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Foundations of quantum many body theory:	



1. Ground states connected adiabatically to	


independent electron states	



2. Quasiparticle structure of excited states
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Foundations of quantum many body theory:	



1. Ground states connected adiabatically to	


independent electron states	



2. Boltzmann-Landau theory of quasiparticles



Modern phases of quantum matter:	



1. Ground states disconnected from independent	


electron states: many-particle entanglement	



2. Boltzmann-Landau theory of quasiparticles

Famous examples:

The fractional quantum Hall effect of electrons in two 
dimensions (e.g. in graphene) in the presence of a 

strong magnetic field. The ground state is described 
by Laughlin’s wavefunction, and the excitations are 

quasiparticles which carry fractional charge.



Modern phases of quantum matter:	



1. Ground states disconnected from independent	


electron states: many-particle entanglement	



2. Boltzmann-Landau theory of quasiparticles

Famous examples:

Electrons in one dimensional wires form the 
Luttinger liquid.  The quanta of density oscillations 
(“phonons”) are a quasiparticle basis of the low-
energy Hilbert space. Similar comments apply to 

magnetic insulators in one dimension.



Modern phases of quantum matter:	



1. Ground states disconnected from independent	


electron states: many-particle entanglement	



2. Quasiparticle structure of excited states2. No quasiparticles



Modern phases of quantum matter:	



1. Ground states disconnected from independent	


electron states: many-particle entanglement	



2. Quasiparticle structure of excited states2. No quasiparticles

Only 2 examples:

1. Conformal field theories in spatial dimension d >1 
!

2. Quantum critical metals in dimension d=2



Ishida, Nakai, and Hosono 
arXiv:0906.2045v1

Iron pnictides: 	


a new class of high temperature superconductors 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1. The simplest model without quasiparticles	


   Superfluid-insulator transition 	



         of ultracold bosonic atoms in an optical lattice	


         (Conformal field theories in 2+1 dimensions)	


!

2. Strange metals in the high Tc superconductors  	


       Non-quasiparticle transport at the 	


        Ising-nematic quantum critical point

Outline
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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 ! a complex field representing the

Bose-Einstein condensate of the superfluid
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
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j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
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p
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.

LETTER RESEARCH

2 6 J U L Y 2 0 1 2 | V O L 4 8 7 | N A T U R E | 4 5 5

Macmillan Publishers Limited. All rights reserved©2012

system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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Observation of Higgs quasi-normal mode 
across the superfluid-insulator transition of 
ultracold atoms in a 2-dimensional optical 
lattice:	


Response to modulation of lattice depth scales 
as expected from the LHP pole

Manuel Endres, Takeshi Fukuhara, David Pekker, Marc Cheneau, Peter Schaub, Christian Gross, 
Eugene Demler, Stefan Kuhr, and Immanuel Bloch, Nature 487, 454 (2012).



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

�c

h i 6= 0 h i = 0

S =

Z
d2rdt

⇥
|@t |2 � c2|rr |2 � V ( )

⇤

V ( ) = (�� �c)| |2 + u
�
| |2

�2

Quantum state with

“long-range” quantum entanglement

and no quasipartices.

�



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

�c

A conformal field theory

in 2+1 spacetime dimensions:

a CFT3

h i 6= 0 h i = 0

S =

Z
d2rdt

⇥
|@t |2 � c2|rr |2 � V ( )

⇤

V ( ) = (�� �c)| |2 + u
�
| |2

�2

�



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

�c
�



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

�c

“Boltzmann” 
theory of Nambu-
Goldstone-Higgs 
excitations and 

vortices

Boltzmann 
theory of 

particles/holes

�



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

�c

CFT3 at T>0

�



g

T

gc

0

InsulatorSuperfluid

Quantum
critical

TKT

�c

CFT3 at T>0

No quasiparticles:	


Boltzmann theory	


 does not apply

�



Traditional CMT

 Identify quasiparticles 
and their dispersions	


!
 Compute scattering 

matrix elements of 
quasiparticles (or of 
collective modes)	


!
 These parameters are 

input into a quantum 
Boltzmann equation	


!
 Deduce dissipative and 

dynamic properties at non-
zero temperatures 



Traditional CMT

 Identify quasiparticles 
and their dispersions	


!
 Compute scattering 

matrix elements of 
quasiparticles (or of 
collective modes)	


!
 These parameters are 

input into a quantum 
Boltzmann equation	


!
 Deduce dissipative and 

dynamic properties at non-
zero temperatures 



�/T

�

⇠ T �(!)

Quasiparticle view of quantum criticality (Boltzmann equation):	


Electrical transport for a free CFT3



K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

~!
kBT

1

Re[�(!)]

O((u⇤
)

2
),

where u⇤
is the

fixed point

interaction

O(1/(u⇤)2)

Quasiparticle view of quantum criticality (Boltzmann equation):	


Electrical transport for a (weakly) interacting CFT3



K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

~!
kBT

1

Re[�(!)]

�(!, T ) =
e2

h
⌃

✓
~!
kBT

◆

O((u⇤
)

2
),

where u⇤
is the

fixed point

interaction

O(1/(u⇤)2)

; ⌃ ! a universal function

Universal conductivity ⇠ e2/h
Universal time scale ⇠ ~/kBT

Quasiparticle view of quantum criticality (Boltzmann equation):	


Electrical transport for a (weakly) interacting CFT3



Traditional CMT

 Identify quasiparticles 
and their dispersions	


!
 Compute scattering 

matrix elements of 
quasiparticles (or of 
collective modes)	


!
 These parameters are 

input into a quantum 
Boltzmann equation	


!
 Deduce dissipative and 

dynamic properties at non-
zero temperatures 



 Start with strongly interacting 
CFT without particle- or wave-
like excitations	


!
 Compute scaling dimensions 

and OPE co-efficients of 
operators of the CFT	


!
 Relate OPE co-efficients to 

couplings of an effective 
gravitational theory on AdS	


!
 Non-zero T dynamics of CFT 

maps to dynamics of a “horizon” 
in gravitational theory

Traditional CMT

 Identify quasiparticles 
and their dispersions	


!
 Compute scattering 

matrix elements of 
quasiparticles (or of 
collective modes)	


!
 These parameters are 

input into a quantum 
Boltzmann equation	


!
 Deduce dissipative and 

dynamic properties at non-
zero temperatures 

Dynamics without quasiparticles



Basic characteristics of CFTs

Ordinary quantum field theories are characterized
by their particle spectrum, and the S-matrices de-
scribing interactions between the particles. The
analog of these concepts for CFTs are the primary

operators Oa(x) and their operator product expan-
sions (OPEs). Each primary operator is associ-
ated with a scaling dimension �a, defined by the
(T = 0) expectation value (for the simplest case
of scalar operators):

hOa(x)Ob(0)i =
�ab

|x|2�a



Basic characteristics of CFTs
The OPE describes what happens when two op-
erators come together at a single spacetime point
(considering scalar operators only)
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The values of {�
a
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abc

} determine (in principle)
all observable properties of the CFT, as constrained
by a complex set of conformal Ward identities.

