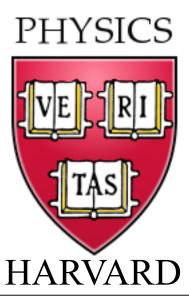
Metals near the onset of antiferromagnetism: instabilities to d-wave pairing and bond order

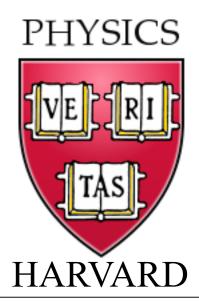
Subir Sachdev

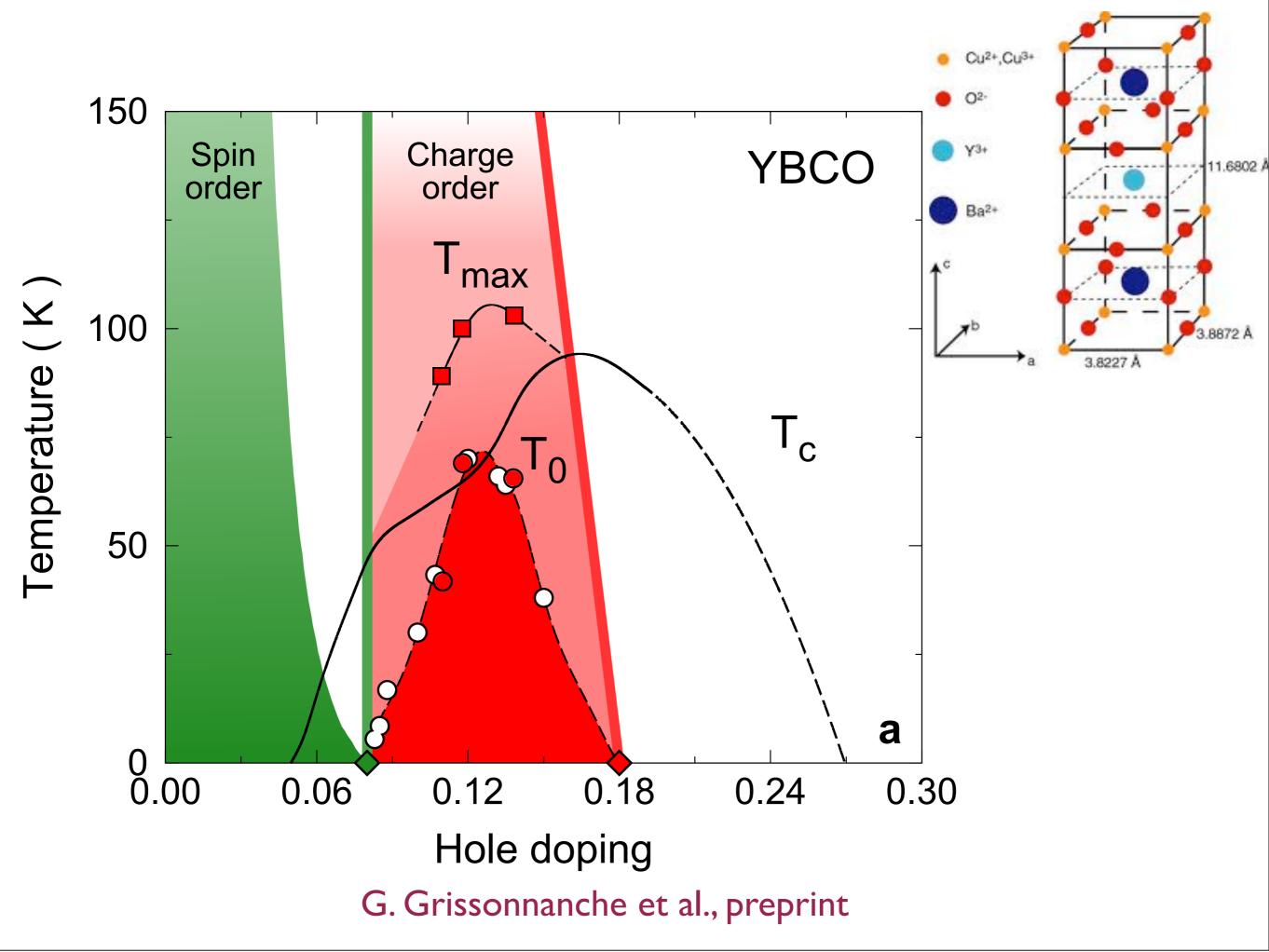


sachdev.physics.harvard.edu

Max Metlitski

Erez Berg

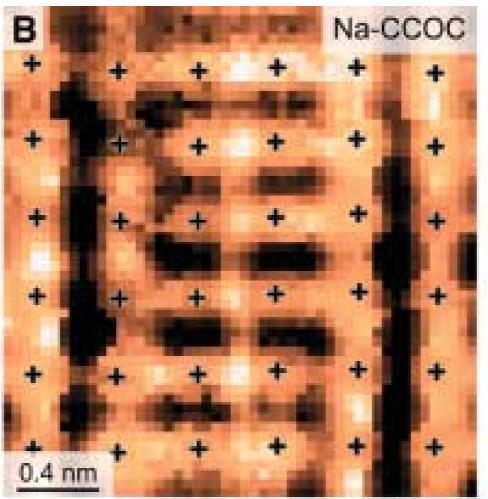




An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates

Y. Kohsaka,¹ C. Taylor,¹ K. Fujita,^{1,2} A. Schmidt,¹ C. Lupien,³ T. Hanaguri,⁴ M. Azuma,⁵ M. Takano,⁵ H. Eisaki,⁶ H. Takagi,^{2,4} S. Uchida,^{2,7} J. C. Davis^{1,8*}

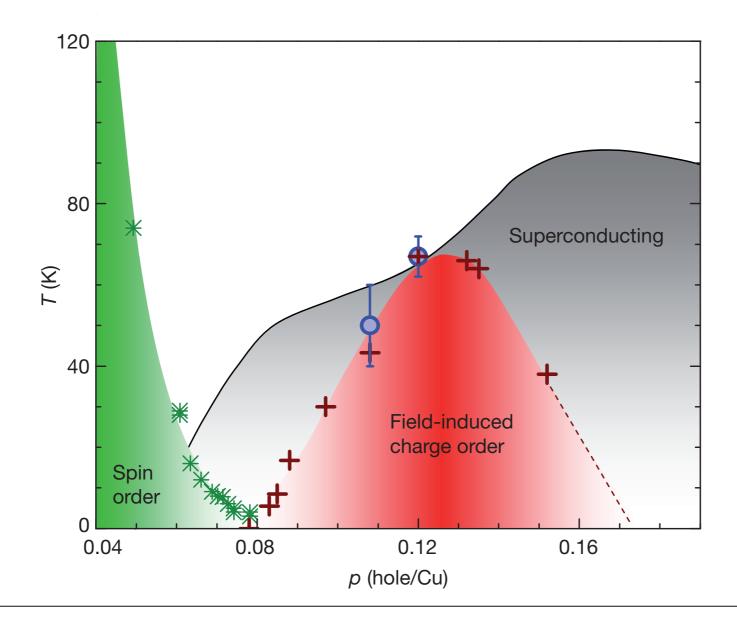
9 MARCH 2007 VOL 315 SCIENCE

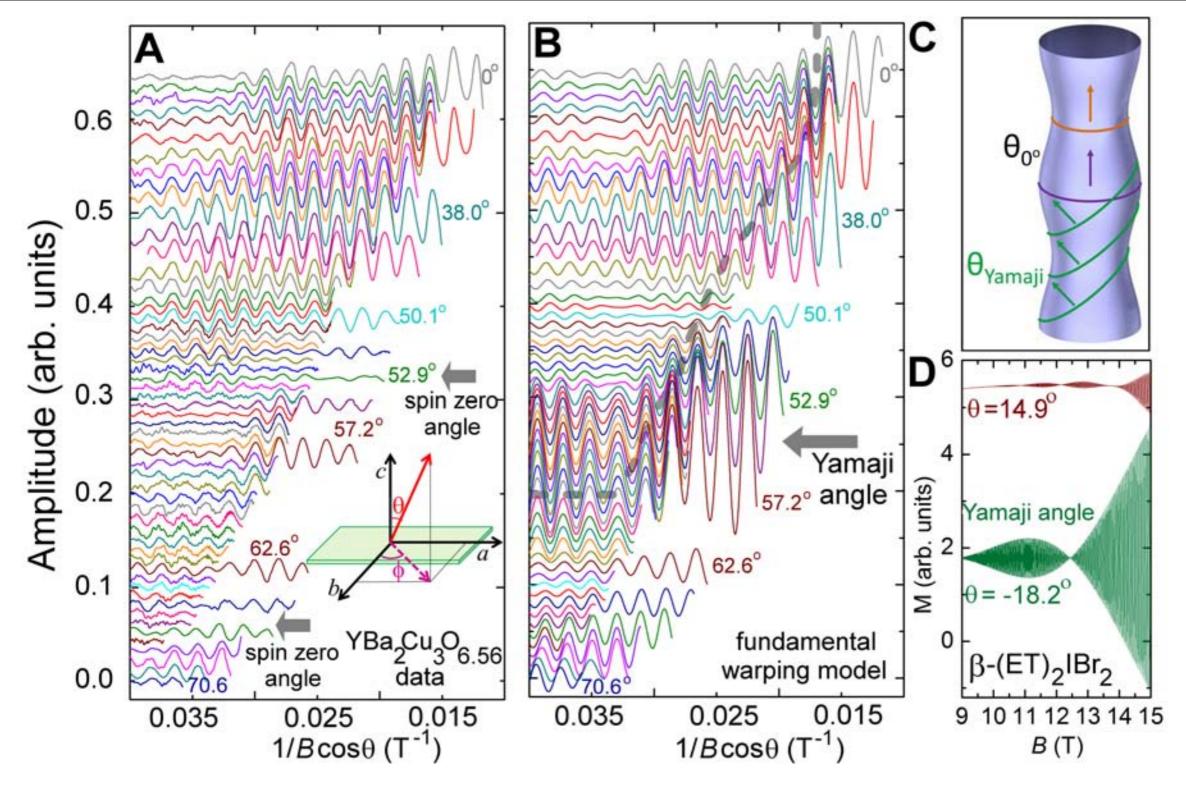


Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa₂Cu₃O_y

Tao Wu¹, Hadrien Mayaffre¹, Steffen Krämer¹, Mladen Horvatić¹, Claude Berthier¹, W. N. Hardy^{2,3}, Ruixing Liang^{2,3}, D. A. Bonn^{2,3} & Marc-Henri Julien¹

8 SEPTEMBER 2011 | VOL 477 | NATURE | 191





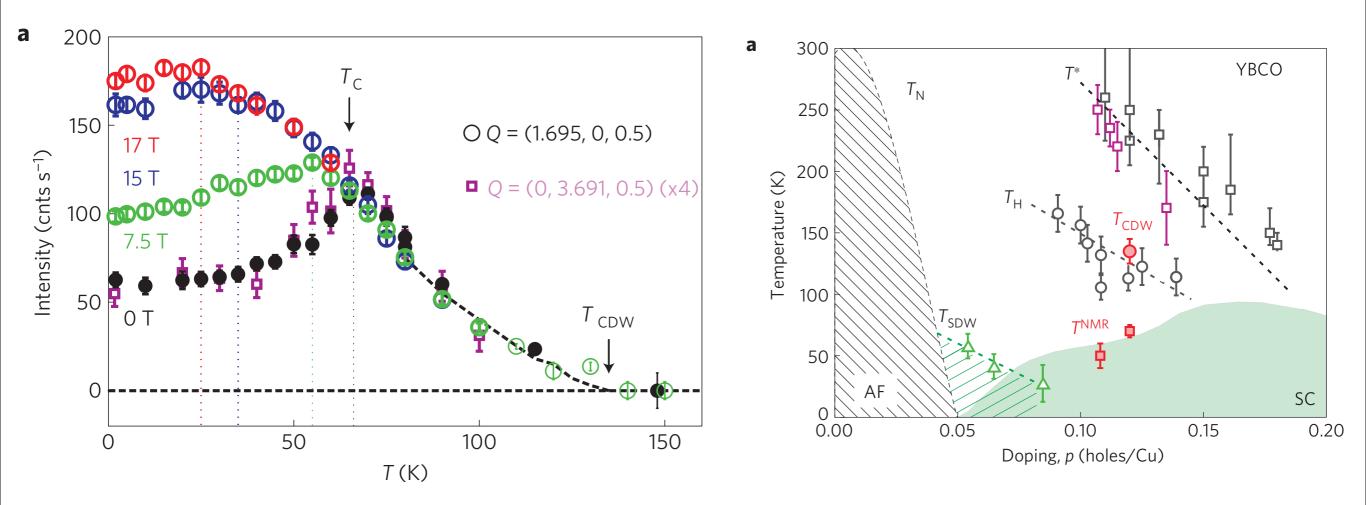
Twofold twisted Fermi surface from staggered order in an underdoped high T_c superconductor

Suchitra E. Sebastian,^{1*} N. Harrison,² F. F. Balakirev,² M. M. Altarawneh,^{2,3} Ruixing Liang,^{4,5} D. A. Bonn,^{4,5} W. N. Hardy,^{4,5} G. G. Lonzarich,¹

Direct observation of competition between superconductivity and charge density wave order in $YBa_2Cu_3O_{6.67}$

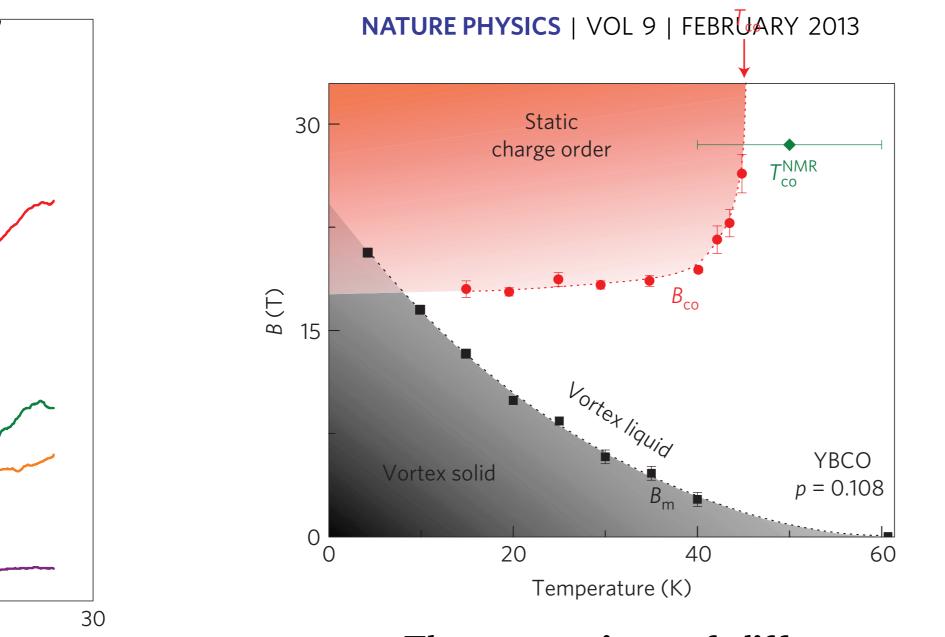
J. Chang^{1,2}*, E. Blackburn³, A. T. Holmes³, N. B. Christensen⁴, J. Larsen^{4,5}, J. Mesot^{1,2}, Ruixing Liang^{6,7}, D. A. Bonn^{6,7}, W. N. Hardy^{6,7}, A. Watenphul⁸, M. v. Zimmermann⁸, E. M. Forgan³ and S. M. Hayden⁹

NATURE PHYSICS | VOL 8 | DECEMBER 2012 |



Thermodynamic phase diagram of static charge order in underdoped $YBa_2Cu_3O_y$

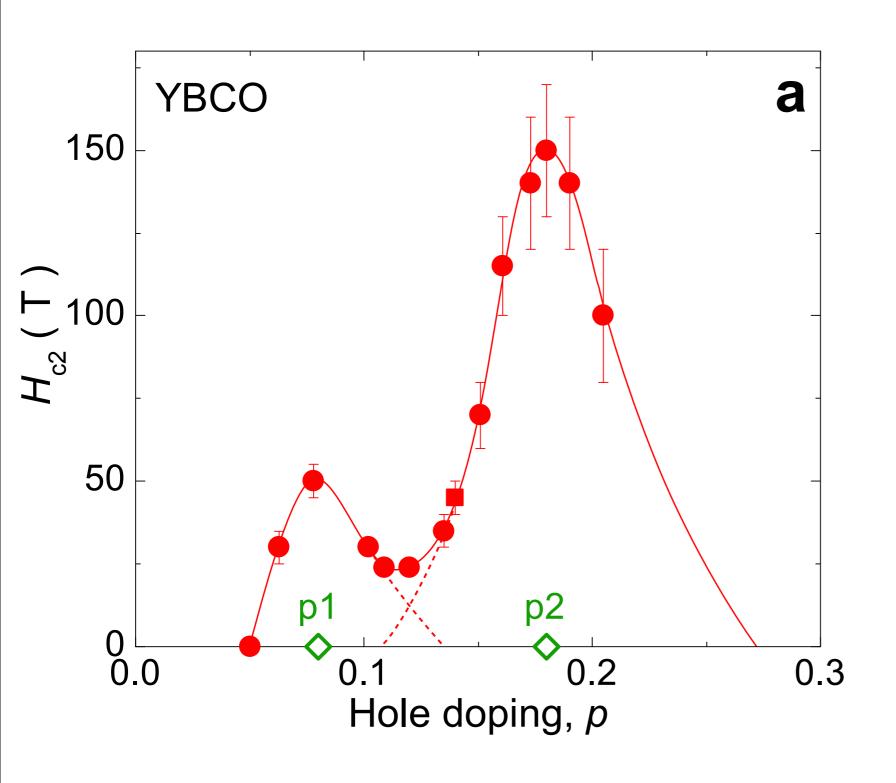
David LeBoeuf¹*, S. Krämer², W. N. Hardy^{3,4}, Ruixing Liang^{3,4}, D. A. Bonn^{3,4} and Cyril Proust^{1,4}*

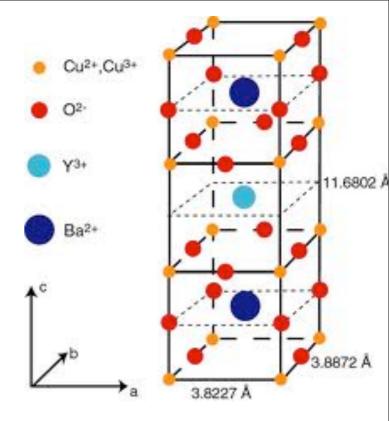




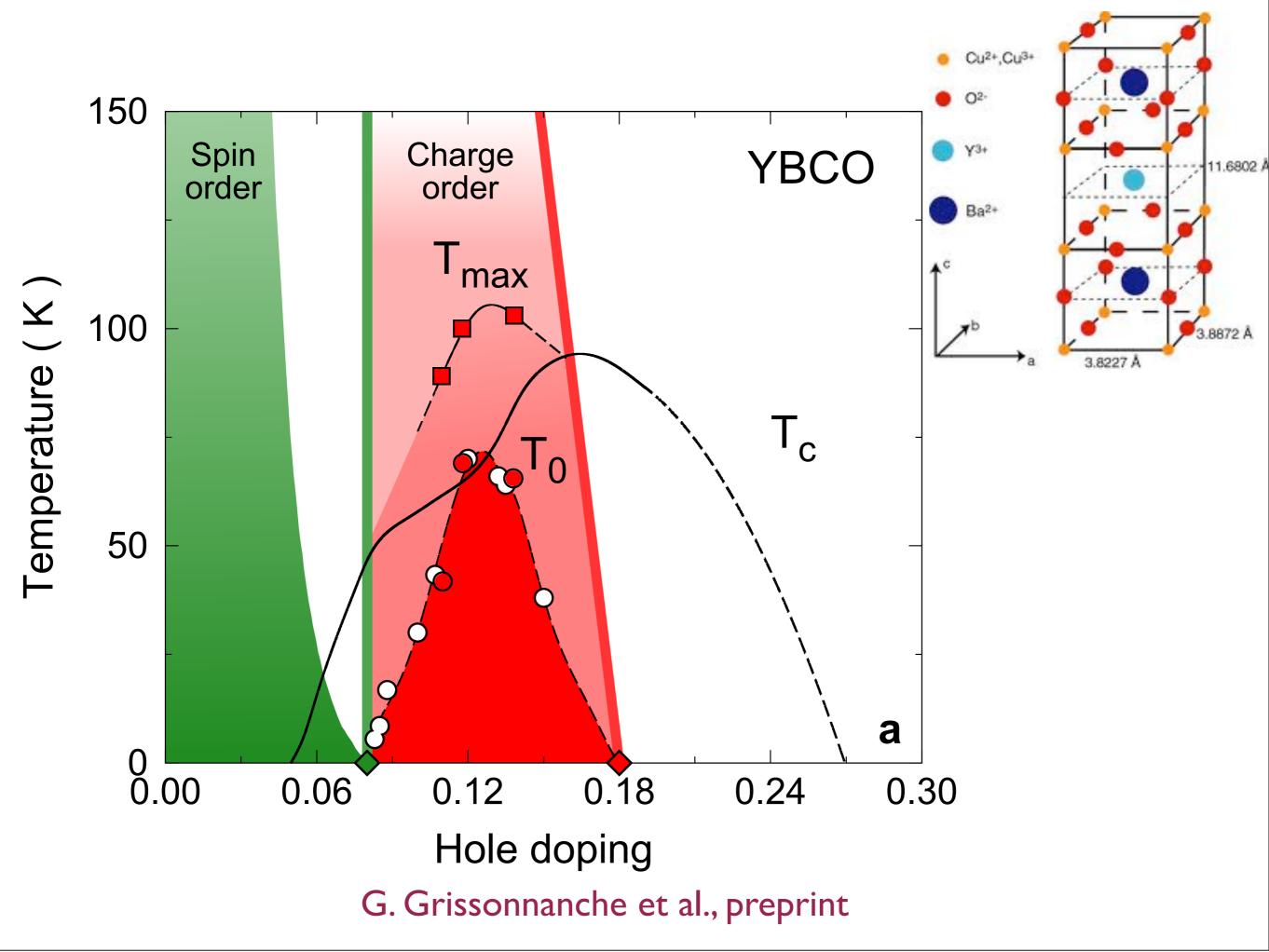
The comparison of different acoustic modes indicates that the charge modulation is biaxial, which differs from a uniaxial stripe charge order.

