ! local repulsion, µ ! chemical potential

Spin index ↵ =", #

ni↵ = c†i↵ci↵

c†i↵cj� + cj�c
†
i↵ = �ij�↵�

ci↵cj� + cj�ci↵ = 0

The Hubbard Model
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“Yukawa” coupling between fermions and
antiferromagnetic order:

�2 ⇠ U , the Hubbard repulsion

S =

Z
d2rd⌧ [Lc + L' + Lc']

Lc = c†a"(�ir)ca

L' =
1

2
(r'↵)

2 +
r

2
'2
↵ +

u

4

�
'2
↵

�2

Lc' = �'↵ eiK·r c†a �
↵
ab cb.

The Hubbard Model
Decouple U term by a Hubbard-Stratanovich transformation 
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Metal with “large” Fermi surface

Fermi surface+antiferromagnetism
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Fermi surfaces translated by K = (�,�).

Fermi surface+antiferromagnetism
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“Hot” spots

Fermi surface+antiferromagnetism
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Electron and hole pockets in

antiferromagnetic phase with h~'i 6= 0

Fermi surface+antiferromagnetism
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Metal with “large” 
Fermi surface

h~'i = 0

Metal with electron 
and hole pockets

Increasing SDW order

h~'i 6= 0

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Increasing interaction

Fermi surface+antiferromagnetism
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“Hot” spots

Fermi surface+antiferromagnetism
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Low energy theory for critical point near hot spots
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Low energy theory for critical point near hot spots
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v1 v2

�2 fermions
occupied

�1 fermions
occupied

Theory has fermions  1,2 (with Fermi velocities v1,2)

and boson order parameter ~',
interacting with coupling �

k
x

ky
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Order parameter: L' =
1
2

(rr ~')2 +
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Lf =  †
1↵ (⇣@⌧ � iv1 ·rr) 1↵ +  †
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“Yukawa” coupling: Lc = ��~' ·
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 †
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Pairing by SDW fluctuation exchange

We now allow the SDW field ⌦⌅ to be dynamical, coupling to elec-
trons as

Hsdw = �
�

k,q,�,⇥

⌦⌅q · c†k,�⌦⇥�⇥ck+K+q,⇥ .

Exchange of a ⌦⌅ quantum leads to the e�ective interaction

Hee = �1
2

�

q

�

p,⇤,⌅

�

k,�,⇥

V�⇥,⇤⌅(q)c†k,�ck+q,⇥c†p,⇤cp�q,⌅,

where the pairing interaction is

V�⇥,⇤⌅(q) = ⌦⇥�⇥ · ⌦⇥⇤⌅
⇤0

��2 + (q�K)2
,

with ⇤0�2 the SDW susceptibility and � the SDW correlation length.
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BCS Gap equation

In BCS theory, this interaction leads to the ‘gap
equation’ for the pairing gap �k ⇤ ⌅ck⇥c�k⇤⇧.

�k = �
⇤

p

�
3⇥0

��2 + (p� k�K)2

⇥
�p

2
⌅

⇤2
p + �2

p

Non-zero solutions of this equation require that
�k and �p have opposite signs when p� k ⇥ K.
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Pairing “glue” from antiferromagnetic fluctuations

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)
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Unconventional pairing at and near hot spots
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Order parameter: L' =
1
2

(rr ~')2 +
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2

(@⌧ ~')2 +
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2
~'2 +
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4
~'4

Lf =  †
1↵ (⇣@⌧ � iv1 ·rr) 1↵ +  †

2↵ (⇣@⌧ � iv2 ·rr) 2↵

“Yukawa” coupling: Lc = ��~' ·
⇣
 †
1↵~�↵� 2� +  †

2↵~�↵� 1�

⌘

Emergent [SU(2)]4 pseudospin symmetry

Introduce the spinors

 1↵ =

✓
 1↵

✏↵� 
†
1�

◆
,  2↵ =

✓
 2↵

✏↵� 
†
2�

◆

Then the Lagrangian is invariant under the SU(2) transformation U with

 1 ! U 1 ,  2 ! U 2

Note that U can be chosen independently at the 4 pairs of hotspots.

This symmetry relies on the linearization of the fermion dispersion about

the hot spots.

Tuesday, March 12, 13



Unconventional pairing at and near hot spots
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Unconventional particle-hole pairing at and near hot spots

Q is ‘2kF ’
wavevector

After 
pseudospin 

rotation 

M. A. Metlitski and 
S. Sachdev, 

Phys. Rev. B 85, 075127 
(2010)

K. B. Efetov, H. Meier, 
and C. Pepin, 

arXiv:1210.3276
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Unconventional particle-hole pairing at and near hot spots

Q is ‘2kF ’
wavevector

After 
pseudospin 

rotation 

M. A. Metlitski and 
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Charge ordering in metals with antiferromagnetic spin correlations

Rolando La Placa and Subir Sachdev
Department of Physics, Harvard University, Cambridge MA 02138

(Dated: February 28, 2013)

Metals with antiferromagnetic spin correlations have an instability to the superconductivity of spin-singlet
Cooper pairs with d symmetry (for the Fermi surface of the cuprates). Metlitski et al. (Phys. Rev. B 82, 075128
(2010)) noted that in two dimensions, in the low energy continuum theory, this superconductivity is degenerate
with a charge density wave ordering which has a local d symmetry under rotations about the lattice points. We
present an unrestricted Hartree-Fock computation on a simple lattice model, and find that the d symmetry is
dominant for a range of small ordering wavevectors, including those observed in recent experiments. We note
implications for the phase diagram of the cuprates.

PACS numbers:

Introduction. A remarkable series of experiments [1–12]
have shed new light on the enigmatic underdoped region of
the cuprate high temperature superconductors. These exper-
iments consistently detect a bi-directional density wave with
a period of about 3-4 lattice spacings at low hole densities.
Moreover, this density wave order is co-incident with regions
of the phase diagram where quantum oscillations [13] were
observed in YBa2Cu3Oy, strongly supporting the hypothesis
[7, 14–16] that the density wave plays a central role in the
formation of the Fermi pockets responsible for the quantum
oscillations. Some of the experiments [3, 5, 6, 8, 11] are also
sensitive to the electronic microstructure of the density wave:
these indicate that there is negligible modulation of the charge
density on the Cu sites. Instead, it appears to be primarily a
bond density wave, with modulations in spin-singlet observ-
ables associated with a Cu-Cu link, such as the average elec-
tron kinetic energy.

This paper will examine a model for the charge ordering
proposed in Ref. [17]. They studied a two-dimensional metal
with antiferromagnetic spin correlations, using a continuum
limit which focused on particular ‘hot spots’ on the Fermi sur-
face [18]. In this limit, Ref. [17] showed that theory had an
emergent pseudospin symmetry, and consequently the metal
had two degenerate instabilities: to superconductivity with
d-wave pairing, and to a density wave which had a local d-
wave symmetry of rotations about each lattice point. The den-
sity wave instability had a small incommensurate wavevector
Q = (Q,±Q), where Q is determined by the positions of the
hot spots. Lattice corrections break the pseudospin symme-
try, and the superconducting instability becomes stronger than
the charge order in the full theory. Metzner and collaborators
[19, 20] studied this charge ordering using functional renor-
malization group methods, and called it an ‘incommensurate
nematic’. They also found similar instabilities with wavevec-
tors Q = (Q, 0), (0,Q), corresponding to those seen in the
experiments [1–6, 8–11]. And recently Efetov et al. [21] for-
mulated these instabilities in terms of a non-linear � model
on pseudospin space, and emphasized their importance for the
physics of the pseudo-gap; they labelled the above charge or-
der as a ‘quadrupolar’ order.

It should be noted that above the charge-ordering is distinct

from the time-reversal-symmetry breaking “d-density wave”
state [22], and the confusion in the nomenclature is unfortu-
nate. As will become clear from our presentation below, it
is useful to formulate the various charge ordering configura-
tions in terms of their symmetries of rotation about the Cu
lattice points. In our approach, the “d-density wave” state of
Ref. [22] actually has a px,y symmetry about the lattice points
[17], and so we will identify it by the px,y label.

