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A. S=1/2 fermions (Si:P , 2DEG)
Metal-insulator transition
Evolution of magnetism across transition.
Phil. Trans. Roy. Soc. A 356, 173 (1998) (cond-mat/9705074)
Pramana 58, 285 (2002) (cond-mat/0109309)

B. S=0 bosons (ultracold atoms in an optical lattice)
Superfluid-insulator transition
Mott insulator in a strong electric field -
S. Sachdev, K. Sengupta, S.M. Girvin, cond-mat/0205169
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Transport in coupled quantum dots
150000 dots
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A. S=1/2 fermions
U w small    ;   charge transport “metallic”

Magnetic properties of a single impurity

t

w

LT χ

LT χ

Low temperature magnetism dominated by such impurities

M. Milovanovic, S. Sachdev, R.N. Bhatt, Phys. Rev. Lett. 63, 82 (1989).
R.N. Bhatt and D.S. Fisher, Phys. Rev. Lett. 68, 3072 (1992).
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A. S=1/2 fermions
U w large    ;   charge transport “insulating”

R.N. Bhatt and P.A. Lee, Phys. Rev. Lett. 48, 344 (1982).
B. Bernu, L. Candido, and D.M. Ceperley, Phys. Rev. Lett. 86, 870 (2002).
G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, Phys. Rev. Lett. 81, 1098 (1998).
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Strong disorder
Random singlet phase
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Spins pair up in singlets
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Weak disorder
Spin gap
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Spin glass
  order
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Higher density of moments + longer range of exchange interaction induces spin-
glass order. Also suggested by strong-coupling flow of triplet interaction amplitude 
in Finkelstein’s (Z. Phys. B 56, 189 (1984)) renormalized weak-disorder expansion.

S. Sachdev, Phil. Trans. Roy. Soc. 356A, 173 (1998) (cond-mat/9705074); 
S. Sachdev, Pramana. 58, 285 (2002) (cond-mat/0109309).

U w

“Metallic”
Local moments

“Insulating”
Random singlets

/spin gap

Metal-insulator 
transition

Theory for spin glass transition in metal
S. Sachdev, N. Read, R. Oppermann, Phys. Rev B 52, 10286 (1995).
A.M. Sengupta and A. Georges, Phys. Rev B 52, 10295 (1995).

A. S=1/2 fermions

Glassy behavior observed by S. Bogdanovich and D. Popovic, cond-mat/0106545.



Effect of a parallel magnetic field on spin-glass state.

B

M

Singular behavior at a critical field at T=0
Possibly related to observations of  

S. A. Vitkalov, H. Zheng, K. M. Mertes, M. P. Sarachik, and T. M. Klapwijk, 
Phys. Rev. Lett. 87, 086401 (2001).

S. Sachdev, Pramana. 58, 285 (2002) (cond-mat/0109309).
N. Read, S. Sachdev, and J. Ye,  Phys. Rev. B 52, 384 (1995); 

Spin glass order in plane orthogonal to B
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, 
Nature 415, 39 (2002).

Related earlier work by C. Orzel, A.K. Tuchman, M. L. Fenselau,     
M. Yasuda, and M. A. Kasevich, Science 291, 2386 (2001).

Superfluid-insulator transition of 87Rb atoms in a magnetic trap 
and an optical lattice potential

B. S=0 bosons



Detection method

Trap is released and atoms expand to a distance far larger than 
original trap dimension
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Measurement of momentum distribution function



Schematic three-dimensional interference pattern with measured absorption images taken 
along two orthogonal directions. The absorption images were obtained after ballistic 

expansion from a lattice with a potential depth of V0 = 10 Er and a time of flight of 15 ms. 

Superfluid state



Superfluid-insulator transition

V0=0Er V0=7Er V0=10Er

V0=13Er V0=14Er V0=16Er V0=20Er

V0=3Er



M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



Applying an “electric” field to the Mott insulator

Coupled 
quantum dots !