Tuesday (). Makch 12, 13





G. Grissonnanche et al., preprint



<u>Outline</u>

I.Antiferromagnetism in metals: low energy theory

2. d-wave superconductivity

3. Emergent pseudospin symmetry, and bond order

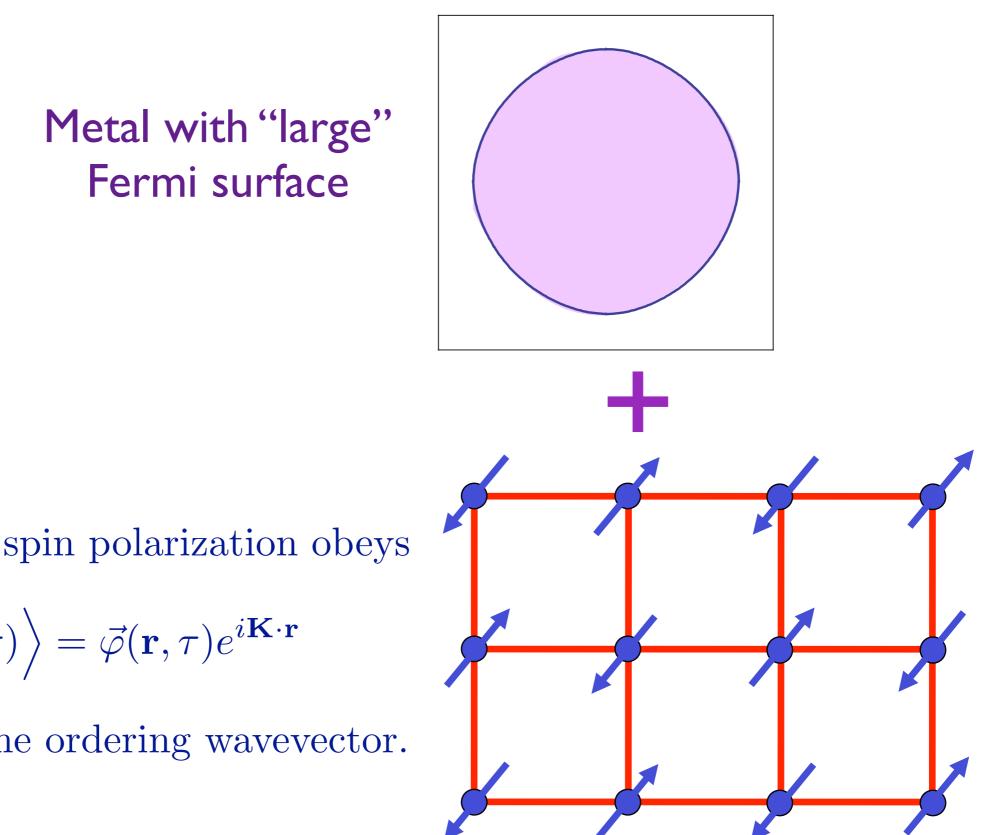
4. Quantum Monte Carlo without the sign problem

I.Antiferromagnetism in metals: low energy theory

2. d-wave superconductivity

3. Emergent pseudospin symmetry, and bond order

4. Quantum Monte Carlo without the sign problem



The electron spin polarization obeys

$$\left\langle \vec{S}(\mathbf{r},\tau) \right\rangle = \vec{\varphi}(\mathbf{r},\tau) e^{i\mathbf{K}\cdot\mathbf{r}}$$

where \mathbf{K} is the ordering wavevector.

The Hubbard Model

$$H = -\sum_{i < j} t_{ij} c_{i\alpha}^{\dagger} c_{j\alpha} + U \sum_{i} \left(n_{i\uparrow} - \frac{1}{2} \right) \left(n_{i\downarrow} - \frac{1}{2} \right) - \mu \sum_{i} c_{i\alpha}^{\dagger} c_{i\alpha}$$

 $t_{ij} \rightarrow$ "hopping". $U \rightarrow$ local repulsion, $\mu \rightarrow$ chemical potential

Spin index $\alpha = \uparrow, \downarrow$

$$n_{i\alpha} = c_{i\alpha}^{\dagger} c_{i\alpha}$$

$$c_{i\alpha}^{\dagger}c_{j\beta} + c_{j\beta}c_{i\alpha}^{\dagger} = \delta_{ij}\delta_{\alpha\beta}$$
$$c_{i\alpha}c_{j\beta} + c_{j\beta}c_{i\alpha} = 0$$

The Hubbard Model

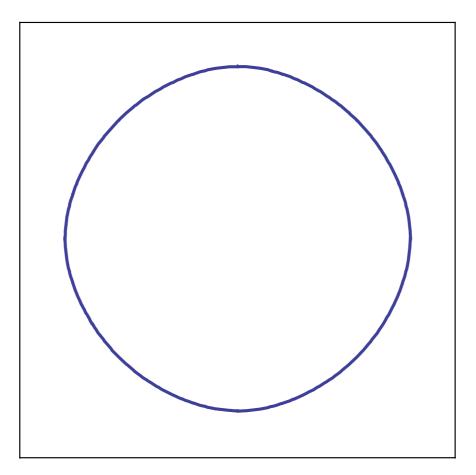
Decouple U term by a Hubbard-Stratanovich transformation

$$S = \int d^2 r d\tau \left[\mathcal{L}_c + \mathcal{L}_{\varphi} + \mathcal{L}_{c\varphi} \right]$$
$$\mathcal{L}_c = c_a^{\dagger} \varepsilon (-i \mathbf{\nabla}) c_a$$

$$\mathcal{L}_{\varphi} = \frac{1}{2} (\boldsymbol{\nabla}\varphi_{\alpha})^2 + \frac{r}{2} \varphi_{\alpha}^2 + \frac{u}{4} (\varphi_{\alpha}^2)^2$$

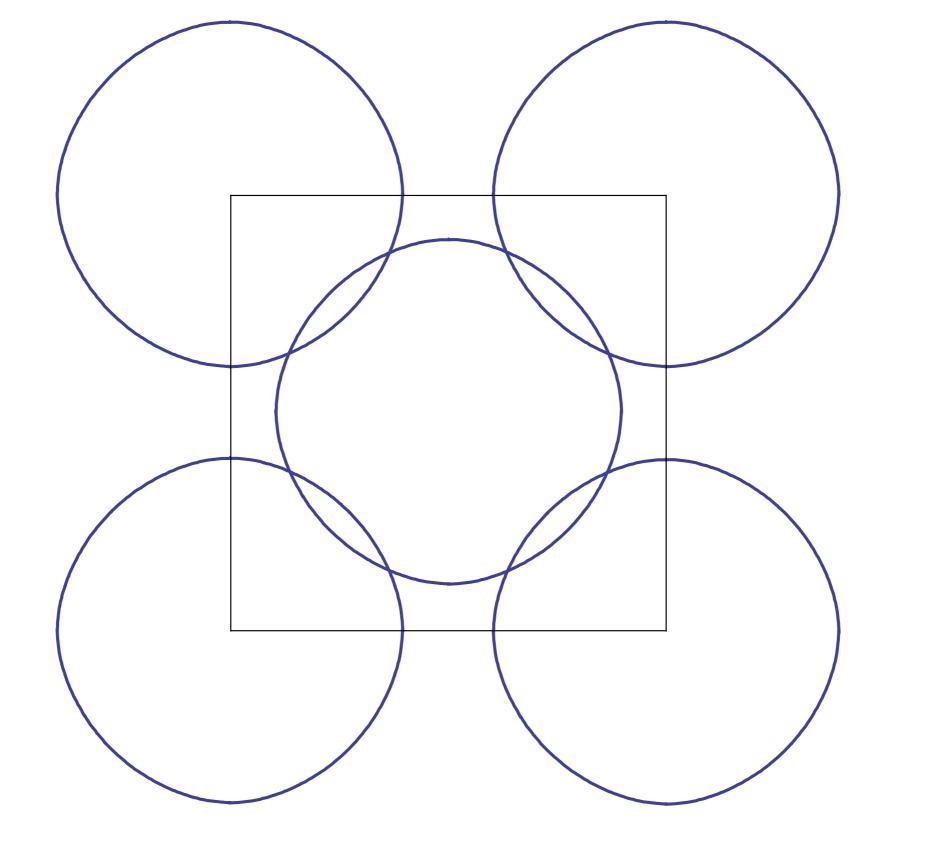
$$\mathcal{L}_{c\varphi} = \lambda \,\varphi_{\alpha} \, e^{i\mathbf{K}\cdot\mathbf{r}} \, c_{a}^{\dagger} \, \sigma_{ab}^{\alpha} \, c_{b}.$$

"Yukawa" coupling between fermions and antiferromagnetic order: $\lambda^2 \sim U$, the Hubbard repulsion

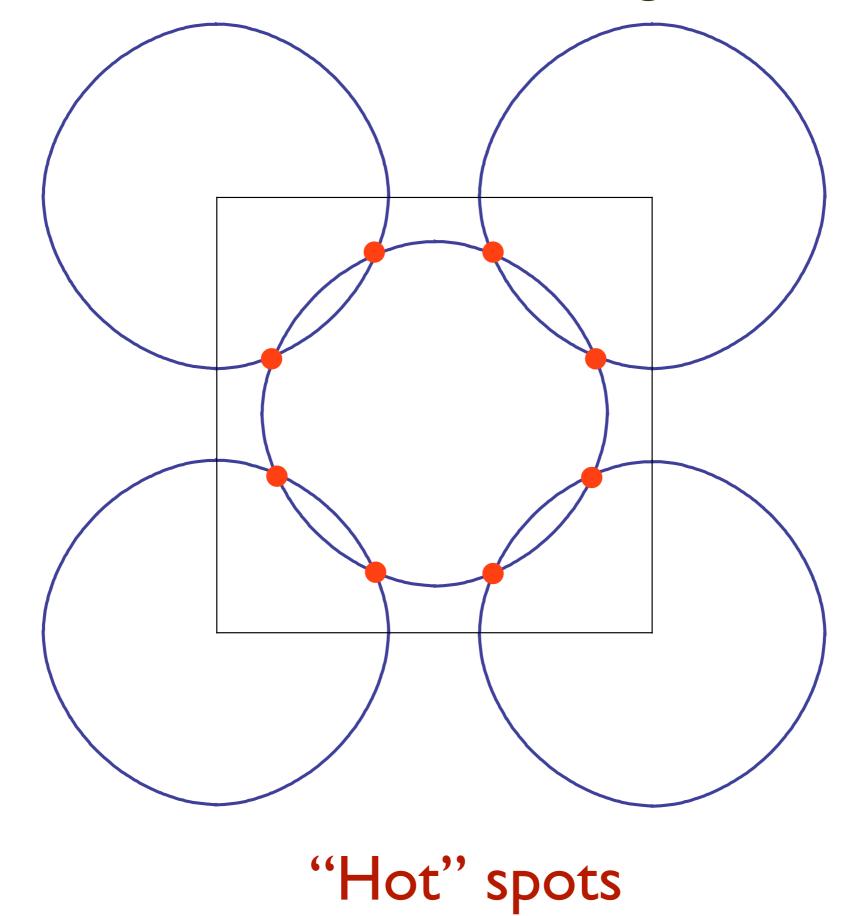


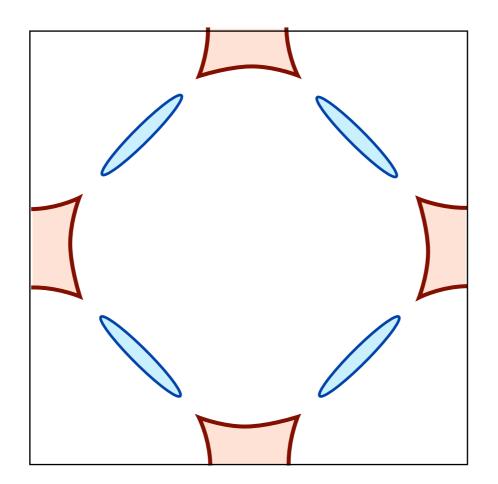
Metal with "large" Fermi surface

Tuesday, March 12, 13

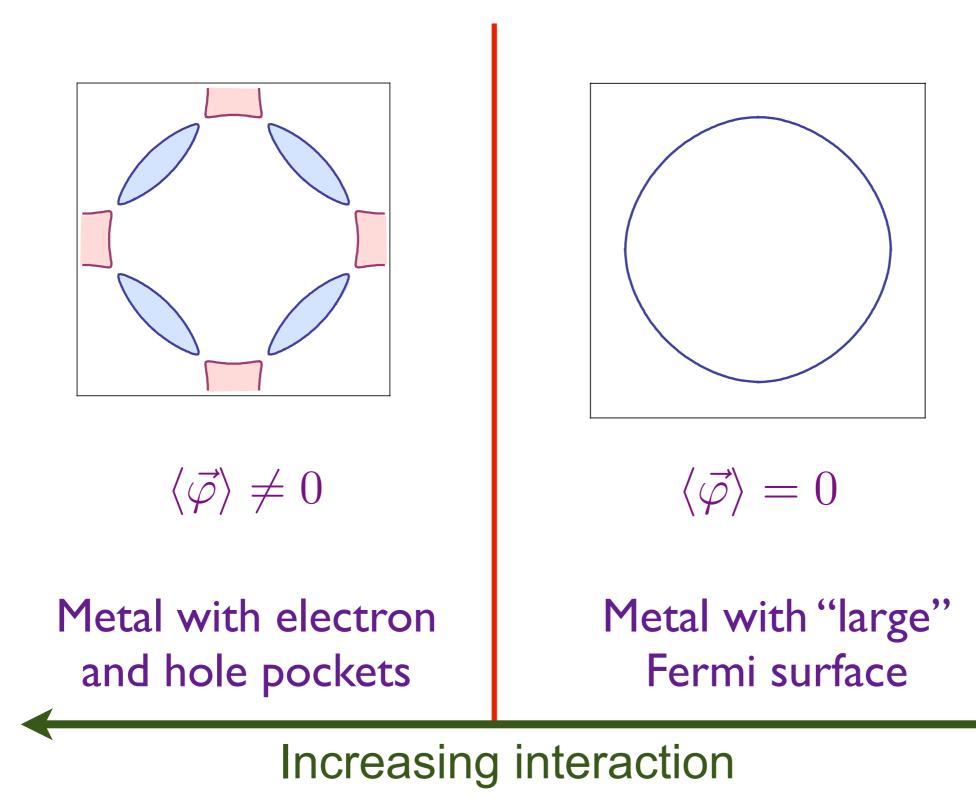


Fermi surfaces translated by $\mathbf{K} = (\pi, \pi)$.



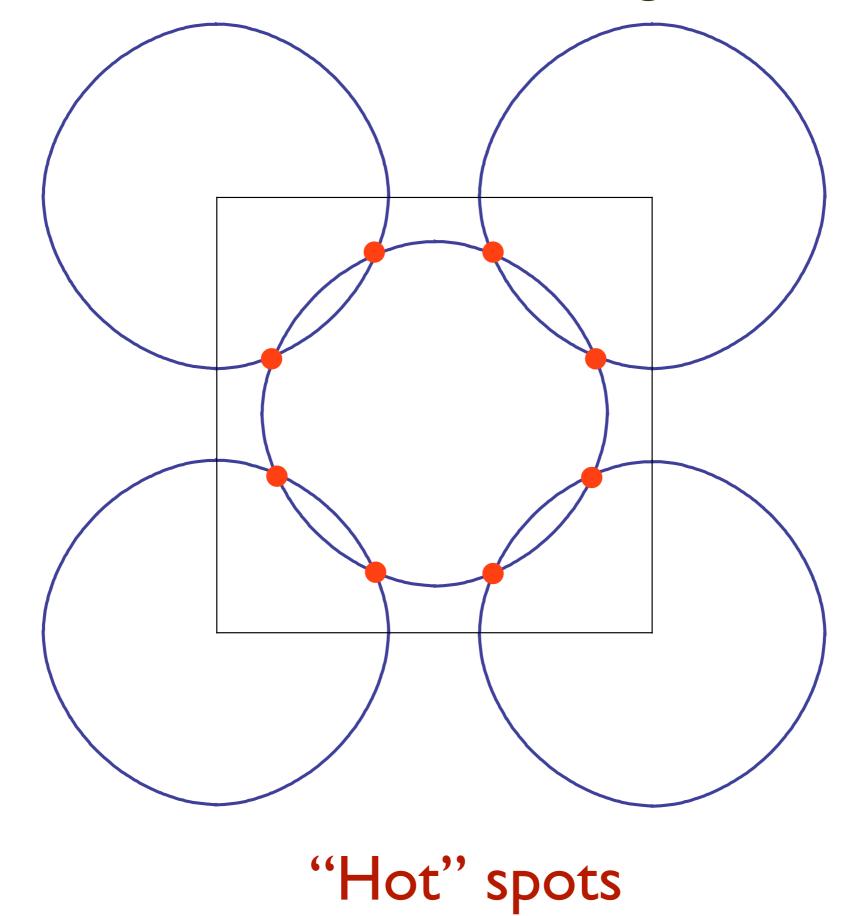


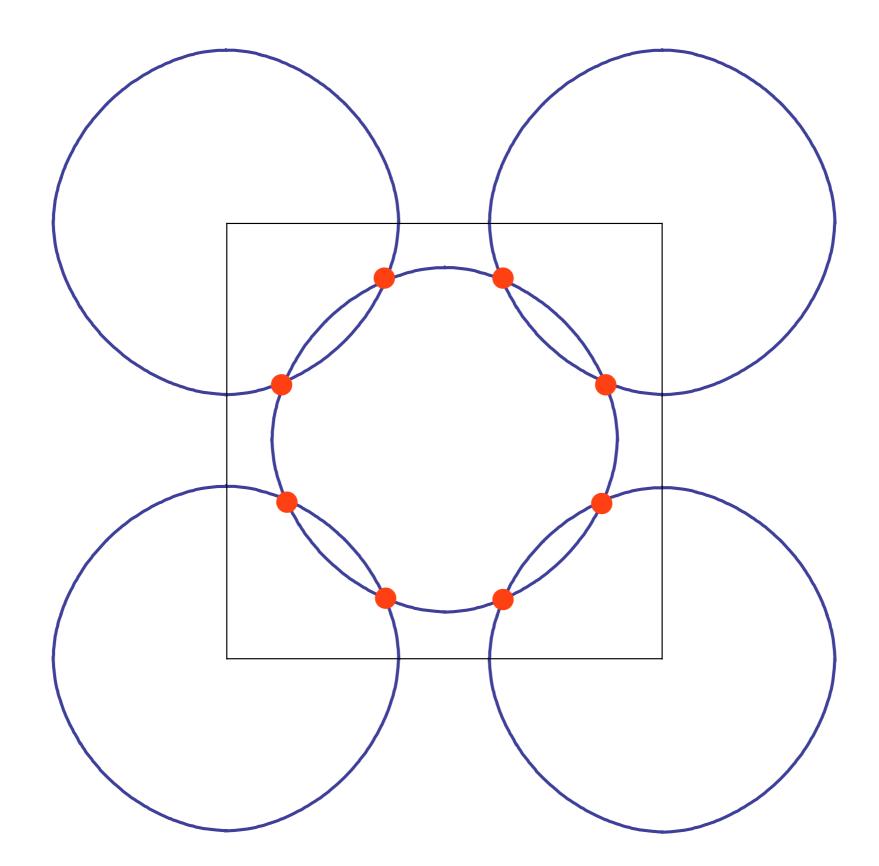
Electron and hole pockets in antiferromagnetic phase with $\langle \vec{\varphi} \rangle \neq 0$



