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Sommerfeld-Bloch theory of 
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Modern phases of quantum matter
Not adiabatically connected 

to independent electron states:
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Quantum Entanglement: quantum superposition 
with more than one particle

Einstein-Podolsky-Rosen “paradox”: Non-local 
correlations between observations arbitrarily far apart
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Crystals used in collaborations: 
1) Polarized Raman scattering - Lemmens, Braunschweig 
2) NMR – Takashi Imai, McMaster University 
3) Thermal conductivity - Behnia, Ecole Superieure 
4) µSR - Keren, Technion 

         ZnCu(OH)6Cl2 

herbertsmithite single crystals 

Crystals now available to explore the physics 

Our work at MIT: 
1) The impurity question using x-rays 
2) The spin excitations using neutrons Wednesday, March 13, 13
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Alternative view Pick a reference configuration

Kagome antiferromagnet
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Alternative view A nearby configuration

Kagome antiferromagnet
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Alternative view Difference: a closed loop

Kagome antiferromagnet
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Alternative view Ground state: sum over closed loops
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Mott insulator: Kagome antiferromagnet

Alternative view Ground state: sum over closed loops
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| i ) Ground state of entire system,

⇢ = | ih |

⇢A = TrB⇢ = density matrix of region A

Entanglement entropy SE = �Tr (⇢A ln ⇢A)
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Entanglement entropy
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| i ) Ground state of entire system,

⇢ = | ih |

Take | i = 1p
2
(|"iA |#iB � |#iA |"iB)

Then ⇢A = TrB⇢ = density matrix of region A
=

1
2 (|"iA h"|A + |#iA h#|A)

Entanglement entropy SE = �Tr (⇢A ln ⇢A)
= ln 2

Entanglement entropy
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Band insulators

E

Metal
Metal

carrying
a current

Insulator
Superconductor

k
An even number of electrons per unit cell

Entanglement entropy of a band insulator
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SE = aP � b exp(�cP )

where P is the surface area (perimeter)

of the boundary between A and B.

B

Entanglement entropy of a band insulator

A P
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Entanglement in the Z2 spin liquid
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The sum over closed loops is characteristic of the Z2 spin liquid, introduced in 
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991), 
X.-G. Wen, Phys. Rev. B  44, 2664 (1991)
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Entanglement in the Z2 spin liquid

A

Sum over closed loops: only an even number of 
links cross the boundary between A and B

The sum over closed loops is characteristic of the Z2 spin liquid, introduced in 
N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991), 
X.-G. Wen, Phys. Rev. B  44, 2664 (1991)
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SE = aP � ln(2)

where P is the surface area (perimeter)

of the boundary between A and B.

B

Entanglement in the Z2 spin liquid

A P

A. Hamma, R. Ionicioiu, and P. Zanardi, Phys. Rev. A 71, 022315 (2005) 
M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006)
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Mott insulator: Kagome antiferromagnet
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Strong numerical evidence 
for a Z2 spin liquid
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Nature 492, 406 (2012) 

LETTER
doi:10.1038/nature11659

Fractionalized excitations in the spin-liquid state of a
kagome-lattice antiferromagnet
Tian-Heng Han1, Joel S. Helton2, Shaoyan Chu3, Daniel G. Nocera4, Jose A. Rodriguez-Rivera2,5, Collin Broholm2,6 & Young S. Lee1

The experimental realization of quantum spin liquids is a long-
sought goal in physics, as they represent new states of matter. Quan-
tum spin liquids cannot be described by the broken symmetries
associated with conventional ground states. In fact, the interacting
magnetic moments in these systems do not order, but are highly
entangled with one another over long ranges1. Spin liquids have a
prominent role in theories describing high-transition-temperature
superconductors2,3, and the topological properties of these states
may have applications in quantum information4. A key feature of
spin liquids is that they support exotic spin excitations carrying
fractional quantum numbers. However, detailed measurements of
these ‘fractionalized excitations’ have been lacking. Here we report
neutron scattering measurements on single-crystal samples of the
spin-1/2 kagome-lattice antiferromagnet ZnCu3(OD)6Cl2 (also called
herbertsmithite), which provide striking evidence for this characte-
ristic feature of spin liquids. At low temperatures, we find that the
spin excitations form a continuum, in contrast to the conventional
spin waves expected in ordered antiferromagnets. The observation of
such a continuum is noteworthy because, so far, this signature of
fractional spin excitations has been observed only in one-dimensional
systems. The results also serve as a hallmark of the quantum spin-
liquid state in herbertsmithite.

In a spin liquid, the atomic magnetic moments are strongly corre-
lated but do not order or freeze even in the limit as the temperature, T,
goes to zero. Although many types of quantum spin-liquid states exist
in theory, a feature that is expected to be common to all is the presence
of deconfined spinons as an elementary excitation from the ground
state1. Spinons are spin-half (S 5 1/2) quantum excitations into which
conventional spin-wave excitations with S 5 1 fractionalize. In one
dimension, this phenomenon is well established for the S 5 1/2
Heisenberg antiferromagnetic chain, where spinons may be thought
of as magnetic domain boundaries that disrupt Néel order and are free
to propagate away from each other. In the one-dimensional compound
KCuF3, a continuum of spinon excitations has been well characterized
using neutron scattering5. In two dimensions, the nature of the spinon
excitations is less clear. First, the existence of two-dimensional magnets
with a quantum spin-liquid ground state is still a matter of great debate.
Second, the various spin-liquid states which are proposed in theory
give rise to a variety of spinon excitation spectra, which may be either
gapped or gapless.