For the Wilson-Fisher CFT3, systematic methods
exist to compute (in principle) all the {�

a

, f
abc

},
and we will assume this data is known. This knowl-
edge will be taken as an input to the computation
of the finite T dynamics
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• Stability constraints on the e�ective
theory (|�| < 1/12) allow only a lim-
ited ⇥-dependence in the conductivity
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Quantum Monte Carlo for lattice bosons
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FIG. 1. Probing quantum critical dynamics (a) Phase diagram of the superfluid-insulator
quantum phase transition as a function of t/U (hopping amplitude relative to the onsite repulsion)
and temperature T at integer filling of the bosons. The conformal QCP at T = 0 is indicated by a blue
disk. (b) Quantum Monte Carlo data for the frequency-dependent conductivity, �, near the QCP
along the imaginary frequency axis, for both the quantum rotor and Villain models. The data has been
extrapolated to the thermodynamic limit and zero temperature. The error bars are statistical, and do
not include systematic errors arising from the assumed forms of the fitting functions, which we estimate
to be 5–10%.
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Good agreement between high precision Monte Carlo for imaginary frequencies,

and holographic theory after rescaling e↵ective T and taking �Q = 1/g2M .
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Electronic nematicity above the structural and
superconducting transition in BaFe2(As12xPx)2
S. Kasahara1,2, H. J. Shi1, K. Hashimoto1{, S. Tonegawa1, Y. Mizukami1, T. Shibauchi1, K. Sugimoto3,4, T. Fukuda5,6,7, T. Terashima2,
Andriy H. Nevidomskyy8 & Y. Matsuda1

Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan. 2Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8501, Japan. 3Research and Utilization
Division, JASRI SPring-8, Sayo, Hyogo 679-5198, Japan. 4Structural Materials Science Laboratory, RIKEN SPring-8, Sayo, Hyogo 679-5148, Japan. 5Quantum Beam Science Directorate, JAEA SPring-8,
Sayo, Hyogo 679-5148, Japan. 6Materials Dynamics Laboratory, RIKEN SPring-8, Sayo, Hyogo 679-5148, Japan. 7JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075,
Japan. 8Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, USA. {Present address: Institute for Materials Research, Tohoku University, Sendai 980-8577,
Japan.
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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temperature, in stark contrast to the case of in-plane field
rotation. Collectively, these provide compelling evidence
for the nematic origin of the phase shift observed upon
in-plane rotation.
Similarly, we also studied the in-plane angular evo-

lution of the magnetic torque in underdoped (x=0.18,
Tc=21 K) and nearly optimally-doped (x=0.2, Tc=29
K) samples. Similar phase shifts were also observed in
these two doping levels, although at much lower temper-
atures. The onset temperatures for the nematic phase,
T ∗, were identified as ∼140 K and ∼100 K, respectively
(see SI). Although T ∗ for the optimally-doped sample re-
mains high, the relative phase shift below T ∗ gets much
smaller, indicative of the weak nematicity.
We next consider an overdoped sample (x=0.24, de-

termined from EDX, see SI) whose resistivity, Fig. 2(e),
starts an incipient dip at ∼20 K and a quick drop below
∼14 K but non-zero resistivity is observed down to 2.5
K, indicating either sample inhomogenity or strong inter-
nal field induced by Eu2+ FM ordering on the overdoped
side[17, 19]. Angular torque in the normal state (Fig. 2
(a) and (b)) is sinusoidal and maintains the same phase
all the way down to the superconducting (fluctuation)
temperature, below which a substantial 4-fold compo-
nent develops (see SI for the torque in the superconduct-
ing state). It is noted that this 4-fold symmetry torque
sets in about 10∼20 K above Tc, similar to what was
observed in x=0.18 and x=0.2 samples. We attribute
this to the superconducting fluctuations which have the
same effects on the torque as the Eu2+ order in the par-
ent compound. Overall, this locking of the torque phase
with temperature is vividly captured in the contour plot,
Fig. 2 (d). On the other hand, the temperature depen-
dence of the amplitude, A(T ) in Fig. 2 (c), evolves in a
smooth manner in the normal state.
Figure 3 shows the revised phase diagram of

EuFe2(As1−xPx)2 revealed from our torque measure-
ments. In addition to the phases uncovered thus far by
other measurements, we have found a rather broad region
above the structural and magnetic transitions where the
electrons in the FeAs plane start to develop a novel, ori-
entational order that breaks the rotational invariance of
the underlying tetragonal lattice and reduce the symme-
try from C 4 to C 2[4]. This nematic phase is found to
extend all the way up to the optimal doping where the
structural and magnetic transitions are believed to be
completely suppressed. On the overdoped side, however,
no nematic phase can be revealed above the supercon-
ducting transition, in contrast to the phase diagram of
BaFe2(As1−xPx)2 where nematicity clearly survives in
the very overdoped region[6]. This indicates that the
phase diagram associated with the nematic order is not
universal, even within the 122-family.
We note that the electronic anisotropy above the struc-

tural and magnetic transitions has also been investigated
by a thermoelectric power (TEP) study in three spec-

FIG. 3: (Color online) The resultant phase diagram of
EuFe2(As1−xPx)2 as derived collectively from our measure-
ments and the previous studies. For simplicity, we neglect the
fine spin structure of Eu2+, including that in the supercon-
ducting state, which were recently uncovered in Ref. [21, 22].

imens of EuFe2(As1−xPx)2, two non-superconducting
samples (x=0.05 and 0.09) and one overdoped sample
(x=0.23)[23]. Similarly, the nematic phase had only been
detected in the x=0.05 and x=0.9 samples, no anisotropy
being observed in the overdoped x=0.23 sample. Re-
markably, for x=0.05, the anisotropy in the TEP ap-
pears to develop even above ∼250 K, a temperature we
assigned as T ∗ for the onset temperature of the nematic-
ity in the parent compound (Note that the TEP was
performed under a uniaxial stress clamp. It may effec-
tively enhance the nematicity[23]). Consistently, on the
overdoped side, no nematic order can be detected in the
TEP measurements nor our magnetic torque study. For
the TEP measurements, it is difficult to define the onset
temperature T ∗ since the uniaxial pressure is necessary
to detwin the sample. However, thanks to the unbal-
anced twin-domain volumes, torque measurements prove
to be an effective approach to study any anisotropy in a
stress-free sample[6].

