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Fermi surface+antiferromagnetism

The electron spin polarization obeys
�

�S(r, τ)
�

= �ϕ(r, τ)eiK·r

where K is the ordering wavevector.

+

Metal with “large” 
Fermi surface
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Metal with “large” 
Fermi surface

Fermi surface+antiferromagnetism

��ϕ� = 0

Metal with electron 
and hole pockets

Increasing SDW order

��ϕ� �= 0

S. Sachdev, A. V. Chubukov, and A. Sokol, Phys. Rev. B 51, 14874 (1995). 
A. V. Chubukov and D. K. Morr, Physics Reports 288, 355 (1997).

Increasing interaction
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Nd2−xCexCuO4

T. Helm, M. V. Kartsovnik, 
M. Bartkowiak, N. Bittner, 

M. Lambacher, A. Erb, J. Wosnitza, 
and R. Gross, 

Phys. Rev. Lett. 103, 157002 (2009). 

Quantum oscillations
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Quantum oscillations

Increasing SDW order

s
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N. P. Armitage et al., Phys. Rev. Lett. 88, 257001 (2002).

Photoemission in Nd2-xCexCuO4
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Spin-fermion model: Elections with dispersion εk
interacting with fluctuations of the antiferromagnetic

order parameter �ϕ.

Z =

�
DcαD�ϕ exp (−S)

S =

�
dτ

�

k

c†kα

�
∂

∂τ
− εk

�
ckα

+

�
dτd2r

�
1

2
(∇r �ϕ)

2 +
s

2
�ϕ2 + . . .

�

− λ

�
dτ

�

i

�ϕi · (−1)ric†iα�σαβciβ
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Coupling between fermions

and antiferromagnetic order:

λ2 ∼ U , the Hubbard repulsion
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Hertz-Moriya-Millis theory

Integrate out fermions and obtain an effective action for the

boson field �ϕ alone. Because the fermions are gapless, this is

potentially dangerous, and will lead to non-local terms in the �ϕ
effective action. Hertz focused on only the simplest such non-

local term. However, there are an infinite number of non-local

terms at higher order, and these lead to a breakdown of the

Hertz theory in d = 2.

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).

A technical aside......
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A technical aside......

We need to perform an RG analysis on a local theory of both

the fermions and the �ϕ. It appears that such a theory can be

analyzed using a 1/N expansion, where N is the number of

fermion flavors. At two-loop order, the 1/N expansion is well-

behaved, and we can determine consistent RG flow equations.

However, at higher loops we find corrections to the renormal-

izations which require summation of all planar graphs even at

the leading order in 1/N , and the 1/N expansion appears to be

organized as a genus expansion of random surfaces. But even

this genus expansion breaks down in the renormalization of a

quartic coupling of �ϕ. In the following, I will describe some of

the two loop results.

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)
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Metal with “large” Fermi surface
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Fermi surfaces translated by K = (π,π).
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Electron and hole pockets in
antiferromagnetic phase with ��ϕ� �= 0
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Fermi surfaces translated by K = (π,π).
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“Hot” spots
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Low energy theory for critical point near hot spots
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Low energy theory for critical point near hot spots
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v1 v2

ψ2 fermions
occupied

ψ1 fermions
occupied

Theory has fermions ψ1,2 (with Fermi velocities v1,2)
and boson order parameter �ϕ,
interacting with coupling λ

kx

ky
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Metal with 
hole and 
electron 
pockets
��ϕ� �= 0

Fermi lines reconnect in 
antiferromagnetic phase
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v1 v2

Theory has fermions ψ1,2 (with Fermi velocities v1,2)
and boson order parameter �ϕ,
interacting with coupling λ

kx

ky

“Hot spot”

Fermi lines
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v1 v2

kx

ky

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Critical point theory is strongly coupled in d = 2
Results are independent of coupling λ
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v1 v2

kx

ky

Critical point theory is strongly coupled in d = 2
Results are independent of coupling λ

Gfermion ∼ 1

i
√
ω − v.k

A.  J. Millis, Phys. Rev. B 45, 13047 (1992)
Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004)
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kx

ky

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Critical point theory is strongly coupled in d = 2
Results are independent of coupling λ

Gfermion =
Z(k�)

iω − vF (k�)k⊥
, Z(k�) ∼ vF (k�) ∼ k�

k⊥

k�
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Metal with “large” Fermi surface
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Unconventional pairing at and near hot spots

∆
−∆
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Unconventional pairing at and near hot spots