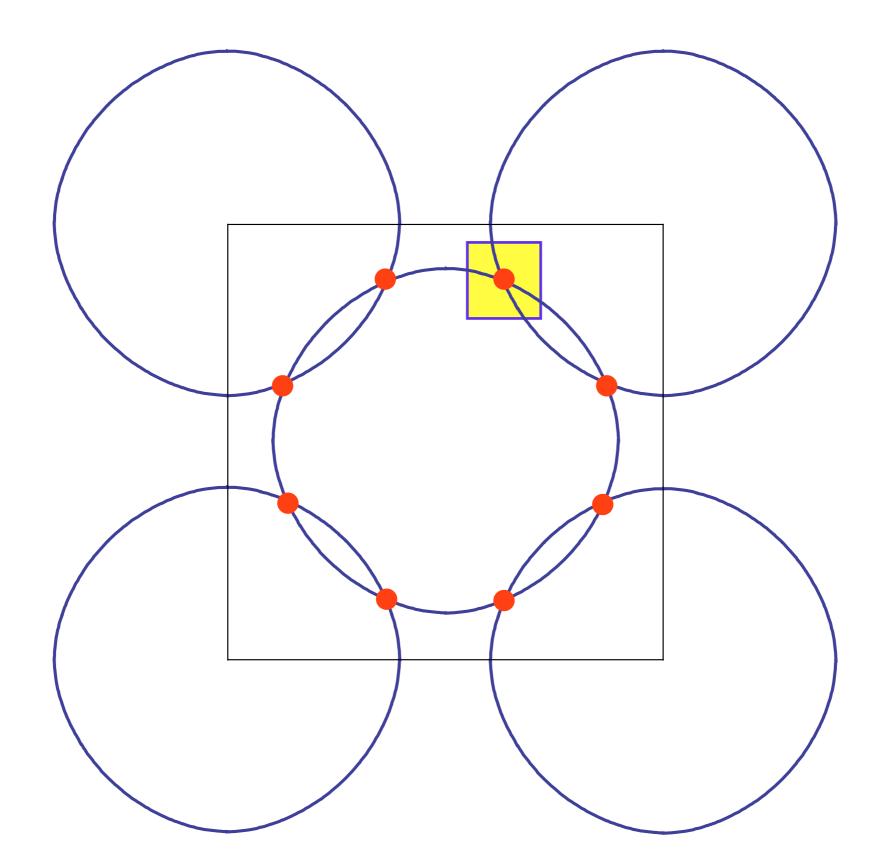
S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Tuesday, March 12, 13



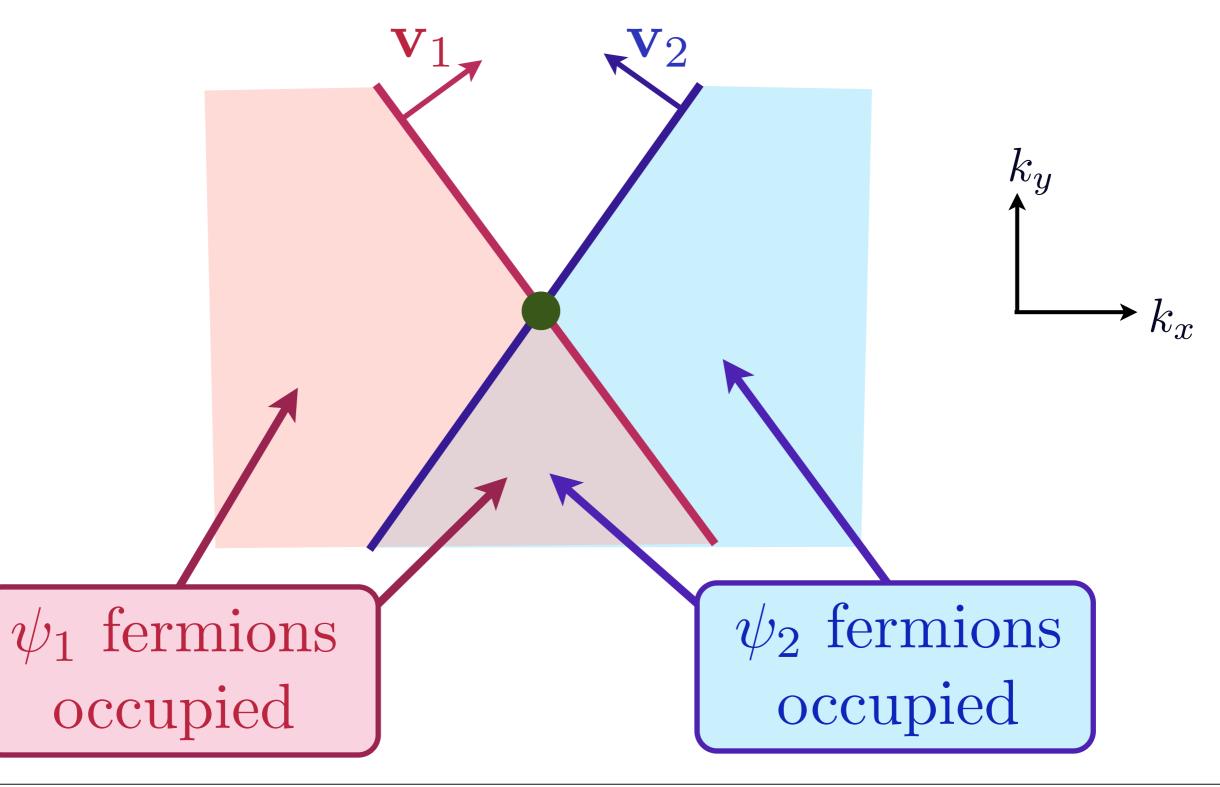


Low energy theory for critical point near hot spots



Low energy theory for critical point near hot spots

Theory has fermions $\psi_{1,2}$ (with Fermi velocities $\mathbf{v}_{1,2}$) and boson order parameter $\vec{\varphi}$, interacting with coupling λ



$$\mathcal{L}_{f} = \psi_{1\alpha}^{\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha} + \psi_{2\alpha}^{\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_{c} = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta} + \psi_{2\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta} \right)$$

<u>Outline</u>

I.Antiferromagnetism in metals: low energy theory

2. d-wave superconductivity

3. Emergent pseudospin symmetry, and bond order

4. Quantum Monte Carlo without the sign problem

<u>Outline</u>

I.Antiferromagnetism in metals: low energy theory

2. d-wave superconductivity

3. Emergent pseudospin symmetry, and bond order

4. Quantum Monte Carlo without the sign problem

Pairing by SDW fluctuation exchange

We now allow the SDW field $\vec{\varphi}$ to be dynamical, coupling to electrons as

$$H_{\rm sdw} = -\sum_{\mathbf{k},\mathbf{q},\alpha,\beta} \vec{\varphi}_{\mathbf{q}} \cdot c^{\dagger}_{\mathbf{k},\alpha} \vec{\sigma}_{\alpha\beta} c_{\mathbf{k}+\mathbf{K}+\mathbf{q},\beta}.$$

Exchange of a $\vec{\varphi}$ quantum leads to the effective interaction

$$H_{ee} = -\frac{1}{2} \sum_{\mathbf{q}} \sum_{\mathbf{p},\gamma,\delta} \sum_{\mathbf{k},\alpha,\beta} V_{\alpha\beta,\gamma\delta}(\mathbf{q}) c^{\dagger}_{\mathbf{k},\alpha} c_{\mathbf{k}+\mathbf{q},\beta} c^{\dagger}_{\mathbf{p},\gamma} c_{\mathbf{p}-\mathbf{q},\delta},$$

where the pairing interaction is

$$V_{\alpha\beta,\gamma\delta}(\mathbf{q}) = \vec{\sigma}_{\alpha\beta} \cdot \vec{\sigma}_{\gamma\delta} \frac{\chi_0}{\xi^{-2} + (\mathbf{q} - \mathbf{K})^2},$$

with $\chi_0 \xi^2$ the SDW susceptibility and ξ the SDW correlation length.

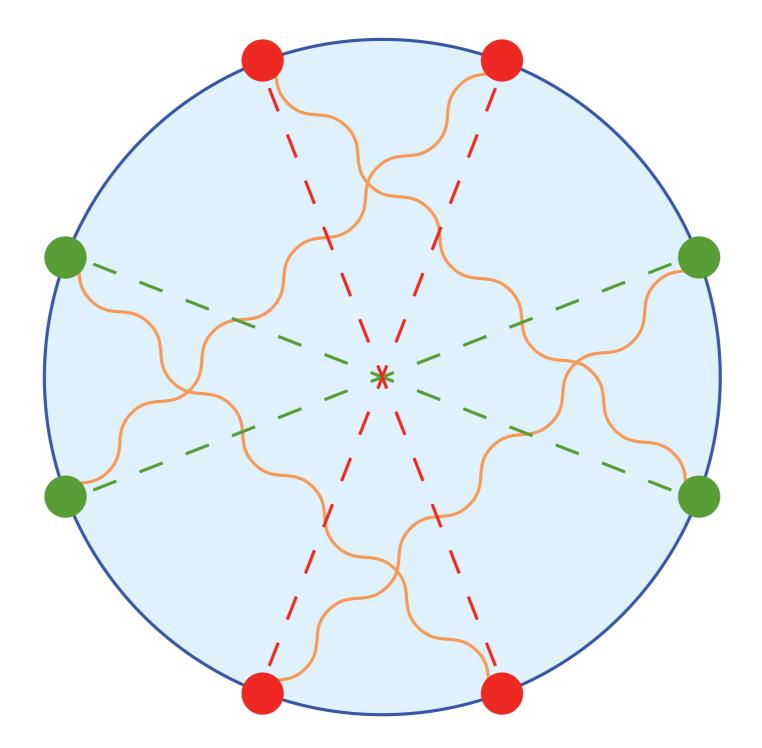
BCS Gap equation

In BCS theory, this interaction leads to the 'gap equation' for the pairing gap $\Delta_{\mathbf{k}} \propto \langle c_{\mathbf{k}\uparrow}c_{-\mathbf{k}\downarrow} \rangle$.

$$\Delta_{\mathbf{k}} = -\sum_{\mathbf{p}} \left(\frac{3\chi_0}{\xi^{-2} + (\mathbf{p} - \mathbf{k} - \mathbf{K})^2} \right) \frac{\Delta_{\mathbf{p}}}{2\sqrt{\varepsilon_{\mathbf{p}}^2 + \Delta_{\mathbf{p}}^2}}$$

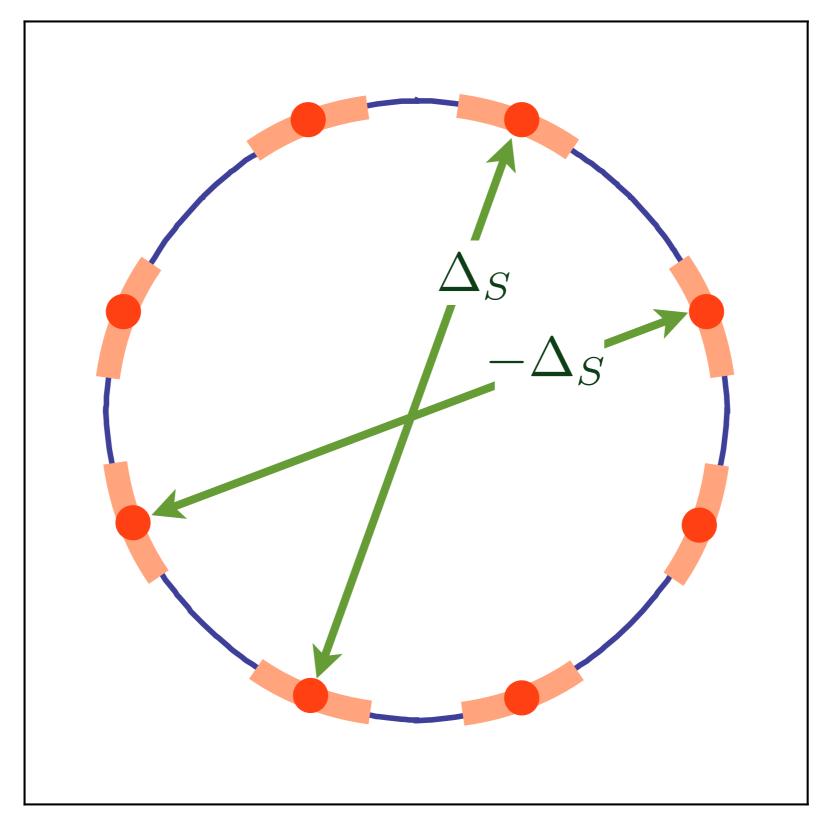
Non-zero solutions of this equation require that $\Delta_{\mathbf{k}}$ and $\Delta_{\mathbf{p}}$ have opposite signs when $\mathbf{p} - \mathbf{k} \approx \mathbf{K}$.

Pairing "glue" from antiferromagnetic fluctuations



V. J. Emery, J. Phys. (Paris) Colloq. **44**, C3-977 (1983) D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B **34**, 8190 (1986) K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B **34**, 6554 (1986) S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B **81**, 224505 (2010)

 $\left\langle c_{\mathbf{k}\alpha}^{\dagger}c_{-\mathbf{k}\beta}^{\dagger}\right\rangle = \varepsilon_{\alpha\beta}\Delta_{S}(\cos k_{x} - \cos k_{y})$



Unconventional pairing at <u>and near</u> hot spots

Tuesday, March 12, 13

<u>Outline</u>

I.Antiferromagnetism in metals: low energy theory

2. d-wave superconductivity

3. Emergent pseudospin symmetry, and bond order

4. Quantum Monte Carlo without the sign problem

I.Antiferromagnetism in metals: low energy theory

2. d-wave superconductivity

3. Emergent pseudospin symmetry, and bond order

4. Quantum Monte Carlo without the sign problem

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha} + \psi_{2\alpha}^{\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_{c} = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta} + \psi_{2\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta} \right)$$

Emergent [SU(2)]⁴ pseudospin symmetry

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha} + \psi_{2\alpha}^{\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}$$

Order parameter: $\mathcal{L}_{\varphi} = \frac{1}{2} \left(\nabla_r \vec{\varphi} \right)^2 + \frac{\widetilde{\zeta}}{2} \left(\partial_\tau \vec{\varphi} \right)^2 + \frac{s}{2} \vec{\varphi}^2 + \frac{u}{4} \vec{\varphi}^4$

"Yukawa" coupling: $\mathcal{L}_c = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta} + \psi_{2\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}\right)$

Introduce the spinors

$$\Psi_{1\alpha} = \begin{pmatrix} \psi_{1\alpha} \\ \epsilon_{\alpha\beta}\psi_{1\beta}^{\dagger} \end{pmatrix} , \quad \Psi_{2\alpha} = \begin{pmatrix} \psi_{2\alpha} \\ \epsilon_{\alpha\beta}\psi_{2\beta}^{\dagger} \end{pmatrix}$$

Then the Lagrangian is invariant under the SU(2) transformation U with

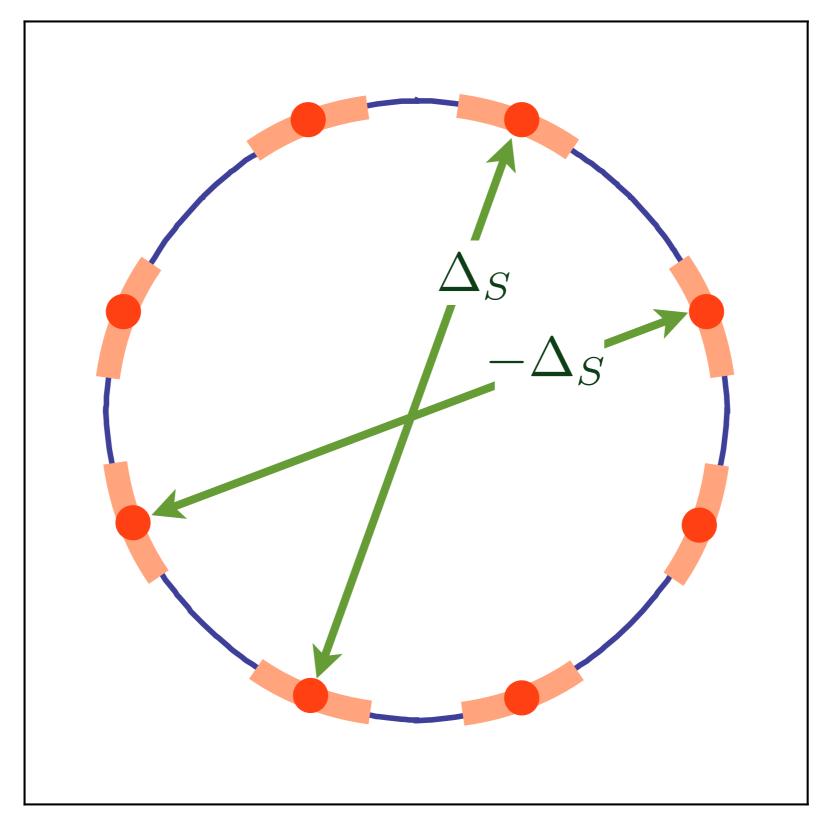
$$\Psi_1 \to U\Psi_1 \quad , \quad \Psi_2 \to U\Psi_2$$

Note that U can be chosen *independently* at the 4 pairs of hotspots.

This symmetry relies on the linearization of the fermion dispersion about the hot spots.