The S 5 1/2 kagome-lattice Heisenberg antiferromagnet has long
been recognized as a promising system in which to search for quantum
spin-liquid states, because the kagome network of corner-sharing tri-
angles frustrates long-range magnetic order6–8. We have devised syn-
thetic methods to produce herbertsmithite (ZnCu3(OH)6Cl2) in which
the S 5 1/2 Cu21 moments are arranged on a structurally perfect
kagome lattice9 and nonmagnetic Zn21 ions separate the lattice planes.
A depiction of the crystal structure is shown in Supplementary Fig. 1.
Whereas herbertsmithite typically contains a small percentage of excess

Cu21 ions (,5% of the total) substituting for Zn21 ions in the inter-
layer sites, the kagome planes contain only Cu21 ions10. Measurements
on powder samples11–13 indicate strong antiferromagnetic super-
exchange (J < 17 meV, where J is the exchange coupling that appears
in the nearest-neighbour Heisenberg Hamiltonian) and the absence
of long-range magnetic order or spin freezing down to tempera-
tures of T 5 0.05 K. The bulk magnetic properties reveal a small
Dzyaloshinskii–Moriya interaction and an easy-axis exchange
anisotropy14,15, both of order J/10. Despite these small imperfections,
the nearest-neighbour Heisenberg model on a kagome lattice is still an
excellent approximation of the spin Hamiltonian for herbertsmithite.
This is especially important, because recent calculations on record
lattice sizes indicate that the ground state of this model is in fact a
quantum spin liquid16. Thus, experiments to probe the spin correla-
tions in herbertsmithite are all the more urgent.

To this end, we recently succeeded in developing a technique for the
growth of large, high-quality single crystals of herbertsmithite17, and
small pieces have been used in studies involving local probes18,19,
anomalous X-ray diffraction10, susceptibility15 and Raman scattering20.
In this Letter, we report inelastic neutron scattering measurements on
a large, deuterated, single-crystal sample of herbertsmithite. The neu-
tron scattering cross-section is directly proportional to the dynamic
structure factor Stot(Q, v) (where Q and v stand for the momentum
and energy transferred to the sample, respectively), which includes
both the nuclear and magnetic signals. The magnetic part, Smag(Q, v),
is the Fourier transform (in time and space) of the spin–spin correlation
function and can be obtained by subtracting the nuclear scattering as
described in the Supplementary Information. After calibration with
respect to a vanadium standard, the measured structure factors are
expressed in absolute units.

Contour plots of Stot(Q, v) are shown in Fig. 1a–c for T 5 1.6 K and
three different energy transfers Bv (B denotes Planck’s constant
divided by 2p). Figure 1a shows data for Bv 5 6 meV. Surprisingly,
the scattered intensity is exceedingly diffuse, spanning a large fraction
of the hexagonal Brillouin zone. A similar pattern of diffuse scatter-
ing is observed for Bv 5 2 meV (Fig. 1b). The diffuse nature of the
scattering at a temperature that is two orders of magnitude below the
exchange energy scale, J, is in strong contrast to observations in non-
frustrated quantum magnets. The S 5 1/2 square-lattice antiferromag-
net La2CuO4 develops substantial antiferromagnetic correlations for
T , J/2 (ref. 21), temperatures at which the low-energy scattering is
strongly peaked near the (p,p) point in reciprocal space. In herbert-
smithite, the scattered intensity is not strongly peaked at any spe-
cific point, and this remains true for all energies measured from
Bv 5 0.25 to 11 meV. This behaviour is also markedly different
from that observed in the larger, S 5 5/2 kagome antiferromagnet
KFe3(OH)6(SO4)2 which becomes magnetically ordered at low tem-
peratures and has magnetic peaks at q 5 0 wavevectors above the
ordering temperature22.

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 2NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, USA. 3Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 4Department of Chemistry, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, USA. 5Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, USA. 6Institute for Quantum Matter and
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
$ %1=2

j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is

a
1

2

V

Re(   )
Im(   )

Higgs mode
Nambu–

Goldstone
mode

j/jc      1

0 100 200 300 400
0

5

10

15

20

Time (ms)

 L
at

tic
e 

de
pt

h 
(E

r)

Lattice loading Modulation Hold time Ramp to 
atomic
 limit

Temperature
measurement

V0

Ttot = 200 ms

A = 0.03V0

Tmod = 20W
W

b

3

j/jc * 1

j/jc , 1

Ψ
Ψ

Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
" #

j=jc
$ %1=2

1{j=jcð Þ1=2

where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.

LETTER RESEARCH

2 6 J U L Y 2 0 1 2 | V O L 4 8 7 | N A T U R E | 4 5 5

Macmillan Publishers Limited. All rights reserved©2012

system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is

a
1

2

V

Re(   )
Im(   )

Higgs mode
Nambu–

Goldstone
mode

j/jc      1

0 100 200 300 400
0

5

10

15

20

Time (ms)

 L
at

tic
e 

de
pt

h 
(E

r)

Lattice loading Modulation Hold time Ramp to 
atomic
 limit

Temperature
measurement

V0

Ttot = 200 ms

A = 0.03V0

Tmod = 20W
W

b

3

j/jc * 1

j/jc , 1

Ψ
Ψ

Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is

a
1

2

V

Re(   )
Im(   )

Higgs mode
Nambu–

Goldstone
mode

j/jc      1

0 100 200 300 400
0

5

10

15

20

Time (ms)

 L
at

tic
e 

de
pt

h 
(E

r)

Lattice loading Modulation Hold time Ramp to 
atomic
 limit

Temperature
measurement

V0

Ttot = 200 ms

A = 0.03V0

Tmod = 20W
W

b

3

j/jc * 1

j/jc , 1

Ψ
Ψ

Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):
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Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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data points without rescaling, for comparison. Error bars, s.e.m.
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Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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system with a recently developed scheme based on single-atom-
resolved detection24. It is the high sensitivity of this method that
allowed us to reduce the modulation amplitude by almost an order
of magnitude compared with earlier experiments20,21 and to stay well
within the linear response regime (Supplementary Information).

The results for selected lattice depths V0 are shown in Fig. 2b. We
observe a gapped response with an asymmetric overall shape that will
be analysed in the following paragraphs. Notably, the maximum
observed temperature after modulation is well below the ‘melting’
temperature for a Mott insulator in the atomic limit25, Tmelt < 0.2U/kB

(kB, Boltzmann’s constant), demonstrating that our experiments probe
the quantum gas in the degenerate regime. To obtain numerical values
for the onset of spectral response, we fitted each spectrum with an error
function centred at a frequency n0 (Fig. 2b, black lines). With j
approaching jc, the shift of the gap to lower frequencies is already
visible in the raw data (Fig. 2b) and becomes even more apparent for
the fitted gap n0 as a function of j/jc (Fig. 2a, filled circles). The n0 values
are in quantitative agreement with a prediction for the Higgs gap nSF at
commensurate filling (solid line):

hnSF=U~ 3
ffiffiffi
2
p

{4
" #

1zj=jcð Þ
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j=jc{1ð Þ1=2

Here h denotes Planck’s constant. This value is based on an analysis of
variations around a mean-field state7,16 (throughout the manuscript,
we have rescaled jc in the theoretical calculations to match the value
jc<0:06 obtained from quantum Monte Carlo simulations26).