∆
−∆

�
c†kαc

†
−kβ

�
= εαβ∆(cos kx − cos ky)
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BCS theory

1 + λe-ph log
�ωD

ω

�

Cooper
logarithm

}
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BCS theory
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ω

�

Electron-phonon
coupling
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BCS theory

1 + λe-ph log
�ωD

ω

�

Electron-phonon
coupling

Debye
frequency

Implies
Tc ∼ ωD exp (−1/λ)
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Antiferromagnetic fluctuations: weak-coupling

1 +

�
U

t

�2

log

�
EF

ω

�

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)

Enhancement of pairing susceptibility by interactions

Cooper
logarithm

}
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Fermi
energy

Antiferromagnetic fluctuations: weak-coupling

1 +

�
U

t

�2

log

�
EF

ω

�

Enhancement of pairing susceptibility by interactions

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)
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Fermi
energy

Antiferromagnetic fluctuations: weak-coupling

1 +

�
U

t

�2

log

�
EF

ω

�

Applies in a Fermi liquid
as repulsive interaction U → 0.

Enhancement of pairing susceptibility by interactions

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)

Sunday, April 24, 2011



Fermi
energy

Antiferromagnetic fluctuations: weak-coupling

1 +

�
U

t

�2

log

�
EF

ω

�

Applies in a Fermi liquid
as repulsive interaction U → 0.

Implies

Tc ∼ EF exp
�
− (t/U)2

�

Enhancement of pairing susceptibility by interactions

V. J. Emery, J. Phys. (Paris) Colloq. 44, C3-977 (1983)
D.J. Scalapino, E. Loh, and J.E. Hirsch, Phys. Rev. B 34, 8190 (1986)

K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B 34, 6554 (1986)
S. Raghu, S.A. Kivelson, and D.J. Scalapino, Phys. Rev. B 81, 224505 (2010)
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Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of pairing susceptibility by interactions
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Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Fermi
energy

Enhancement of pairing susceptibility by interactions
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Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Fermi
energy

α = tan θ, where 2θ is
the angle between Fermi lines.

Independent of interaction strength
U in 2 dimensions.

Enhancement of pairing susceptibility by interactions

(see also  Ar. Abanov, A. V. Chubukov, and A. M. Finkel'stein, Europhys. Lett. 54, 488 (2001)) 
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2θ
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M. A. Metlitski 
and S. Sachdev, 
Phys. Rev. B 85, 
075127 (2010)

kx

ky

Gfermion =
Z(k�)

iω − vF (k�)k⊥
, Z(k�) ∼ vF (k�) ∼ k�

k⊥

k�

�
dk�

1

k2�

�
Z2(k�)

vF (k�)

�
log

k2�
ω
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kx

ky

Gfermion =
Z(k�)

iω − vF (k�)k⊥
, Z(k�) ∼ vF (k�) ∼ k�

k⊥

k�

�
dk�

1

k2�

�
Z2(k�)

vF (k�)

�
log

k2�
ω

Cooper
logarithm

}
M. A. Metlitski 
and S. Sachdev, 
Phys. Rev. B 85, 
075127 (2010)
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kx

ky

Gfermion =
Z(k�)

iω − vF (k�)k⊥
, Z(k�) ∼ vF (k�) ∼ k�

k⊥

k�

�
dk�

1

k2�

�
Z2(k�)

vF (k�)

�
log

k2�
ω

Spin fluctuation
propagator

Cooper
logarithm

}
M. A. Metlitski 
and S. Sachdev, 
Phys. Rev. B 85, 
075127 (2010)
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Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of pairing susceptibility by interactions
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M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of pairing susceptibility by interactions
Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

• log2 singularity arises from Fermi lines;
singularity at hot spots is weaker.

• Interference between BCS and quantum-critical logs.

• Momentum dependence of self-energy is crucial.

• Not suppressed by 1/N factor in 1/N expansion.
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M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of pairing susceptibility by interactions
Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

Ar. Abanov, A. V. Chubukov, and A. M. Finkel'stein, Europhys. Lett. 54, 488 (2001)

• log2 singularity arises from Fermi lines;
singularity at hot spots is weaker.

• Interference between BCS and quantum-critical logs.

• Momentum dependence of self-energy is crucial.

• Not suppressed by 1/N factor in 1/N expansion.

Sunday, April 24, 2011



Is there a log2 for 
any other 

susceptibility ?
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Is there a log2 for 
any other 

susceptibility ?