Tuesday, March 12, 13

 $\left\langle c_{\mathbf{k}\alpha}^{\dagger}c_{-\mathbf{k}\beta}^{\dagger}\right\rangle = \varepsilon_{\alpha\beta}\Delta_{S}(\cos k_{x} - \cos k_{y})$



Unconventional pairing at <u>and near</u> hot spots

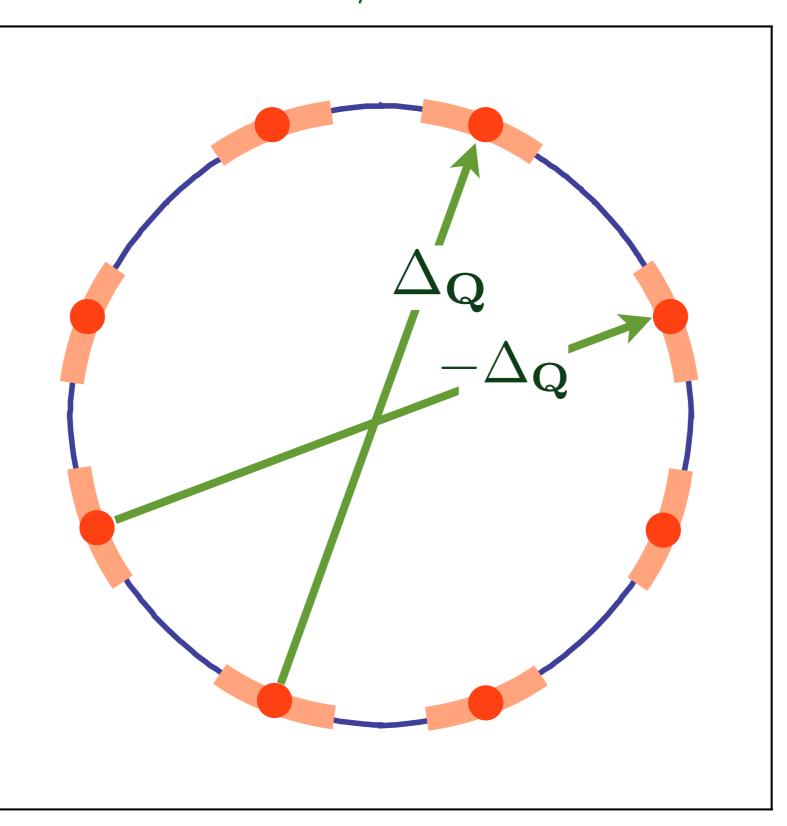
Tuesday, March 12, 13

 $\left\langle c_{\mathbf{k}-\mathbf{Q}/2,\alpha}^{\dagger}c_{\mathbf{k}+\mathbf{Q}/2,\alpha}\right\rangle = \Delta_{\mathbf{Q}}(\cos k_x - \cos k_y)$

After pseudospin rotation

M.A. Metlitski and S. Sachdev, Phys. Rev. B **85**, 075127 (2010)

K. B. Efetov, H. Meier, and C. Pepin, arXiv:1210.3276



\mathbf{Q} is $2k_F$, wavevector

Unconventional particle-hole pairing at <u>and near</u> hot spots

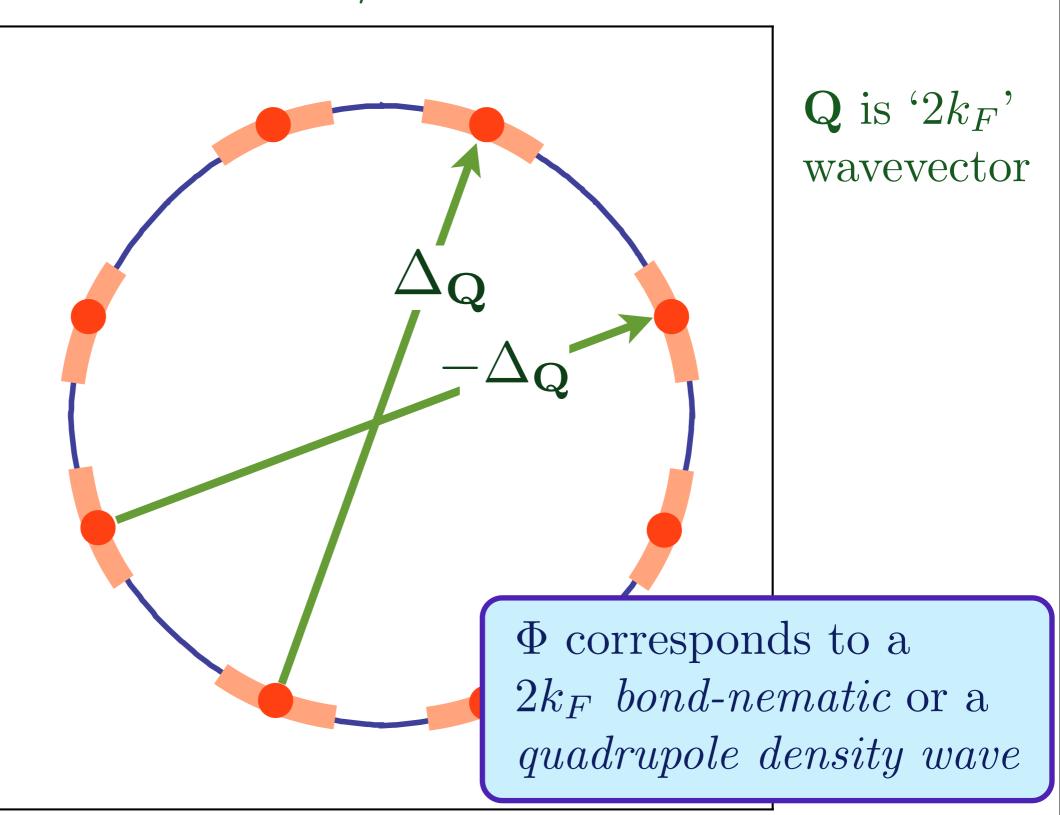
Tuesday, March 12, 13

 $\left\langle c_{\mathbf{k}-\mathbf{Q}/2,\alpha}^{\dagger}c_{\mathbf{k}+\mathbf{Q}/2,\alpha}\right\rangle = \Delta_{\mathbf{Q}}(\cos k_x - \cos k_y)$

After pseudospin rotation

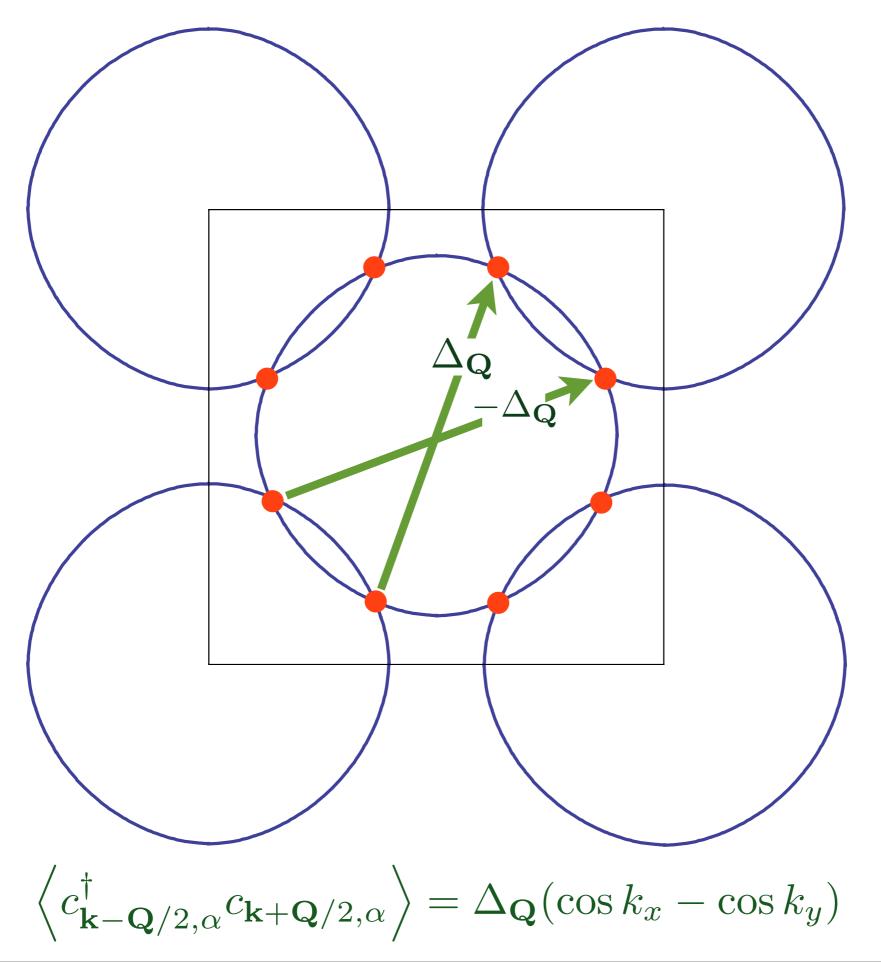
M.A. Metlitski and S. Sachdev, Phys. Rev. B **85**, 075127 (2010)

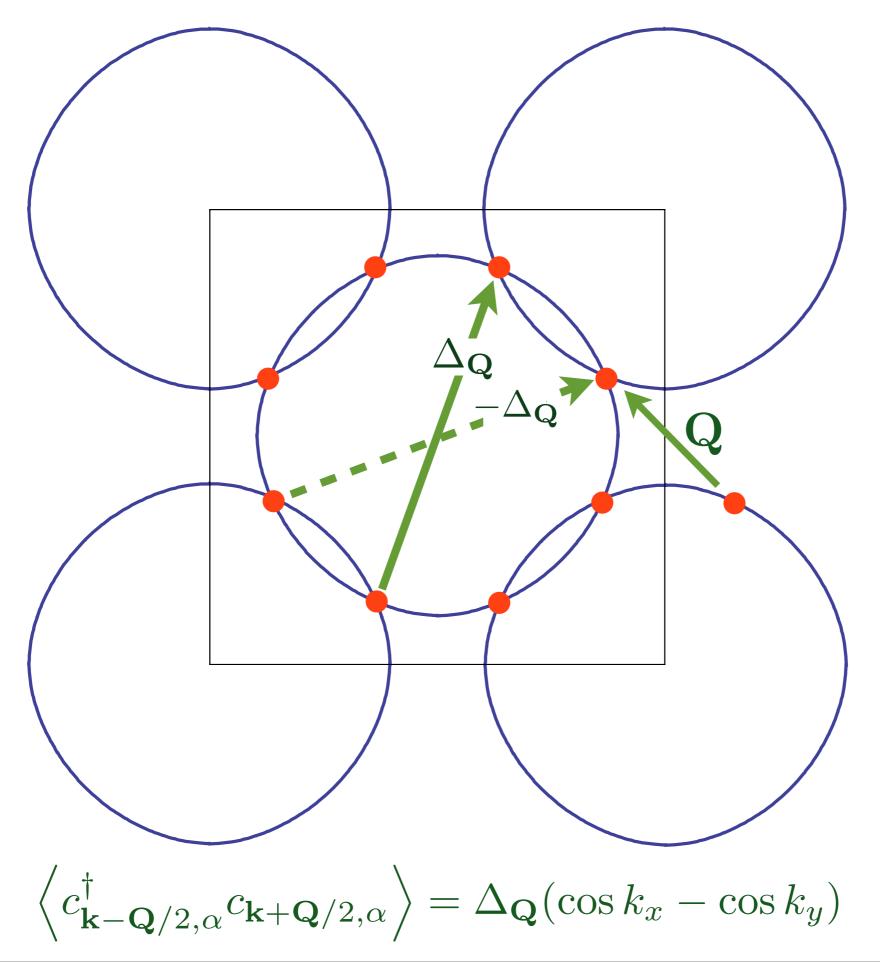
K. B. Efetov, H. Meier, and C. Pepin, arXiv:1210.3276

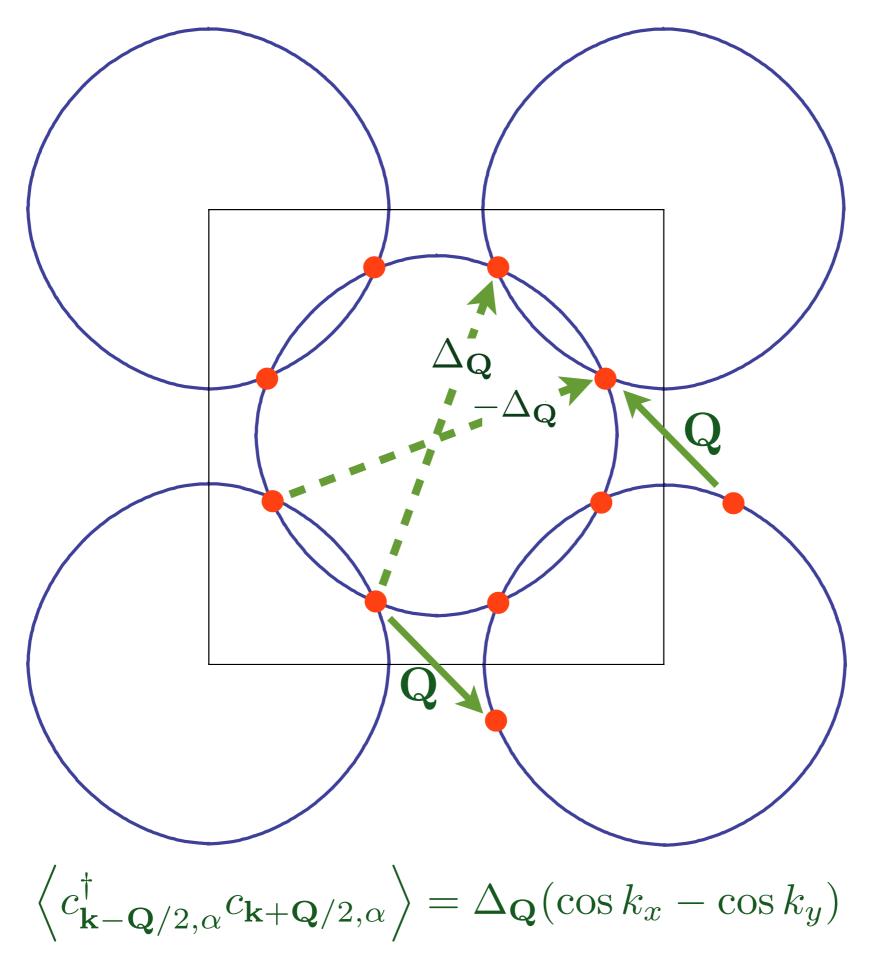


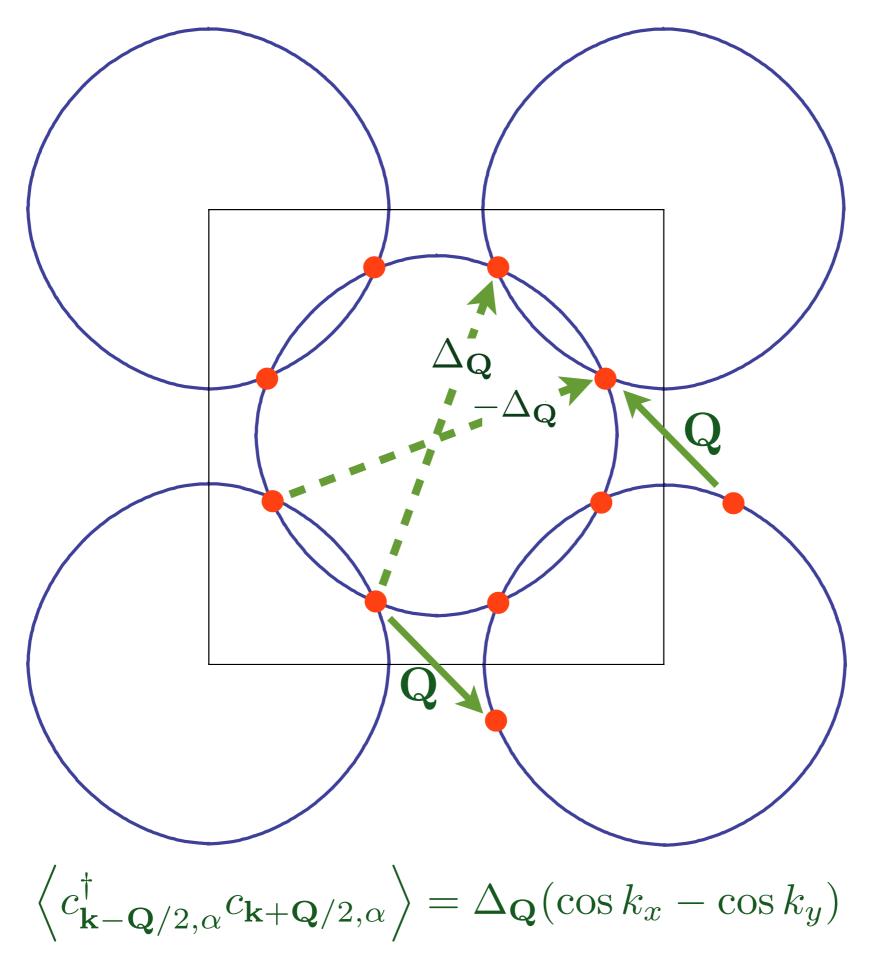
Unconventional particle-hole pairing at <u>and near</u> hot spots

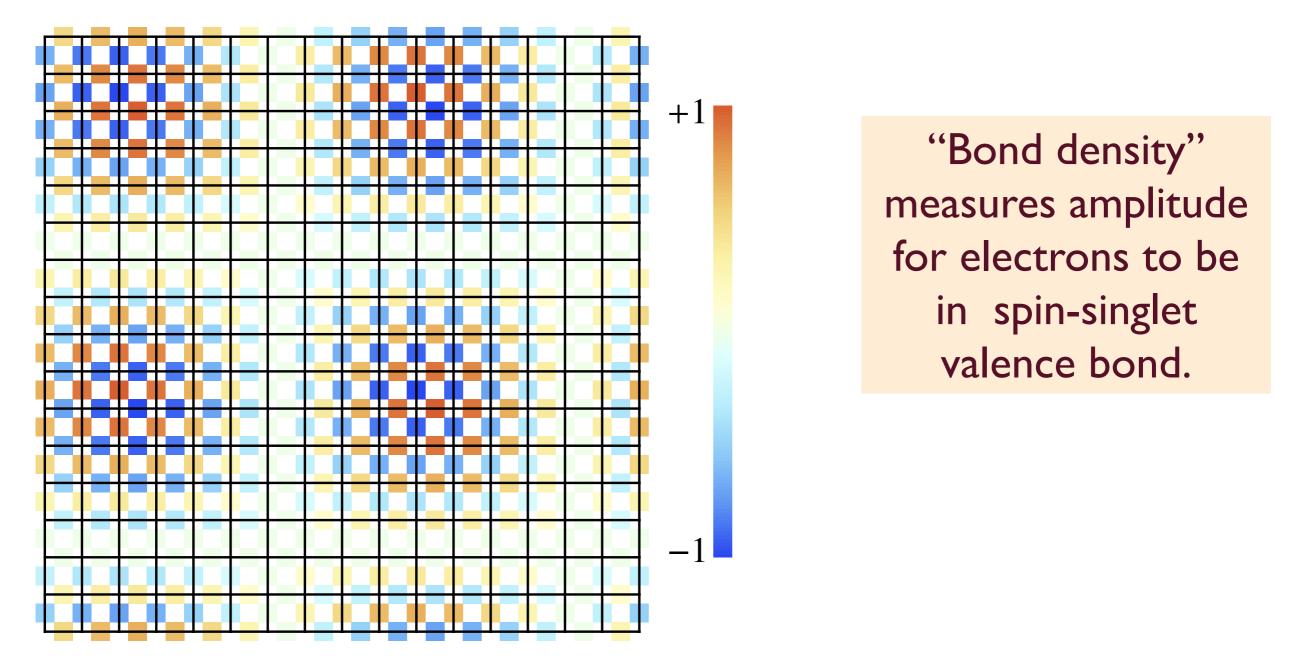
Tuesday, March 12, 13











No modulations on sites, $\langle c^{\dagger}_{\mathbf{r}\alpha}c_{\mathbf{s}\alpha}\rangle$ is modulated only for $\mathbf{r} \neq \mathbf{s}$.

