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Foundations of quantum many body theory:

|. Ground states connected adiabatically to
independent electron states
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Modern phases of quantum matter:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

Famous examples:

The fractional guantum Hall effect of electrons in two
dimensions (e.g. in graphene) in the presence of a
strong magnetic field. The ground state is described
by Laughlin’s wavefunction, and the excitations are
quasiparticles which carry fractional charge.




Modern phases of quantum matter:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

Famous examples:

Electrons in one dimensional wires form the
Luttinger liquid. The quanta of density oscillations
(“phonons™) are a quasiparticle basis of the low-
energy Hilbert space. Similar comments apply to
magnetic insulators in one dimension.
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Modern phases of quantum matter:

|. Ground states disconnected from independent
electron states: many-particle entanglement

2. No quasiparticles

Only 2 examples:

|. Conformal field theories in spatial dimension d >1

2. Quantum critical metals in dimension d=2



Iron pnictides:

a new class of high temperature superconductors
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Qutline

|. The simplest model without quasiparticles

Superfluid-insulator transition

of ultracold bosonic atoms in an optical lattice
(Conformal field theories in 2+ 1 dimensions)

2. Strange metals in the high T, superconductors

Non-quasiparticle transport at the
Ising-nematic quantum critical point
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Superfluid-insulator transition

of ultracold bosonic atoms in an optical lattice

(Conformal field theories in 2+ 1 dimensions)

2. Strange metals in the high T superconductors

Non-quasiparticle transport at the
Ising-nematic quantum critical point



Superfluid-insulator transition

a Superflud state

Ultracold 8’Rb

atoms - bosons

M. Greiner, O. Mandel, T. Esslinger, T. W. Hinsch, and I. Bloch, Nature 415, 39 (2002).
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U — a complex field representing the
Bose-Einstein condensate ot the superfluid
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Insulator (the vacuum)
at large repulsion between bosons

'Ground state) = H bl |0)

()
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Observation of Higgs quasi-normal mode
across the superfluid-insulator transition of
ultracold atoms in a 2-dimensional optical
lattice:

Response to modulation of lattice depth scales
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“long-range” quantum entanglement
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Quantum
critical

“Boltzmann”
theory of Nambu-
Goldstone-Higgs
excitations and
vortices

Boltzmann
theory of
particles/holes



CFT3 at >0

Quantum
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CFT3 at >0

No quasiparticles:
Boltzmann theory
does not apply

Insulator
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and their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)



Traditional CMT

@ |dentify quasiparticles
and their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures



Quasiparticle view of guantum criticality (Boltzmann equation):
Electrical transport for a free CFT3

o

/[N T5(w)]
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Quasiparticle view of guantum criticality (Boltzmann equation):
Electrical transport for a (weakly) interacting CFT3
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K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).



Quasiparticle view of quantum criticality (Boltzmann equation):
Electrical transport for a (weakly) interacting CFT3

Y. — a universal function

Universal conductivity ~ e*/h
Universal time scale ~ h/kgT

O((u*)?),
where u™* is the

fixed point —
Interaction

1 o,
kgT

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).
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Traditional CMT

@ |dentify quasiparticles
and their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures

Dynamics without quasiparticles

@ Start with strongly interacting
CFT without particle- or wave-
like excitations

@ Compute scaling dimensions
and OPE co-efficients of
operators of the CFT



Basic characteristics of CFTs

Ordinary quantum field theories are characterized
by their particle spectrum, and the S-matrices de-
scribing interactions between the particles. The
analog of these concepts for CF'T's are the primary
operators O, (x) and their operator product expan-
stons (OPEs). Each primary operator is associ-
ated with a scaling dimension A,, defined by the
(T = 0) expectation value (for the simplest case
of scalar operators):




Basic characteristics of CFTs

The OPE describes what happens when two op-
erators come together at a single spacetime point
(considering scalar operators only)

The values of [{Aq, fabe }|determine (in principle)

all observable properties of the CF'T, as constrained
by a complex set of conformal Ward identities.

