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Sommerfeld-Bloch-Landau theory of ordinary metals

Momenta with
electron states
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• Area enclosed by the Fermi surface A = Q,
the electron density

• Excitations near the Fermi surface are responsible for the famil-
iar properties of ordinary metals, such as resistivity ∼ T 2.

Key feature of the theory: 
the Fermi surface

A

Sommerfeld-Bloch-Landau theory of ordinary metals
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• Consider an infinite, continuum,

translationally-invariant quantum system with a glob-

ally conserved U(1) chargeQ (the “electron density”)

in spatial dimension d > 1.

• Describe zero temperature phases where d�Q�/dµ �=
0, where µ (the “chemical potential”) which changes

the Hamiltonian, H, to H − µQ.

• Compressible systems must be gapless.

• Conformal quantum matter is compressible in

d = 1, but not for d > 1.

Compressible quantum matter
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The only compressible phase of traditional 
condensed matter physics which does not 
break the translational or U(1) symmetries 

is the Landau Fermi liquid 
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• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aµ.

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ

The Non-Fermi Liquid (NFL)
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L = f†
σ

�
∂τ − ∇2

2m
− µ

�
fσ

Fermi surface of an ordinary metal

A
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S.-S. Lee, Phys. Rev. B 80, 165102 (2009)

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010)

• Area enclosed by the Fermi surface A = Q, the
fermion density

• Critical continuum of excitations near the Fermi sur-
face with energy ω ∼ |q|z, where q = |k| − kF is the
distance from the Fermi surface and z is the dynamic
critical exponent.

Fermions coupled to a gauge field

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ
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• Gauge-dependent Green’s functionG−1
f = q1−ηF (ω/qz).

Three-loop computation shows η �= 0 and z = 3/2.

• The phase space density of fermions is effectively one-
dimensional, so the entropy density S ∼ T deff/z with
deff = 1.
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• ’tHooft’s argument for the large Nc limit of pure Yang-Mills

theory applies unchanged. Feynman diagrams acquire a factor

of 1/Ng
c where g is genus of the surface defined by the Feynman

diagram.

• The Nc → ∞ limit requires summation of all “planar” graphs.

• There is Landau damping of gauge bosons, and non-Fermi liquid

damping of fermions, in the planar limit, and hence the possi-

bility of a deconfined compressible phase with a scale-invariant

structure at low energies.

• The pairing instability to superconducting phases is subdomi-

nant in the 1/Nc expansion.

• We will now present a conjectured gravity dual of this theory.

Study the large Nc limit of a SU(Nc) Yang-Mills gauge field coupled 
to adjoint (matrix) fermions at a non-zero chemical potential 
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J. McGreevy, arXiv0909.0518
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For a relativistic CFT in d spatial dimensions, the
metric in the holographic space is uniquely fixed
by demanding the following scale transformaion
(i = 1 . . . d)

xi → ζxi , t → ζt , ds → ds

This gives the unique metric

ds2 =
1

r2
�
−dt2 + dr2 + dx2

i

�

Reparametrization invariance in r has been used
to the prefactor of dx2

i equal to 1/r2. This fixes
r → ζr under the scale transformation. This is
the metric of the space AdSd+2.
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Consider the following (most) general metric for the
holographic theory

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

This metric transforms under rescaling as

xi → ζ xi

t → ζz t

ds → ζθ/d ds.

This identifies z as the dynamic critical exponent (z = 1
for “relativistic” quantum critical points).

What is θ ? (θ = 0 for “relativistic” quantum criti-
cal points).
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

r
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At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the

thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the

“area” of the horizon, and so S ∼ r−d
h

Under rescaling r → ζ(d−θ)/dr, and the
temperature T ∼ t−1, and so

S ∼ T (d−θ)/z = T deff/z

where θ = d−deff measures “dimension deficit” in
the phase space of low energy degrees of a freedom.
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A non-Fermi liquid has gapless fermionic excita-
tions on the Fermi surface, which disperse in the
single transverse direction with dynamic critical
exponent z, with entropy density ∼ T 1/z. So
we expect compressible quantum states to have
deff = 1, or

θ = d− 1

Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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B

A

Entanglement entropy

Measure strength of quantum
entanglement of region A with region B.