$$\left\langle c_{\mathbf{k}-\mathbf{Q}/2,\alpha}^{\dagger}c_{\mathbf{k}+\mathbf{Q}/2,\alpha}\right\rangle = \Delta_{\mathbf{Q}}(\cos k_{x} - \cos k_{y})$$

$$H = \sum_{k} \varepsilon(k) c_{k,\alpha}^{\dagger} c_{k,\alpha} - \frac{1}{2V} \sum_{q} \chi(q) \vec{S}(-q) \cdot \vec{S}(q).$$
$$\vec{S}(q) = \sum_{k} c_{k+q,\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{k,\beta}$$

$$\begin{split} H &= \sum_{k} \varepsilon(k) \, c_{k,\alpha}^{\dagger} c_{k,\alpha} - \frac{1}{2V} \sum_{q} \chi(q) \, \vec{S}(-q) \cdot \vec{S}(q). \\ \vec{S}(q) &= \sum_{k} c_{k+q,\alpha}^{\dagger} \, \vec{\sigma}_{\alpha\beta} \, c_{k,\beta} \end{split}$$

$$\begin{split} H_{MF} &= \sum_{\boldsymbol{k}} \bigg[\varepsilon(\boldsymbol{k}) \, c_{\boldsymbol{k},\alpha}^{\dagger} c_{\boldsymbol{k},\alpha} + \Delta_{S}(\boldsymbol{k}) \, \epsilon_{\alpha\beta} \, c_{\boldsymbol{k},\alpha} c_{-\boldsymbol{k}\beta} + \text{H.c.} \\ &+ \sum_{\boldsymbol{Q}} \Delta_{\boldsymbol{Q}}(\boldsymbol{k}) \, c_{\boldsymbol{k}+\boldsymbol{Q}/2,\alpha}^{\dagger} c_{\boldsymbol{k}-\boldsymbol{Q}/2,\alpha} \bigg], \end{split}$$

$$F \le F_{MF} + \langle H - H_{MF} \rangle_{MF}$$

$$F = 2 \sum_{k,k'} \Delta_{S}^{*}(k) \sqrt{\Pi_{S}(k)} \mathcal{M}_{S}(k,k') \sqrt{\Pi_{S}(k')} \Delta_{S}(k')$$
$$+ \sum_{k,k',Q} \Delta_{Q}^{*}(k) \sqrt{\Pi_{Q}(k)} \mathcal{M}_{Q}(k,k') \sqrt{\Pi_{Q}(k')} \Delta_{Q}(k') +$$

$$\mathcal{M}_{S}(\boldsymbol{k},\boldsymbol{k}') = \delta_{\boldsymbol{k},\boldsymbol{k}'} + \frac{3}{V}\chi(\boldsymbol{k}-\boldsymbol{k}')\sqrt{\Pi_{S}(\boldsymbol{k})\Pi_{S}(\boldsymbol{k}')}$$
$$\mathcal{M}_{Q}(\boldsymbol{k},\boldsymbol{k}') = \delta_{\boldsymbol{k},\boldsymbol{k}'} + \frac{3}{V}\chi(\boldsymbol{k}-\boldsymbol{k}')\sqrt{\Pi_{Q}(\boldsymbol{k}')\Pi_{Q}(\boldsymbol{k})}$$

$$\Pi_{S}(\boldsymbol{k}) = \frac{1 - 2f(\varepsilon(\boldsymbol{k}))}{2\varepsilon(\boldsymbol{k})}$$

$$\Pi_{Q}(\boldsymbol{k}) = \frac{f(\varepsilon(\boldsymbol{k} + \boldsymbol{Q}/2)) - f(\varepsilon(\boldsymbol{k} - \boldsymbol{Q}/2))}{\varepsilon(\boldsymbol{k} - \boldsymbol{Q}/2) - \varepsilon(\boldsymbol{k} + \boldsymbol{Q}/2)}$$

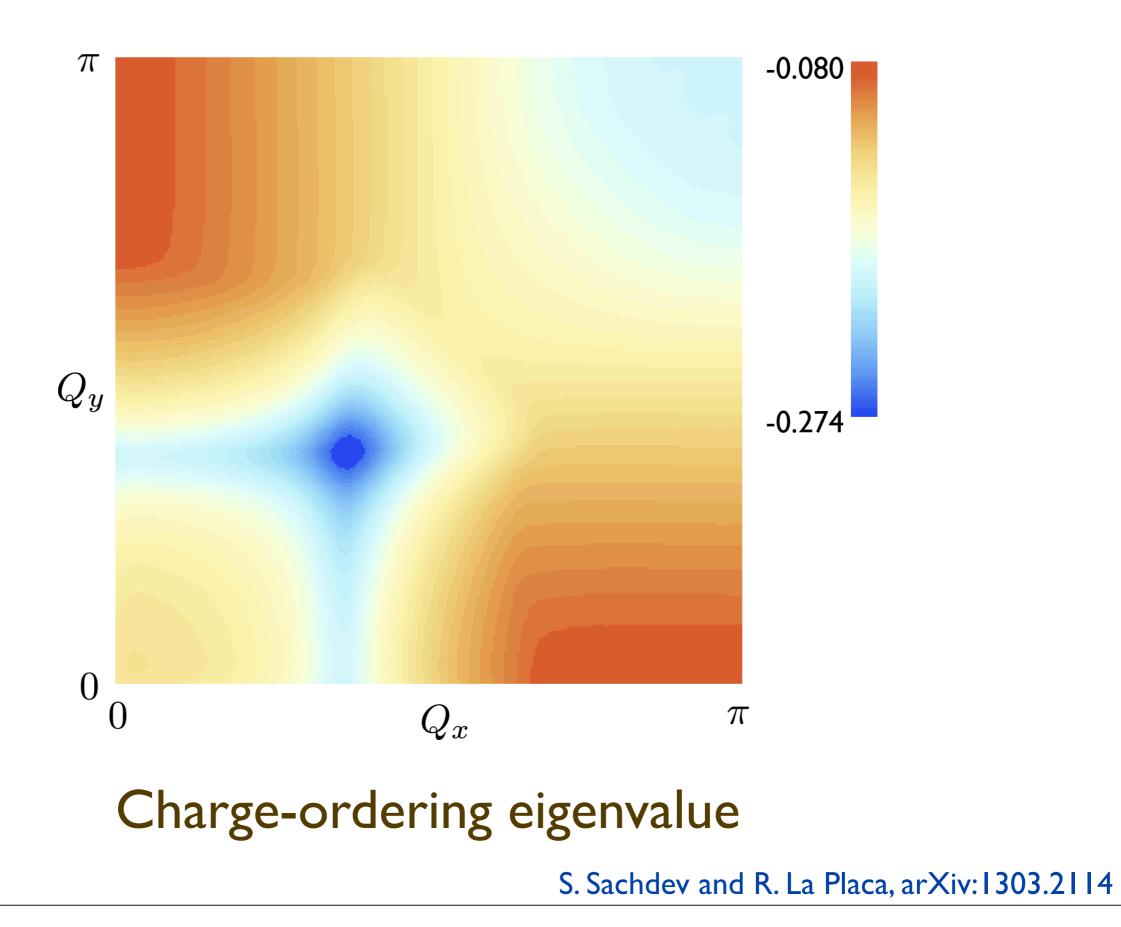
$$F = 2 \sum_{k,k'} \Delta_{S}^{*}(k) \sqrt{\Pi_{S}(k)} \mathcal{M}_{S}(k,k') \sqrt{\Pi_{S}(k')} \Delta_{S}(k')$$
$$+ \sum_{k,k',Q} \Delta_{Q}^{*}(k) \sqrt{\Pi_{Q}(k)} \mathcal{M}_{Q}(k,k') \sqrt{\Pi_{Q}(k')} \Delta_{Q}(k') +$$

$$\mathcal{M}_{S}(\boldsymbol{k},\boldsymbol{k}') = \delta_{\boldsymbol{k},\boldsymbol{k}'} + \frac{3}{V}\chi(\boldsymbol{k}-\boldsymbol{k}')\sqrt{\Pi_{S}(\boldsymbol{k})\Pi_{S}(\boldsymbol{k}')}$$
$$\mathcal{M}_{Q}(\boldsymbol{k},\boldsymbol{k}') = \delta_{\boldsymbol{k},\boldsymbol{k}'} + \frac{3}{V}\chi(\boldsymbol{k}-\boldsymbol{k}')\sqrt{\Pi_{Q}(\boldsymbol{k}')\Pi_{Q}(\boldsymbol{k})}$$

$$\Pi_{S}(\boldsymbol{k}) = \frac{1 - 2f(\varepsilon(\boldsymbol{k}))}{2\varepsilon(\boldsymbol{k})}$$

$$\Pi_{Q}(\boldsymbol{k}) = \frac{f(\varepsilon(\boldsymbol{k} + \boldsymbol{Q}/2)) - f(\varepsilon(\boldsymbol{k} - \boldsymbol{Q}/2))}{\varepsilon(\boldsymbol{k} - \boldsymbol{Q}/2) - \varepsilon(\boldsymbol{k} + \boldsymbol{Q}/2)}$$

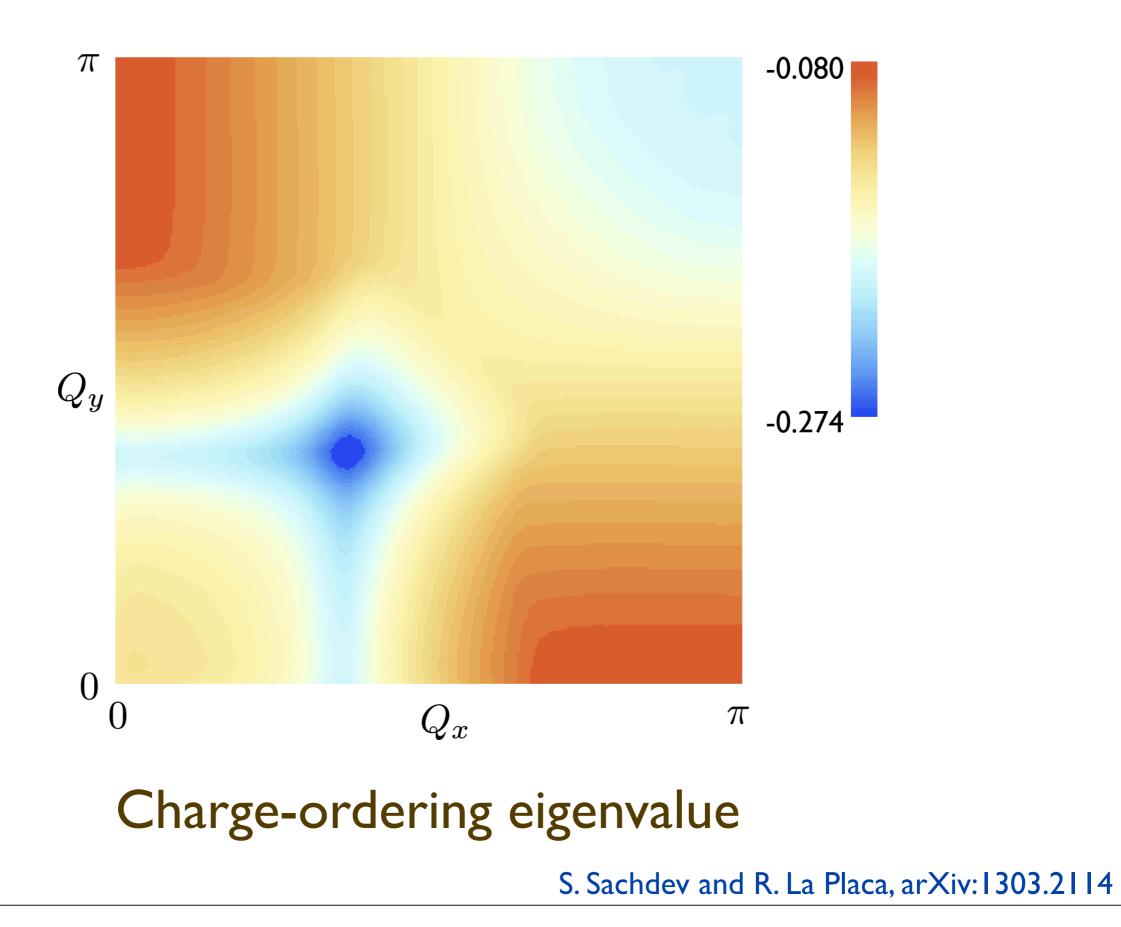
$$\frac{3}{V}\sum_{k'}\sqrt{\prod_{S,Q}(k)}\chi(k-k')\sqrt{\prod_{S,Q}(k')}\phi_{S,Q}(k') = \lambda_{S,Q}\phi_{S,Q}(k)$$
03.2114

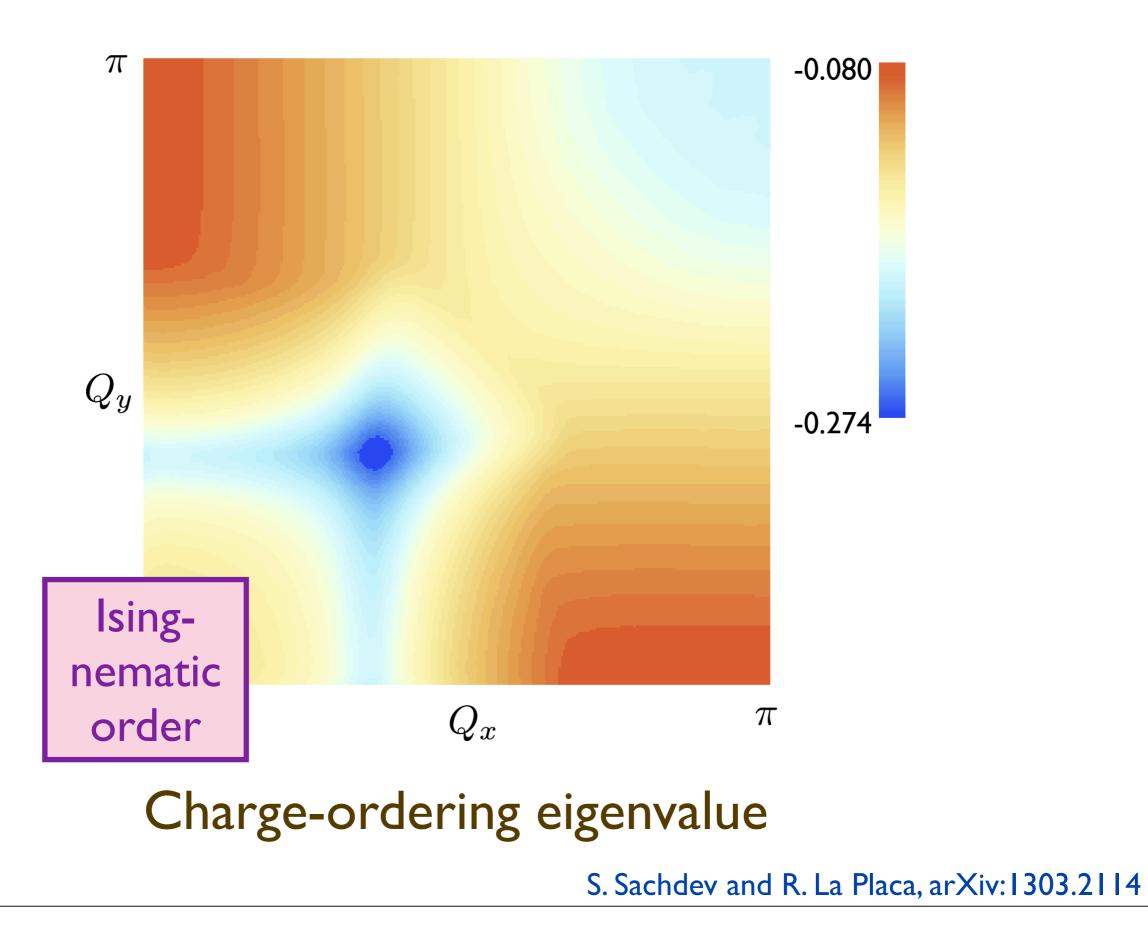


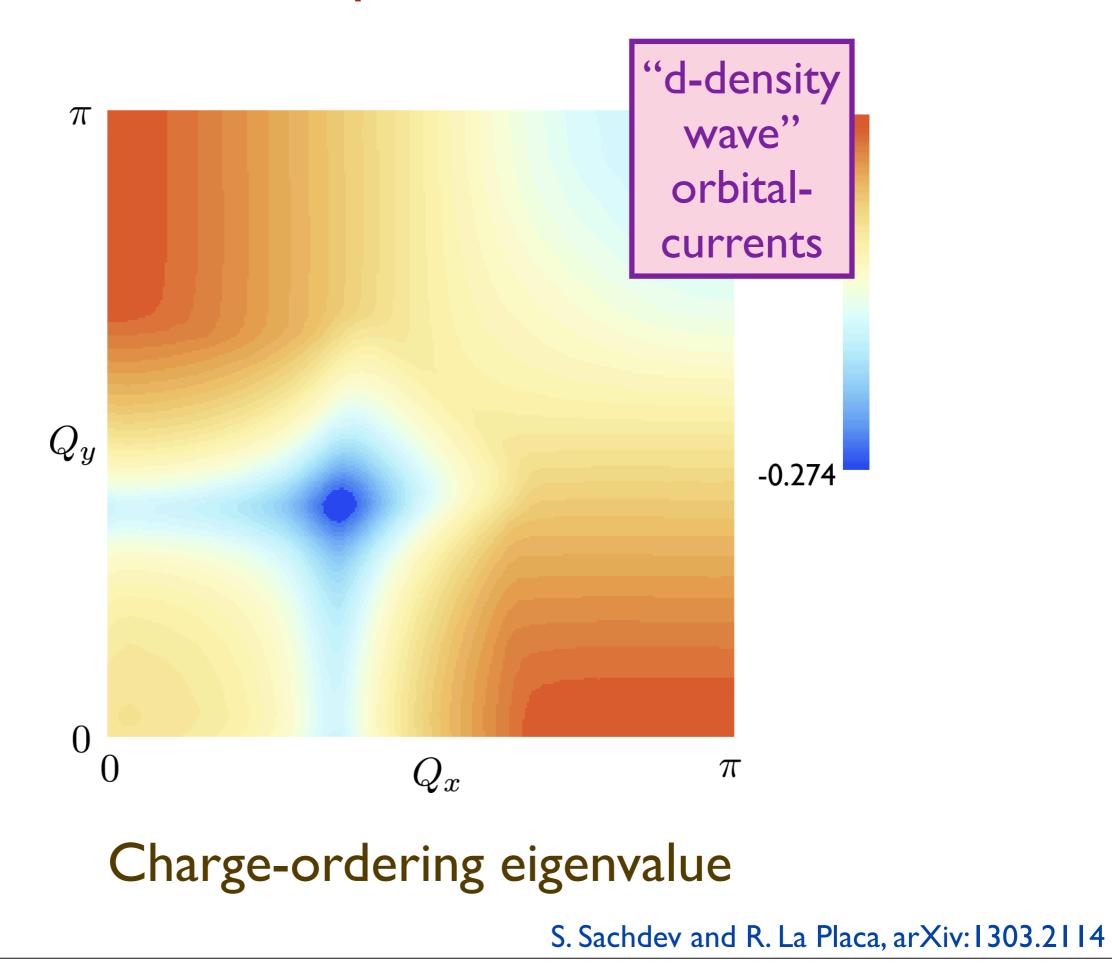
$$\Delta_{\boldsymbol{Q}}(\boldsymbol{k}) = \sum_{\gamma} c_{\boldsymbol{Q},\gamma} \psi_{\gamma}(\boldsymbol{k})$$

