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Experiments on the cuprate superconductors show:

• Tendency to produce “density” wave order near 
wavevectors (2π/a)(1/4,0) and (2π/a)(0,1/4).

• Proximity to a Mott insulator at hole density δ =1/8 
with long-range “density” wave order at wavevectors
(2π/a)(1/4,0) and (2π/a)(0,1/4).

• Vortex/anti-vortex fluctuations for a wide 
temperature range in the normal state

• STM studies of Ca2-xNaxCuO2Cl2 at low T, T. Hanaguri, C. Lupien, Y. Kohsaka,          
D.-H. Lee, M. Azuma, M. Takano,  H. Takagi, and J. C. Davis, Nature 430, 1001 (2004).
• Measurements of the Nernst effect, Y. Wang, S. Ono, Y. Onose, G. Gu, Y. Ando,          
Y. Tokura, S. Uchida, and N. P. Ong, Science 299, 86 (2003).
• STM studies of Bi2Sr2CaCu2O8+δ above Tc, M. Vershinin, S. Misra, S. Ono, Y. Abe,    
Y. Ando, and A. Yazdani, Science, 303, 1995 (2004).



Experiments on the cuprate superconductors show:

• Tendency to produce “density” wave order near 
wavevectors (2π/a)(1/4,0) and (2π/a)(0,1/4).

• Proximity to a Mott insulator at hole density δ =1/8 
with long-range “density” wave order at wavevectors
(2π/a)(1/4,0) and (2π/a)(0,1/4).

• Vortex/anti-vortex fluctuations for a wide 
temperature range in the normal state

Needed: A quantum theory of transitions 
between superfluid/supersolid/insulating
phases at fractional filling, and a deeper 

understanding of the role of vortices
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A. Superfluid-insulator transitions of bosons 

on the square lattice at fractional filling
Quantum mechanics of vortices in a 
superfluid proximate to a commensurate Mott 
insulator at filling f

B. Extension to electronic models for the cuprate
superconductors

Dual vortex theories of the doped
(1) Quantum dimer model
(2)“Staggered flux” spin liquid



A. Superfluid-insulator transitions of bosons   
on the square lattice at fractional filling 

Quantum mechanics of vortices in a 
superfluid proximate to a commensurate 

Mott insulator at filling f



Bosons at filling fraction f = 1
Weak interactions: 

superfluidity

Strong interactions: 
Mott insulator which 
preserves all lattice 

symmetries

M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).



Excitations of the superfluid: Vortices

Vortices proliferate as the superfluid approaches the insulator.

In two dimensions, we can view the vortices as 
point particle excitations of the superfluid. What is 

the quantum mechanics of these “particles” ?



In ordinary fluids, vortices experience the Magnus Force

FM
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In a Galilean-invariant superfluid at 0, the Magnus force 
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In the presence of a lattice, we must distinguish two
physically distinct situations, and write 
                         
with
    1  A stationary vortex in a moving superfluid 
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     (2) A moving vortex in a stationary superfluid
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while that for   is  correct. The latter is modified
by the periodic potential of the lattice close to a 
Mott insulator.................
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( )B
MF can be re-interpreted as a Lorentz force on 

a vortex “particle” due to a “magnetic” field B=hρ

So we need to consider the quantum mechanics of 
a particle moving in a “magnetic” field B and a periodic 

lattice potential --- the Hofstadter problem.

At filling fraction f=1, the B field is such that there is 
exactly one flux quantum per unit cell. Such a B field is 

“invisible”, and the vortex “particle” moves in conventional 
Bloch waves       ( ) 0.B

MF⇒ =

( )

2 2

0 0
0

At densities  close to the Mott insulator density  the effective  field is
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Bosons at filling fraction f = 1/2  (equivalent to S=1/2 AFMs)

0ψ ≠

Weak interactions: superfluidity

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) 
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)
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Bosons at filling fraction f = 1/2  (equivalent to S=1/2 AFMs)

0ψ =

Strong interactions: insulator

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) 
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Bosons at filling fraction f = 1/2  (equivalent to S=1/2 AFMs)
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( ) .All insulating phases have "density" wave order  with 0ieρ ρ ρ= ≠∑ Q r
Q Q

Q
r

Strong interactions: insulator 0ψ =

C. Lannert, M.P.A. Fisher, and T. Senthil, Phys. Rev. B 63, 134510 (2001) 
S. Sachdev and K. Park, Annals of Physics, 298, 58 (2002)



Quantum mechanics of the vortex “particle” in a 
periodic potential with f flux quanta per unit cell

Vortices in a superfluid near a Mott insulator at filling f

Space group symmetries of Hamiltonian:

,  :  Translations by a lattice spacing in the ,  directions

 :  Rotation by 90 degrees.
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At filling = /  ( ,  relatively 
prime integers) there are  species 
of vortices,  (with =1 ),  
associated with  gauge-equivalent 
regions of the Brillouin zone

f p q p q
q

q
q

ϕ …

Hofstadter spectrum of the quantum vortex “particle”  
with field operator ϕ

Vortices in a superfluid near a Mott insulator at filling f=p/q
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At filling = /  ( ,  relatively 
prime integers) there are  species 
of vortices,  (with =1 ),  
associated with  gauge-equivalent 
regions of the Brillouin zone
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Hofstadter spectrum of the quantum vortex “particle”  
with field operator ϕ
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The  vortices form a  representation of the space group
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Vortices in a superfluid near a Mott insulator at filling f=p/q

See also X.-G. Wen, Phys. Rev. B 65, 165113 (2002) 