Here we will present an unrestricted Hartree-Fock-BCS on
a simple lattice model of a metal with antiferromagnetic spin
corrections. We will make no direct reference to the contin-
uum limit or to the hot spots, and will retain full momen-
tum dependence of all variables across the Brillouin zone.
We will find, as expected, that the dominant instability of
the metal is always towards superconductivity with d-wave
pairing. The leading sub-dominant instability is towards a
spin-singlet charge ordering closely related to that proposed
in Ref. 17. For a range of small wavevectors, including those
observed in the experiments [1–6, 8–11]. the charge order has
a predominant d symmetry of rotations about the Cu lattice
sites. The predominant d symmetry implies that the charge
order is primary located on the Cu-Cu bonds, and there is lit-
tle modulation of the charge density on the Cu sites.

Method. We will examine the following Hamiltonian of
electrons on a square lattice with annihilation operators ck,↵,
where k is a crystal momentum and ↵ =", # is a spin label:

H =
X

k

"(k) c†k,↵ck,↵ �
1

2V

X

q

�(q) ~S (�q) · ~S (q). (1)

where there is an implicit sum over spin indices. Here ~S (q) =P
k c†k+q,↵ ~�↵� ck,� is the electron spin density (~� are the Pauli

matrices), and V is the system volume. For the electronic dis-
persion, we assume a tight-binding model which provides a
good fit to photoemission data

"(k) = �2t1
⇣
cos(kx) + cos(ky)

⌘
� 4t2 cos(kx) cos(ky)

�2t3
⇣
cos(2kx) + cos(2ky)

⌘
� µ. (2)

The interactions between the electrons couple their spin den-
sity via a susceptibility �(q) which is peaked near the antifer-
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where ⇠ is the antiferromagnetic correlation length. The sum
over wavevectors extends over K = ±(⇡, ⇡(1 � �)), ± (⇡(1 �
�), ⇡), and we will use both the commensurate case � = 0 or
the incommensurate case � = 1/4. We will only need mod-
erate values of ⇠ for our main conclusions, and the e↵ects we
discuss are present even at ⇠ = 1. We do not include an ex-
plicit density-density interaction between the electrons, and
assume its main e↵ect is to renormalize the dispersion.

We will perform an unrestricted Hartree-Fock-BCS analy-
sis of H. We need the best variational estimate for the mean-
field Hamiltonian
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optimized over the spin-singlet superconducting pairing func-
tion �S (k), and the density wave orders �Q(k) at the
wavevectors Q. Note that both orders are characterized by
arbitrary functions of k extending over the Brillouin zone,
and these will be determined by a functional minimization
of the free energy. Here, we only consider the cases where
either �S (k) or �Q(k) are non-zero, but not both; in the
case of co-existing order, HMF must also include terms like
⇠ ✏↵� ck+Q/2,↵c�k+Q/2,�, and we defer this case to future work.
Fermi statistics requires �S (�k) = �S (k), while hermiticity
requires �⇤Q(k) = ��Q(k). For time-reversal symmetry to be
preserved we need �Q(�k) = �Q(k), but we will not impose
this as a constraint, and so will allow for the breaking of time-
reversal.

The free energy of H obeys the variational principle

F  FMF + hH � HMFiMF (5)

where the average is over a thermal ensemble defined by HMF

at a temperature T . We compute the right hand side in powers
of �S (k) and �Q(k), and replace the inequality by an inequal-
ity. To quadratic order in the order parameters, we write the
result in terms of hermitian functional operators on the Bril-
louin zone as
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where the kernels are
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while the polarizabilities are
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with f the Fermi function. Note that the kernels in Eq. (7)
have an identical form: this is a consequence of the spin-
spin interaction in H; density-density interactions yield dis-
tinct terms in the pairing and charge channels. Note further
that for dispersions with "(k + Q) = �"(k) the two kernels
equal each other: Ref. [17] pointed out that such a relation-
ship holds close to the hot spots of a generic Fermi surface
for certain Q, and this was a key ingredient in the emergent
pseudospin symmetry; we will see the same Q emerge in our
computation below.

From Eq. (6) we see that the linear instability of the metal
occurs via condensation in the eigenmodes of the operators
MS ,Q(k,k0) with the lowest eigenvalues. We have chosen the
specific forms of the kernels in Eq. (7) so that we need only
solve the following eigenvalue problem
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⇧S ,Q(k0) �S ,Q(k0) = �S ,Q�S ,Q(k)

for the minimum eigenvalues �S ,Q and corresponding eigen-
vectors �S ,Q(k), and their structure is independent of the
overall strength of the interaction �0. The order parameters
characterizing the condensed phases will then be �S ,Q(k) /
�S ,Q(k)/

p
⇧S ,Q(k). Our principal numerical results below

are on the Q dependence of �Q, and on the k dependence
of �S ,Q(k) so obtained. We diagonalized the kernels after dis-
cretizing the Brillouin zone to L2 points with L up to 80, with
t1 = 1, t2 = �0.32, and t3 = 0.16 for a range of values of T , µ,
and ⇠.

Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue, and the
corresponding eigenvector �S (k) was well approximated by
the d-wave form ⇠ (cos kx�cos ky) (specific results for the ac-
curacy of this eigenvector appear below in Table I). So d-wave
superconductivity is the primary instability.

We also examined the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Fig ??.
The minimum is at a wavevector along the diagonal with
Q = (Q,Q), with Q close to the value specified by the hot-
spot computation of Ref. [17]. There are also notable station-
ary points in the eigenvalues at (Q, 0), (0, 0) and (⇡, ⇡), whose
nature will become clearer after consideration of the eigen-
vectors below.

We found that we could characterize the eigenvectors
�S ,Q(k) e�ciently by an expansion in simple basis functions,
 �(k) of the square lattice space group. For this, our specific
parameterization of the charge order �Q(k) in Eq. (4) we im-
portant, in which we identified Q and k as the center-of-mass
and relative momenta of the particle-hole pair. Then we can
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where ⇠ is the antiferromagnetic correlation length. The sum
over wavevectors extends over K = ±(⇡, ⇡(1 � �)), ± (⇡(1 �
�), ⇡), and we will use both the commensurate case � = 0 or
the incommensurate case � = 1/4. We will only need mod-
erate values of ⇠ for our main conclusions, and the e↵ects we
discuss are present even at ⇠ = 1. We do not include an ex-
plicit density-density interaction between the electrons, and
assume its main e↵ect is to renormalize the dispersion.

We will perform an unrestricted Hartree-Fock-BCS analy-
sis of H. We need the best variational estimate for the mean-
field Hamiltonian

HMF =
X

k

"
"(k) c†k,↵ck,↵ + �S (k) ✏↵� ck,↵c�k� + H.c.
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optimized over the spin-singlet superconducting pairing func-
tion �S (k), and the density wave orders �Q(k) at the
wavevectors Q. Note that both orders are characterized by
arbitrary functions of k extending over the Brillouin zone,
and these will be determined by a functional minimization
of the free energy. Here, we only consider the cases where
either �S (k) or �Q(k) are non-zero, but not both; in the
case of co-existing order, HMF must also include terms like
⇠ ✏↵� ck+Q/2,↵c�k+Q/2,�, and we defer this case to future work.
Fermi statistics requires �S (�k) = �S (k), while hermiticity
requires �⇤Q(k) = ��Q(k). For time-reversal symmetry to be
preserved we need �Q(�k) = �Q(k), but we will not impose
this as a constraint, and so will allow for the breaking of time-
reversal.

The free energy of H obeys the variational principle

F  FMF + hH � HMFiMF (5)

where the average is over a thermal ensemble defined by HMF

at a temperature T . We compute the right hand side in powers
of �S (k) and �Q(k), and replace the inequality by an inequal-
ity. To quadratic order in the order parameters, we write the
result in terms of hermitian functional operators on the Bril-
louin zone as

F = 2
X
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with f the Fermi function. Note that the kernels in Eq. (7)
have an identical form: this is a consequence of the spin-
spin interaction in H; density-density interactions yield dis-
tinct terms in the pairing and charge channels. Note further
that for dispersions with "(k + Q) = �"(k) the two kernels
equal each other: Ref. [17] pointed out that such a relation-
ship holds close to the hot spots of a generic Fermi surface
for certain Q, and this was a key ingredient in the emergent
pseudospin symmetry; we will see the same Q emerge in our
computation below.