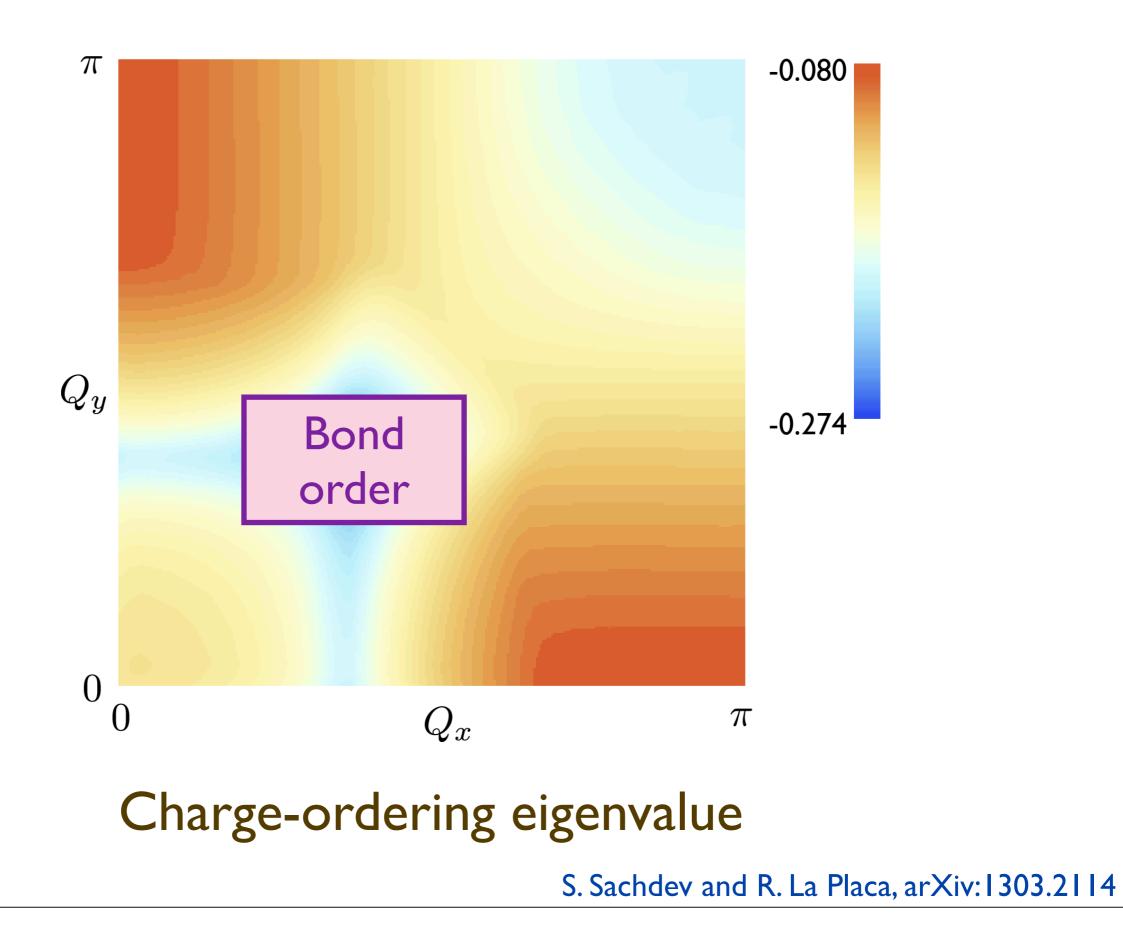
γ	$\psi_{\gamma}(oldsymbol{k})$	Q =	Q =	Q =	Q =	$\Delta_S(\boldsymbol{k})$
		(1.15, 1.15)	(1.15, 0)	(0,0)	(π,π)	
S	1	0	-0.231	0	0	0
<i>s</i> ′	$\cos k_x + \cos k_y$	0	0.044	0	0	0
<i>s</i> ′′	$\cos(2k_x) + \cos(2k_y)$	0	-0.046	0	0	0
d	$\cos k_x - \cos k_y$	0.993	0.963	0.997	0	0.997
d'	$\cos(2k_x) - \cos(2k_y)$	- 0.069	-0.067	-0.057	0	-0.056
$d^{\prime\prime}$	$2\sin k_x \sin k_y$	0	0	0	0	0
p_x	$\sqrt{2}\sin k_x$	0	0	0	0.706	0
p_y	$\sqrt{2}\sin k_y$	0	0	0	-0.706	0
g	$(\cos k_x - \cos k_y)$	-0.009	0	0	0	0
	$\times \sqrt{8} \sin k_x \sin k_y$					

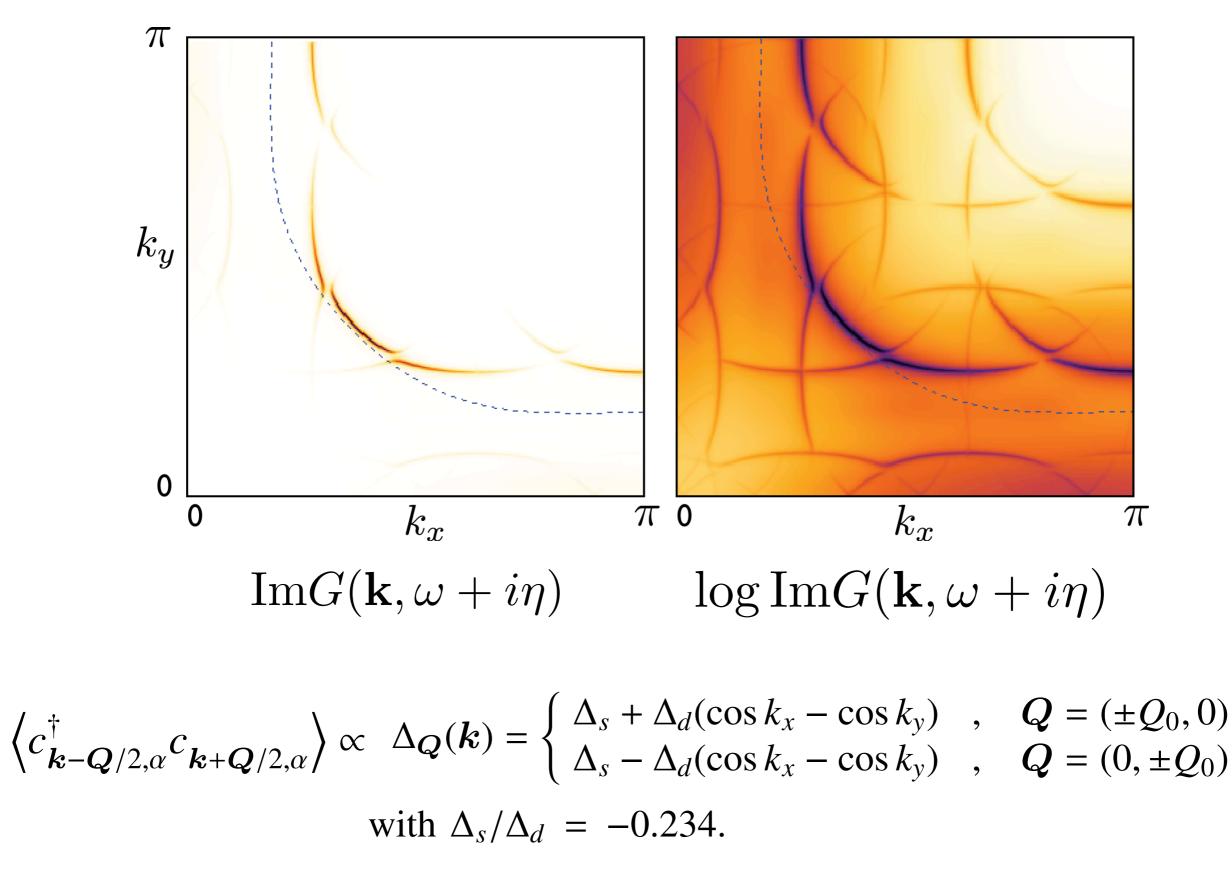
Charge-ordering eigenvector











<u>Outline</u>

I.Antiferromagnetism in metals: low energy theory

2. d-wave superconductivity

3. Emergent pseudospin symmetry, and bond order

4. Quantum Monte Carlo without the sign problem

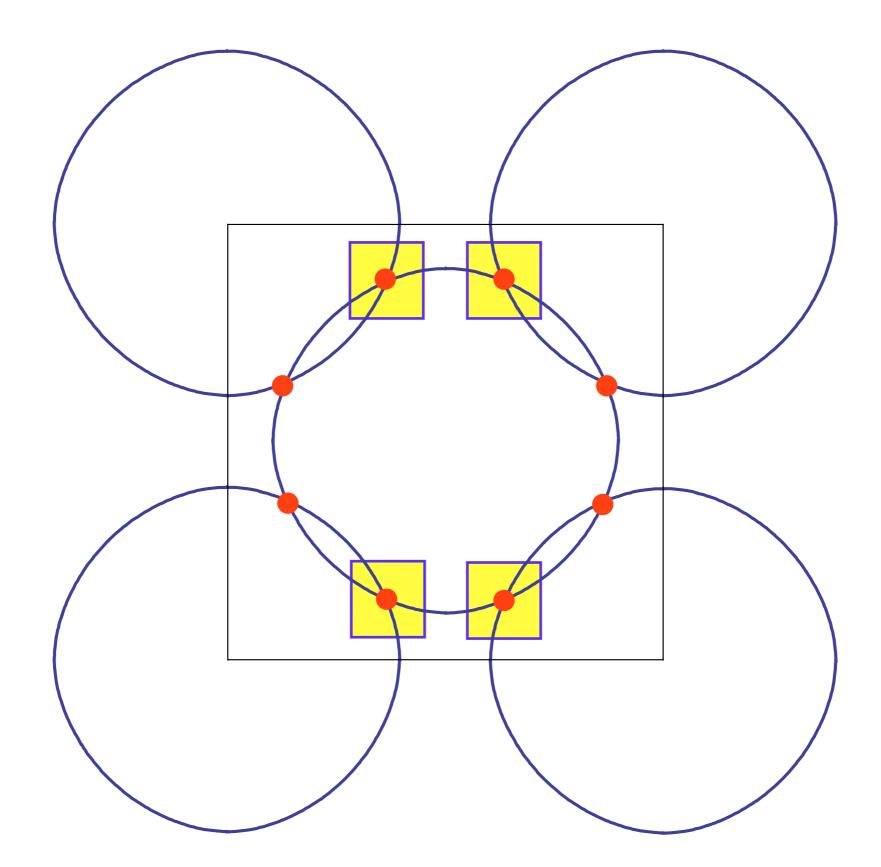
<u>Outline</u>

I.Antiferromagnetism in metals: low energy theory

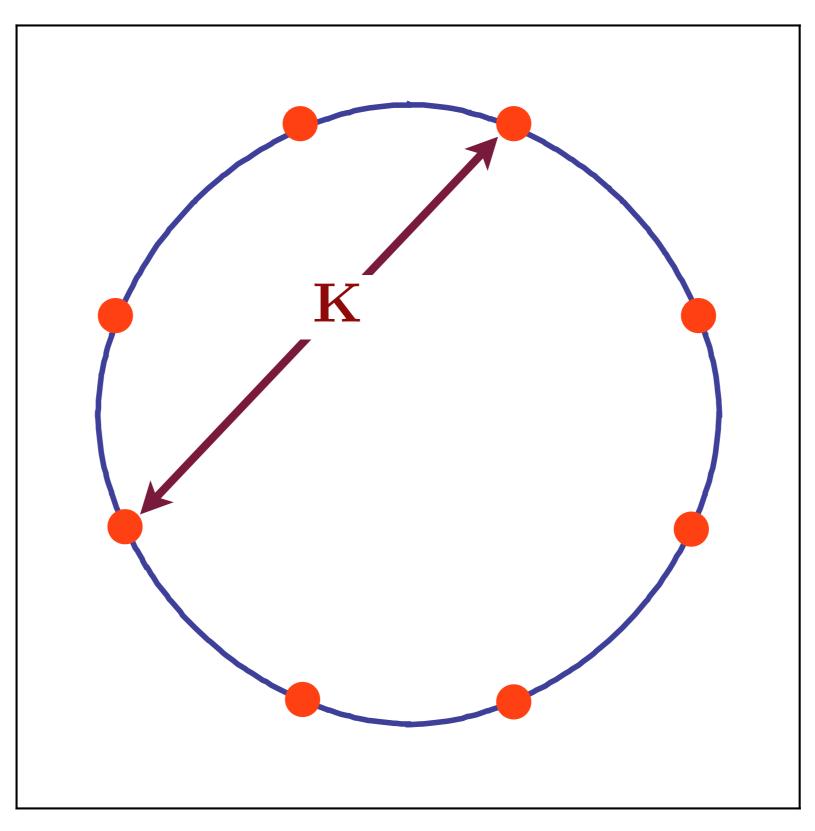
2. d-wave superconductivity

3. Emergent pseudospin symmetry, and bond order

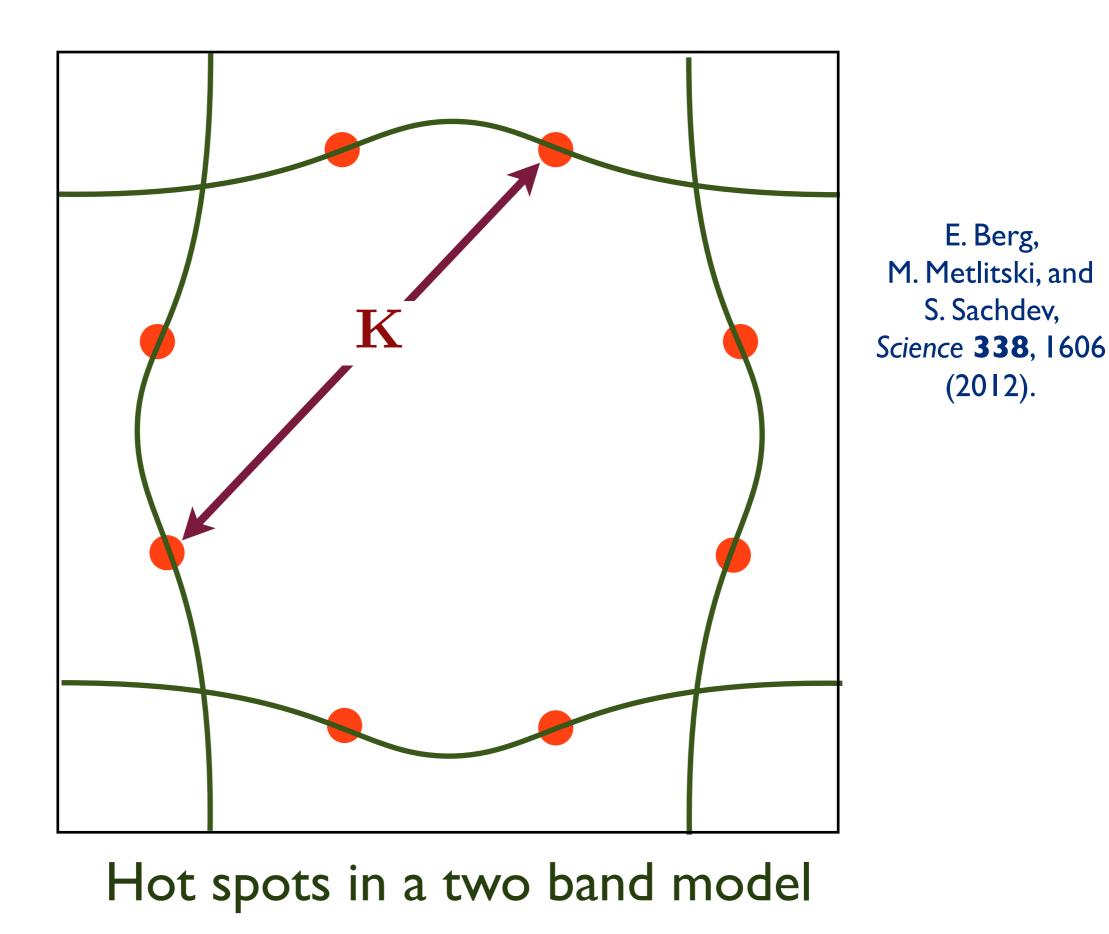
4. Quantum Monte Carlo without the sign problem

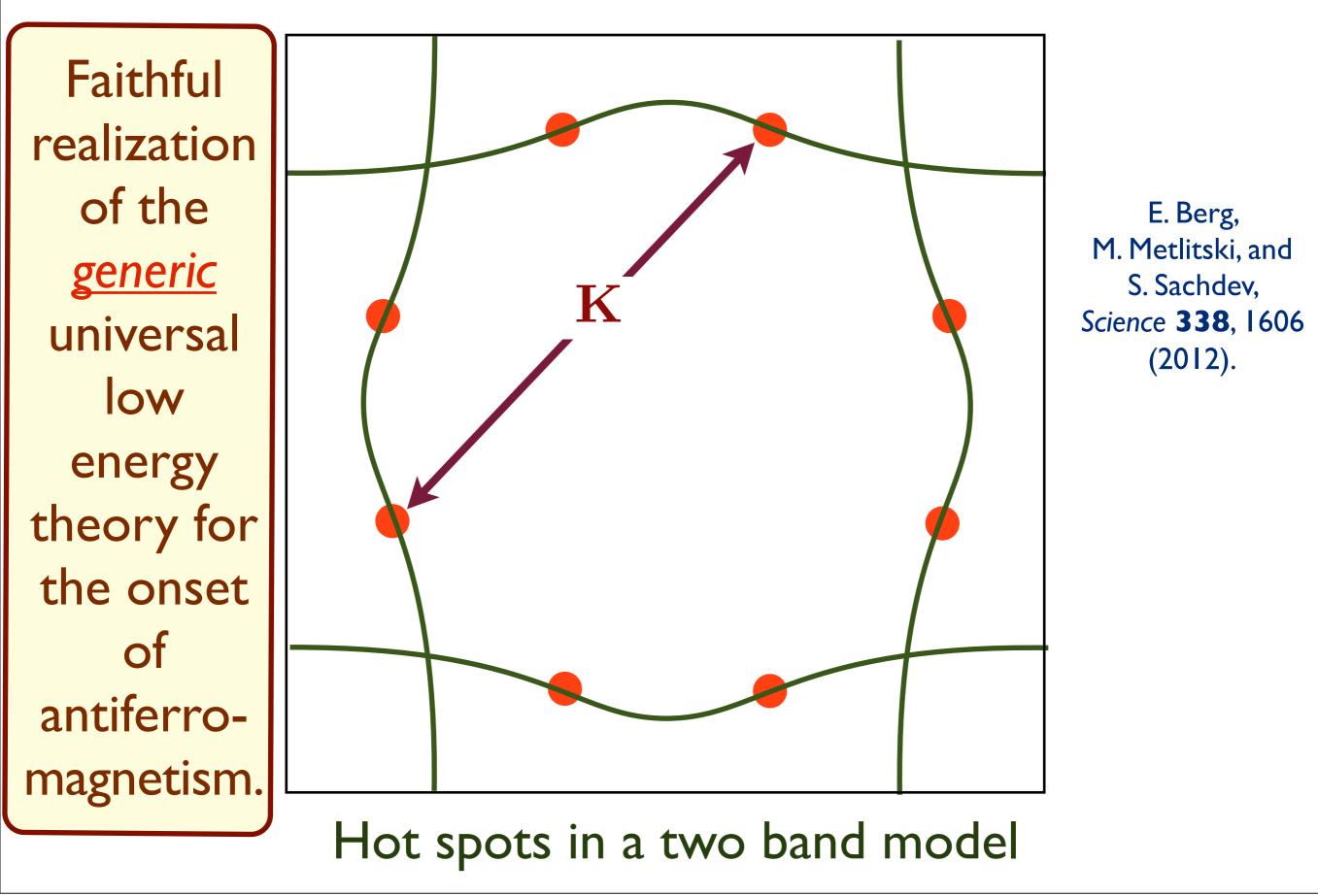


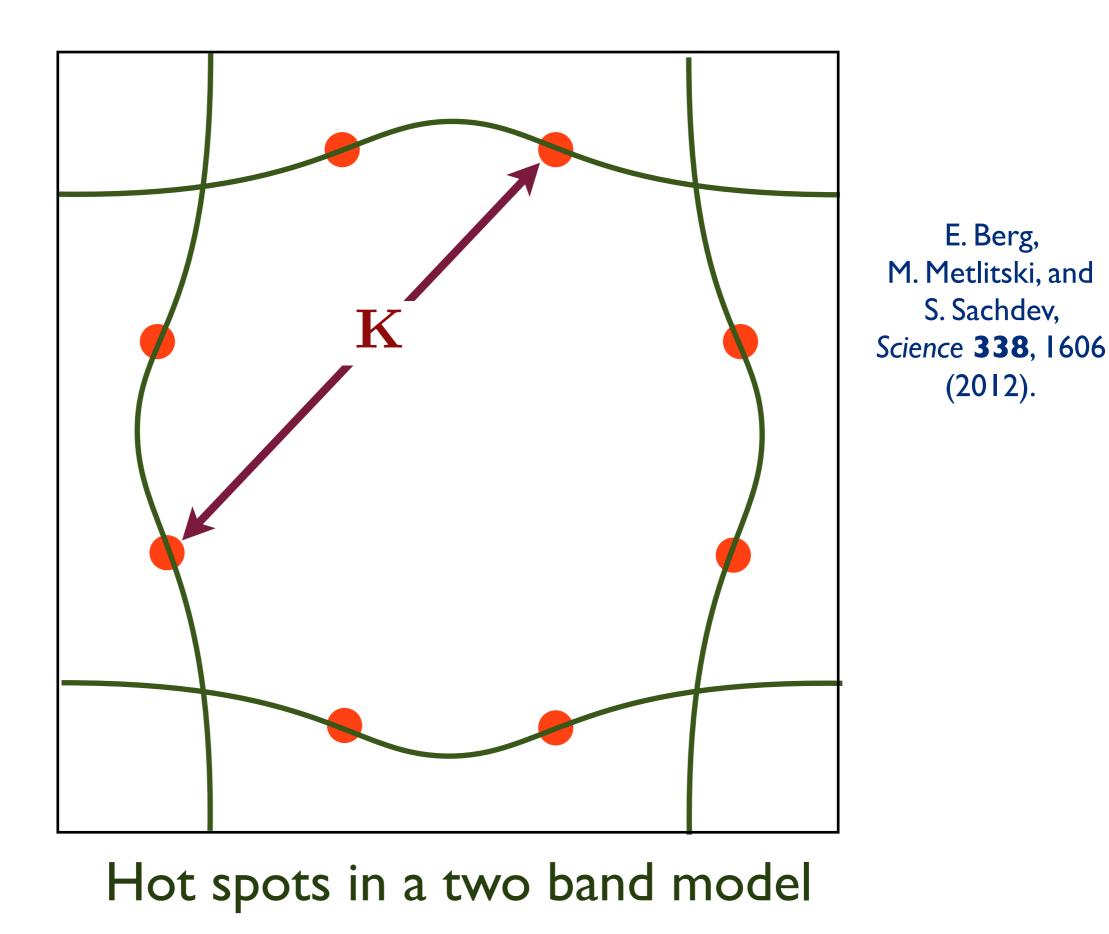
Low energy theory for critical point near hot spots