Vortices in a superfluid near a Mott insulator at filling f=p/q

   The   vortices characterize  
superconducting and density wave orders

q bothϕ

Superconductor insulator : 0 0  ϕ ϕ= ≠



Vortices in a superfluid near a Mott insulator at filling f=p/q

   The   vortices characterize  
superconducting and density wave orders

q bothϕ
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Density wave order: 

Status of space group symmetry determined by 
2density operators  at wavevectors ,
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Vortices in a superfluid near a Mott insulator at filling f=p/q

   The   vortices characterize  
superconducting and density wave orders

q bothϕ
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Vorticity modulations: 

In the presence of an applied magnetic field, there
are also modulations in the vorticity at the same

2wavevectors ,
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Field theory with projective symmetry

( ) ( )

Degrees of freedom: 
      complex  vortex fields

     1 non-compact U(1) gauge field  which mediates  and E B
M M

q

A F Fµ
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Field theory with projective symmetry

( ) ( )

Degrees of freedom: 
      complex  vortex fields

     1 non-compact U(1) gauge field  which mediates  and E B
M M

q
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Field theory with projective symmetry

Spatial structure of insulators for q=2 (f=1/2)
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( ) .All insulating phases have density-wave order  with 0ieρ ρ ρ= ≠∑ Q r
Q Q

Q
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Spatial structure of insulators for q=4 (f=1/4 or 3/4)
Field theory with projective symmetry

unit cells; 

,  ,  ,  

all integers

a b
q q ab

a b q

×



Field theory with projective symmetry
Pinned vortices in the superfluid

Any pinned vortex must chose an orientation in flavor 
space. This necessarily leads to modulations in the local 
density of states over the spatial region where the vortex 

executes its quantum zero point motion.
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In the cuprates, assuming boson density=density of Cooper pairs we have 
,  and  (both models in part B yield this value of ). So 

modulation must have period
7 /16 16
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Vortex-induced LDOS of Bi2Sr2CaCu2O8+δ integrated 
from 1meV to 12meV at 4K

100Å

b
7 pA

0 pA

Vortices have halos 
with LDOS 
modulations at a 
period ≈ 4 lattice 
spacings

Prediction of VBS order 
near vortices:  K. Park 
and S. Sachdev, Phys. 

Rev. B 64, 184510 
(2001).

J. Hoffman, E. W. Hudson, K. M. Lang,                     
V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, 
and J. C. Davis, Science 295, 466 (2002).



Measuring the inertial mass of a vortex



Measuring the inertial mass of a vortex

p

 estimates for the BSCCO experiment:

      Inertial vortex mass 
      Vortex m
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Large uncertainty due to uncertainty in valu f
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Note: With nodal fermionic quasiparticles, mv is 
expected to be dependent on the magnetic field i.e.

vortex density
G. E. Volovik, JETP Lett. 65, 217 (1997);                                               

N. B. Kopnin, Phys. Rev. B 57, 11775 (1998).



B. Extension to electronic models for the 
cuprate superconductors                              

Dual vortex theories of the doped 
(1) Quantum dimer model
(2)“Staggered flux” spin liquid



g = parameter controlling strength of quantum 
fluctuations in a semiclassical theory of the 
destruction of Neel order

(B.1) Phase diagram of doped antiferromagnets

La2CuO4

Neel order
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La2CuO4

Neel order

VBS order

or

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).

(B.1) Phase diagram of doped antiferromagnets

T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher,  Science 303, 1490 (2004). 



VBS order
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(B.1) Phase diagram of doped antiferromagnets

La2CuO4

Dual vortex theory of 
doped dimer model for 
interplay between VBS 
order and d-wave 
superconductivity

Dual vortex theory of 
doped dimer model for 
interplay between VBS 
order and d-wave 
superconductivity

δHole density
Neel order



(B.1) Doped quantum dimer model(B.1) Doped quantum dimer model

( )
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Density of holes = δ

E. Fradkin and S. A. Kivelson, Mod. Phys. Lett. B 4, 225 (1990).



(B.1) Duality mapping of doped quantum dimer model shows:

Vortices in the superconducting state obey the 
magnetic translation algebra
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where  is the density of holes in the proximate 
Mott insulator (for 1/ 8, 7 /16 )16
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Most results of Part A on bosons can be applied 
unchanged with q as determined above 

Note:   density of Cooper pairsf =
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(B.1) Phase diagram of doped antiferromagnets
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(B.1) Phase diagram of doped antiferromagnets

Neel order

La2CuO4

δHole density

d-wave 
superconductivity 
above a critical δ

VBS order



(B.2) Dual vortex theory of doped “staggered flux” spin liquid
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(B.2) Dual vortex theory of doped “staggered flux” spin liquid



Superfluids near Mott insulators

• Vortices with flux h/(2e) come in multiple (usually q) 
“flavors”

• The lattice space group acts in a projective 
representation on the vortex flavor space.

• These flavor quantum numbers provide a distinction 
between superfluids: they constitute a “quantum order”

• Any pinned vortex must chose an orientation in flavor 
space. This necessarily leads to modulations in the local 
density of states over the spatial region where the vortex 
executes its quantum zero point motion.

Superfluids near Mott insulators

• Vortices with flux h/(2e) come in multiple (usually q) 
“flavors”

• The lattice space group acts in a projective 
representation on the vortex flavor space.

• These flavor quantum numbers provide a distinction 
between superfluids: they constitute a “quantum order”

• Any pinned vortex must chose an orientation in flavor 
space. This necessarily leads to modulations in the local 
density of states over the spatial region where the vortex 
executes its quantum zero point motion.

The Mott insulator has average Cooper pair density, f = p/q
per site, while the density of the superfluid is close (but need 

not be identical) to this value