From Eq. (6) we see that the linear instability of the metal
occurs via condensation in the eigenmodes of the operators
MS ,Q(k,k0) with the lowest eigenvalues. We have chosen the
specific forms of the kernels in Eq. (7) so that we need only
solve the following eigenvalue problem

3
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X

k0

q
⇧S ,Q(k) �(k�k0)

q
⇧S ,Q(k0) �S ,Q(k0) = �S ,Q�S ,Q(k)

for the minimum eigenvalues �S ,Q and corresponding eigen-
vectors �S ,Q(k), and their structure is independent of the
overall strength of the interaction �0. The order parameters
characterizing the condensed phases will then be �S ,Q(k) /
�S ,Q(k)/

p
⇧S ,Q(k). Our principal numerical results below

are on the Q dependence of �Q, and on the k dependence
of �S ,Q(k) so obtained. We diagonalized the kernels after dis-
cretizing the Brillouin zone to L2 points with L up to 80, with
t1 = 1, t2 = �0.32, and t3 = 0.16 for a range of values of T , µ,
and ⇠.

Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue, and the
corresponding eigenvector �S (k) was well approximated by
the d-wave form ⇠ (cos kx�cos ky) (specific results for the ac-
curacy of this eigenvector appear below in Table I). So d-wave
superconductivity is the primary instability.

We also examined the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Fig ??.
The minimum is at a wavevector along the diagonal with
Q = (Q,Q), with Q close to the value specified by the hot-
spot computation of Ref. [17]. There are also notable station-
ary points in the eigenvalues at (Q, 0), (0, 0) and (⇡, ⇡), whose
nature will become clearer after consideration of the eigen-
vectors below.

We found that we could characterize the eigenvectors
�S ,Q(k) e�ciently by an expansion in simple basis functions,
 �(k) of the square lattice space group. For this, our specific
parameterization of the charge order �Q(k) in Eq. (4) we im-
portant, in which we identified Q and k as the center-of-mass
and relative momenta of the particle-hole pair. Then we can
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nature will become clearer after consideration of the eigen-
vectors below.

We found that we could characterize the eigenvectors
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case of co-existing order, HMF must also include terms like
⇠ ✏↵� ck+Q/2,↵c�k+Q/2,�, and we defer this case to future work.
Fermi statistics requires �S (�k) = �S (k), while hermiticity
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with f the Fermi function. Note that the kernels in Eq. (7)
have an identical form: this is a consequence of the spin-
spin interaction in H; density-density interactions yield dis-
tinct terms in the pairing and charge channels. Note further
that for dispersions with "(k + Q) = �"(k) the two kernels
equal each other: Ref. [17] pointed out that such a relation-
ship holds close to the hot spots of a generic Fermi surface
for certain Q, and this was a key ingredient in the emergent
pseudospin symmetry; we will see the same Q emerge in our
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reversal.

The free energy of H obeys the variational principle

F  FMF + hH � HMFiMF (5)

where the average is over a thermal ensemble defined by HMF
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for certain Q, and this was a key ingredient in the emergent
pseudospin symmetry; we will see the same Q emerge in our
computation below.

From Eq. (6) we see that the linear instability of the metal
occurs via condensation in the eigenmodes of the operators
MS ,Q(k,k0) with the lowest eigenvalues. We have chosen the
specific forms of the kernels in Eq. (7) so that we need only
solve the following eigenvalue problem

3
V

X

k0

q
⇧S ,Q(k) �(k�k0)

q
⇧S ,Q(k0) �S ,Q(k0) = �S ,Q�S ,Q(k)

for the minimum eigenvalues �S ,Q and corresponding eigen-
vectors �S ,Q(k), and their structure is independent of the
overall strength of the interaction �0. The order parameters
characterizing the condensed phases will then be �S ,Q(k) /
�S ,Q(k)/

p
⇧S ,Q(k). Our principal numerical results below

are on the Q dependence of �Q, and on the k dependence
of �S ,Q(k) so obtained. We diagonalized the kernels after dis-
cretizing the Brillouin zone to L2 points with L up to 80, with
t1 = 1, t2 = �0.32, and t3 = 0.16 for a range of values of T , µ,
and ⇠.

Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue, and the
corresponding eigenvector �S (k) was well approximated by
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over wavevectors extends over K = ±(⇡, ⇡(1 � �)), ± (⇡(1 �
�), ⇡), and we will use both the commensurate case � = 0 or
the incommensurate case � = 1/4. We will only need mod-
erate values of ⇠ for our main conclusions, and the e↵ects we
discuss are present even at ⇠ = 1. We do not include an ex-
plicit density-density interaction between the electrons, and
assume its main e↵ect is to renormalize the dispersion.
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optimized over the spin-singlet superconducting pairing func-
tion �S (k), and the density wave orders �Q(k) at the
wavevectors Q. Note that both orders are characterized by
arbitrary functions of k extending over the Brillouin zone,
and these will be determined by a functional minimization
of the free energy. Here, we only consider the cases where
either �S (k) or �Q(k) are non-zero, but not both; in the
case of co-existing order, HMF must also include terms like
⇠ ✏↵� ck+Q/2,↵c�k+Q/2,�, and we defer this case to future work.
Fermi statistics requires �S (�k) = �S (k), while hermiticity
requires �⇤Q(k) = ��Q(k). For time-reversal symmetry to be
preserved we need �Q(�k) = �Q(k), but we will not impose
this as a constraint, and so will allow for the breaking of time-
reversal.

The free energy of H obeys the variational principle

F  FMF + hH � HMFiMF (5)

where the average is over a thermal ensemble defined by HMF

at a temperature T . We compute the right hand side in powers
of �S (k) and �Q(k), and replace the inequality by an inequal-
ity. To quadratic order in the order parameters, we write the
result in terms of hermitian functional operators on the Bril-
louin zone as
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with f the Fermi function. Note that the kernels in Eq. (7)
have an identical form: this is a consequence of the spin-
spin interaction in H; density-density interactions yield dis-
tinct terms in the pairing and charge channels. Note further
that for dispersions with "(k + Q) = �"(k) the two kernels
equal each other: Ref. [17] pointed out that such a relation-
ship holds close to the hot spots of a generic Fermi surface
for certain Q, and this was a key ingredient in the emergent
pseudospin symmetry; we will see the same Q emerge in our
computation below.

From Eq. (6) we see that the linear instability of the metal
occurs via condensation in the eigenmodes of the operators
MS ,Q(k,k0) with the lowest eigenvalues. We have chosen the
specific forms of the kernels in Eq. (7) so that we need only
solve the following eigenvalue problem

3
V

X

k0

q
⇧S ,Q(k) �(k�k0)

q
⇧S ,Q(k0) �S ,Q(k0) = �S ,Q�S ,Q(k)

for the minimum eigenvalues �S ,Q and corresponding eigen-
vectors �S ,Q(k), and their structure is independent of the
overall strength of the interaction �0. The order parameters
characterizing the condensed phases will then be �S ,Q(k) /
�S ,Q(k)/

p
⇧S ,Q(k). Our principal numerical results below

are on the Q dependence of �Q, and on the k dependence
of �S ,Q(k) so obtained. We diagonalized the kernels after dis-
cretizing the Brillouin zone to L2 points with L up to 80, with
t1 = 1, t2 = �0.32, and t3 = 0.16 for a range of values of T , µ,
and ⇠.

Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue, and the
corresponding eigenvector �S (k) was well approximated by
the d-wave form ⇠ (cos kx�cos ky) (specific results for the ac-
curacy of this eigenvector appear below in Table I). So d-wave
superconductivity is the primary instability.

We also examined the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Fig ??.
The minimum is at a wavevector along the diagonal with
Q = (Q,Q), with Q close to the value specified by the hot-
spot computation of Ref. [17]. There are also notable station-
ary points in the eigenvalues at (Q, 0), (0, 0) and (⇡, ⇡), whose
nature will become clearer after consideration of the eigen-
vectors below.

We found that we could characterize the eigenvectors
�S ,Q(k) e�ciently by an expansion in simple basis functions,
 �(k) of the square lattice space group. For this, our specific
parameterization of the charge order �Q(k) in Eq. (4) we im-
portant, in which we identified Q and k as the center-of-mass
and relative momenta of the particle-hole pair. Then we can
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with f the Fermi function. Note that the kernels in Eq. (7)
have an identical form: this is a consequence of the spin-
spin interaction in H; density-density interactions yield dis-
tinct terms in the pairing and charge channels. Note further
that for dispersions with "(k + Q) = �"(k) the two kernels
equal each other: Ref. [17] pointed out that such a relation-
ship holds close to the hot spots of a generic Fermi surface
for certain Q, and this was a key ingredient in the emergent
pseudospin symmetry; we will see the same Q emerge in our
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t1 = 1, t2 = �0.32, and t3 = 0.16 for a range of values of T , µ,
and ⇠.

Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue, and the
corresponding eigenvector �S (k) was well approximated by
the d-wave form ⇠ (cos kx�cos ky) (specific results for the ac-
curacy of this eigenvector appear below in Table I). So d-wave
superconductivity is the primary instability.

We also examined the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Fig ??.
The minimum is at a wavevector along the diagonal with
Q = (Q,Q), with Q close to the value specified by the hot-
spot computation of Ref. [17]. There are also notable station-
ary points in the eigenvalues at (Q, 0), (0, 0) and (⇡, ⇡), whose
nature will become clearer after consideration of the eigen-
vectors below.

We found that we could characterize the eigenvectors
�S ,Q(k) e�ciently by an expansion in simple basis functions,
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tion �S (k), and the density wave orders �Q(k) at the
wavevectors Q. Note that both orders are characterized by
arbitrary functions of k extending over the Brillouin zone,
and these will be determined by a functional minimization
of the free energy. Here, we only consider the cases where
either �S (k) or �Q(k) are non-zero, but not both; in the
case of co-existing order, HMF must also include terms like
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Fermi statistics requires �S (�k) = �S (k), while hermiticity
requires �⇤Q(k) = ��Q(k). For time-reversal symmetry to be
preserved we need �Q(�k) = �Q(k), but we will not impose
this as a constraint, and so will allow for the breaking of time-
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The free energy of H obeys the variational principle
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with f the Fermi function. Note that the kernels in Eq. (7)
have an identical form: this is a consequence of the spin-
spin interaction in H; density-density interactions yield dis-
tinct terms in the pairing and charge channels. Note further
that for dispersions with "(k + Q) = �"(k) the two kernels
equal each other: Ref. [17] pointed out that such a relation-
ship holds close to the hot spots of a generic Fermi surface
for certain Q, and this was a key ingredient in the emergent
pseudospin symmetry; we will see the same Q emerge in our
computation below.

From Eq. (6) we see that the linear instability of the metal
occurs via condensation in the eigenmodes of the operators
MS ,Q(k,k0) with the lowest eigenvalues. We have chosen the
specific forms of the kernels in Eq. (7) so that we need only
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t1 = 1, t2 = �0.32, and t3 = 0.16 for a range of values of T , µ,
and ⇠.

Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue, and the
corresponding eigenvector �S (k) was well approximated by
the d-wave form ⇠ (cos kx�cos ky) (specific results for the ac-
curacy of this eigenvector appear below in Table I). So d-wave
superconductivity is the primary instability.

We also examined the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Fig ??.
The minimum is at a wavevector along the diagonal with
Q = (Q,Q), with Q close to the value specified by the hot-
spot computation of Ref. [17]. There are also notable station-
ary points in the eigenvalues at (Q, 0), (0, 0) and (⇡, ⇡), whose
nature will become clearer after consideration of the eigen-
vectors below.

We found that we could characterize the eigenvectors
�S ,Q(k) e�ciently by an expansion in simple basis functions,
 �(k) of the square lattice space group. For this, our specific
parameterization of the charge order �Q(k) in Eq. (4) we im-
portant, in which we identified Q and k as the center-of-mass
and relative momenta of the particle-hole pair. Then we can

Hartree-Fock computation on lattice model

2

romagnet wavevector; we assume the simple form

�(q) =
X

K

�0

⇠�2 + 2(2 � cos(qx � Kx) � cos(qy � Ky))
(3)

where ⇠ is the antiferromagnetic correlation length. The sum
over wavevectors extends over K = ±(⇡, ⇡(1 � �)), ± (⇡(1 �
�), ⇡), and we will use both the commensurate case � = 0 or
the incommensurate case � = 1/4. We will only need mod-
erate values of ⇠ for our main conclusions, and the e↵ects we
discuss are present even at ⇠ = 1. We do not include an ex-
plicit density-density interaction between the electrons, and
assume its main e↵ect is to renormalize the dispersion.

We will perform an unrestricted Hartree-Fock-BCS analy-
sis of H. We need the best variational estimate for the mean-
field Hamiltonian

HMF =
X

k

"
"(k) c†k,↵ck,↵ + �S (k) ✏↵� ck,↵c�k� + H.c.

+
X

Q

�Q(k) c†k+Q/2,↵ck�Q/2,↵

#
, (4)

optimized over the spin-singlet superconducting pairing func-
tion �S (k), and the density wave orders �Q(k) at the
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and ⇠.

Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue, and the
corresponding eigenvector �S (k) was well approximated by
the d-wave form ⇠ (cos kx�cos ky) (specific results for the ac-
curacy of this eigenvector appear below in Table I). So d-wave
superconductivity is the primary instability.

We also examined the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Fig ??.
The minimum is at a wavevector along the diagonal with
Q = (Q,Q), with Q close to the value specified by the hot-
spot computation of Ref. [17]. There are also notable station-
ary points in the eigenvalues at (Q, 0), (0, 0) and (⇡, ⇡), whose
nature will become clearer after consideration of the eigen-
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We found that we could characterize the eigenvectors
�S ,Q(k) e�ciently by an expansion in simple basis functions,
 �(k) of the square lattice space group. For this, our specific
parameterization of the charge order �Q(k) in Eq. (4) we im-
portant, in which we identified Q and k as the center-of-mass
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Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue (indeed,
BCS theory implies ��S diverges logarithmically as T ! 0),
and the corresponding eigenvector �S (k) was well approxi-
mated by the d-wave form ⇠ (cos kx � cos ky) (specific results
for the accuracy of this eigenvector appear below in Table I).
So d-wave superconductivity is the primary instability.

Then we turned to the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Figs 2
and 3. The global minimum is at a wavevector along the

FIG. 2: Plot of �Q/A, where �Q is the smallest charge order eigen-
value, as a function of Qx and Qy. We used µ = �1.11856, ⇠ = 2,
T = 0.06, � = 1/4 and L = 64. Charge order appears when �Q < �1.
The global minimum is close to (Q0,Q0) where Q0 = 4⇡/11 (see
Fig. 1) for the present parameters. Notice also the blue valleys ex-
tending from (Q0,Q0) to (Q0, 0) and (0,Q0).
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FIG. 3: Plot of the eigenvalue of Fig. 2 along the Brillouin zone di-
agonal with Q = (Q,Q) (full line), and along the line Q = (Q0,Q)
(dashed line), now with L = 80. The eigenfunction �Q(k) has pre-
dominant d symmetry (as in the state of Ref. [20]) to the left of
the filled circles, and predominant px,y symmetry with time-reversal
breaking (as in the state of Ref. [25]) to the right of the filled circles.
The Q = (0, 0) point corresponds to Ising nematic order [27–29].

diagonal with Q = (Q,Q), with Q ⇡ Q0 = 4⇡/11, the value
specified by Fig. 1 for the present Fermi surface. There are

�  �(k) Q = Q = Q = Q = �S (k)
(Q0,Q0) (Q0, 0) (0, 0) (⇡, ⇡)

s 1 0 -0.226 0 0 0
s0 cos kx + cos ky 0 0.040 0 0 0
s00 cos(2kx) + cos(2ky) 0 -0.051 0 0 0
d cos kx � cos ky 0.993 0.964 0.997 0 0.998
d0 cos(2kx) � cos(2ky) - 0.058 -0.057 -0.044 0 -0.047
dxy 2 sin kx sin ky 0 0 0 0 0
px

p
2 sin kx 0 0 0 0.706 0

py
p

2 sin ky 0 0 0 -0.706 0
g (cos kx � cos ky) -0.010 0 0 0 0
⇥
p

8 sin kx sin ky

TABLE I: Values of cQ,� in the expansion in Eq. (8) for various val-
ues Q and �. The values of cQ,� are normalized so that

P
� |cQ,� |2 =

1, where the sum over � includes the small contributions from higher
order basis functions not shown above. Values shown as 0 are con-
strained to be exactly zero by symmetry. The last column shows the
coe�cients in the corresponding expansion for �S (k). Parameters
are as in Fig. 2.

also notable stationary points in the eigenvalues at (Q0, 0),
(0, 0) and (⇡, ⇡), whose nature becomes clearer upon consid-
eration of the corresponding eigenvectors. We found that we
could characterize the eigenvectors �S ,Q(k) e�ciently by an
expansion in simple basis functions,  �(k) of the square lat-
tice space group. For this, our specific parameterization of the
charge order �Q(k) in Eq. (3) is important, in which we iden-
tified Q and k as the center-of-mass and relative momenta of
the particle-hole pair respectively. Then we can write

�Q(k) =
X

�

cQ,�  �(k) (8)

where � labels various orthonormal basis functions, and cQ,�
are numerical coe�cients that we determine. Thus we have
the s basis function  s(k) = 1, the extended s function
 s0 (k) = cos kx + cos ky, the d function  d(k) = cos kx � cos ky

and so on, as shown in Table I. Depending upon the symmetry
of Q (in particular, the little group of the wavevector Q) and
of the eigenvector, some of the cQ,� may be exactly zero. But
for a generic Q, only time-reversal constrains the values of
cQ,�, and we are allowed to have an admixture of many basis
functions. Nevertheless, we will see that only a small number
of basis functions have appreciable coe�cients, and so Eq. (8)
represents a useful expansion.