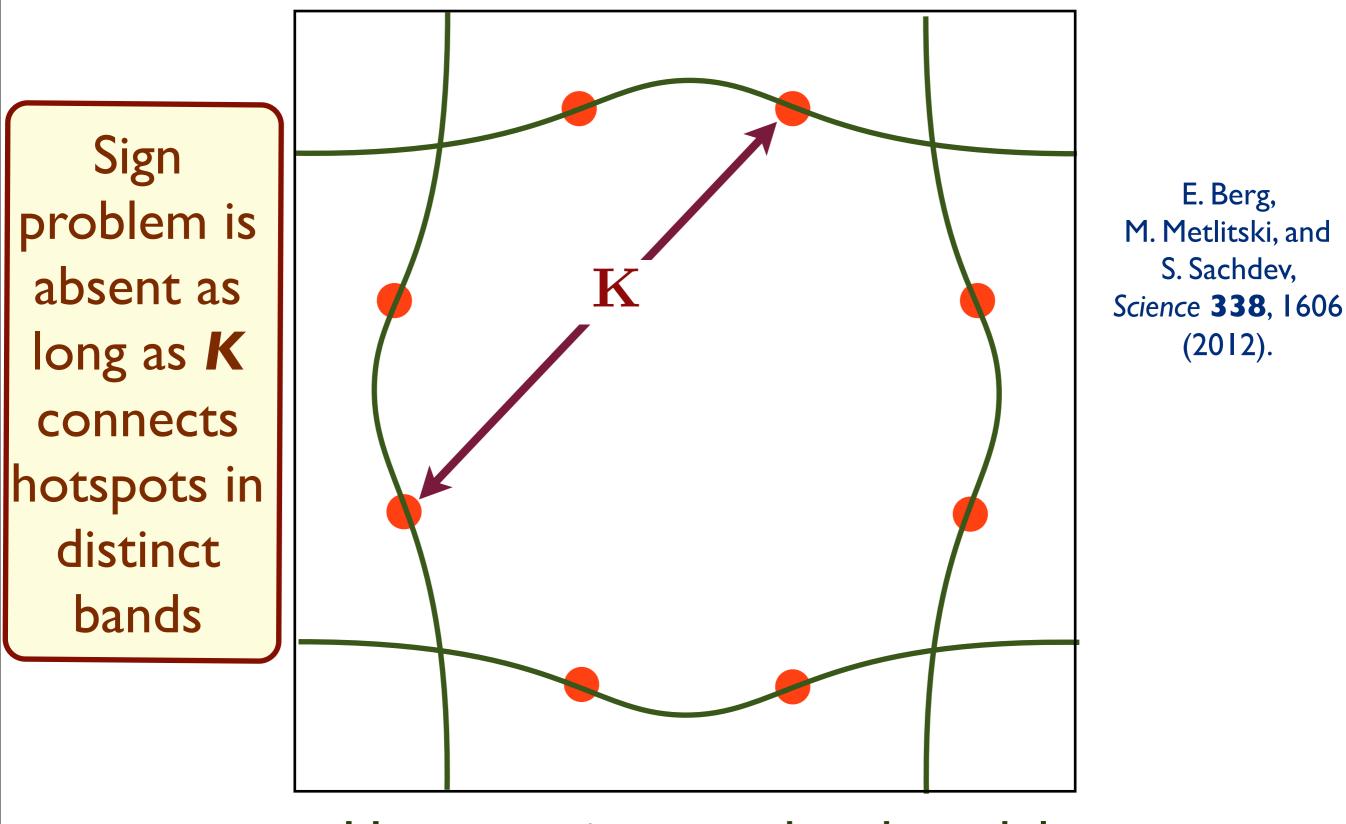


Hot spots in a single band model

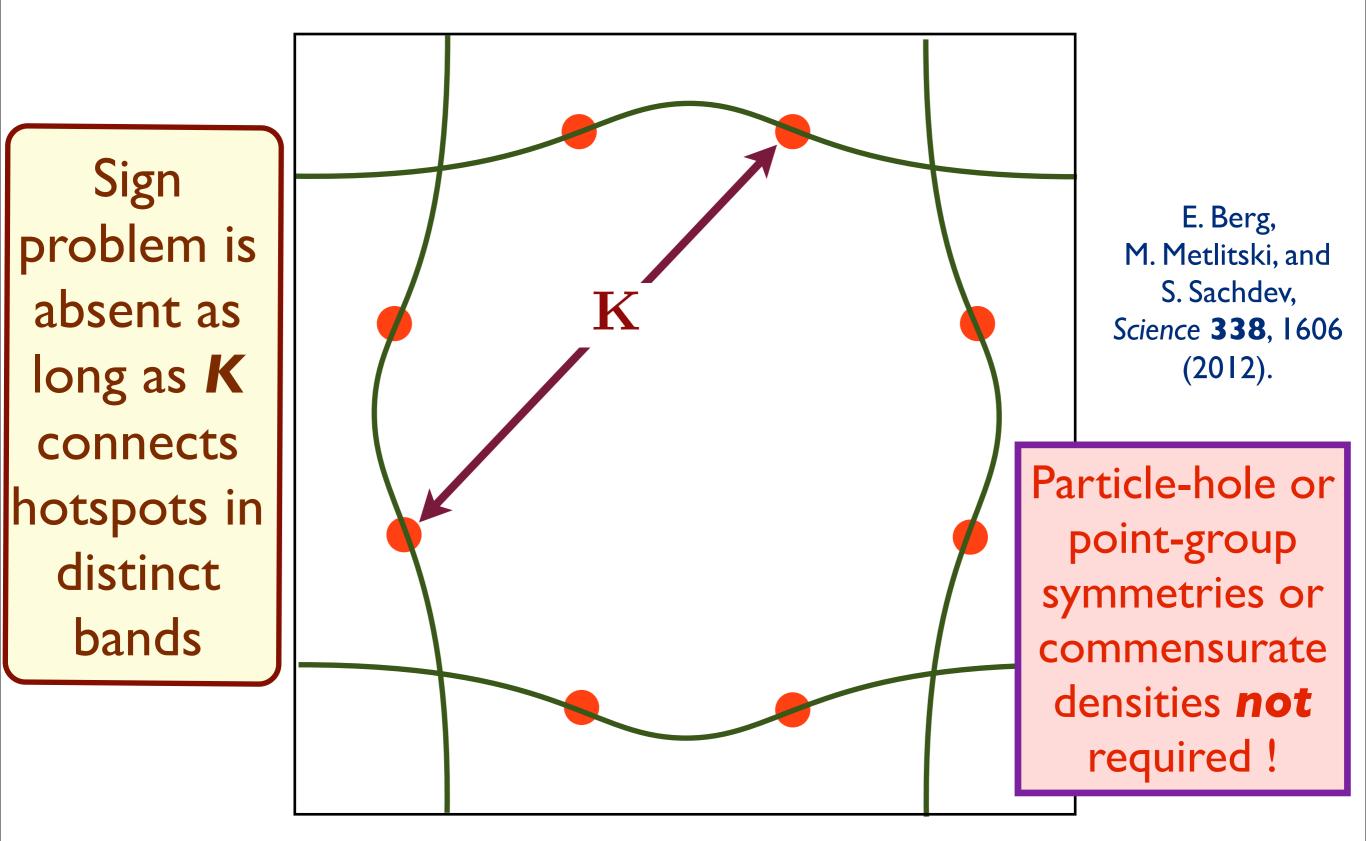








Hot spots in a two band model



Hot spots in a two band model

Electrons with dispersion $\varepsilon_{\mathbf{k}}$ interacting with fluctuations of the antiferromagnetic order parameter $\vec{\varphi}$.

$$\begin{aligned} \mathcal{Z} &= \int \mathcal{D}c_{\alpha}\mathcal{D}\vec{\varphi}\exp\left(-\mathcal{S}\right) \\ \mathcal{S} &= \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} \left(\frac{\partial}{\partial\tau} - \varepsilon_{\mathbf{k}}\right) c_{\mathbf{k}\alpha} \\ &+ \int d\tau d^{2}x \left[\frac{1}{2} \left(\boldsymbol{\nabla}_{x}\vec{\varphi}\right)^{2} + \frac{r}{2}\vec{\varphi}^{2} + \ldots\right] \\ &- \lambda \int d\tau \sum_{i} \vec{\varphi}_{i} \cdot (-1)^{\mathbf{x}_{i}} c_{i\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{i\beta} \end{aligned}$$

Electrons with dispersions $\varepsilon_{\mathbf{k}}^{(x)}$ and $\varepsilon_{\mathbf{k}}^{(y)}$ interacting with fluctuations of the antiferromagnetic order parameter $\vec{\varphi}$.

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}c_{\alpha}^{(x)} \mathcal{D}c_{\alpha}^{(y)} \mathcal{D}\vec{\varphi} \exp\left(-\mathcal{S}\right) & \text{M.} \\ \mathcal{S} &= \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{(x)\dagger} \left(\frac{\partial}{\partial \tau} - \varepsilon_{\mathbf{k}}^{(x)}\right) c_{\mathbf{k}\alpha}^{(x)} \\ &+ \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{(y)\dagger} \left(\frac{\partial}{\partial \tau} - \varepsilon_{\mathbf{k}}^{(y)}\right) c_{\mathbf{k}\alpha}^{(y)} \\ &+ \int d\tau d^{2}x \left[\frac{1}{2} \left(\mathbf{\nabla}_{x}\vec{\varphi}\right)^{2} + \frac{r}{2}\vec{\varphi}^{2} + \dots\right] \\ &- \lambda \int d\tau \sum_{i} \vec{\varphi}_{i} \cdot (-1)^{\mathbf{x}_{i}} c_{i\alpha}^{(x)\dagger} \vec{\sigma}_{\alpha\beta} c_{i\beta}^{(y)} + \text{H.c.} \end{split}$$

E. Berg, M. Metlitski, and S. Sachdev, Science **338**, 1606 (2012).

Electrons with dispersions $\varepsilon_{\mathbf{k}}^{(x)}$ and $\varepsilon_{\mathbf{k}}^{(y)}$ interacting with fluctuations of the antiferromagnetic order parameter $\vec{\varphi}$.

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}c_{\alpha}^{(x)} \mathcal{D}c_{\alpha}^{(y)} \mathcal{D}\vec{\varphi} \exp\left(-\mathcal{S}\right) & \stackrel{\text{E.Berg.}}{\overset{\text{M. Metlitski, and}}{\overset{\text{S. Sachdev,}}{\overset{\text{S. Sachdev$$

Electrons with dispersions $\varepsilon_{\mathbf{k}}^{(x)}$ and $\varepsilon_{\mathbf{k}}^{(y)}$ interacting with fluctuations of the antiferromagnetic order parameter $\vec{\varphi}$.

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}c_{\alpha}^{(x)} \mathcal{D}c_{\alpha}^{(y)} \mathcal{D}\vec{\varphi} \exp\left(-\mathcal{S}\right) \\ \mathcal{S} &= \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{(x)\dagger} \left(\frac{\partial}{\partial\tau} - \varepsilon_{\mathbf{k}}^{(x)}\right) c_{\mathbf{k}\alpha}^{(x)} \\ &+ \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{(y)\dagger} \left(\frac{\partial}{\partial\tau} - \varepsilon_{\mathbf{k}}^{(y)}\right) c_{\mathbf{k}\alpha}^{(y)} \\ &+ \int d\tau d^{2}x \left[\frac{1}{2} \left(\nabla_{x}\vec{\varphi}\right)^{2} + \frac{r}{2}\vec{\varphi}^{2} + \ldots\right] \\ &- \lambda \int d\tau \sum_{i} \vec{\varphi}_{i} \cdot (-1)^{\mathbf{x}_{i}} c_{i\alpha}^{(x)\dagger} \vec{\sigma}_{\alpha\beta} c_{i\beta}^{(y)} + \text{H.c.} \end{split}$$

E. Berg, M. Metlitski, and S. Sachdev, Science **338**, 1606 (2012).

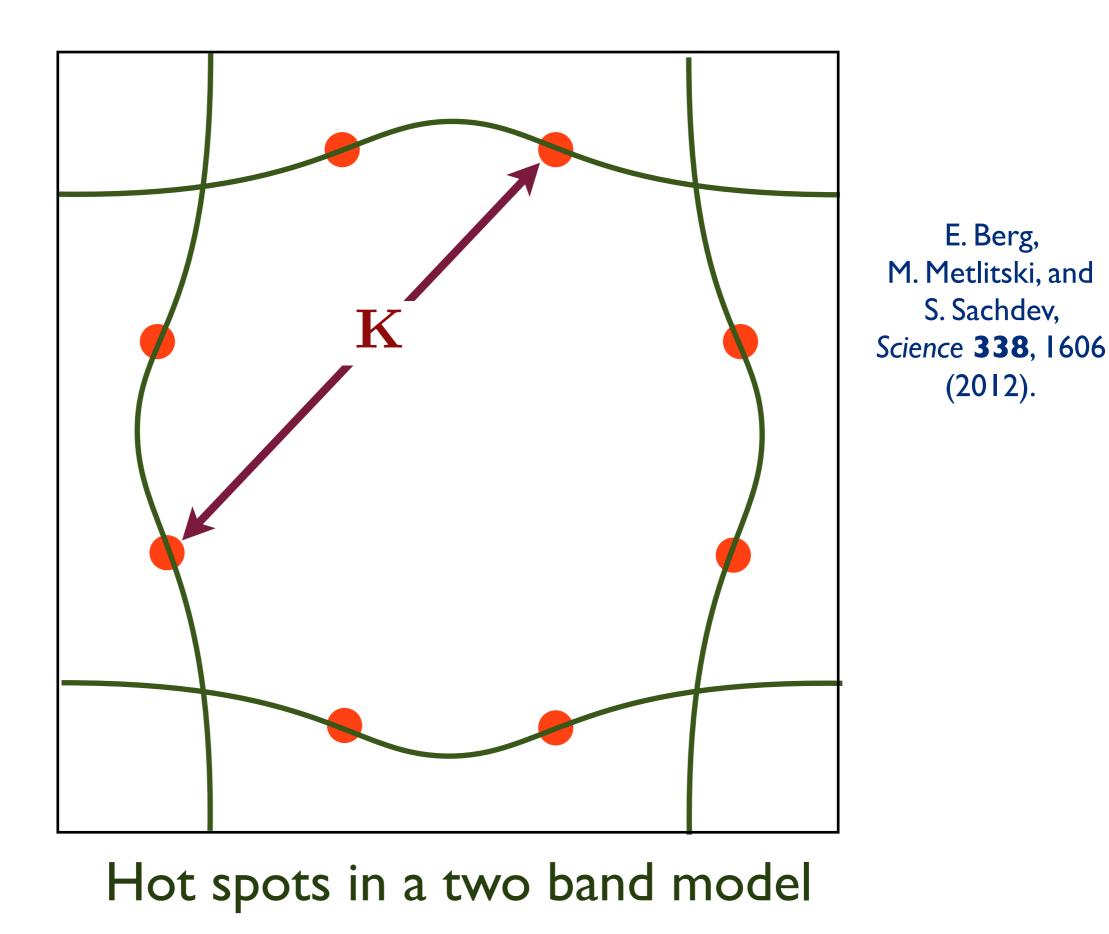
Applies without changes to the microscopic band structure in the iron-based superconductors

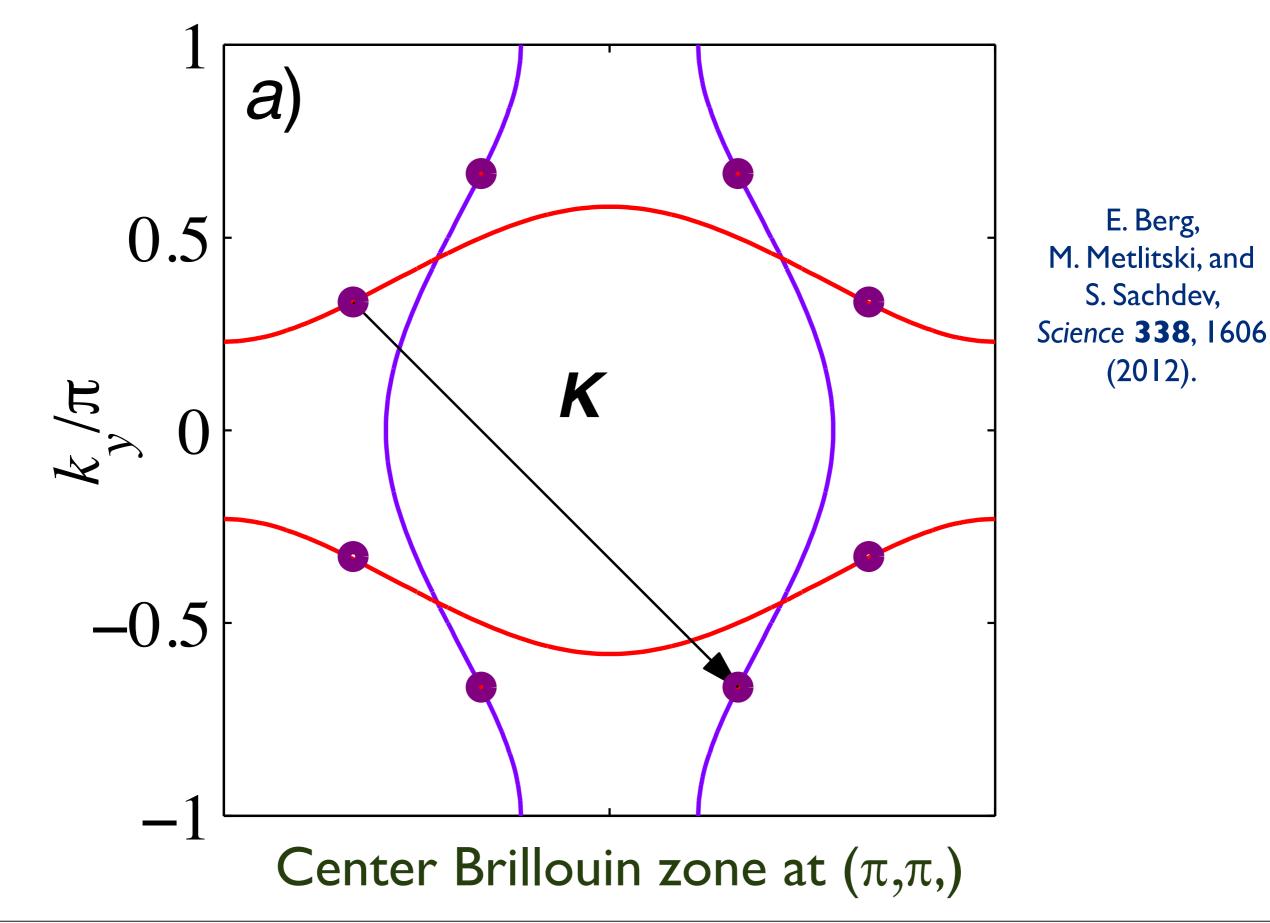
Electrons with dispersions $\varepsilon_{\mathbf{k}}^{(x)}$ and $\varepsilon_{\mathbf{k}}^{(y)}$ interacting with fluctuations of the antiferromagnetic order parameter $\vec{\varphi}$.