V0=10 Ere coil ττττperturb = 2 m s V0= 13 Ere coil ττττperturb = 4 m s

V0= 16 Ere coil ττττperturb = 9 m s V0= 20 Ere coil ττττperturb = 20 m s

What is the 
quantum state 

here ?
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Describe spectrum in subspace of states resonantly 
coupled to the Mott insulator



Effective Hamiltonian for a quasiparticle in one dimension (similar for a quasihole):
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All charged excitations are strongly localized in the plane perpendicular electric field.
Wavefunction is periodic in time, with period h/E (Bloch oscillations)

Quasiparticles and quasiholes are not accelerated out to infinity



dk E
dt

=

Semiclassical picture

k

Free particle is accelerated out to infinityIn a weak periodic potential, escape to infinity occurs via Zener 
tunneling across band gaps

Experimental situation: Strong periodic potential in 
which there is negligible Zener tunneling, and the 

particle undergoes Bloch oscillations



Creating dipoles on nearest neighbor links creates a 
state with relative energy U-2E ; such states are not

part of the resonant manifold

Nearest-neighbor dipole

Important neutral excitations (in one dimension)

Nearest-neighbor dipoles

Dipoles can appear resonantly on non-nearest-neighbor links.
Within resonant manifold, dipoles have infinite on-link 

and nearest-link repulsion

Nearest neighbor dipole



A non-dipole state

State has energy 3(U-E) but is connected to resonant 
state by a matrix element smaller than w2/U

State is not part of resonant manifold



Hamiltonian for resonant dipole states (in one dimension)

( )

†

† †

† † †
1 1

          Creates dipole on link 
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Note: there is no explicit dipole hopping term. 

However, dipole hopping is generated by the 
interplay of terms in Hd and the constraints.

Determine phase diagram of Hd as a function of (U-E)/w



Weak electric fields: (U-E) w

Ground state is dipole vacuum (Mott insulator) 
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�First excited levels: single dipole states
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Effective hopping between dipole states † 0d
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If both processes are permitted, they exactly cancel each other.
The top processes is blocked when          are nearest neighbors
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Strong electric fields: (E-U)      w�

Ground state has maximal dipole number.

Two-fold degeneracy associated with Ising density wave order:
† † † † † † † † † † † †
1 3 5 7 9 11 2 4 6 8 10 120 0d d d d d d or d d d d d d� � � �

Ising quantum critical point at E-U=1.08 w
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Equal-time structure 
factor for Ising order 

parameter



Resonant states in higher dimensionsResonant states in higher dimensions

Quasiparticles

Quasiholes

Dipole states in one 
dimension

Quasiparticles and 
quasiholes can move 

resonantly in the transverse 
directions in higher 

dimensions.

Constraint: number of 
quasiparticles in any 
column = number of 
quasiholes in column 
to its left.



Hamiltonian for resonant states in higher dimensions
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Creates quasiparticle in column  and transverse position 

Creates quasihole in column  and transverse position 
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Terms as in one dimension

Transverse hopping

Constraints

New possibility: superfluidity in transverse direction (a smectic)



Ising density wave order

( ) /U E w= −

( ) /U E w= −

Transverse superfluidity

Possible phase diagrams in higher dimensions



Implications for experiments

•Observed resonant response is due to gapless spectrum near 
quantum critical point(s).

•Transverse superfluidity (smectic order) can be detected by 
looking for “Bragg lines” in momentum distribution function---
bosons are phase coherent in the transverse direction.

•Present experiments are insensitive to Ising density wave order. 
Future experiments could introduce a phase-locked subharmonic
standing wave at half the wave vector of the optical lattice---this 
would couple linearly to the Ising order parameter. The AC stark 
shift of the atomic hyperfine levels would differ between adja-
cent sites. The relative strengths of the split hyperfine absorption 
lines would then be a measure of the Ising order parameter.