At Q = (Q0,Q0), near the global minimum value of �Q, we
see from Table I that �Q(k) is predominantly d, with a small
admixture of g. The g admixture is allowed by the symme-
try of Q along the diagonal. Also, the even parity of �Q(k)
implies that time-reversal is preserved.

For the wavevector Q = (Q0, 0) along the (1, 0) direction,
�Q is a mixture of d and s components, but the d component
is about 4 times larger. The s component is allowed by the
symmetry of Q along the principal square lattice axes.

Next, note that at Q = 0, we find that �Q(k) is purely d.
Condensation in this mode corresponds to Ising-nematic order
[27–29].
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Charge-ordering eigenvector

3

�  �(k) Q = Q = Q = Q = �S (k)
(1.15,1.15) (1.15, 0) (0,0) (⇡, ⇡)

s 1 0 -0.231 0 0 0
s0 cos kx + cos ky 0 0.044 0 0 0
s00 cos(2kx) + cos(2ky) 0 -0.046 0 0 0
d cos kx � cos ky 0.993 0.963 0.997 0 0.997
d0 cos(2kx) � cos(2ky) - 0.069 -0.067 -0.057 0 -0.056
d00 2 sin kx sin ky 0 0 0 0 0
px

p
2 sin kx 0 0 0 0.706 0

py
p

2 sin ky 0 0 0 -0.706 0
g (cos kx � cos ky) -0.009 0 0 0 0
⇥
p

8 sin kx sin ky

TABLE I: Values of cQ,� in the expansion in Eq. (9) for various val-
ues Q and �. The last column shows the coe�cients in the corre-
sponding expansion for �S (k). We used µ = �1.2, ⇠ = 2, T = 0.06,
and L = 80.

write

�Q(k) =
X

�

cQ,�  �(k) (9)

where � labels various orthonormal basis functions, and cQ,�
are numerical coe�cients that we determine. Thus we have
the s basis function  s(k) = 1, the extended s function
 s0 (k) = cos kx + cos ky, the d function  d(k) = cos kx � cos ky

and so on, as shown in Table I. Depending upon the symmetry
of Q (in particular, the little group of the wavevector Q) and
of the eigenvector, some of the cQ,� may be exactly zero. But
for a generic Q, only time-reversal constrains the values of
cQ,�, and we are allowed to have an admixture of many basis
functions. Nevertheless, we will see that only a small number
of basis functions have appreciable coe�cients, and so Eq. (9)
represents a useful expansion.
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Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue (indeed,
BCS theory implies ��S diverges logarithmically as T ! 0),
and the corresponding eigenvector �S (k) was well approxi-
mated by the d-wave form ⇠ (cos kx � cos ky) (specific results
for the accuracy of this eigenvector appear below in Table I).
So d-wave superconductivity is the primary instability.

Then we turned to the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Figs 2
and 3. The global minimum is at a wavevector along the

FIG. 2: Plot of �Q/A, where �Q is the smallest charge order eigen-
value, as a function of Qx and Qy. We used µ = �1.11856, ⇠ = 2,
T = 0.06, � = 1/4 and L = 64. Charge order appears when �Q < �1.
The global minimum is close to (Q0,Q0) where Q0 = 4⇡/11 (see
Fig. 1) for the present parameters. Notice also the blue valleys ex-
tending from (Q0,Q0) to (Q0, 0) and (0,Q0).
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FIG. 3: Plot of the eigenvalue of Fig. 2 along the Brillouin zone di-
agonal with Q = (Q,Q) (full line), and along the line Q = (Q0,Q)
(dashed line), now with L = 80. The eigenfunction �Q(k) has pre-
dominant d symmetry (as in the state of Ref. [20]) to the left of
the filled circles, and predominant px,y symmetry with time-reversal
breaking (as in the state of Ref. [25]) to the right of the filled circles.
The Q = (0, 0) point corresponds to Ising nematic order [27–29].

diagonal with Q = (Q,Q), with Q ⇡ Q0 = 4⇡/11, the value
specified by Fig. 1 for the present Fermi surface. There are

�  �(k) Q = Q = Q = Q = �S (k)
(Q0,Q0) (Q0, 0) (0, 0) (⇡, ⇡)

s 1 0 -0.226 0 0 0
s0 cos kx + cos ky 0 0.040 0 0 0
s00 cos(2kx) + cos(2ky) 0 -0.051 0 0 0
d cos kx � cos ky 0.993 0.964 0.997 0 0.998
d0 cos(2kx) � cos(2ky) - 0.058 -0.057 -0.044 0 -0.047
dxy 2 sin kx sin ky 0 0 0 0 0
px

p
2 sin kx 0 0 0 0.706 0

py
p

2 sin ky 0 0 0 -0.706 0
g (cos kx � cos ky) -0.010 0 0 0 0
⇥
p

8 sin kx sin ky

TABLE I: Values of cQ,� in the expansion in Eq. (8) for various val-
ues Q and �. The values of cQ,� are normalized so that

P
� |cQ,� |2 =

1, where the sum over � includes the small contributions from higher
order basis functions not shown above. Values shown as 0 are con-
strained to be exactly zero by symmetry. The last column shows the
coe�cients in the corresponding expansion for �S (k). Parameters
are as in Fig. 2.

also notable stationary points in the eigenvalues at (Q0, 0),
(0, 0) and (⇡, ⇡), whose nature becomes clearer upon consid-
eration of the corresponding eigenvectors. We found that we
could characterize the eigenvectors �S ,Q(k) e�ciently by an
expansion in simple basis functions,  �(k) of the square lat-
tice space group. For this, our specific parameterization of the
charge order �Q(k) in Eq. (3) is important, in which we iden-
tified Q and k as the center-of-mass and relative momenta of
the particle-hole pair respectively. Then we can write

�Q(k) =
X

�

cQ,�  �(k) (8)

where � labels various orthonormal basis functions, and cQ,�
are numerical coe�cients that we determine. Thus we have
the s basis function  s(k) = 1, the extended s function
 s0 (k) = cos kx + cos ky, the d function  d(k) = cos kx � cos ky

and so on, as shown in Table I. Depending upon the symmetry
of Q (in particular, the little group of the wavevector Q) and
of the eigenvector, some of the cQ,� may be exactly zero. But
for a generic Q, only time-reversal constrains the values of
cQ,�, and we are allowed to have an admixture of many basis
functions. Nevertheless, we will see that only a small number
of basis functions have appreciable coe�cients, and so Eq. (8)
represents a useful expansion.

At Q = (Q0,Q0), near the global minimum value of �Q, we
see from Table I that �Q(k) is predominantly d, with a small
admixture of g. The g admixture is allowed by the symme-
try of Q along the diagonal. Also, the even parity of �Q(k)
implies that time-reversal is preserved.

For the wavevector Q = (Q0, 0) along the (1, 0) direction,
�Q is a mixture of d and s components, but the d component
is about 4 times larger. The s component is allowed by the
symmetry of Q along the principal square lattice axes.

Next, note that at Q = 0, we find that �Q(k) is purely d.
Condensation in this mode corresponds to Ising-nematic order
[27–29].
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Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue (indeed,
BCS theory implies ��S diverges logarithmically as T ! 0),
and the corresponding eigenvector �S (k) was well approxi-
mated by the d-wave form ⇠ (cos kx � cos ky) (specific results
for the accuracy of this eigenvector appear below in Table I).
So d-wave superconductivity is the primary instability.