It is unlikely that the absence of the nematicity on the
overdoped side is due to the sample inhomogeneity. First,
the non-zero resistivity below Tc in our sample does not
necessarily imply the sample inhomogeneity as the inter-
nal field induced by Eu2+ FM order in overdoped sample
may be comparable to the upper critical field. Second, no
nematicity has either been detected by the TEP study in
the overdoped sample, whose sample homogeneity is not
a serious issue there[23]. Moreover, it is noteworthy that
even under the uniaxial stress, no resistivity anisotropy
has been observed in the overdoped 122 samples, includ-
ing Co and Ni doped BaFe2As2[8].

A natural question raised by our study concerns the
relation between these various transitions in the phase
diagram and the microscopic origin of the nematicity.

Xiaofeng Xu, W. H. Jiao, N. Zhou, Y. K. Li, B. Chen, C. Cao, Jianhui Dai,
A. F. Bangura, and Guanghan Cao, arXiv:1402.4124
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Electronic nematicity above the structural and
superconducting transition in BaFe2(As12xPx)2
S. Kasahara1,2, H. J. Shi1, K. Hashimoto1{, S. Tonegawa1, Y. Mizukami1, T. Shibauchi1, K. Sugimoto3,4, T. Fukuda5,6,7, T. Terashima2,
Andriy H. Nevidomskyy8 & Y. Matsuda1

Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan. 2Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8501, Japan. 3Research and Utilization
Division, JASRI SPring-8, Sayo, Hyogo 679-5198, Japan. 4Structural Materials Science Laboratory, RIKEN SPring-8, Sayo, Hyogo 679-5148, Japan. 5Quantum Beam Science Directorate, JAEA SPring-8,
Sayo, Hyogo 679-5148, Japan. 6Materials Dynamics Laboratory, RIKEN SPring-8, Sayo, Hyogo 679-5148, Japan. 7JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075,
Japan. 8Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, USA. {Present address: Institute for Materials Research, Tohoku University, Sendai 980-8577,
Japan.
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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temperature, in stark contrast to the case of in-plane field
rotation. Collectively, these provide compelling evidence
for the nematic origin of the phase shift observed upon
in-plane rotation.
Similarly, we also studied the in-plane angular evo-

lution of the magnetic torque in underdoped (x=0.18,
Tc=21 K) and nearly optimally-doped (x=0.2, Tc=29
K) samples. Similar phase shifts were also observed in
these two doping levels, although at much lower temper-
atures. The onset temperatures for the nematic phase,
T ∗, were identified as ∼140 K and ∼100 K, respectively
(see SI). Although T ∗ for the optimally-doped sample re-
mains high, the relative phase shift below T ∗ gets much
smaller, indicative of the weak nematicity.
We next consider an overdoped sample (x=0.24, de-

termined from EDX, see SI) whose resistivity, Fig. 2(e),
starts an incipient dip at ∼20 K and a quick drop below
∼14 K but non-zero resistivity is observed down to 2.5
K, indicating either sample inhomogenity or strong inter-
nal field induced by Eu2+ FM ordering on the overdoped
side[17, 19]. Angular torque in the normal state (Fig. 2
(a) and (b)) is sinusoidal and maintains the same phase
all the way down to the superconducting (fluctuation)
temperature, below which a substantial 4-fold compo-
nent develops (see SI for the torque in the superconduct-
ing state). It is noted that this 4-fold symmetry torque
sets in about 10∼20 K above Tc, similar to what was
observed in x=0.18 and x=0.2 samples. We attribute
this to the superconducting fluctuations which have the
same effects on the torque as the Eu2+ order in the par-
ent compound. Overall, this locking of the torque phase
with temperature is vividly captured in the contour plot,
Fig. 2 (d). On the other hand, the temperature depen-
dence of the amplitude, A(T ) in Fig. 2 (c), evolves in a
smooth manner in the normal state.
Figure 3 shows the revised phase diagram of

EuFe2(As1−xPx)2 revealed from our torque measure-
ments. In addition to the phases uncovered thus far by
other measurements, we have found a rather broad region
above the structural and magnetic transitions where the
electrons in the FeAs plane start to develop a novel, ori-
entational order that breaks the rotational invariance of
the underlying tetragonal lattice and reduce the symme-
try from C 4 to C 2[4]. This nematic phase is found to
extend all the way up to the optimal doping where the
structural and magnetic transitions are believed to be
completely suppressed. On the overdoped side, however,
no nematic phase can be revealed above the supercon-
ducting transition, in contrast to the phase diagram of
BaFe2(As1−xPx)2 where nematicity clearly survives in
the very overdoped region[6]. This indicates that the
phase diagram associated with the nematic order is not
universal, even within the 122-family.
We note that the electronic anisotropy above the struc-

tural and magnetic transitions has also been investigated
by a thermoelectric power (TEP) study in three spec-

FIG. 3: (Color online) The resultant phase diagram of
EuFe2(As1−xPx)2 as derived collectively from our measure-
ments and the previous studies. For simplicity, we neglect the
fine spin structure of Eu2+, including that in the supercon-
ducting state, which were recently uncovered in Ref. [21, 22].

imens of EuFe2(As1−xPx)2, two non-superconducting
samples (x=0.05 and 0.09) and one overdoped sample
(x=0.23)[23]. Similarly, the nematic phase had only been
detected in the x=0.05 and x=0.9 samples, no anisotropy
being observed in the overdoped x=0.23 sample. Re-
markably, for x=0.05, the anisotropy in the TEP ap-
pears to develop even above ∼250 K, a temperature we
assigned as T ∗ for the onset temperature of the nematic-
ity in the parent compound (Note that the TEP was
performed under a uniaxial stress clamp. It may effec-
tively enhance the nematicity[23]). Consistently, on the
overdoped side, no nematic order can be detected in the
TEP measurements nor our magnetic torque study. For
the TEP measurements, it is difficult to define the onset
temperature T ∗ since the uniaxial pressure is necessary
to detwin the sample. However, thanks to the unbal-
anced twin-domain volumes, torque measurements prove
to be an effective approach to study any anisotropy in a
stress-free sample[6].