The sharpness of the spectral onset can be quantified by the width of
the fitted error function, which is shown as vertical dashed lines in
Fig. 2a. Approaching the critical point, the spectral onset becomes
sharper, and the width normalized to the centre frequency n0 remains
constant (Supplementary Fig. 3). The constancy of this ratio indicates
that the width of the spectral onset scales with the distance to the
critical point in the same way as the gap frequency.

We observe similar gapped responses in the Mott insulating regime
(Supplementary Information and Fig. 5a), with the gap closing con-
tinuously when approaching the critical point (Fig. 2a, open circles).
We interpret this as a result of combined particle and hole excitations
with a frequency given by the Mott excitation gap that closes at the
transition point16. The fitted gaps are consistent with the Mott gap

hnMI=U~ 1z 12
ffiffiffi
2
p

{17
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j=jc
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where nMI is the Mott gap as predicted by mean-field theory16 (Fig. 2a,
dashed line).

The observed softening of the onset of spectral response in the
superfluid regime has led to an identification of the experimental
signal with a response from collective excitations of Higgs type. To
gain further insight into the full in-trap response, we calculated the
eigenspectrum of the system in a Gutzwiller approach16,22 (Methods
and Supplementary Information). The result is a series of discrete
eigenfrequencies (Fig. 3a), and the corresponding eigenmodes show
in-trap superfluid density distributions, which are reminiscent of the
vibrational modes of a drum (Fig. 3b). The frequency of the lowest-
lying amplitude-like eigenmode n0,G closely follows the long-wave-
length prediction for homogeneous commensurate filling nSF over a
wide range of couplings j/jc until the response rounds off in the vicinity
of the critical point due to the finite size of the system (Fig. 3c). Fitting
the low-frequency edge of the experimental data can be interpreted as
extracting the frequency of this mode, which explains the good
quantitative agreement with the prediction for the homogeneous com-
mensurate filling in Fig. 2a. Modes at different frequencies from the
lowest-lying amplitude-like mode broaden the spectrum only above
the onset of spectral response.

An eigenmode analysis, however, does not yield any information
about the finite spectral width of the modes, which stems from the
interaction between amplitude and phase excitations. We will consider
the question of the spectral width by analysing the low-, intermediate-
and high-frequency parts of the response separately. We begin by
examining the low-frequency part of the response, which is expected
to be governed by a process coupling a virtually excited amplitude
mode to a pair of phase modes with opposite momenta. As a result,
the response of a strongly interacting, two-dimensional superfluid is
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Figure 1 | Illustration of the Higgs mode and experimental sequence.
a, Classical energy density V as a function of the order parameter Y. Within the
ordered (superfluid) phase, Nambu–Goldstone and Higgs modes arise from
phase and amplitude modulations (blue and red arrows in panel 1). As the
coupling j 5 J/U (see main text) approaches the critical value jc, the energy
density transforms into a function with a minimum at Y 5 0 (panels 2 and 3).
Simultaneously, the curvature in the radial direction decreases, leading to a
characteristic reduction of the excitation frequency for the Higgs mode. In the
disordered (Mott insulating) phase, two gapped modes exist, respectively
corresponding to particle and hole excitations in our case (red and blue arrow in
panel 3). b, The Higgs mode can be excited with a periodic modulation of the
coupling j, which amounts to a ‘shaking’ of the classical energy density
potential. In the experimental sequence, this is realized by a modulation of the
optical lattice potential (see main text for details). t 5 1/nmod; Er, lattice recoil
energy.
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expected to diverge at low frequencies, if the probe in use couples
longitudinally to the order parameter2,4,5,9 (for example to the real part
of Y, if the equilibrium value of Y was chosen along the real axis), as is
the case for neutron scattering. If, instead, the coupling is rotationally
invariant (for example through coupling to jYj2), as expected for
lattice modulation, such a divergence could be avoided and the

response is expected to scale as n3 at low frequencies3,6,9,17.
Combining this result with the scaling dimensions of the response
function for a rotationally symmetric perturbation coupling to jYj2,
we expect the low-frequency response to be proportional to
(1 2 j/jc)

22n3 (ref. 9 and Methods). The experimentally observed sig-
nal is consistent with this scaling at the ‘base’ of the absorption feature
(Fig. 4). This indicates that the low-frequency part is dominated by
only a few in-trap eigenmodes, which approximately show the generic
scaling of the homogeneous system for a response function describing
coupling to jYj2.

In the intermediate-frequency regime, it remains a challenge to
construct a first-principles analytical treatment of the in-trap system
including all relevant decay and coupling processes. Lacking such a
theory, we constructed a heuristic model combining the discrete spec-
trum from the Gutzwiller approach (Fig. 3a) with the line shape for a
homogeneous system based on an O(N) field theory in two dimen-
sions, calculated in the large-N limit3,6 (Methods). An implicit assump-
tion of this approach is a continuum of phase modes, which is
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Figure 3 | Theory of in-trap response. a, A diagonalization of the trapped
system in a Gutzwiller approximation shows a discrete spectrum of amplitude-
like eigenmodes. Shown on the vertical axis is the strength of the response to a
modulation of j. Eigenmodes of phase type are not shown (Methods) and n0,G

denotes the gap as calculated in the Gutzwiller approximation. a.u., arbitrary
units. b, In-trap superfluid density distribution for the four amplitude modes
with the lowest frequencies, as labelled in a. In contrast to the superfluid
density, the total density of the system stays almost constant (not shown).
c, Discrete amplitude mode spectrum for various couplings j/jc. Each red circle
corresponds to a single eigenmode, with the intensity of the colour being
proportional to the line strength. The gap frequency of the lowest-lying mode
follows the prediction for commensurate filling (solid line; same as in Fig. 2a)
until a rounding off takes place close to the critical point due to the finite size of
the system. d, Comparison of the experimental response at V0 5 9.5Er (blue
circles and connecting blue line; error bars, s.e.m.) with a 2 3 2 cluster mean-
field simulation (grey line and shaded area) and a heuristic model (dashed line;
for details see text and Methods). The simulation was done for V0 5 9.5Er (grey
line) and for V0 5 (1 6 0.02) 3 9.5Er (shaded grey area), to account for the
experimental uncertainty in the lattice depth, and predicts the energy
absorption per particle DE.
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2 for V0 5 10Er (grey), 9.5Er (black), 9Er (green), 8.5Er