Then we turned to the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Figs 2
and 3. The global minimum is at a wavevector along the

FIG. 2: Plot of �Q/A, where �Q is the smallest charge order eigen-
value, as a function of Qx and Qy. We used µ = �1.11856, ⇠ = 2,
T = 0.06, � = 1/4 and L = 64. Charge order appears when �Q < �1.
The global minimum is close to (Q0,Q0) where Q0 = 4⇡/11 (see
Fig. 1) for the present parameters. Notice also the blue valleys ex-
tending from (Q0,Q0) to (Q0, 0) and (0,Q0).
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FIG. 3: Plot of the eigenvalue of Fig. 2 along the Brillouin zone di-
agonal with Q = (Q,Q) (full line), and along the line Q = (Q0,Q)
(dashed line), now with L = 80. The eigenfunction �Q(k) has pre-
dominant d symmetry (as in the state of Ref. [20]) to the left of
the filled circles, and predominant px,y symmetry with time-reversal
breaking (as in the state of Ref. [25]) to the right of the filled circles.
The Q = (0, 0) point corresponds to Ising nematic order [27–29].

diagonal with Q = (Q,Q), with Q ⇡ Q0 = 4⇡/11, the value
specified by Fig. 1 for the present Fermi surface. There are

�  �(k) Q = Q = Q = Q = �S (k)
(Q0,Q0) (Q0, 0) (0, 0) (⇡, ⇡)

s 1 0 -0.226 0 0 0
s0 cos kx + cos ky 0 0.040 0 0 0
s00 cos(2kx) + cos(2ky) 0 -0.051 0 0 0
d cos kx � cos ky 0.993 0.964 0.997 0 0.998
d0 cos(2kx) � cos(2ky) - 0.058 -0.057 -0.044 0 -0.047
dxy 2 sin kx sin ky 0 0 0 0 0
px

p
2 sin kx 0 0 0 0.706 0

py
p

2 sin ky 0 0 0 -0.706 0
g (cos kx � cos ky) -0.010 0 0 0 0
⇥
p

8 sin kx sin ky

TABLE I: Values of cQ,� in the expansion in Eq. (8) for various val-
ues Q and �. The values of cQ,� are normalized so that

P
� |cQ,� |2 =

1, where the sum over � includes the small contributions from higher
order basis functions not shown above. Values shown as 0 are con-
strained to be exactly zero by symmetry. The last column shows the
coe�cients in the corresponding expansion for �S (k). Parameters
are as in Fig. 2.

also notable stationary points in the eigenvalues at (Q0, 0),
(0, 0) and (⇡, ⇡), whose nature becomes clearer upon consid-
eration of the corresponding eigenvectors. We found that we
could characterize the eigenvectors �S ,Q(k) e�ciently by an
expansion in simple basis functions,  �(k) of the square lat-
tice space group. For this, our specific parameterization of the
charge order �Q(k) in Eq. (3) is important, in which we iden-
tified Q and k as the center-of-mass and relative momenta of
the particle-hole pair respectively. Then we can write

�Q(k) =
X

�

cQ,�  �(k) (8)

where � labels various orthonormal basis functions, and cQ,�
are numerical coe�cients that we determine. Thus we have
the s basis function  s(k) = 1, the extended s function
 s0 (k) = cos kx + cos ky, the d function  d(k) = cos kx � cos ky

and so on, as shown in Table I. Depending upon the symmetry
of Q (in particular, the little group of the wavevector Q) and
of the eigenvector, some of the cQ,� may be exactly zero. But
for a generic Q, only time-reversal constrains the values of
cQ,�, and we are allowed to have an admixture of many basis
functions. Nevertheless, we will see that only a small number
of basis functions have appreciable coe�cients, and so Eq. (8)
represents a useful expansion.

At Q = (Q0,Q0), near the global minimum value of �Q, we
see from Table I that �Q(k) is predominantly d, with a small
admixture of g. The g admixture is allowed by the symme-
try of Q along the diagonal. Also, the even parity of �Q(k)
implies that time-reversal is preserved.

For the wavevector Q = (Q0, 0) along the (1, 0) direction,
�Q is a mixture of d and s components, but the d component
is about 4 times larger. The s component is allowed by the
symmetry of Q along the principal square lattice axes.

Next, note that at Q = 0, we find that �Q(k) is purely d.
Condensation in this mode corresponds to Ising-nematic order
[27–29].

Charge-ordering eigenvalue

Ising-
nematic 
order
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Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue (indeed,
BCS theory implies ��S diverges logarithmically as T ! 0),
and the corresponding eigenvector �S (k) was well approxi-
mated by the d-wave form ⇠ (cos kx � cos ky) (specific results
for the accuracy of this eigenvector appear below in Table I).
So d-wave superconductivity is the primary instability.

Then we turned to the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Figs 2
and 3. The global minimum is at a wavevector along the

FIG. 2: Plot of �Q/A, where �Q is the smallest charge order eigen-
value, as a function of Qx and Qy. We used µ = �1.11856, ⇠ = 2,
T = 0.06, � = 1/4 and L = 64. Charge order appears when �Q < �1.
The global minimum is close to (Q0,Q0) where Q0 = 4⇡/11 (see
Fig. 1) for the present parameters. Notice also the blue valleys ex-
tending from (Q0,Q0) to (Q0, 0) and (0,Q0).
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FIG. 3: Plot of the eigenvalue of Fig. 2 along the Brillouin zone di-
agonal with Q = (Q,Q) (full line), and along the line Q = (Q0,Q)
(dashed line), now with L = 80. The eigenfunction �Q(k) has pre-
dominant d symmetry (as in the state of Ref. [20]) to the left of
the filled circles, and predominant px,y symmetry with time-reversal
breaking (as in the state of Ref. [25]) to the right of the filled circles.
The Q = (0, 0) point corresponds to Ising nematic order [27–29].

diagonal with Q = (Q,Q), with Q ⇡ Q0 = 4⇡/11, the value
specified by Fig. 1 for the present Fermi surface. There are

�  �(k) Q = Q = Q = Q = �S (k)
(Q0,Q0) (Q0, 0) (0, 0) (⇡, ⇡)

s 1 0 -0.226 0 0 0
s0 cos kx + cos ky 0 0.040 0 0 0
s00 cos(2kx) + cos(2ky) 0 -0.051 0 0 0
d cos kx � cos ky 0.993 0.964 0.997 0 0.998
d0 cos(2kx) � cos(2ky) - 0.058 -0.057 -0.044 0 -0.047
dxy 2 sin kx sin ky 0 0 0 0 0
px

p
2 sin kx 0 0 0 0.706 0

py
p

2 sin ky 0 0 0 -0.706 0
g (cos kx � cos ky) -0.010 0 0 0 0
⇥
p

8 sin kx sin ky

TABLE I: Values of cQ,� in the expansion in Eq. (8) for various val-
ues Q and �. The values of cQ,� are normalized so that

P
� |cQ,� |2 =

1, where the sum over � includes the small contributions from higher
order basis functions not shown above. Values shown as 0 are con-
strained to be exactly zero by symmetry. The last column shows the
coe�cients in the corresponding expansion for �S (k). Parameters
are as in Fig. 2.

also notable stationary points in the eigenvalues at (Q0, 0),
(0, 0) and (⇡, ⇡), whose nature becomes clearer upon consid-
eration of the corresponding eigenvectors. We found that we
could characterize the eigenvectors �S ,Q(k) e�ciently by an
expansion in simple basis functions,  �(k) of the square lat-
tice space group. For this, our specific parameterization of the
charge order �Q(k) in Eq. (3) is important, in which we iden-
tified Q and k as the center-of-mass and relative momenta of
the particle-hole pair respectively. Then we can write

�Q(k) =
X

�

cQ,�  �(k) (8)

where � labels various orthonormal basis functions, and cQ,�
are numerical coe�cients that we determine. Thus we have
the s basis function  s(k) = 1, the extended s function
 s0 (k) = cos kx + cos ky, the d function  d(k) = cos kx � cos ky

and so on, as shown in Table I. Depending upon the symmetry
of Q (in particular, the little group of the wavevector Q) and
of the eigenvector, some of the cQ,� may be exactly zero. But
for a generic Q, only time-reversal constrains the values of
cQ,�, and we are allowed to have an admixture of many basis
functions. Nevertheless, we will see that only a small number
of basis functions have appreciable coe�cients, and so Eq. (8)
represents a useful expansion.

At Q = (Q0,Q0), near the global minimum value of �Q, we
see from Table I that �Q(k) is predominantly d, with a small
admixture of g. The g admixture is allowed by the symme-
try of Q along the diagonal. Also, the even parity of �Q(k)
implies that time-reversal is preserved.