It is unlikely that the absence of the nematicity on the
overdoped side is due to the sample inhomogeneity. First,
the non-zero resistivity below Tc in our sample does not
necessarily imply the sample inhomogeneity as the inter-
nal field induced by Eu2+ FM order in overdoped sample
may be comparable to the upper critical field. Second, no
nematicity has either been detected by the TEP study in
the overdoped sample, whose sample homogeneity is not
a serious issue there[23]. Moreover, it is noteworthy that
even under the uniaxial stress, no resistivity anisotropy
has been observed in the overdoped 122 samples, includ-
ing Co and Ni doped BaFe2As2[8].

A natural question raised by our study concerns the
relation between these various transitions in the phase
diagram and the microscopic origin of the nematicity.

Neel (AF) and 	


“nematic” order



LETTER
doi:10.1038/nature11178

Electronic nematicity above the structural and
superconducting transition in BaFe2(As12xPx)2
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Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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temperature, in stark contrast to the case of in-plane field
rotation. Collectively, these provide compelling evidence
for the nematic origin of the phase shift observed upon
in-plane rotation.
Similarly, we also studied the in-plane angular evo-

lution of the magnetic torque in underdoped (x=0.18,
Tc=21 K) and nearly optimally-doped (x=0.2, Tc=29
K) samples. Similar phase shifts were also observed in
these two doping levels, although at much lower temper-
atures. The onset temperatures for the nematic phase,
T ∗, were identified as ∼140 K and ∼100 K, respectively
(see SI). Although T ∗ for the optimally-doped sample re-
mains high, the relative phase shift below T ∗ gets much
smaller, indicative of the weak nematicity.
We next consider an overdoped sample (x=0.24, de-

termined from EDX, see SI) whose resistivity, Fig. 2(e),
starts an incipient dip at ∼20 K and a quick drop below
∼14 K but non-zero resistivity is observed down to 2.5
K, indicating either sample inhomogenity or strong inter-
nal field induced by Eu2+ FM ordering on the overdoped
side[17, 19]. Angular torque in the normal state (Fig. 2
(a) and (b)) is sinusoidal and maintains the same phase
all the way down to the superconducting (fluctuation)
temperature, below which a substantial 4-fold compo-
nent develops (see SI for the torque in the superconduct-
ing state). It is noted that this 4-fold symmetry torque
sets in about 10∼20 K above Tc, similar to what was
observed in x=0.18 and x=0.2 samples. We attribute
this to the superconducting fluctuations which have the
same effects on the torque as the Eu2+ order in the par-
ent compound. Overall, this locking of the torque phase
with temperature is vividly captured in the contour plot,
Fig. 2 (d). On the other hand, the temperature depen-
dence of the amplitude, A(T ) in Fig. 2 (c), evolves in a
smooth manner in the normal state.
Figure 3 shows the revised phase diagram of

EuFe2(As1−xPx)2 revealed from our torque measure-
ments. In addition to the phases uncovered thus far by
other measurements, we have found a rather broad region
above the structural and magnetic transitions where the
electrons in the FeAs plane start to develop a novel, ori-
entational order that breaks the rotational invariance of
the underlying tetragonal lattice and reduce the symme-
try from C 4 to C 2[4]. This nematic phase is found to
extend all the way up to the optimal doping where the
structural and magnetic transitions are believed to be
completely suppressed. On the overdoped side, however,
no nematic phase can be revealed above the supercon-
ducting transition, in contrast to the phase diagram of
BaFe2(As1−xPx)2 where nematicity clearly survives in
the very overdoped region[6]. This indicates that the
phase diagram associated with the nematic order is not
universal, even within the 122-family.
We note that the electronic anisotropy above the struc-

tural and magnetic transitions has also been investigated
by a thermoelectric power (TEP) study in three spec-

FIG. 3: (Color online) The resultant phase diagram of
EuFe2(As1−xPx)2 as derived collectively from our measure-
ments and the previous studies. For simplicity, we neglect the
fine spin structure of Eu2+, including that in the supercon-
ducting state, which were recently uncovered in Ref. [21, 22].

imens of EuFe2(As1−xPx)2, two non-superconducting
samples (x=0.05 and 0.09) and one overdoped sample
(x=0.23)[23]. Similarly, the nematic phase had only been
detected in the x=0.05 and x=0.9 samples, no anisotropy
being observed in the overdoped x=0.23 sample. Re-
markably, for x=0.05, the anisotropy in the TEP ap-
pears to develop even above ∼250 K, a temperature we
assigned as T ∗ for the onset temperature of the nematic-
ity in the parent compound (Note that the TEP was
performed under a uniaxial stress clamp. It may effec-
tively enhance the nematicity[23]). Consistently, on the
overdoped side, no nematic order can be detected in the
TEP measurements nor our magnetic torque study. For
the TEP measurements, it is difficult to define the onset
temperature T ∗ since the uniaxial pressure is necessary
to detwin the sample. However, thanks to the unbal-
anced twin-domain volumes, torque measurements prove
to be an effective approach to study any anisotropy in a
stress-free sample[6].

It is unlikely that the absence of the nematicity on the
overdoped side is due to the sample inhomogeneity. First,
the non-zero resistivity below Tc in our sample does not
necessarily imply the sample inhomogeneity as the inter-
nal field induced by Eu2+ FM order in overdoped sample
may be comparable to the upper critical field. Second, no
nematicity has either been detected by the TEP study in
the overdoped sample, whose sample homogeneity is not
a serious issue there[23]. Moreover, it is noteworthy that
even under the uniaxial stress, no resistivity anisotropy
has been observed in the overdoped 122 samples, includ-
ing Co and Ni doped BaFe2As2[8].

A natural question raised by our study concerns the
relation between these various transitions in the phase
diagram and the microscopic origin of the nematicity.
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Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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temperature, in stark contrast to the case of in-plane field
rotation. Collectively, these provide compelling evidence
for the nematic origin of the phase shift observed upon
in-plane rotation.
Similarly, we also studied the in-plane angular evo-

lution of the magnetic torque in underdoped (x=0.18,
Tc=21 K) and nearly optimally-doped (x=0.2, Tc=29
K) samples. Similar phase shifts were also observed in
these two doping levels, although at much lower temper-
atures. The onset temperatures for the nematic phase,
T ∗, were identified as ∼140 K and ∼100 K, respectively
(see SI). Although T ∗ for the optimally-doped sample re-
mains high, the relative phase shift below T ∗ gets much
smaller, indicative of the weak nematicity.
We next consider an overdoped sample (x=0.24, de-

termined from EDX, see SI) whose resistivity, Fig. 2(e),
starts an incipient dip at ∼20 K and a quick drop below
∼14 K but non-zero resistivity is observed down to 2.5
K, indicating either sample inhomogenity or strong inter-
nal field induced by Eu2+ FM ordering on the overdoped
side[17, 19]. Angular torque in the normal state (Fig. 2
(a) and (b)) is sinusoidal and maintains the same phase
all the way down to the superconducting (fluctuation)
temperature, below which a substantial 4-fold compo-
nent develops (see SI for the torque in the superconduct-
ing state). It is noted that this 4-fold symmetry torque
sets in about 10∼20 K above Tc, similar to what was
observed in x=0.18 and x=0.2 samples. We attribute
this to the superconducting fluctuations which have the
same effects on the torque as the Eu2+ order in the par-
ent compound. Overall, this locking of the torque phase
with temperature is vividly captured in the contour plot,
Fig. 2 (d). On the other hand, the temperature depen-
dence of the amplitude, A(T ) in Fig. 2 (c), evolves in a
smooth manner in the normal state.
Figure 3 shows the revised phase diagram of