(blue) and 8Er (red) as a function of the modulation frequency. The black line is
a fit of the form anb with a fitted exponent b 5 2.9(5). The inset shows the same
data points without rescaling, for comparison. Error bars, s.e.m.

hQ
0/
U

j/jc

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2
0 0.03 0.06 0.09 0.12 0.15

j

Super!uidMott 
Insulator

a b

3

1

2

V0 = 8Er
j/jc = 2.2

k B
T/
U

1

2

3

V0 = 9Er
j/jc = 1.6

V0 = 10Er
j/jc = 1.2

Q0

0.11

0.13

0.15

0.17

0.12

0.14

0.16

0.18

0 400 800
0.12

0.14

0.16

0.18

Qmod (Hz)

Q0

Q0

Figure 2 | Softening of the Higgs mode. a, The fitted gap values hn0/U
(circles) show a characteristic softening close to the critical point in quantitative
agreement with analytic predictions for the Higgs and the Mott gap (solid line
and dashed line, respectively; see text). Horizontal and vertical error bars
denote the experimental uncertainty of the lattice depths and the fit error for the
centre frequency of the error function, respectively (Methods). Vertical dashed
lines denote the widths of the fitted error function and characterize the
sharpness of the spectral onset. The blue shading highlights the superfluid

region. b, Temperature response to lattice modulation (circles and connecting
blue line) and fit with an error function (solid black line) for the three different
points labelled in a. As the coupling j approaches the critical value jc, the change
in the gap values to lower frequencies is clearly visible (from panel 1 to panel 3).
Vertical dashed lines mark the frequency U/h corresponding to the on-site
interaction. Each data point results from an average of the temperatures over
,50 experimental runs. Error bars, s.e.m.
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Quantum critical dynamics 

S. Sachdev, Quantum Phase Transitions, Cambridge (1999).

Quantum “nearly perfect fluid”

with shortest possible local equilibration time, ⌧eq

⌧eq = C ~
kBT

where C is a universal constant.

Response functions are characterized by poles in LHP
with ! ⇠ kBT/~.

These poles (quasi-normal modes) appear naturally in
the holographic theory.

(Analogs of Higgs quasi-normal mode.)
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� =

Q2

h
⇥ [Universal constant O(1) ]

(Q is the “charge” of one boson)

Quantum critical dynamics 

Transport co-oe�cients not determined

by collision rate of quasiparticles, but by

fundamental constants of nature

Conductivity
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Key idea: ) Implement r as an extra dimen-

sion, and map to a local theory in d + 2 spacetime

dimensions.
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For a relativistic CFT in d spatial dimensions, the

metric in the holographic space is fixed by de-

manding the scale transformation (i = 1 . . . d)
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This is the metric of anti-de Sitter space AdSd+2.

Wednesday, March 13, 13



zr

AdS4
R

2,1

Minkowski

CFT3

AdS/CFT correspondence

xi

Wednesday, March 13, 13



zr

AdS4
R

2,1

Minkowski

CFT3

A

xi

Holography and Entanglement

Wednesday, March 13, 13



zr

AdS4
R

2,1

Minkowski

CFT3

A

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

Associate entanglement entropy with an observer in the enclosed 
spacetime region, who cannot observe “outside” : i.e. the region is 
surrounded by an imaginary horizon.

xi

Holography and Entanglement

Wednesday, March 13, 13



zr

AdS4
R

2,1

Minkowski

CFT3

A
Minimal 

surface area 
measures

entanglement
entropy
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• Computation of minimal surface area yields

SE = aP � �,
where � is a shape-dependent universal number.

xi

M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009); H. Casini, 
M. Huerta, and R. Myers, JHEP 1105:036, (2011); I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598

Holography and Entanglement
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

There is a family of 
solutions of Einstein 

gravity which 
describe non-zero 

temperatures
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

r

Black-brane 
(horizon) at 

temperature of 2+1 
dimensional quantum 

critical system

ds
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✓
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◆2 
dr
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f(r)
� f(r)dt2 + dx
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�

with f(r) = 1� (r/Rh)3
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Friction of quantum 
criticality = waves 

falling past the horizon 

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures
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Quasi-normal modes of waves 
near horizon --

quasi-normal modes of 
quantum criticality (and Higgs)   

AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures
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AdS4 theory of quantum criticality
Most general e↵ective holographic theory for lin-
ear charge transport with 4 spatial derivatives:

Sbulk =
1

g

2
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� 1

22
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6
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◆�
,

This action is characterized by 3 dimensionless pa-
rameters, which can be linked to data of the CFT
(OPE coe�cients): 2-point correlators of the con-
served current Jµ and the stress energy tensor Tµ⌫ ,
and a 3-point T , J , J correlator.

Here Fab is a 4-dimensional gauge field strength,
which is “dual” to a conserved U(1) current of the
CFT. Cabcd is the Weyl tensor.