For the Wilson-Fisher CFT3, systematic methods
exist to compute (in principle) all the {Ag, fape},
and we will assume this data is known. This knowl-
edge will be taken as an nput to the computation
of the finite T dynamics
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AdS/CFT correspondence at zero temperature

AdSy

The symmetry group
of isometries of AdSy
maps to the group

of conformal sym-
metries of the CF'T3

R2 1
Minkowski




AdS/CFT correspondence at zero temperature

AdSy

R2,1

The symmetry group Minkowski

of isometries of AdSy &~ C FT3

maps to the group
of conformal sym-

metries of the CF'T'3

A classical gravitational theory on AdS4 encodes the CFT3
data of {A., fape}, and allows computation of CFT3 cor-
relators consistent with all conformal Ward identities
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Traditional CMT

@ |dentify quasiparticles
and their dispersions

@ Compute scattering
matrix elements of
quasiparticles (or of
collective modes)

@ These parameters are
Input into a quantum
Boltzmann equation

@ Deduce dissipative and
dynamic properties at non-
zero temperatures

Dynamics without quasiparticles

@ Start with strongly interacting
CFT without particle- or wave-
like excitations

@ Compute scaling dimensions
and OPE co-efficients of
operators of the CFT

@ Relate OPE co-efficients to
couplings of an effective
gravitational theory on AdS

@ Non-zero T dynamics of CFT
maps to dynamics of a “horizon”
in (Einstein’s) gravitational
theory



Gauge-gravity duality at non-zero temperatures

There is a
family of
solutions of
Einstein’s
equations which

are AdS, as

r — 0, but

which have

horizons at
T =Th.

A “horizon”, similar to the
surface of a black hole !



Gauge-gravity duality at non-zero temperatures

A CFT3 at a

temperature
T ~ 1/rp, equal
to the Hawking

temperature of
the horizon.
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surface of a black hole !



Gauge-gravity duality at non-zero temperatures

A CFT3 at a

temperature
T ~ 1/rp, equal
to the Hawking

temperature of
the horizon.

A “horizon”, similar to the
surface of a black hole ! Dissipation and friction in

the CFT3 =

waves falling past the horizon
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Physical picture of electrical transport in a CFT3

Current

Ju

Current

Ju

OPE co-efficient .
Obeys bound |v| < 1/12.

Stress-energy tensor 1,

Conductivity at T > 0 determined by
“scattering” of current by
thermal stress-energy tensor.

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Physical Review B 87, 085138 (2013).



Quasiparticle view of quantum criticality (Boltzmann equation):
Electrical transport for a (weakly) interacting CFT3

Y. — a universal function

Universal conductivity ~ e*/h
Universal time scale ~ h/kgT

O((u*)?),
where u™* is the

fixed point —
Interaction

1 o,
kgT

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).



AdS4 theory of quantum criticality
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)



AdS4 theory of quantum criticality

e The v > 0 result has similarities to
the quantum-Boltzmann result for
transport of particle-like excitations

% W
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)



AdS4 theory of quantum criticality
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)



AdS4 theory of quantum criticality
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: of SU(N) gauge theory with N' = 8 supersymmetry (the
ABJM model). The w-independence is a consequence of
self-duality under particle-vortex duality (S-duality).
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)



AdS4 theory of quantum criticality

e Stability constraints on the effective
theory (|v| < 1/12) allow only a lim-
ited w-dependence in the conductivity

0.0 W
0.0 0.5 1.0 15 AT

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)



arXiv.org > cond-mat > arXiv:1309.2941

Condensed Matter > Strongly Correlated Electrons

The dynamics of quantum criticality via Quantum Monte Carlo and holography

William Witczak-Krempa, Erik Sorensen, Subir Sachdev
(Submitted on 11 Sep 2013 (v1), last revised 29 Nov 2013 (this version, v2))