EuFe2(As1−xPx)2 revealed from our torque measure-
ments. In addition to the phases uncovered thus far by
other measurements, we have found a rather broad region
above the structural and magnetic transitions where the
electrons in the FeAs plane start to develop a novel, ori-
entational order that breaks the rotational invariance of
the underlying tetragonal lattice and reduce the symme-
try from C 4 to C 2[4]. This nematic phase is found to
extend all the way up to the optimal doping where the
structural and magnetic transitions are believed to be
completely suppressed. On the overdoped side, however,
no nematic phase can be revealed above the supercon-
ducting transition, in contrast to the phase diagram of
BaFe2(As1−xPx)2 where nematicity clearly survives in
the very overdoped region[6]. This indicates that the
phase diagram associated with the nematic order is not
universal, even within the 122-family.
We note that the electronic anisotropy above the struc-

tural and magnetic transitions has also been investigated
by a thermoelectric power (TEP) study in three spec-

FIG. 3: (Color online) The resultant phase diagram of
EuFe2(As1−xPx)2 as derived collectively from our measure-
ments and the previous studies. For simplicity, we neglect the
fine spin structure of Eu2+, including that in the supercon-
ducting state, which were recently uncovered in Ref. [21, 22].

imens of EuFe2(As1−xPx)2, two non-superconducting
samples (x=0.05 and 0.09) and one overdoped sample
(x=0.23)[23]. Similarly, the nematic phase had only been
detected in the x=0.05 and x=0.9 samples, no anisotropy
being observed in the overdoped x=0.23 sample. Re-
markably, for x=0.05, the anisotropy in the TEP ap-
pears to develop even above ∼250 K, a temperature we
assigned as T ∗ for the onset temperature of the nematic-
ity in the parent compound (Note that the TEP was
performed under a uniaxial stress clamp. It may effec-
tively enhance the nematicity[23]). Consistently, on the
overdoped side, no nematic order can be detected in the
TEP measurements nor our magnetic torque study. For
the TEP measurements, it is difficult to define the onset
temperature T ∗ since the uniaxial pressure is necessary
to detwin the sample. However, thanks to the unbal-
anced twin-domain volumes, torque measurements prove
to be an effective approach to study any anisotropy in a
stress-free sample[6].

It is unlikely that the absence of the nematicity on the
overdoped side is due to the sample inhomogeneity. First,
the non-zero resistivity below Tc in our sample does not
necessarily imply the sample inhomogeneity as the inter-
nal field induced by Eu2+ FM order in overdoped sample
may be comparable to the upper critical field. Second, no
nematicity has either been detected by the TEP study in
the overdoped sample, whose sample homogeneity is not
a serious issue there[23]. Moreover, it is noteworthy that
even under the uniaxial stress, no resistivity anisotropy
has been observed in the overdoped 122 samples, includ-
ing Co and Ni doped BaFe2As2[8].

A natural question raised by our study concerns the
relation between these various transitions in the phase
diagram and the microscopic origin of the nematicity.
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Electronic nematicity above the structural and
superconducting transition in BaFe2(As12xPx)2
S. Kasahara1,2, H. J. Shi1, K. Hashimoto1{, S. Tonegawa1, Y. Mizukami1, T. Shibauchi1, K. Sugimoto3,4, T. Fukuda5,6,7, T. Terashima2,
Andriy H. Nevidomskyy8 & Y. Matsuda1

Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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temperature, in stark contrast to the case of in-plane field
rotation. Collectively, these provide compelling evidence
for the nematic origin of the phase shift observed upon
in-plane rotation.
Similarly, we also studied the in-plane angular evo-

lution of the magnetic torque in underdoped (x=0.18,
Tc=21 K) and nearly optimally-doped (x=0.2, Tc=29
K) samples. Similar phase shifts were also observed in
these two doping levels, although at much lower temper-
atures. The onset temperatures for the nematic phase,
T ∗, were identified as ∼140 K and ∼100 K, respectively
(see SI). Although T ∗ for the optimally-doped sample re-
mains high, the relative phase shift below T ∗ gets much
smaller, indicative of the weak nematicity.
We next consider an overdoped sample (x=0.24, de-

termined from EDX, see SI) whose resistivity, Fig. 2(e),
starts an incipient dip at ∼20 K and a quick drop below
∼14 K but non-zero resistivity is observed down to 2.5
K, indicating either sample inhomogenity or strong inter-
nal field induced by Eu2+ FM ordering on the overdoped
side[17, 19]. Angular torque in the normal state (Fig. 2
(a) and (b)) is sinusoidal and maintains the same phase
all the way down to the superconducting (fluctuation)
temperature, below which a substantial 4-fold compo-
nent develops (see SI for the torque in the superconduct-
ing state). It is noted that this 4-fold symmetry torque
sets in about 10∼20 K above Tc, similar to what was
observed in x=0.18 and x=0.2 samples. We attribute
this to the superconducting fluctuations which have the
same effects on the torque as the Eu2+ order in the par-
ent compound. Overall, this locking of the torque phase
with temperature is vividly captured in the contour plot,
Fig. 2 (d). On the other hand, the temperature depen-
dence of the amplitude, A(T ) in Fig. 2 (c), evolves in a
smooth manner in the normal state.
Figure 3 shows the revised phase diagram of

EuFe2(As1−xPx)2 revealed from our torque measure-
ments. In addition to the phases uncovered thus far by
other measurements, we have found a rather broad region
above the structural and magnetic transitions where the
electrons in the FeAs plane start to develop a novel, ori-
entational order that breaks the rotational invariance of
the underlying tetragonal lattice and reduce the symme-
try from C 4 to C 2[4]. This nematic phase is found to
extend all the way up to the optimal doping where the
structural and magnetic transitions are believed to be
completely suppressed. On the overdoped side, however,
no nematic phase can be revealed above the supercon-
ducting transition, in contrast to the phase diagram of
BaFe2(As1−xPx)2 where nematicity clearly survives in
the very overdoped region[6]. This indicates that the
phase diagram associated with the nematic order is not
universal, even within the 122-family.
We note that the electronic anisotropy above the struc-

tural and magnetic transitions has also been investigated
by a thermoelectric power (TEP) study in three spec-