ρA = TrBρ = density matrix of region A
Entanglement entropy SEE = −Tr (ρA ln ρA)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)

Entanglement entropy of Fermi surfaces
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r
Emergent holographic direction

A

Holographic entanglement entropy
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r
Emergent holographic direction

A
Area of 
minimal 

surface equals 
entanglement

entropy

Holographic entanglement entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

• The entanglement entropy exhibits logarithmic vio-
lation of the area law only for this value of θ !

• The co-efficient of the logarithmic term is consistent
with the Luttinger relation.

• Many other features of the holographic theory are
consistent with a boundary theory which has “hid-
den” Fermi surfaces of gauge-charged fermions.

θ = d− 1
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• The entanglement entropy exhibits logarithmic vio-
lation of the area law only for this value of θ !

• The metric can be realized as the solution of a Einstein-
Maxwell-Dilaton theory with no explicit fermions.
The density of the “hidden Fermi surfaces” of the
boundary gauge-charged fermions can be deduced
from the electric flux leaking to r → ∞.

Holography of non-Fermi liquids

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 
L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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θ = d− 1

K. Goldstein, S. Kachru, S. Prakash, and S. P. Trivedi JHEP 1008, 078 (2010)
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Holographic theory of a non-Fermi liquid (NFL)
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• The co-efficient of the logarithmic term in the entan-
glement entropy is insensitive to all short-distance
details, and depends only upon the fermion density.

• The two methods of deducing with fermion density,
from the electric flux as r → ∞ and from the entan-
glement entropy, are consistent with the Luttinger
relation !

Holography of non-Fermi liquids
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− dt2
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�
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Inequalities

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

The area law of entanglement entropy is obeyed for

θ ≤ d− 1.

The “null energy condition” of the gravity theory yields

z ≥ 1 +
θ

d
.

Remarkably, for d = 2, θ = d − 1 and z = 1 + θ/d, we obtain
z = 3/2, the same value associated with the field theory.

N. Ogawa, T. Takayanagi, and T. Ugajin, arXiv:1111.1023 
L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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Holographic theory of a non-Fermi liquid (NFL)

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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Holographic theory of a fractionalized-Fermi liquid (FL*)

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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Holographic theory of a Fermi liquid (FL)

Gauss Law in the bulk
⇔ Luttinger theorem on the boundary
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Field theory Holography

A gauge-dependent Fermi
surface of overdamped
gapless fermions.

Fermi surface is hidden.

Thermal entropy density S ∼
T 1/z in d = 2, where z is the
dynamic critical exponent.

Thermal entropy density S ∼
T 1/z in all d for hyperscaling
violation exponent θ = d− 1,
and z the dynamic critical ex-
ponent.

Logarithmic violation of area
law of entanglement entropy,
with prefactor proportional
to the product of Q(d−1)/d

and the boundary area of the
entangling region.

Logarithmic violation of area
law of entanglement entropy
for θ = d − 1, with prefactor
proportional to the product
of Q(d−1)/d and the boundary
area of the entangling region.

Theory of a non-Fermi liquid (NFL)
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ponent.

Logarithmic violation of area
law of entanglement entropy,
with prefactor proportional
to the product of Q(d−1)/d

and the boundary area of the
entangling region.

Logarithmic violation of area
law of entanglement entropy
for θ = d − 1, with prefactor
proportional to the product
of Q(d−1)/d and the boundary
area of the entangling region.
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Field theory Holography

Three-loop analysis shows
z = 3/2 in d = 2.

Existence of gravity dual im-
plies z ≥ 1 + θ/d; leads to
z ≥ 3/2 for θ = d−1 in d = 2.

Fermi surface encloses a vol-
ume proportional to Q, as de-
manded by the Luttinger re-
lation.

The value of kF obtained
from the entanglement en-
tropy implies the Fermi sur-
face encloses a volume pro-
portional to Q, as demanded
by the Luttinger relation.

Gauge neutral ‘mesinos’ re-
duce the volume enclosed
by Fermi surfaces of gauge-
charged fermions to Q −
Qmesino.

Gauge neutral ‘mesinos’ re-
duce the volume enclosed by
hidden Fermi surfaces to Q−
Qmesino.
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