Understanding the real time dynamics of quantum systems without quasiparticles constitutes an important yet challenging problem. We
study the superfluid-insulator quantum-critical point of bosons on a two-dimensional lattice, a system whose excitations cannot be
described in a quasiparticle basis. We present detailed quantum Monte Carlo results for two separate lattice realizations: their low-
frequency conductivities are found to have the same universal dependence on imaginary frequency and temperature. We then use the
structure of the real time dynamics of conformal field theories described by the holographic gauge/gravity duality to make progress on
the difficult problem of analytically continuing the Monte Carlo data to real time. Our method yields quantitative and experimentally
testable results on the frequency-dependent conductivity near the quantum critical point, and on the spectrum of quasinormal modes in
the vicinity of the superfluid-insulator quantum phase transition. Extensions to other observables and universality classes are discussed.

Search or

arXiv.org > cond-mat > arXiv:1309.5635

Condensed Matter > Strongly Correlated Electrons

Universal Conductivity in a Two-dimensional Superfluid-to-Insulator
Quantum Critical System

Kun Chen, Longxiang Liu, Youjin Deng, Lode Pollet, Nikolay Prokof'ev
(Submitted on 22 Sep 2013)

We compute the universal conductivity of the (2+1)-dimensional XY universality class, which is realized for a superfluid-to-Mott
insulator quantum phase transition at constant density. Based on large-scale Monte Carlo simulations of the classical (2+1)-dimensional
J-current model and the two-dimensional Bose-Hubbard model, we can precisely determine the conductivity on the quantum critical
plateau, o{oo) = 0.359(4)oy with oy the conductivity quantum. The universal conductivity is the schoolbook example of where the
AdS/CFT correspondence from string theory can be tested and made to use. The shape of our o(iw,) — o(c0) function in the Matsubara
representation is accurate enough for a conclusive comparison and establishes the particle-like nature of charge transport. We find that
the holographic gauge/gravity duality theory for transport properties can be made compatible with the data if temperature of the
horizon of the black brane is different from the temperature of the conformal field theory. The requirements for measuring the universal
conductivity in a cold gas experiment are also determined by our calculation.
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Quantum Monte Carlo for lattice bosons
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FIG. 2.
L — oo limit for the quantum rotor model at (£/U).. The solid blue squares indicate the final T" — 0
extrapolated data. (b) Finite-temperature conductivity in the L — oo limit for a range of L, for the
Villain model at the QCP. The solid red circles indicate the final T" — 0 extrapolated data. The inset
illustrates the extrapolation to T' = 0 for w,, /(27T) = 7. The error bars are statistical for both a) and b).

Quantum Monte Carlo data (a) Finite-temperature conductivity for a range of SU in the

W. Witczak-Krempa, E. Sorensen, and S. Sachdev, arXiv:1309.2941
See also K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokof’ev, arXiv:1309.5635



AdS4 theory of quantum criticality
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Good agreement between high precision Monte Carlo for imaginary frequencies,
and holographic theory after rescaling effective T' and taking oo = 1/g3%,.

W. Witczak-Krempa, E. Sorensen, and S. Sachdev, arXiv:1309.2941
See also K. Chen, L. Liu, Y. Deng, L. Pollet, and N. Prokotf’ev, arXiv:1309.5635



AdS4 theory of quantum criticality
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Xiaofeng Xu, W. H. Jiao, N. Zhou, Y. K. Li, B. Chen, C. Cao, Jianhui Dali,
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T(K)

Xiaofeng Xu, W. H. Jiao, N. Zhou, Y. K. Li, B. Chen, C. Cao, Jianhui Dali,
A. F. Bangura, and Guanghan Cao, arXiv:1402.4124
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Quantum criticality of Ising-nematic ordering in a metal
p

Occupied states

Cl
&

j \ Empty states

A metal with a Fermi surface
with full square lattice symmetry




Quantum criticality of Ising-nematic ordering in a metal
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Quantum criticality of Ising-nematic ordering in a metal
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Quantum criticality of Ising-nematic ordering in a metal
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Quantum criticality of Ising-nematic ordering in a metal

/.l’ \ /
N /

v Quantum -
*. critical ,’
Tl-n \\ ,' 4
an o D
T\ "
Fermi ‘\ II Fermi
liquid <¢> () [;=’2+I <¢> — liquid

Ising
criticality ?