For the wavevector Q = (Q0, 0) along the (1, 0) direction,
�Q is a mixture of d and s components, but the d component
is about 4 times larger. The s component is allowed by the
symmetry of Q along the principal square lattice axes.

Next, note that at Q = 0, we find that �Q(k) is purely d.
Condensation in this mode corresponds to Ising-nematic order
[27–29].

Charge-ordering eigenvalue
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Results. For the full range of parameters examined, we con-
sistently found that �S was the minimal eigenvalue (indeed,
BCS theory implies ��S diverges logarithmically as T ! 0),
and the corresponding eigenvector �S (k) was well approxi-
mated by the d-wave form ⇠ (cos kx � cos ky) (specific results
for the accuracy of this eigenvector appear below in Table I).
So d-wave superconductivity is the primary instability.

Then we turned to the structure of the leading charge order-
ing instability, and show the Q dependence of �Q in Figs 2
and 3. The global minimum is at a wavevector along the

FIG. 2: Plot of �Q/A, where �Q is the smallest charge order eigen-
value, as a function of Qx and Qy. We used µ = �1.11856, ⇠ = 2,
T = 0.06, � = 1/4 and L = 64. Charge order appears when �Q < �1.
The global minimum is close to (Q0,Q0) where Q0 = 4⇡/11 (see
Fig. 1) for the present parameters. Notice also the blue valleys ex-
tending from (Q0,Q0) to (Q0, 0) and (0,Q0).

0 0.25 0.5 0.75 1

-0.25

-0.2

-0.15

FIG. 3: Plot of the eigenvalue of Fig. 2 along the Brillouin zone di-
agonal with Q = (Q,Q) (full line), and along the line Q = (Q0,Q)
(dashed line), now with L = 80. The eigenfunction �Q(k) has pre-
dominant d symmetry (as in the state of Ref. [20]) to the left of
the filled circles, and predominant px,y symmetry with time-reversal
breaking (as in the state of Ref. [25]) to the right of the filled circles.
The Q = (0, 0) point corresponds to Ising nematic order [27–29].

diagonal with Q = (Q,Q), with Q ⇡ Q0 = 4⇡/11, the value
specified by Fig. 1 for the present Fermi surface. There are

�  �(k) Q = Q = Q = Q = �S (k)
(Q0,Q0) (Q0, 0) (0, 0) (⇡, ⇡)

s 1 0 -0.226 0 0 0
s0 cos kx + cos ky 0 0.040 0 0 0
s00 cos(2kx) + cos(2ky) 0 -0.051 0 0 0
d cos kx � cos ky 0.993 0.964 0.997 0 0.998
d0 cos(2kx) � cos(2ky) - 0.058 -0.057 -0.044 0 -0.047
dxy 2 sin kx sin ky 0 0 0 0 0
px

p
2 sin kx 0 0 0 0.706 0

py
p

2 sin ky 0 0 0 -0.706 0
g (cos kx � cos ky) -0.010 0 0 0 0
⇥
p

8 sin kx sin ky

TABLE I: Values of cQ,� in the expansion in Eq. (8) for various val-
ues Q and �. The values of cQ,� are normalized so that

P
� |cQ,� |2 =

1, where the sum over � includes the small contributions from higher
order basis functions not shown above. Values shown as 0 are con-
strained to be exactly zero by symmetry. The last column shows the
coe�cients in the corresponding expansion for �S (k). Parameters
are as in Fig. 2.

also notable stationary points in the eigenvalues at (Q0, 0),
(0, 0) and (⇡, ⇡), whose nature becomes clearer upon consid-
eration of the corresponding eigenvectors. We found that we
could characterize the eigenvectors �S ,Q(k) e�ciently by an
expansion in simple basis functions,  �(k) of the square lat-
tice space group. For this, our specific parameterization of the
charge order �Q(k) in Eq. (3) is important, in which we iden-
tified Q and k as the center-of-mass and relative momenta of
the particle-hole pair respectively. Then we can write

�Q(k) =
X

�

cQ,�  �(k) (8)

where � labels various orthonormal basis functions, and cQ,�
are numerical coe�cients that we determine. Thus we have
the s basis function  s(k) = 1, the extended s function
 s0 (k) = cos kx + cos ky, the d function  d(k) = cos kx � cos ky

and so on, as shown in Table I. Depending upon the symmetry
of Q (in particular, the little group of the wavevector Q) and
of the eigenvector, some of the cQ,� may be exactly zero. But
for a generic Q, only time-reversal constrains the values of
cQ,�, and we are allowed to have an admixture of many basis
functions. Nevertheless, we will see that only a small number
of basis functions have appreciable coe�cients, and so Eq. (8)
represents a useful expansion.

At Q = (Q0,Q0), near the global minimum value of �Q, we
see from Table I that �Q(k) is predominantly d, with a small
admixture of g. The g admixture is allowed by the symme-
try of Q along the diagonal. Also, the even parity of �Q(k)
implies that time-reversal is preserved.

For the wavevector Q = (Q0, 0) along the (1, 0) direction,
�Q is a mixture of d and s components, but the d component
is about 4 times larger. The s component is allowed by the
symmetry of Q along the principal square lattice axes.

Next, note that at Q = 0, we find that �Q(k) is purely d.
Condensation in this mode corresponds to Ising-nematic order
[27–29].
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Finally, note that Fig. 2 also has a broad local minimum
near Q = (⇡, ⇡). Here �Q(k) is found to have the odd-parity
px,y form in Table I. Condensation of this mode will break
time-reversal symmetry, and lead to the state with sponta-
neous orbital currents proposed by Chakravarty et al. [25].

We now study the electronic spectral function in the Q =
(Q0, 0) charge-ordered state. We will work with the state with
bi-directional charge order [13]; in our theory the degeneracy
between the uni-directional and bi-directional charge ordered
state is broken only by terms quartic in the �Q, and we have
not accounted for these here. Choosing the largest 2 compo-
nents from Table I, we have the order parameter

�Q(k) =
(
�s + �d(cos kx � cos ky) , Q = (±Q0, 0)
�s � �d(cos kx � cos ky) , Q = (0,±Q0) (9)

with �s/�d = �0.234. We computed the imaginary part of
the single-electron Green’s function, ImGk,k(! + i⌘), and the
results are shown in Fig. 4. The stability of the Fermi arc in

FIG. 4: Electron spectral density in the phase with bidirectional
charge order at Q = (Q0, 0) and (0,Q0) with Q0 = 4⇡/11. The
left panel show ImGk,k(! + i⌘) at ! = 0 and ⌘ = 0.02; the right
panel shows log

⇥
ImGk,k(! + i⌘)

⇤
for the same parameters, as a way

of enhancing the low intensities. The dashed line is the underlying
Fermi surface of the metal without charge order. The charge order is
as in Eq. (9) with �d = 0.3, and other parameters as in Fig. 2.

‘nodal’ region (kx ⇡ ky) is enhanced [30] because of the weak
coupling to the charge order, arising from the predominant
d character of Eq. (9). However, there is strong coupling in
the anti-nodal region, and any Fermi surfaces appearing in the
latter region should be easily broadened by impurity-induced
phase-shifts in the charge ordering.

Discussion. We have described the features of a simple
model of the underdoped cuprates. We began with a metal
with antiferromagnetic spin correlations. Exchange of the an-
tiferromagnetic fluctuations leads to an attractive force in the
spin-singlet d channel of the particle-particle sector, and a cor-
responding instability to superconductivity. Ref. [20] noted
that the same antiferromagnetic fluctuations also lead to an
enhancement in the spin-singlet d channel of the particle-hole
sector, and a sub-dominant instability to bond order. Here we
have studied the momentum-space structure of the latter in-
stability across the entire Brillouin zone, without any assump-
tions of particle-hole symmetry or the continuum limit, and

found that the spin-singlet, d character persists to the exper-
imentally observed wavevectors. This leads to our proposal
for charge ordering in the underdoped cuprates, summarized
in Eq. (9).

The charge order here, and its connection to spin order,
should be distinguished from that of the “stripe” model [31];
in the latter model, the charge order is tied to the square
of incommensurate spin order, and occurs at twice the spin-
ordering wavevector. Instead, in our model, bond order
appears in a regime of “quantum-disordered” antiferromag-
netism [26]. This is consistent with Ref. [7], which showed
that the spin order and charge order are in distinct doping
regimes in YBa2Cu3Oy, with the charge-ordering regime co-
inciding with regime of quantum oscillations [16, 17].