Only one other
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Unconventional pairing at and near hot spots

∆
−∆

�
c†kαc

†
−kβ

�
= εαβ∆(cos kx − cos ky)

Sunday, April 24, 2011



Φ
−Φ

Unconventional particle-hole pairing at and near hot spots

�
c†k−Q/2,αck+Q/2,α

�
= Φ(cos kx − cos ky)

Q is ‘2kF ’
wavevector
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Spin density wave quantum critical point

1 +
α

π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of pairing susceptibility by interactions
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Spin density wave quantum critical point

1 +
α

3π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of Φ susceptibility by interactions
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• Emergent pseudospin symmetry of low
energy theory also induces log2 in a single
“d-wave” particle-hole channel. Fermi-surface
curvature reduces prefactor by 1/3.

• Φ corresponds to a 2kF bond-nematic order

Spin density wave quantum critical point

1 +
α

3π(1 + α2)
log2

�
EF

ω

�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

Enhancement of Φ susceptibility by interactions

Sunday, April 24, 2011



Spin density wave quantum critical point
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α
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�

M. A. Metlitski and S. Sachdev, Phys. Rev. B 85, 075127 (2010)

• Emergent pseudospin symmetry of low
energy theory also induces log2 in a single
“d-wave” particle-hole channel. Fermi-surface
curvature reduces prefactor by 1/3.

• Φ corresponds to a 2kF bond-nematic order

Enhancement of Φ susceptibility by interactions
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Φ
−Φ

2kF bond-nematic order
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Φ
−Φ

2kF bond-nematic order

Q

Sunday, April 24, 2011



Φ
−Φ

2kF bond-nematic order

Q

Q

Sunday, April 24, 2011



Φ
−Φ

2kF bond-nematic order

Q

Q

�
c†k−Q/2,αck+Q/2,α

�
= Φ(cos kx − cos ky)
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!1

"1

No modulations on sites,
�
c†rαcsα

�
is modulated

only for r �= s.

�
c†k−Q/2,αck+Q/2,α

�
= Φ(cos kx − cos ky)

“Bond density” 
measures amplitude 
for electrons to be 

in  spin-singlet 
valence bond.

2kF bond-nematic order
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Electron on Fermi 
surface away from 

hot-spots
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Electron on Fermi 
surface away from 

hot-spots

Spin density wave
operator �ϕ
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Electron on Fermi 
surface away from 

hot-spots

Electron on Fermi 
surface away from 

hot-spots

Composite
operator �ϕ 2
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Electron on Fermi 
surface away from 

hot-spots

Electron on Fermi 
surface away from 

hot-spots

Composite
operator �ϕ 2

All excitations are low energy
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All electrons on 
Fermi surface away 

from hot-spots
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All electrons on 
Fermi surface away 

from hot-spots

High energy

�ϕ fluctuation
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A

2kF bond-nematic
operator Φ, whose
fluctuations are

enhanced near the SDW
critical point

Sunday, April 24, 2011



A

B C

D

D

C

B

A

2kF bond-nematic
operator Φ, whose
fluctuations are

enhanced near the SDW
critical point

Sunday, April 24, 2011



A

B C

D

D

C

B

A

2kF bond-nematic
operator Φ, whose
fluctuations are

enhanced near the SDW
critical point

All low energy 
excitations in an 

umklapp 
process: this is 
important for 

transport 
properties
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Consequences of composite operators

• Non-Fermi liquid spectral functions around
entire Fermi surface.

• Scattering off �ϕ and �ϕ 2 fluctuations leads
to strong scattering of electronic excitations,
but contribution to optical conductivity is
suppressed by vertex corrections. Quasipar-
ticles break down at the hot spots, but sur-
vive elsewhere (at leading order).

• Dominant contribution to optical conductiv-
ity, σ(ω) ∼ ωµ, arises from 2kF umklapp
scattering.
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Conclusions

The quantum critical point describing 
the onset of spin-density-wave order 

in metals is strongly coupled 
in two spatial dimensions, and displays 

universal non-Fermi liquid physics 
which is independent of 

electron interaction strength. 
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Conclusions

The quantum critical point has 
an instability to 

unconventional “d-wave” pairing, with a 
universal log-squared enhancement 

of the pairing susceptibility, 
which is independent of 

electron interaction strength.
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Conclusions

The leading subdominant instability is to
a 2kF bond-nematic ordering. 
Its susceptibility also has a 

universal log-squared enhancement , 
which is independent of 

electron interaction strength.
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Conclusions

Composite operators lead to 
non-Fermi liquid behavior 

around entire Fermi surface
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Conclusions

Composite umklapp scattering operators 
dominate the optical conductivity
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