Phase diagram as a function of 1" and A



Quantum criticality of Ising-nematic ordering in a metal

/.l’ \ /
N /

v Quantum -
*. critical
Tl-n \\ ,' A
an oY _(]D .
T\ P
Fermi ‘\ II Fermi
liquid <¢> () [;=’2+I <¢> — liquid

Ising
criticality ?
Only at higher energies; at the lowest energy
bosonic ¢ fluctuations are strongly coupled to
fermionic excitations near Fermi surface.

Phase diagram as a function of 1" and A



Quantum criticality of Ising-nematic ordering in a metal

Boltzmann view of electrical transport:

e Identify charge carriers: electrons near the Fermi surface. Com-
pute the scattering rate of these charged excitations off the bosonic
¢ fluctuations.



Quantum criticality of Ising-nematic ordering in a metal

Boltzmann view of electrical transport:

e Identify charge carriers: electrons near the Fermi surface. Com-
pute the scattering rate of these charged excitations off the bosonic
¢ fluctuations.

e Analogous to electron-phonon scattering in metals, where we have
“Bloch’s law”: a resistivity p(T) ~ T°.

e “Bloch’s law” for the Ising-nematic critical point yields
p(T) ~ T3,



Quantum criticality of Ising-nematic ordering in a metal

Boltzmann view of electrical transport:

Identify charge carriers: electrons near the Fermi surface. Com-
pute the scattering rate of these charged excitations off the bosonic
¢ fluctuations.

Analogous to electron-phonon scattering in metals, where we have
“Bloch’s law”: a resistivity p(T) ~ T°.

“Bloch’s law” for the Ising-nematic critical point yields
p(T) ~ T3,

However, Bloch’s law ignores conservation of total momentum, or
phonon drag.



Quantum criticality of Ising-nematic ordering in a metal

Boltzmann view of electrical transport:

Identify charge carriers: ele 4 0
pute the scattering rate of th
¢ fluctuations. ASHCROFT/ MERMIN

Analogous to electron-phonc
“Bloch’s law”: a resistivity

“Bloch’s law” for the Ising-1
o(T) ~ T3,

However, Bloch’s law ignore
phonon drag.

PHONON DRAG

Peierls*® pointed out a way in which the low temperature resistivity might decline
more rapidly than 7T°.

**  R. E. Peierls, Ann. Phys. (5) 12, 154 (1932).



Quantum criticality of Ising-nematic ordering in a metal

Boltzmann view of electrical transport:

Identify charge carriers: ele 4 0
pute the scattering rate of th
¢ fluctuations. ASHCROFT/ MERMIN

Analogous to electron-phonc
“Bloch’s law”: a resistivity

“Bloch’s law” for the Ising-1
o(T) ~ T3,

However, Bloch’s law ignore
phonon drag.

PHONON DRAG

Peierls*® pointed out a way in which the low temperature resistivity might decline
more rapidly than T°. This behavior has yet to be observed

**  R. E. Peierls, Ann. Phys. (5) 12, 154 (1932).
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The “standard model”:

Sy = / d*rdr [(0:9)° + 2 (Vo) + (A — Ao)9” + ue?]

\ Electrons with a

Ny
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The “standard model”:

Sy = / d*rdr [(0:9)° + 2 (Vo) + (A — Ao)9” + ue?]