R. C. Myers, S. Sachdev, and A. Singh, Phys. Rev. D 83, 066017 (2011)

D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Phys. Rev. B 87, 085138 (2013)
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D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Phys. Rev. B 87, 085138 (2013)

Boundary and bulk methods both show that

|�|  1/12, and the bound is saturated by free

fields.
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R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)
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as the transport of vortex-like

excitations
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AdS4 theory of quantum criticality

• Stability constraints on the e↵ective theory (|�| < 1/12)
allow only a limited !-dependence in the conductiv-

ity. This contrasts with the Boltzmann theory in which

�(!)/�1 becomes very large in the regime of its validity.
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(a)<{�(w; � = 1/12)} (b)<{�̂(w; � = 1/12)}

(c)<{�(w; � = �1/12)} (d)<{�̂(w; � = �1/12)}

FIG. 4. Conductivity � and its S-dual �̂ = 1/� in the LHP, w00 = =w  0, for |�| = 1/12. The zeros
of �(w; �) are the poles of �̂(w; �). We further note the qualitative correspondence between the poles of
�(w; �) and the zeros of �̂(w;��).

low-frequency behavior is dictated by a Drude pole, located closest to the origin. The numerical

solution also shows the presence of satellite poles, the two dominant ones being shown. These

are symmetrically distributed about the =w axis as required by time-reversal, and are essential

to capture the behavior of � beyond the small frequency limit. In contrast, the conductivity at

� = �1/12 in Fig. 4(c) shows a minimum at w = 0 on the real axis, see also Fig. 7(b) for a plot

restricted to real frequencies. The corresponding pole structure shows no poles on the imaginary

axis, in particular no Drude pole. The conductivity at � = �1/12 is said to be vortex-like because

it can be put in correspondence with the conductivity of the CFT S-dual to the one with � = 1/12,

as we now explain.

B. S-duality and conductivity zeros

Great insight into the behavior of the conductivity can be gained by means of S-duality, a

generalization of the familiar particle-vortex duality of the O(2) model. S-duality on the boundary

14

W. Witzack-Krempa and S. Sachdev, Physical Review D 86, 235115 (2012)

Poles in LHP
of conductivity
at ! ⇠ kBT/~;

analog of
Higgs quasinormal mode–

quasinormal modes
of black brane

AdS4 theory of quantum criticality
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are symmetrically distributed about the =w axis as required by time-reversal, and are essential

to capture the behavior of � beyond the small frequency limit. In contrast, the conductivity at

� = �1/12 in Fig. 4(c) shows a minimum at w = 0 on the real axis, see also Fig. 7(b) for a plot

restricted to real frequencies. The corresponding pole structure shows no poles on the imaginary

axis, in particular no Drude pole. The conductivity at � = �1/12 is said to be vortex-like because

it can be put in correspondence with the conductivity of the CFT S-dual to the one with � = 1/12,

as we now explain.

B. S-duality and conductivity zeros

Great insight into the behavior of the conductivity can be gained by means of S-duality, a

generalization of the familiar particle-vortex duality of the O(2) model. S-duality on the boundary

14

W. Witzack-Krempa and S. Sachdev, Physical Review D 86, 235115 (2012)
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quasinormal modes
of S-dual theory

AdS4 theory of quantum criticality
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AdS4 theory of quantum criticality

It can be shown that the conductivity of any CFT3 must

satisfy two sum rules

Z 1

0
d!Re [�(!)� �(1)] = 0

Z 1

0
d!Re


1

�(!)
� 1

�(1)

�
= 0

• The AdS4 theory satisfies both sum rules exactly.

• The Boltzmann theory must make a choice between

the “particle” or “vortex” basis, and so satisfies only

one of the sum rules.

W. Witzack-Krempa and S. Sachdev, Physical Review D 86, 235115 (2012)
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AdS4 theory of quantum criticality

Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition

Jurij Šmakov and Erik Sørensen
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(Received 30 May 2005; published 27 October 2005)

The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions
is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus
on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We
find clear evidence for deviations from !k scaling of the conductivity towards !k=T scaling at low
Matsubara frequencies !k. By careful analytic continuation using Padé approximants we show that this
behavior carries over to the real frequency axis where the conductivity scales with !=T at small
frequencies and low temperatures. We estimate the universal dc conductivity to be !! " 0:45#5$Q2=h,
distinct from previous estimates in the T " 0, !=T % 1 limit.

DOI: 10.1103/PhysRevLett.95.180603 PACS numbers: 05.60.Gg, 02.70.Ss, 05.70.Jk

The nontrivial properties of materials in the vicinity of
quantum phase transitions [1] (QPTs) are an object of
intense theoretical [1–3] and experimental studies. The
effect of quantum fluctuations driving the QPTs is espe-
cially pronounced in low-dimensional systems, such as
high-temperature superconductors and two-dimensional
(2D) electron gases, exhibiting the quantum Hall effect.
Particularly valuable are theoretical predictions of the
behavior of the dynamical response functions, such as the
optical conductivity and the dynamic structure factor, since
they allow for direct comparison of the theoretical results
with experimental data. It was pointed out by Damle and
Sachdev [2] that at the quantum-critical coupling the
scaled dynamic conductivity T#2&d$=z!#!; T$ at low fre-
quencies and temperatures is a function of the single
variable @!=kBT:

!#!=T; T ! 0$ " #kBT=@c$#d&2$=z!Q!#@!=kBT$: (1)

Here !Q " Q2=h is the conductivity ‘‘quantum’’ (Q " 2e
for the models we consider), !#x ' @!=kBT$ is a universal
dimensionless scaling function, c a nonuniversal constant,
and z the dynamical critical exponent. For d " 2 the ex-
ponent vanishes, leading to a purely universal conductivity
[4], depending only on frequency !, measured against a
characteristic time @" set by finite temperature T as
@!=kBT. Once @!=kBT % 1, for fixed T, the system no
longer ‘‘feels’’ the effect of finite temperature and it is
natural to expect that at such high ! a crossover to a
temperature-independent regime will take place [3], so
that !#!; T$ ( !#!$ with !#!$ decaying at high frequen-
cies as 1=!2 [2]. Deviations from scaling of ! with !
therefore signal that temperature effects have become im-
portant. Note that the predicted universal behavior occurs
for fixed !=T as T ! 0. The physical mechanisms of
transport are predicted [2] to be quite distinct in the differ-
ent regimes determined by the value of the scaling variable
x: hydrodynamic, collision dominated for x) 1, and col-
lisionless, phase coherent for x% 1 with ! " !#1$

largely independent of x in d " 2 and ! independent of
T [2,5].

Intriguingly, early numerical studies [6–9] of QPTs in
model systems have failed to observe scaling with
@!=kBT. The results of the experiments seeking to verify
the scaling hypothesis are ambiguous as well. Some of
them, performed at the 2D quantum Hall transitions [10]
and 3D metal-insulator transitions [11], appear to support
it. Others either note the absence of scaling [12] or suggest
a different scaling form [13]. While the discrepancy be-
tween theory and experiment may be attributed to the
unsuitable choice of the measurement regime [2], typically
leading to @!=kBT % 1, there is no good reason why the
predicted scaling would not be observable in numerical
simulations if careful extrapolations first to L! 1 and
then T ! 0 for fixed !=T are performed.