We also presented computations of the spectral function of
the charge-ordered metal, and showed that it contains “Fermi
arc” features across the diagonals of the Brillouin zone. It was
argued by Harrison and Sebastian [15] that the same Fermi
arcs can be combined to explain the quantum oscillations.

In our computations here, the strongest instability to charge
ordering was at wavevector ±(Q0,±Q0); but notice also the
blue “valleys” in Fig. 2 extending from this wavevector to
(±Q0, 0), (0,±Q0). Other approaches to charge ordering
due to antiferromagnetic interactions [23, 26], which include
strong-coupling e↵ects, do find ordering along the (1, 0) and
(0, 1) directions. Specifically, we expect that extending our
present computation to include pairing e↵ects will enhance
charge order correlations along the (1, 0) and (0, 1) directions,
as was the case in the computations of Ref. [26]. It would also
be interesting to include an applied magnetic field in such an
extension.

For the phase diagram of the hole-doped cuprates, our
model has a quantum-critical point near optimal doping as-
sociated with disappearance of bond order [7, 26] described
by Eq. (9). An important challenge is to use such a critical
point to describe the evolution of the Fermi surface [16], and
the ‘strange’ metal.
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�  �(k) Q = Q = Q = Q = �S (k)
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s 1 0 -0.231 0 0 0
s0 cos kx + cos ky 0 0.044 0 0 0
s00 cos(2kx) + cos(2ky) 0 -0.046 0 0 0
d cos kx � cos ky 0.993 0.963 0.997 0 0.997
d0 cos(2kx) � cos(2ky) - 0.069 -0.067 -0.057 0 -0.056
d00 2 sin kx sin ky 0 0 0 0 0
px

p
2 sin kx 0 0 0 0.706 0

py
p

2 sin ky 0 0 0 -0.706 0
g (cos kx � cos ky) -0.009 0 0 0 0
⇥
p

8 sin kx sin ky

TABLE I: Values of cQ,� in the expansion in Eq. (9) for various val-
ues Q and �. The last column shows the coe�cients in the corre-
sponding expansion for �S (k). We used µ = �1.2, ⇠ = 2, T = 0.06,
and L = 80.

write

�Q(k) =
X

�

cQ,�  �(k) (9)

where � labels various orthonormal basis functions, and cQ,�
are numerical coe�cients that we determine. Thus we have
the s basis function  s(k) = 1, the extended s function
 s0 (k) = cos kx + cos ky, the d function  d(k) = cos kx � cos ky

and so on, as shown in Table I. Depending upon the symmetry
of Q (in particular, the little group of the wavevector Q) and
of the eigenvector, some of the cQ,� may be exactly zero. But
for a generic Q, only time-reversal constrains the values of
cQ,�, and we are allowed to have an admixture of many basis
functions. Nevertheless, we will see that only a small number
of basis functions have appreciable coe�cients, and so Eq. (9)
represents a useful expansion.

D
c†k�Q/2,↵ck+Q/2,↵

E
/ �Q(k) = �0(cos kx � cos ky)

with Q = (±Q, 0), (0,±Q).
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Finally, note that Fig. 2 also has a broad local minimum
near Q = (⇡, ⇡). Here �Q(k) is found to have the odd-parity
px,y form in Table I. Condensation of this mode will break
time-reversal symmetry, and lead to the state with sponta-
neous orbital currents proposed by Chakravarty et al. [25].

We now study the electronic spectral function in the Q =
(Q0, 0) charge-ordered state. We will work with the state with
bi-directional charge order [13]; in our theory the degeneracy
between the uni-directional and bi-directional charge ordered
state is broken only by terms quartic in the �Q, and we have
not accounted for these here. Choosing the largest 2 compo-
nents from Table I, we have the order parameter

�Q(k) =
(
�s + �d(cos kx � cos ky) , Q = (±Q0, 0)
�s � �d(cos kx � cos ky) , Q = (0,±Q0) (9)

with �s/�d = �0.234. We computed the imaginary part of
the single-electron Green’s function, ImGk,k(! + i⌘), and the
results are shown in Fig. 4. The stability of the Fermi arc in

FIG. 4: Electron spectral density in the phase with bidirectional
charge order at Q = (Q0, 0) and (0,Q0) with Q0 = 4⇡/11. The
left panel show ImGk,k(! + i⌘) at ! = 0 and ⌘ = 0.02; the right
panel shows log

⇥
ImGk,k(! + i⌘)

⇤
for the same parameters, as a way

of enhancing the low intensities. The dashed line is the underlying
Fermi surface of the metal without charge order. The charge order is
as in Eq. (9) with �d = 0.3, and other parameters as in Fig. 2.

‘nodal’ region (kx ⇡ ky) is enhanced [30] because of the weak
coupling to the charge order, arising from the predominant
d character of Eq. (9). However, there is strong coupling in
the anti-nodal region, and any Fermi surfaces appearing in the
latter region should be easily broadened by impurity-induced
phase-shifts in the charge ordering.

Discussion. We have described the features of a simple
model of the underdoped cuprates. We began with a metal
with antiferromagnetic spin correlations. Exchange of the an-
tiferromagnetic fluctuations leads to an attractive force in the
spin-singlet d channel of the particle-particle sector, and a cor-
responding instability to superconductivity. Ref. [20] noted
that the same antiferromagnetic fluctuations also lead to an
enhancement in the spin-singlet d channel of the particle-hole
sector, and a sub-dominant instability to bond order. Here we
have studied the momentum-space structure of the latter in-
stability across the entire Brillouin zone, without any assump-
tions of particle-hole symmetry or the continuum limit, and

found that the spin-singlet, d character persists to the exper-
imentally observed wavevectors. This leads to our proposal
for charge ordering in the underdoped cuprates, summarized
in Eq. (9).

The charge order here, and its connection to spin order,
should be distinguished from that of the “stripe” model [31];
in the latter model, the charge order is tied to the square
of incommensurate spin order, and occurs at twice the spin-
ordering wavevector. Instead, in our model, bond order
appears in a regime of “quantum-disordered” antiferromag-
netism [26]. This is consistent with Ref. [7], which showed
that the spin order and charge order are in distinct doping
regimes in YBa2Cu3Oy, with the charge-ordering regime co-
inciding with regime of quantum oscillations [16, 17].

We also presented computations of the spectral function of
the charge-ordered metal, and showed that it contains “Fermi
arc” features across the diagonals of the Brillouin zone. It was
argued by Harrison and Sebastian [15] that the same Fermi
arcs can be combined to explain the quantum oscillations.

In our computations here, the strongest instability to charge
ordering was at wavevector ±(Q0,±Q0); but notice also the
blue “valleys” in Fig. 2 extending from this wavevector to
(±Q0, 0), (0,±Q0). Other approaches to charge ordering
due to antiferromagnetic interactions [23, 26], which include
strong-coupling e↵ects, do find ordering along the (1, 0) and
(0, 1) directions. Specifically, we expect that extending our
present computation to include pairing e↵ects will enhance
charge order correlations along the (1, 0) and (0, 1) directions,
as was the case in the computations of Ref. [26]. It would also
be interesting to include an applied magnetic field in such an
extension.

For the phase diagram of the hole-doped cuprates, our
model has a quantum-critical point near optimal doping as-
sociated with disappearance of bond order [7, 26] described
by Eq. (9). An important challenge is to use such a critical
point to describe the evolution of the Fermi surface [16], and
the ‘strange’ metal.

Acknowledgments. We thank for A. Chubukov, D. Chowd-
hury, J. C. Davis, E. Demler, K. Efetov, D. Hawthorn,
P. Hirschfeld, J. Ho↵man, H. Meier, W. Metzner, C. Pépin,
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Applies without 
changes to the 

microscopic band 
structure in the 

iron-based 
superconductors
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QMC for the onset of antiferromagnetism

Can integrate out ~' to
obtain an extended
Hubbard model. The

interactions in this model
only couple electrons in

separate bands.
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Hot spots in a two band model

QMC for the onset of antiferromagnetism
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 Metals with antiferromagnetic spin correlations 
have nearly degenerate instabilities: to d-wave 
superconductivity, and to a charge density wave with 
a d-wave form factor.

 New sign-problem-free quantum Monte Carlo for 
studying such metals. Obtained (first ?) convincing 
evidence for unconventional superconductivity at 
strong coupling.

 Good prospects for studying competing charge 
orders, and non-Fermi liquid physics at non-zero 
temperature.

Conclusions
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