Ny , T v2 v4
S. = ;/dmhca((% ot o ....—,u)ca
_ v,
Sy = _g/dzrm S oo [eh {8202+ ea)
a=1

{02 =32+ )eh ) eal

This continuum theory has a conserved momentum P, and
x3.p 7 0, and so the resistivity p(1") = 0.
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Boltzmann view of electrical transport:

Identify charge carriers: electrons near the Fermi surface. Com-
pute the scattering rate of these charged excitations off the bosonic
¢ fluctuations.

Analogous to electron-phonon scattering in metals, where we have
“Bloch’s law”: a resistivity p(T) ~ T°.

“Bloch’s law” for the Ising-nematic critical point yields
p(T) ~ T3,

However, Bloch’s law ignores conservation of total momentum, or
phonon drag.

The field theory for the Ising-nematic critical point has strong
electron—¢ scattering, and no quasi-particle excitations. Never-
theless, because of the central importance of the analog of phonon

drag, it has p(T") = 0.
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Transport without quasiparticles:

e Focus on the interplay between J, and T}, !

a—— - |
sssss——— |

The most-probable state with a non-zero current J
has a non-zero momentum P (and vice versa).
At non-zero density, J “drags” P.

The resistivity of this metal is not determined by the scattering
rate of charged excitations near the Fermi surface, but by the
dominant rate of momentum loss by any excitation, whether

neutral or charged, or fermionic or bosonic
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Transport without quasiparticles:

e Focus on the interplay between J, and T}, !

a—— - |

P

The dominant momentum loss occurs via the scattering
of the neutral bosonic ¢ excitations off random fields

b

S. A. Hartnoll, R. Mahajan, M. Punk and S. Sachdev, arXiv:1401.7012.
A. Lucas, S. Sachdev, and K. Schalm, arXiv:1401.7933



Visualization of the emergence of the pseudogap
state and the evolution to superconductivity in a

lightly hole-doped Mott insulator

Y. Kohsaka, T. Hanaguri, M. Azuma, M. Takano, . C. Davis, and H. Takagi
Nature Physics, 8,534 (2012).

C

Evidence for “nematic” order
(i.e. breaking of 90° rotation symmetry) in Caq ggNag.12CuO,Cls.
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Transport without gquasiparticles:

p(T')

The dominant momentum loss occurs via the scattering
of the neutral bosonic ¢ excitations off random fields

S. A. Hartnoll, R. Mahajan, M. Punk and S. Sachdev, arXiv:1401.7012.
A. Lucas, S. Sachdev, and K. Schalm, arXiv:1401.7933
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Transport without quasiparticles:
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e

p(T) ~ T in region

with ‘relativistic’ criticality of ¢,

with dynamic critical exponent
2= L
Obtained by “memory function”
and by holography.
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Transport without quasiparticles:

e

p(T) ~ (T'In(1/T))~2 in region

with dynamic critical exponent
z = 3.

~\

with Landau-damped criticality of ¢,
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Transport without gquasiparticles:

Pre-empted by
superconductivity

M. Metlitski,
D. F. Mross, S. Sachdev,
and T. Senthil,

arXiv:1403.xxxx

\

r

p(T) ~ T in region

with dynamic critical exponent
2= L
Obtained by “memory function”
and by holography.

~N

with ‘relativistic’ criticality of ¢,

J

The dominant momentum loss occurs via the scattering
of the neutral bosonic ¢ excitations off random fields

S. A. Hartnoll, R. Mahajan, M. Punk and S. Sachdev, arXiv:1401.7012.
A. Lucas, S. Sachdev, and K. Schalm, arXiv:1401.7933
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@ Strongly-coupled quantum criticality leads to a novel
regime of quantum dynamics without quasiparticles.

@ The simplest examples are conformal field theories
in 2+ | dimensions, realized by ultracold atoms in
optical lattices. Quantitative predictions for transport
by combining quantum Monte Carlo and holography.

@ Exciting recent progress on the description of
transport in metallic states without quasiparticles, via
field theory and holography.