FIG. 3: (Color online) The resultant phase diagram of
EuFe2(As1−xPx)2 as derived collectively from our measure-
ments and the previous studies. For simplicity, we neglect the
fine spin structure of Eu2+, including that in the supercon-
ducting state, which were recently uncovered in Ref. [21, 22].

imens of EuFe2(As1−xPx)2, two non-superconducting
samples (x=0.05 and 0.09) and one overdoped sample
(x=0.23)[23]. Similarly, the nematic phase had only been
detected in the x=0.05 and x=0.9 samples, no anisotropy
being observed in the overdoped x=0.23 sample. Re-
markably, for x=0.05, the anisotropy in the TEP ap-
pears to develop even above ∼250 K, a temperature we
assigned as T ∗ for the onset temperature of the nematic-
ity in the parent compound (Note that the TEP was
performed under a uniaxial stress clamp. It may effec-
tively enhance the nematicity[23]). Consistently, on the
overdoped side, no nematic order can be detected in the
TEP measurements nor our magnetic torque study. For
the TEP measurements, it is difficult to define the onset
temperature T ∗ since the uniaxial pressure is necessary
to detwin the sample. However, thanks to the unbal-
anced twin-domain volumes, torque measurements prove
to be an effective approach to study any anisotropy in a
stress-free sample[6].

It is unlikely that the absence of the nematicity on the
overdoped side is due to the sample inhomogeneity. First,
the non-zero resistivity below Tc in our sample does not
necessarily imply the sample inhomogeneity as the inter-
nal field induced by Eu2+ FM order in overdoped sample
may be comparable to the upper critical field. Second, no
nematicity has either been detected by the TEP study in
the overdoped sample, whose sample homogeneity is not
a serious issue there[23]. Moreover, it is noteworthy that
even under the uniaxial stress, no resistivity anisotropy
has been observed in the overdoped 122 samples, includ-
ing Co and Ni doped BaFe2As2[8].

A natural question raised by our study concerns the
relation between these various transitions in the phase
diagram and the microscopic origin of the nematicity.
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Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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temperature, in stark contrast to the case of in-plane field
rotation. Collectively, these provide compelling evidence
for the nematic origin of the phase shift observed upon
in-plane rotation.
Similarly, we also studied the in-plane angular evo-

lution of the magnetic torque in underdoped (x=0.18,
Tc=21 K) and nearly optimally-doped (x=0.2, Tc=29
K) samples. Similar phase shifts were also observed in
these two doping levels, although at much lower temper-
atures. The onset temperatures for the nematic phase,
T ∗, were identified as ∼140 K and ∼100 K, respectively
(see SI). Although T ∗ for the optimally-doped sample re-
mains high, the relative phase shift below T ∗ gets much
smaller, indicative of the weak nematicity.
We next consider an overdoped sample (x=0.24, de-

termined from EDX, see SI) whose resistivity, Fig. 2(e),
starts an incipient dip at ∼20 K and a quick drop below
∼14 K but non-zero resistivity is observed down to 2.5
K, indicating either sample inhomogenity or strong inter-
nal field induced by Eu2+ FM ordering on the overdoped
side[17, 19]. Angular torque in the normal state (Fig. 2
(a) and (b)) is sinusoidal and maintains the same phase
all the way down to the superconducting (fluctuation)
temperature, below which a substantial 4-fold compo-
nent develops (see SI for the torque in the superconduct-
ing state). It is noted that this 4-fold symmetry torque
sets in about 10∼20 K above Tc, similar to what was
observed in x=0.18 and x=0.2 samples. We attribute
this to the superconducting fluctuations which have the
same effects on the torque as the Eu2+ order in the par-
ent compound. Overall, this locking of the torque phase
with temperature is vividly captured in the contour plot,
Fig. 2 (d). On the other hand, the temperature depen-
dence of the amplitude, A(T ) in Fig. 2 (c), evolves in a
smooth manner in the normal state.
Figure 3 shows the revised phase diagram of

EuFe2(As1−xPx)2 revealed from our torque measure-
ments. In addition to the phases uncovered thus far by
other measurements, we have found a rather broad region
above the structural and magnetic transitions where the
electrons in the FeAs plane start to develop a novel, ori-
entational order that breaks the rotational invariance of
the underlying tetragonal lattice and reduce the symme-
try from C 4 to C 2[4]. This nematic phase is found to
extend all the way up to the optimal doping where the
structural and magnetic transitions are believed to be
completely suppressed. On the overdoped side, however,
no nematic phase can be revealed above the supercon-
ducting transition, in contrast to the phase diagram of
BaFe2(As1−xPx)2 where nematicity clearly survives in
the very overdoped region[6]. This indicates that the
phase diagram associated with the nematic order is not
universal, even within the 122-family.
We note that the electronic anisotropy above the struc-

tural and magnetic transitions has also been investigated
by a thermoelectric power (TEP) study in three spec-

FIG. 3: (Color online) The resultant phase diagram of
EuFe2(As1−xPx)2 as derived collectively from our measure-
ments and the previous studies. For simplicity, we neglect the
fine spin structure of Eu2+, including that in the supercon-
ducting state, which were recently uncovered in Ref. [21, 22].

imens of EuFe2(As1−xPx)2, two non-superconducting
samples (x=0.05 and 0.09) and one overdoped sample
(x=0.23)[23]. Similarly, the nematic phase had only been
detected in the x=0.05 and x=0.9 samples, no anisotropy
being observed in the overdoped x=0.23 sample. Re-
markably, for x=0.05, the anisotropy in the TEP ap-
pears to develop even above ∼250 K, a temperature we
assigned as T ∗ for the onset temperature of the nematic-
ity in the parent compound (Note that the TEP was
performed under a uniaxial stress clamp. It may effec-
tively enhance the nematicity[23]). Consistently, on the
overdoped side, no nematic order can be detected in the
TEP measurements nor our magnetic torque study. For
the TEP measurements, it is difficult to define the onset
temperature T ∗ since the uniaxial pressure is necessary
to detwin the sample. However, thanks to the unbal-
anced twin-domain volumes, torque measurements prove
to be an effective approach to study any anisotropy in a
stress-free sample[6].