Our primary goal is to resolve this controversy by per-
forming precise numerical simulations of the frequency-
dependent conductivity at finite temperatures in the vicin-
ity of the 2D QPT, exploiting recent algorithmic advances
to access larger system sizes and a wider temperature
range. After the extrapolation of the results to the thermo-
dynamic and T " 0 limits and careful analytic continu-
ation, we are able to demonstrate how the predicted
universal behavior of the conductivity may indeed be
revealed.

We consider the 2D Bose-Hubbard (BH) model with the
Hamiltonian H BH "H 0 *H 1, where the first term
describes the noninteracting soft core bosons hopping via
the nearest-neighbor links of a 2D square lattice, and the
second one includes the Hubbard-like on-site interactions:

H 0 " &t
X

r;#
#byr br*# * byr*#br$ &$

X
r
nr; (2)

H 1 "
U
2

X
r
nr#nr & 1$: (3)

Here # " x; y, nr " byr br is the particle number operator
on site r, and byr ; br are the boson creation and annihilation
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The SSE data also display a high narrow peak at very low
frequencies, whose position and shape are unstable with
respect to the choice of the initial image and MaxEnt
parameters. This is clearly an artifact of the method; how-
ever, its presence is indicative of the tendency to accumu-
late the weight at very low frequencies, in qualitative
agreement with H V result. The subsequent falloff in the
conductivity at high frequencies is physically consistent,
but its functional form depends on the Padé approximant
used. For !=!c * 1=2, we expect the analytic continu-
ation of the data for H V to become sensitive to the order of
the approximant used and we therefore indicate the results
in this regime by dotted lines only. We note that results at
all temperatures yield the same dc conductivity !? !
0:45"5#!Q, theoretically predicted [4] to be universal.
Because of the very different scaling procedure this result
differs from previous numerical result !? ! 0:285"20#!Q
on the same model [6] in the T ! 0 limit. It also differs
significantly from a theoretical estimate [2], !$ !
1:037!Q, valid to leading order in " ! 3% d. Remark-
ably, our result for the dc conductivity is very close to the
one obtained in Ref. [8] for the phase transition in the
disordered Bose-Hubbard model. Experimental results in-
dicate a value close to unity [26]; however, it was previ-
ously observed [7] that long-range Coulomb interactions,
impossible to include in the present study, tend to increase
! considerably. The same data are shown versus !=T in
Fig. 4(b). Notably, when using this parametrization !c
cancels out and all our data follow the same functional
form. The scaling with !=T at low frequencies is now
immediately apparent, with a surprisingly wide low !=T
peak. The width of this peak is consistent with the data in
Fig. 3(d). Furthermore, on the same !=T scale the con-
tinuous time SSE data for H BH and the results for H V
qualitatively agree.

In summary, we have demonstrated that by doing a very
careful data analysis it is possible to observe the theoreti-
cally predicted universal !=T scaling at the 2D superfluid-

insulator transition. We have also estimated the universal
dc conductivity at this transition and found that it differs
significantly from existing numerical and theoretical
estimates.

We thank S. Sachdev, S. Girvin, and A. P. Young for
valuable comments and critical remarks. Financial sup-
port from SHARCNET, NSERC, and CFI is gratefully
acknowledged. All calculations were done at the
SHARCNET facility at McMaster University.
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FIG. 4. The real part of the conductivity !0 at the critical
coupling in units of !Q. The data marked L#, plotted vs
!=!c, were obtained using H V , combined with the analytic
continuation of $"!=!c# as explained in the text. Results for
!=!c * 1=2 are denoted by dotted lines. The data marked SSE,
plotted vs !=10, were obtained by direct SSE simulations of
H BH with L ! 20, % ! 10 and subsequent maximum entropy
analysis (a). Results as a function of !=T (b).
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!!i!k"=!2"!Q" #
h$kxi$!xx!i!k"

!k
% #!i!k"

!k
: (7)

Here h$kxi is the kinetic energy per link and #!i!k" is the
frequency-dependent stiffness. To measure !xx!i!k" we
note that !xx!$" may be expressed in terms of the correla-
tion functions !%&

xx !r; $" # hK%
x !r; $"K&

x !0; 0"i of operators
K&x !r; $" # tbyr&x!$"br!$" and K$x !r; $" # tbyr !$"br&x!$",
which may be estimated efficiently in SSE [15].
Remarkably, it is possible to analytically perform the
Fourier transform with respect to $ yielding

!%&
xx !r; !k" #

!
1

'

Xn$2

m#0

"amn!!k"N!&;%;m"
"
; (8)

where N!&;%;m" is the number of times the operators
K%!r" and K&!0" appear in the SSE operator sequence
separated by m operator positions, and n is the expansion
order. The coefficients "amn!!k" are given by the degenerate
hypergeometric (Kummer) function: "amn!!k"#1 F1!m&
1; n;$i'!k". This expression and (8) allow us to directly
evaluate !xx!r; !k" as a function of Matsubara frequencies,
eliminating any errors associated with the discretization of
the imaginary time interval. Analogously, in the link-
current representation #!i!k" can be calculated [7], and
the conductivity can be obtained from Eq. (7).

In Fig. 3 we show results for !!i!k" versus !k obtained
using the geometrical worm algorithm on H V at Kc
[Fig. 3(a)] and by SSE simulations at tc;(c of H BH
[Fig. 3(c)]. In both cases the results have been extrapolated
to the thermodynamic limit L! 1 at fixed '. As evident
from Fig. 3(a), the results deviate from scaling with !k at
small !k and more significantly so at higher temperatures
(small L$). These deviations are also visible in the con-
tinuous time SSE data in Fig. 3(c), demonstrating that they
cannot be attributed to time discretization errors. Similar
deviations have been noted previously [6,7] but were not
analyzed at fixed '. Since the deviations persist in the L!
1 limit at fixed ', they may only be interpreted as finite T
effects. Expecting a crossover to!k=T scaling at small!k,
we plot our results versus !k=T in Fig. 3(d). For L$ ' 32,
!!!1=T" is already independent of T (L$). In fact, as
shown in Fig. 3(d), for !1...5, !!!k=T; T" can unambigu-
ously be extrapolated to a finite !!!k=T; T ! 0" ( #!x"
limit. This fact is a clear indication that !k=T scaling
indeed occurs as T ! 0. Tentatively, for increasing
!k=T, !!!k=T; T ! 0" appears to reach a constant value
of roughly 0:33!Q (#!1" in excellent agreement with
theoretical estimates [2,23]. We note that deviations from
!k scaling appear to be largely absent in simulations of
H BH with disorder [7,8]. However, at this QCP the dy-
namical critical exponent is different (z # 2). As is evident
from the size of the error bars in Fig. 3, simulations of H V
are much more efficient than the SSE simulations directly
on H BH. In the following analytic continuation we there-
fore use the SSE data mostly as a consistency check.