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}c_{\alpha}^{(x)} \mathcal{D}c_{\alpha}^{(y)} \mathcal{D}\vec{\varphi} \exp\left(-\mathcal{S}\right) \\ \mathcal{S} &= \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{(x)\dagger} \left(\frac{\partial}{\partial\tau} - \varepsilon_{\mathbf{k}}^{(x)}\right) c_{\mathbf{k}\alpha}^{(x)} \\ &+ \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{(y)\dagger} \left(\frac{\partial}{\partial\tau} - \varepsilon_{\mathbf{k}}^{(y)}\right) c_{\mathbf{k}\alpha}^{(y)} \\ &+ \int d\tau d^{2}x \left[\frac{1}{2} \left(\nabla_{x}\vec{\varphi}\right)^{2} + \frac{r}{2}\vec{\varphi}^{2} + \ldots\right] \end{split}$$
Can integra obtain an Hubbard minteractions in only couple separate
$$-\lambda \int d\tau \sum_{i} \vec{\varphi}_{i} \cdot (-1)^{\mathbf{x}_{i}} c_{i\alpha}^{(x)\dagger} \vec{\sigma}_{\alpha\beta} c_{i\beta}^{(y)} + \text{H.c.} \end{split}$$

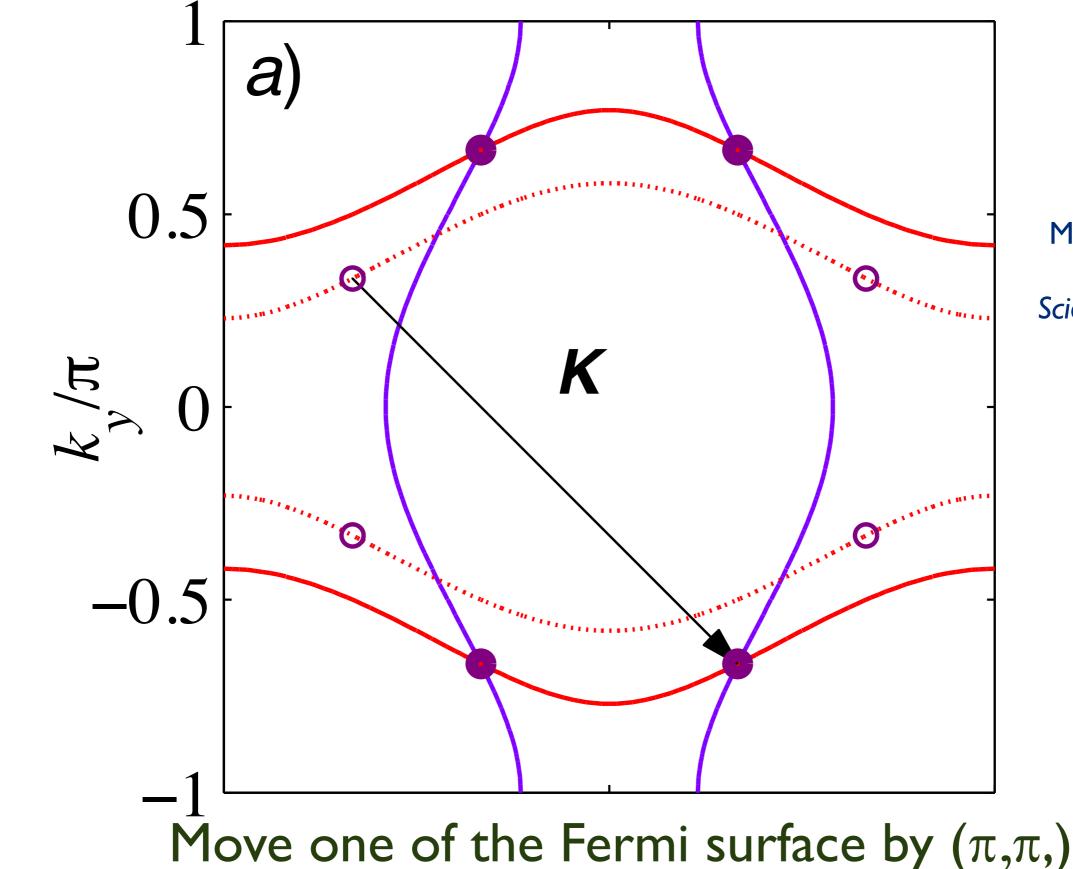
E. Berg, M. Metlitski, and S. Sachdev, Science 338, 1606 (2012).

integrate out $\vec{\varphi}$ to ain an extended bard model. The ctions in this model couple electrons in eparate bands.

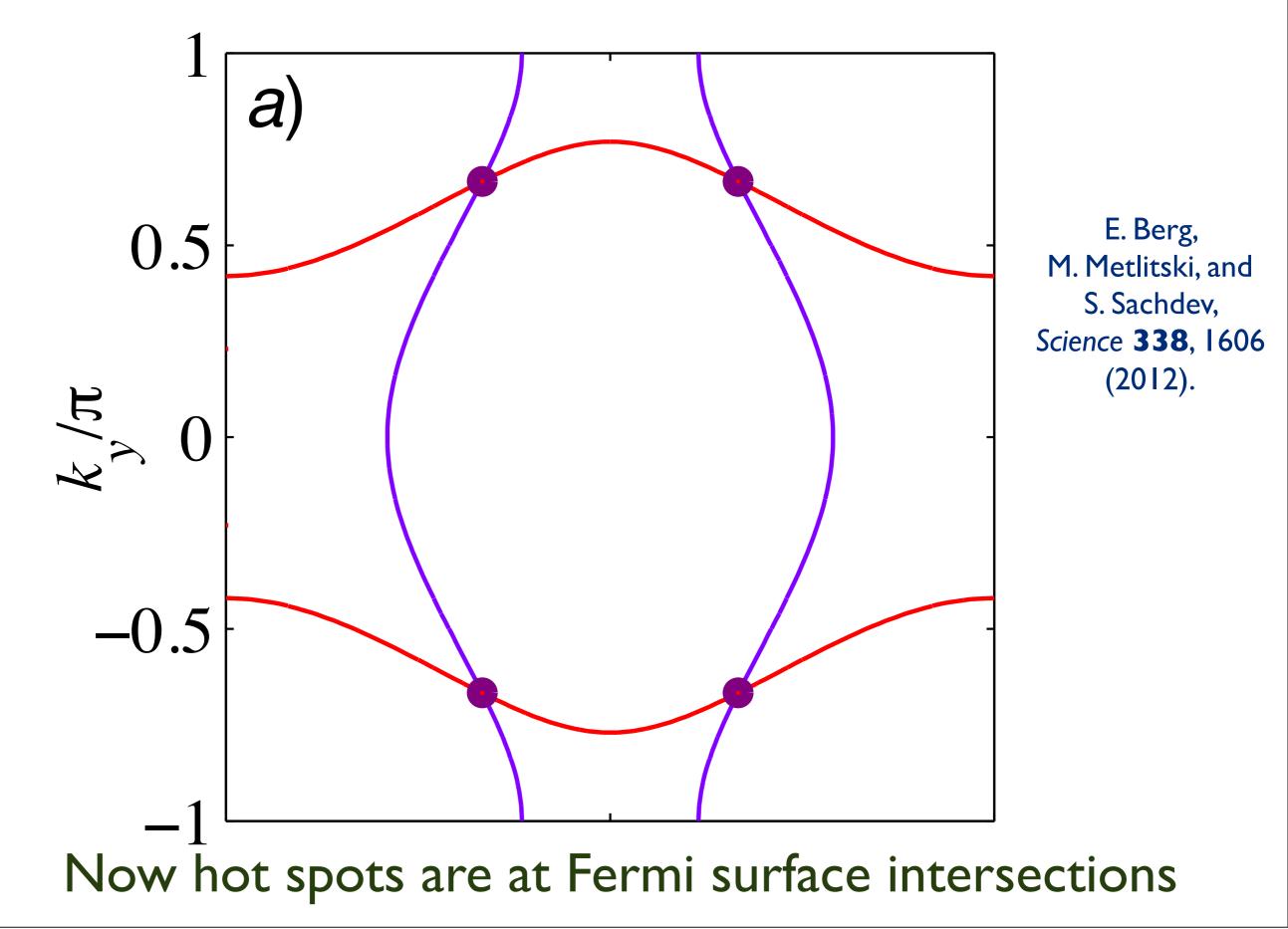


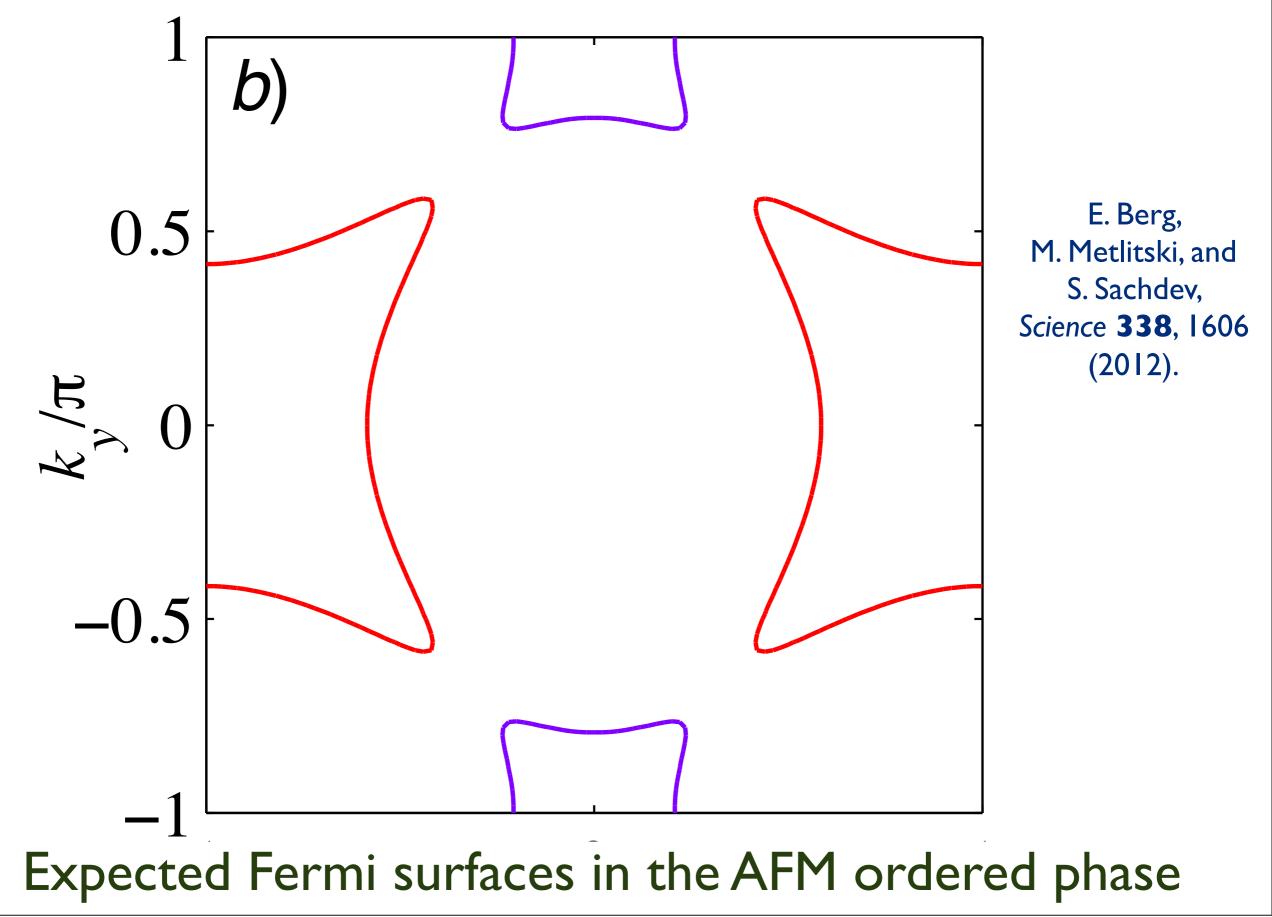


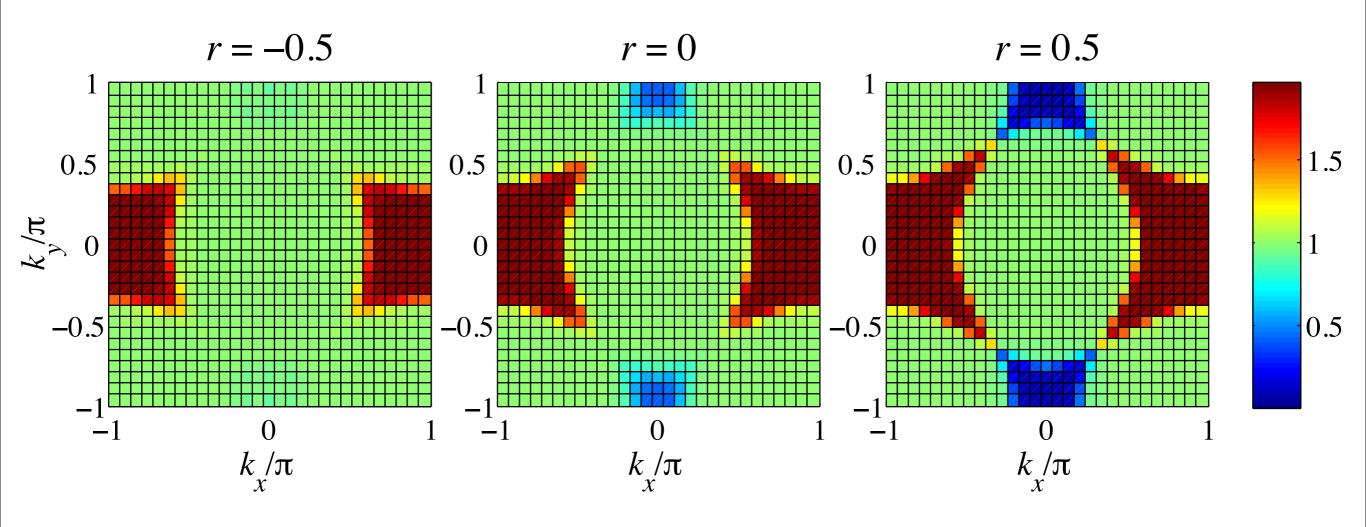
Tuesday, March 12, 13



E. Berg, M. Metlitski, and S. Sachdev, Science **338**, 1606 (2012).



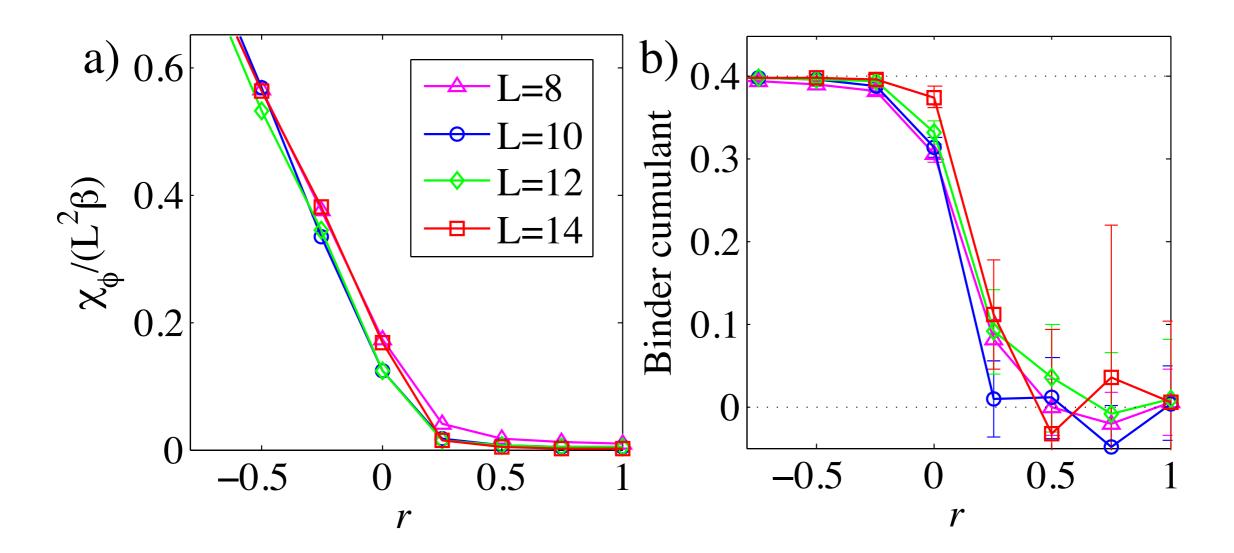




Electron occupation number $n_{\mathbf{k}}$ as a function of the tuning parameter r

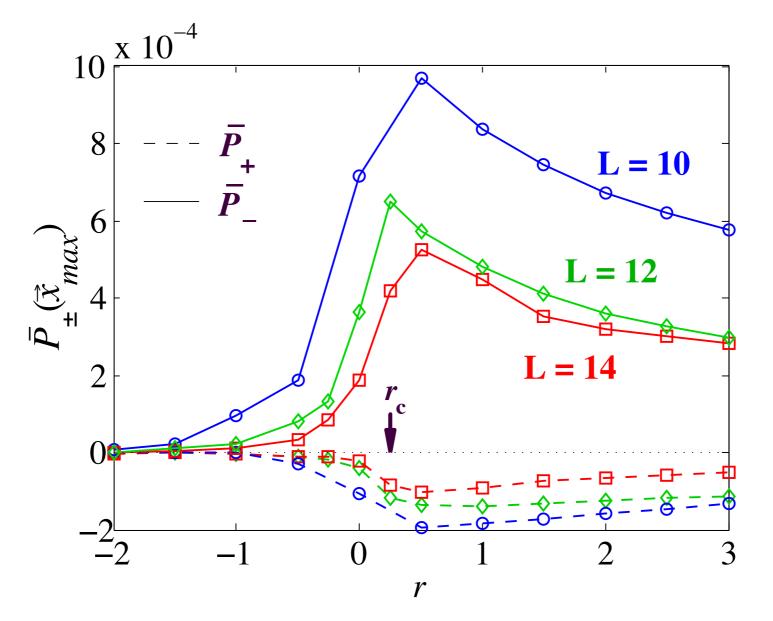
....

E. Berg, M. Metlitski, and S. Sachdev, Science 338, 1606 (2012).



AF susceptibility, χ_{φ} , and Binder cumulant as a function of the tuning parameter r

E. Berg, M. Metlitski, and S. Sachdev, Science 338, 1606 (2012).



s/d pairing amplitudes $P_+/P_$ as a function of the tuning parameter r

E. Berg, M. Metlitski, and S. Sachdev, Science 338, 1606 (2012).

Conclusions

Metals with antiferromagnetic spin correlations have nearly degenerate instabilities: to d-wave superconductivity, and to a charge density wave with a d-wave form factor.

Conclusions

Metals with antiferromagnetic spin correlations have nearly degenerate instabilities: to d-wave superconductivity, and to a charge density wave with a d-wave form factor.

New sign-problem-free quantum Monte Carlo for studying such metals. Obtained (first ?) convincing evidence for unconventional superconductivity at strong coupling.

Conclusions

Metals with antiferromagnetic spin correlations have nearly degenerate instabilities: to d-wave superconductivity, and to a charge density wave with a d-wave form factor.

New sign-problem-free quantum Monte Carlo for studying such metals. Obtained (first ?) convincing evidence for unconventional superconductivity at strong coupling.

Good prospects for studying competing charge orders, and non-Fermi liquid physics at non-zero temperature.