It is unlikely that the absence of the nematicity on the
overdoped side is due to the sample inhomogeneity. First,
the non-zero resistivity below Tc in our sample does not
necessarily imply the sample inhomogeneity as the inter-
nal field induced by Eu2+ FM order in overdoped sample
may be comparable to the upper critical field. Second, no
nematicity has either been detected by the TEP study in
the overdoped sample, whose sample homogeneity is not
a serious issue there[23]. Moreover, it is noteworthy that
even under the uniaxial stress, no resistivity anisotropy
has been observed in the overdoped 122 samples, includ-
ing Co and Ni doped BaFe2As2[8].

A natural question raised by our study concerns the
relation between these various transitions in the phase
diagram and the microscopic origin of the nematicity.
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Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan. 2Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8501, Japan. 3Research and Utilization
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Sayo, Hyogo 679-5148, Japan. 6Materials Dynamics Laboratory, RIKEN SPring-8, Sayo, Hyogo 679-5148, Japan. 7JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075,
Japan. 8Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, USA. {Present address: Institute for Materials Research, Tohoku University, Sendai 980-8577,
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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temperature, in stark contrast to the case of in-plane field
rotation. Collectively, these provide compelling evidence
for the nematic origin of the phase shift observed upon
in-plane rotation.
Similarly, we also studied the in-plane angular evo-

lution of the magnetic torque in underdoped (x=0.18,
Tc=21 K) and nearly optimally-doped (x=0.2, Tc=29
K) samples. Similar phase shifts were also observed in
these two doping levels, although at much lower temper-
atures. The onset temperatures for the nematic phase,
T ∗, were identified as ∼140 K and ∼100 K, respectively
(see SI). Although T ∗ for the optimally-doped sample re-
mains high, the relative phase shift below T ∗ gets much
smaller, indicative of the weak nematicity.
We next consider an overdoped sample (x=0.24, de-

termined from EDX, see SI) whose resistivity, Fig. 2(e),
starts an incipient dip at ∼20 K and a quick drop below
∼14 K but non-zero resistivity is observed down to 2.5
K, indicating either sample inhomogenity or strong inter-
nal field induced by Eu2+ FM ordering on the overdoped
side[17, 19]. Angular torque in the normal state (Fig. 2
(a) and (b)) is sinusoidal and maintains the same phase
all the way down to the superconducting (fluctuation)
temperature, below which a substantial 4-fold compo-
nent develops (see SI for the torque in the superconduct-
ing state). It is noted that this 4-fold symmetry torque
sets in about 10∼20 K above Tc, similar to what was
observed in x=0.18 and x=0.2 samples. We attribute
this to the superconducting fluctuations which have the
same effects on the torque as the Eu2+ order in the par-
ent compound. Overall, this locking of the torque phase
with temperature is vividly captured in the contour plot,
Fig. 2 (d). On the other hand, the temperature depen-
dence of the amplitude, A(T ) in Fig. 2 (c), evolves in a
smooth manner in the normal state.
Figure 3 shows the revised phase diagram of

EuFe2(As1−xPx)2 revealed from our torque measure-
ments. In addition to the phases uncovered thus far by
other measurements, we have found a rather broad region
above the structural and magnetic transitions where the
electrons in the FeAs plane start to develop a novel, ori-
entational order that breaks the rotational invariance of
the underlying tetragonal lattice and reduce the symme-
try from C 4 to C 2[4]. This nematic phase is found to
extend all the way up to the optimal doping where the
structural and magnetic transitions are believed to be
completely suppressed. On the overdoped side, however,
no nematic phase can be revealed above the supercon-
ducting transition, in contrast to the phase diagram of
BaFe2(As1−xPx)2 where nematicity clearly survives in
the very overdoped region[6]. This indicates that the
phase diagram associated with the nematic order is not
universal, even within the 122-family.
We note that the electronic anisotropy above the struc-

tural and magnetic transitions has also been investigated
by a thermoelectric power (TEP) study in three spec-

FIG. 3: (Color online) The resultant phase diagram of
EuFe2(As1−xPx)2 as derived collectively from our measure-
ments and the previous studies. For simplicity, we neglect the
fine spin structure of Eu2+, including that in the supercon-
ducting state, which were recently uncovered in Ref. [21, 22].

imens of EuFe2(As1−xPx)2, two non-superconducting
samples (x=0.05 and 0.09) and one overdoped sample
(x=0.23)[23]. Similarly, the nematic phase had only been
detected in the x=0.05 and x=0.9 samples, no anisotropy
being observed in the overdoped x=0.23 sample. Re-
markably, for x=0.05, the anisotropy in the TEP ap-
pears to develop even above ∼250 K, a temperature we
assigned as T ∗ for the onset temperature of the nematic-
ity in the parent compound (Note that the TEP was
performed under a uniaxial stress clamp. It may effec-
tively enhance the nematicity[23]). Consistently, on the
overdoped side, no nematic order can be detected in the
TEP measurements nor our magnetic torque study. For
the TEP measurements, it is difficult to define the onset
temperature T ∗ since the uniaxial pressure is necessary
to detwin the sample. However, thanks to the unbal-
anced twin-domain volumes, torque measurements prove
to be an effective approach to study any anisotropy in a
stress-free sample[6].

It is unlikely that the absence of the nematicity on the
overdoped side is due to the sample inhomogeneity. First,
the non-zero resistivity below Tc in our sample does not
necessarily imply the sample inhomogeneity as the inter-
nal field induced by Eu2+ FM order in overdoped sample
may be comparable to the upper critical field. Second, no
nematicity has either been detected by the TEP study in
the overdoped sample, whose sample homogeneity is not
a serious issue there[23]. Moreover, it is noteworthy that
even under the uniaxial stress, no resistivity anisotropy
has been observed in the overdoped 122 samples, includ-
ing Co and Ni doped BaFe2As2[8].

A natural question raised by our study concerns the
relation between these various transitions in the phase
diagram and the microscopic origin of the nematicity.

Xiaofeng Xu, W. H. Jiao, N. Zhou, Y. K. Li, B. Chen, C. Cao, Jianhui Dai,
A. F. Bangura, and Guanghan Cao, arXiv:1402.4124
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• Identify charge carriers: electrons near the Fermi surface. Com-
pute the scattering rate of these charged excitations o↵ the bosonic
� fluctuations.

• Analogous to electron-phonon scattering in metals, where we have
“Bloch’s law”: a resistivity ⇢(T ) ⇠ T 5.

• “Bloch’s law” for the Ising-nematic critical point yields
⇢(T ) ⇠ T 4/3.

• However, Bloch’s law ignores conservation of total momentum, or
phonon drag.