Our results on the imaginary frequency axis are limited
by the lowest Matsubara frequency, !1 # 2"kBT=@.
However, the information about the behavior of !0!!" %
Re!!!" at low! is embedded in values of the CCCF at all
Matsubara frequencies, allowing us to determine it. In
order to study the !=T scaling predicted for the hydro-
dynamic collision-dominated regime [2] @!=kBT ) 1, we
have attempted analytic continuations of #!i!k" to obtain
!0!!" at real frequencies. SSE results for H BH were
analytically continued using the Bryan maximum entropy
(ME) method [24] with flat initial image. For the results
obtained for the link-current model H V we use a method
that should be most sensitive to low frequencies !=!c < 1
or #!x) 1". We fit the extrapolated low frequency part
(first 10–15 Matsubara frequencies) of #!i!k" to a 6th-
order polynomial. The resulting 6 coefficients are then
used to obtain a !3; 3" Padé approximant using standard
techniques [25]. This approximant is then used for the
analytic continuation of # by i!k ! !& i). Resulting
real frequency conductivities !0!!" are displayed in
Fig. 4(a) versus !=!c. The typical SSE data are plotted
versus !=10 and are only shown for L # 20, ' # 10.

The results for H V show a broadened peak as !! 0,
due to inelastic scattering, followed by a second peak
nicely consistent in height and width with the SSE data.
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FIG. 3 (color online). The conductivity !!!k" in units of !Q
vs Matsubara frequency !k=!c as obtained from H V (a). All
results have been extrapolated to the thermodynamic limit L!
1 using the scaling form f!L" # a& b exp!$L=*"=

####
L
p

[27] by
calculating #!!k" at fixed L$ using 9 lattice sizes from L #
L$ . . . 4L$ as shown in (b). !!!k" in units of !Q vs Matsubara
frequency !k as obtained from SSE calculations of H BH, with
some typical error bars shown. All results have been extrapolated
to the thermodynamic limit by calculating !xx!!k" for fixed '
using 5 lattice sizes L # 12; . . . ; 30 (c). Scaling plot of the
conductivity data from (a) vs !k=T. ! denotes extrapola-
tions to T ! 0 (L$ ! 1) at fixed !k=T using: f!L$" # c&
d exp!$L$=*$"=

######
L$
p

[27] (d).
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AdS4 theory of quantum criticality

Universal Scaling of the Conductivity at the Superfluid-Insulator Phase Transition

Jurij Šmakov and Erik Sørensen
Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada

(Received 30 May 2005; published 27 October 2005)

The scaling of the conductivity at the superfluid-insulator quantum phase transition in two dimensions
is studied by numerical simulations of the Bose-Hubbard model. In contrast to previous studies, we focus
on properties of this model in the experimentally relevant thermodynamic limit at finite temperature T. We
find clear evidence for deviations from !k scaling of the conductivity towards !k=T scaling at low
Matsubara frequencies !k. By careful analytic continuation using Padé approximants we show that this
behavior carries over to the real frequency axis where the conductivity scales with !=T at small
frequencies and low temperatures. We estimate the universal dc conductivity to be !! " 0:45#5$Q2=h,
distinct from previous estimates in the T " 0, !=T % 1 limit.

DOI: 10.1103/PhysRevLett.95.180603 PACS numbers: 05.60.Gg, 02.70.Ss, 05.70.Jk

The nontrivial properties of materials in the vicinity of
quantum phase transitions [1] (QPTs) are an object of
intense theoretical [1–3] and experimental studies. The
effect of quantum fluctuations driving the QPTs is espe-
cially pronounced in low-dimensional systems, such as
high-temperature superconductors and two-dimensional
(2D) electron gases, exhibiting the quantum Hall effect.
Particularly valuable are theoretical predictions of the
behavior of the dynamical response functions, such as the
optical conductivity and the dynamic structure factor, since
they allow for direct comparison of the theoretical results
with experimental data. It was pointed out by Damle and
Sachdev [2] that at the quantum-critical coupling the
scaled dynamic conductivity T#2&d$=z!#!; T$ at low fre-
quencies and temperatures is a function of the single
variable @!=kBT:

!#!=T; T ! 0$ " #kBT=@c$#d&2$=z!Q!#@!=kBT$: (1)

Here !Q " Q2=h is the conductivity ‘‘quantum’’ (Q " 2e
for the models we consider), !#x ' @!=kBT$ is a universal
dimensionless scaling function, c a nonuniversal constant,
and z the dynamical critical exponent. For d " 2 the ex-
ponent vanishes, leading to a purely universal conductivity
[4], depending only on frequency !, measured against a
characteristic time @" set by finite temperature T as
@!=kBT. Once @!=kBT % 1, for fixed T, the system no
longer ‘‘feels’’ the effect of finite temperature and it is
natural to expect that at such high ! a crossover to a
temperature-independent regime will take place [3], so
that !#!; T$ ( !#!$ with !#!$ decaying at high frequen-
cies as 1=!2 [2]. Deviations from scaling of ! with !
therefore signal that temperature effects have become im-
portant. Note that the predicted universal behavior occurs
for fixed !=T as T ! 0. The physical mechanisms of
transport are predicted [2] to be quite distinct in the differ-
ent regimes determined by the value of the scaling variable
x: hydrodynamic, collision dominated for x) 1, and col-
lisionless, phase coherent for x% 1 with ! " !#1$

largely independent of x in d " 2 and ! independent of
T [2,5].

Intriguingly, early numerical studies [6–9] of QPTs in
model systems have failed to observe scaling with
@!=kBT. The results of the experiments seeking to verify
the scaling hypothesis are ambiguous as well. Some of
them, performed at the 2D quantum Hall transitions [10]
and 3D metal-insulator transitions [11], appear to support
it. Others either note the absence of scaling [12] or suggest
a different scaling form [13]. While the discrepancy be-
tween theory and experiment may be attributed to the
unsuitable choice of the measurement regime [2], typically
leading to @!=kBT % 1, there is no good reason why the
predicted scaling would not be observable in numerical
simulations if careful extrapolations first to L! 1 and
then T ! 0 for fixed !=T are performed.

Our primary goal is to resolve this controversy by per-
forming precise numerical simulations of the frequency-
dependent conductivity at finite temperatures in the vicin-
ity of the 2D QPT, exploiting recent algorithmic advances
to access larger system sizes and a wider temperature
range. After the extrapolation of the results to the thermo-
dynamic and T " 0 limits and careful analytic continu-
ation, we are able to demonstrate how the predicted
universal behavior of the conductivity may indeed be
revealed.

We consider the 2D Bose-Hubbard (BH) model with the
Hamiltonian H BH "H 0 *H 1, where the first term
describes the noninteracting soft core bosons hopping via
the nearest-neighbor links of a 2D square lattice, and the
second one includes the Hubbard-like on-site interactions:

H 0 " &t
X

r;#
#byr br*# * byr*#br$ &$

X
r
nr; (2)

H 1 "
U
2

X
r
nr#nr & 1$: (3)

Here # " x; y, nr " byr br is the particle number operator
on site r, and byr ; br are the boson creation and annihilation
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QMC yields �(0)/�1 ⇡ 1.36

Holography yields �(0)/�1 = 1 + 4� with |�|  1/12.

Maximum possible holographic value �(0)/�1 = 1.33

W.  Witzack-Krempa and S. Sachdev, arXiv:1302.0847
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BaFe2(As1�x

P
x

)2

K. Hashimoto, K. Cho, T. Shibauchi, S. Kasahara, Y. Mizukami, R. Katsumata, Y. Tsuruhara, T. Terashima, 
H. Ikeda, M. A. Tanatar, H. Kitano, N. Salovich, R. W. Giannetta, P. Walmsley, A. Carrington, R. Prozorov, 
and Y. Matsuda, Science 336, 1554 (2012).
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Electrons (fermions) occupy states inside a

Fermi “surface” (circle) of radius kF which is

determined by the density of electrons, Q.

The Metal

k
x

ky �� kF !
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Can bosons form a metal ?

Yes, if each boson, b, fractionalizes into 2 fermions (‘quarks’)

b = f1f2 !

• Each quark is charged under an emergent gauge force,

which encapsulates the entanglement in the ground state.

• The quarks have “hidden” Fermi surfaces of radius kF .

A Strange Metal
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• Each quark is charged under an emergent gauge force,

which encapsulates the entanglement in the ground state.

• The quarks have “hidden” Fermi surfaces of radius kF .

O. I. Motrunich and M. P. A. Fisher,  Phys. Rev. B 75, 235116 (2007)
L. Huijse and S. Sachdev,   Phys. Rev. D 84, 026001 (2011)

S. Sachdev, arXiv:1209.1637
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Holographic theory of a strange metal

Electric flux

The density of particles Q creates an electric flux Er
which modifies the metric of the emergent spacetime.
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Holographic theory of a strange metal

The density of particles Q creates an electric flux Er
which modifies the metric of the emergent spacetime.

Hidden Fermi 
surfaces

of “quarks” ?

Electric flux
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Holographic theory of a strange metal

Electric flux

The general metric transforms under rescaling as

xi ! ⇣ xi, t ! ⇣

z
t, ds ! ⇣

✓/d
ds.

Recall: conformal matter has ✓ = 0, z = 1, and the metric is

anti-de Sitter

Hidden Fermi 
surfaces

of “quarks” ?
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Holographic theory of a strange metal

Electric flux

The general metric transforms under rescaling as

xi ! ⇣ xi, t ! ⇣

z
t, ds ! ⇣

✓/d
ds.

Recall: conformal matter has ✓ = 0, z = 1, and the metric is

anti-de Sitter

The value ✓ = d�1 reproduces all the essential characteristics
of the entropy and entanglement entropy of a strange metal.

L. Huijse, S. 
Sachdev, B. Swingle, 
Physical Review B 
85, 035121 (2012)

N. Ogawa, T. Takayanagi, 
and T. Ugajin, JHEP 1201, 

125 (2012).
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Holographic theory of a strange metal

Electric flux

The general metric transforms under rescaling as

xi ! ⇣ xi, t ! ⇣

z
t, ds ! ⇣

✓/d
ds.

Recall: conformal matter has ✓ = 0, z = 1, and the metric is

anti-de Sitter

L. Huijse, S. 
Sachdev, B. Swingle, 
Physical Review B 
85, 035121 (2012)

N. Ogawa, T. Takayanagi, 
and T. Ugajin, JHEP 1201, 

125 (2012).

The null-energy condition of gravity yields z � 1 + ✓/d. In d = 2, this

leads to z � 3/2. Field theory on strange metal yields z = 3/2 to 3 loops!

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

Hidden Fermi 
surfaces

of “quarks” ?
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Conclusions

Realizations of many-particle 
entanglement:

Z2 spin liquids and 
conformal quantum critical points 
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 New insights and solvable models for diffusion and 
transport of strongly interacting systems near quantum critical 
points

 The description is far removed from, and complementary 
to, that of the quantum Boltzmann equation which builds on 
the quasiparticle/vortex picture.

 Good prospects for experimental tests of frequency-
dependent, non-linear, and non-equilibrium transport   
 

Conclusions

Conformal quantum matter
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Conclusions

More complex examples in metallic 
states are experimentally 

ubiquitous, but pose difficult 
strong-coupling problems to 
conventional methods of field 

theory
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Conclusions

String theory and gravity in 
emergent dimensions 

offer a remarkable new approach 
to describing states with many-
particle quantum entanglement.

Much recent progress offers hope of a 
holographic description of “strange metals”
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