• The field theory for the Ising-nematic critical point has strong
electron�� scattering, and no quasi-particle excitations. Never-
theless, because of the central importance of the analog of phonon
drag, it has ⇢(T ) = 0.
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The resistivity of this metal is not determined by the scattering

rate of charged excitations near the Fermi surface, but by the

dominant rate of momentum loss by any excitation, whether
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• Focus on the interplay between Jµ and Tµ⌫ !

J

P

The dominant momentum loss occurs via the scattering

of the neutral bosonic � excitations o↵ random fields

S. A. Hartnoll, R. Mahajan, M. Punk and S. Sachdev, arXiv:1401.7012.
A. Lucas, S. Sachdev, and K. Schalm, arXiv:1401.7933
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Evidence for “nematic” order
(i.e. breaking of 90� rotation symmetry) in Ca1.88Na0.12CuO2Cl2.
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Visualization of the emergence of the pseudogap
state and the evolution to superconductivity in a
lightly hole-doped Mott insulator
Y. Kohsaka1*, T. Hanaguri2, M. Azuma3, M. Takano4, J. C. Davis5,6,7,8 and H. Takagi1,2,9

Superconductivity emerges from the cuprate antiferromag-
netic Mott state with hole doping. The resulting electronic
structure1 is not understood, although changes in the state of
oxygen atoms seem paramount2–5. Hole doping first destroys
the Mott state, yielding a weak insulator6,7 where electrons
localize only at low temperatures without a full energy gap.
At higher doping levels, the ‘pseudogap’, a weakly conducting
state with an anisotropic energy gap and intra-unit-cell break-
ing of 90� rotational (C4v) symmetry, appears3,4,8–10. However,
a direct visualization of the emergence of these phenomena
with increasing hole density has never been achieved. Here we
report atomic-scale imaging of electronic structure evolution
from the weak insulator through the emergence of the pseu-
dogap to the superconducting state in Ca2� x

Na
x

CuO2Cl2. The
spectral signature of the pseudogap emerges at the lowest
doping level from aweakly insulating but C4v-symmetricmatrix
exhibiting a distinct spectral shape. At slightly higher hole
density, nanoscale regions exhibiting pseudogap spectra and
180� rotational (C2v) symmetry form unidirectional clusters
within the C4v-symmetric matrix. Thus, hole doping proceeds
by the appearance of nanoscale clusters of localized holes
within which the broken-symmetry pseudogap state is stabi-
lized. A fundamentally two-component electronic structure11
then exists in Ca2� x

Na
x

CuO2Cl2 until the C2v-symmetric clus-
ters touch at higher doping levels, and the long-range super-
conductivity appears.

To visualize at the atomic scale how the pseudogap and
superconducting states are formed sequentially from the weak
insulator state, we performed spectroscopic imaging scanning
tunnelling microscopy (SI-STM) studies on Ca2�x

Na
x

CuO2Cl2
(0.06  x  0.12; see also the Methods sections). The crystal
structure is simple tetragonal (I4/mmm) and thereby advantageous
because the CuO2 planes are unbuckled and free from orthorhom-
bic distortion. More importantly Ca2CuO2Cl2 can be doped from
the Mott insulator to the superconductor by introduction of Na
atoms. Figure 1c,d shows differential conductance images mea-
sured using SI-STM of bulk-insulating x = 0.06 and x = 0.08
samples taken in the field of views of the topographic images
in Fig. 1a,b. The wavy, bright, arcs in Fig. 1c,d have never been
observed in superconducting samples (x > 0.08) but appear only
in such quasi-insulating samples (x  0.08). They are created by

1Inorganic Complex Electron Systems Research Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, 2Magnetic Materials
Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, 3Materials and Structures Lab., Tokyo Institute of Technology, Yokohama,
Kanagawa 226-8503, Japan, 4Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, 5LASSP, Department of
Physics, Cornell University, Ithaca, New York 14853, USA, 6CMPMS Department, Brookhaven National Laboratory, Upton, New York 11973, USA, 7School
of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK, 8Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca,
New York 14853, USA, 9Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan. *e-mail: kohsaka@riken.jp.

spectral peaks in differential conductance spectra whose energy is
dependent on location (Fig. 1f). Consequently, the wavy arcs shrink
with increasing bias voltages and finally disappear. This behaviour,
due to tip-induced impurity charging12–14, is characteristic of poor
electronic screening in a weakly insulating state.

A wide variety of spectral shapes originating from electric
heterogeneity were found in these samples. A typical example of
the spectra is, as spectrum number 1 in Fig. 1e, the V-shaped
pseudogap (⇠0.2 eV) spectrum with a small dip (⇠20meV) near
the Fermi energy. This is indistinguishable from those found in
strongly underdoped cuprate superconductors3, and establishes
that the pseudogap state appears locally at the nanoscale within the
weak insulator. Besides the V-shaped pseudogap spectra in some
areas, we find a new class of spectra that is predominant elsewhere
in the insulating samples. As for example spectrum number 2 in
Fig. 1e, such spectra are extremely asymmetric about the Fermi
energy, U-shaped (concave in minus a few hundred millivolts) and
exhibit no clear pseudogap. The growing asymmetry is strongly
indicative of approaching the Mott insulating state15,16 whereas
the non-zero conductance in the unoccupied state is distinct
from the Mott insulating state17. The approach for spectroscopic
examination of the emergence of the pseudogap from the weak
insulator is therefore transformation from the U-shaped insulating
spectra to the V-shaped pseudogap spectra as a function of
location and doping.

Figure 2a represents the transformation between these two types
of spectrum. The V-shaped pseudogap becomes larger and broader,
and eventually is smoothly connected to the U-shaped insulating
spectra. To quantify this variation, we focus on positive biases where
the edge of the pseudogap is clear. We fit the following function
to each spectrum18,

f (E)= c0Re


E+ i� (E)p
(E+ i� (E))2 ��2

�
+ c1E+ c2 (1)

where E is the energy, � is the broadening term, � is the energy
gap and c

i

(i = 0,1,2) are fitting constants. Use of equation (1)
is merely for accurate quantitative parameterization of the gap
maximum and does not imply any particular electronic state.
We use � (E) = ↵E as ref. 18 (↵ is a proportional constant) but
momentum-independent� for simplicity of fitting procedures (see
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 Strongly-coupled quantum criticality leads to a novel 
regime of quantum dynamics without quasiparticles.	


!

 The simplest examples are conformal field theories 
in 2+1 dimensions, realized by ultracold atoms in 
optical lattices. Quantitative predictions for transport 
by combining quantum Monte Carlo and holography.	
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 Exciting recent progress on the description of 
transport in metallic states without quasiparticles, via 
field theory and holography.
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