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Foundations of quantum many body theory:

1. Ground states connected adiabatically to
independent electron states

2. Quasiparticle structure of excited states
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Foundations of quantum many body theory:

1. Ground states connected adiabatically to
independent electron states

2. Boltzmann-Landau theory of quasiparticles



Modern phases of quantum matter:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

Famous examples:

The fractional quantum Hall effect of electrons in two 
dimensions (e.g. in graphene) in the presence of a 

strong magnetic field. The ground state is described 
by Laughlin’s wavefunction, and the excitations are 

quasiparticles which carry fractional charge.



Modern phases of quantum matter:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Boltzmann-Landau theory of quasiparticles

Famous examples:

Electrons in one dimensional wires form the 
Luttinger liquid.  The quanta of density oscillations 
(“phonons”) are a quasiparticle basis of the low-
energy Hilbert space. Similar comments apply to 

magnetic insulators in one dimension.



Modern phases of quantum matter:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Quasiparticle structure of excited states2. No quasiparticles



Modern phases of quantum matter:

1. Ground states disconnected from independent
electron states: many-particle entanglement

2. Quasiparticle structure of excited states2. No quasiparticles

Only 2 examples:

1. Conformal field theories in spatial dimension d >1 

2. Quantum critical metals in dimension d=2



1. Conformal field theories in 2+1 dimensions
Superfluid-insulator transition 

        A. Boltzmann dynamics

        B. Conformal / holographic dynamics

2.  Non-Fermi liquid in 2+1 dimensions
 Strange metal in the high temperature superconductors 
        A. Lessons from holography

        B. Field theories and memory functions
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M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Ultracold 87Rb
atoms - bosons

Superfluid-insulator transition



The Superfluid-Insulator transition

Boson Hubbard model

Bosons, bj hopping on the sites j of a square lattice with Hamiltonian

H = �t
X

hiji

b†i bj +
U

2

X

j

nj(nj � 1)

nj ⌘ b†i bi

The boson operators obey the commutation relation

[bj , b
†
k] = �jk

We restrict attention to the sector of the Fock space with

X

j

nj = integer multiple of the number of sites
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Insulator (the vacuum)  
at large repulsion between bosons
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|Ground statei =
"
X

i

b†i

#N

|0i

U ⌧ t

Superfluid  
at small repulsion between bosons
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 ⇠ bk=0 ! a complex field representing the

Bose-Einstein condensate of the superfluid
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A conformal field theory
in 2+1 spacetime dimensions (CFT3):

the O(2) Wilson-Fisher CFT3
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A conformal field theory
in 2+1 spacetime dimensions (CFT3):

the O(2) Wilson-Fisher CFT3

The coupling u ! u⇤
,

the renormalization group

fixed point, for the CFT3.

� ⇠ U/t
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Traditional CMT

} Identify quasiparti-

cles and their dis-

persions

} Compute scattering

matrix elements of

quasiparticles

} Input parameters into

a quantum Boltzmann

equation

} Compute dissipative

properties at ! ⌧
quasiparticle-collision-

rate
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K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).

~!
kBT

1

Quasiparticle view of quantum criticality (Boltzmann equation):
Transport of O(N) current for a (weakly) interacting CFT3

�1

�1 = 2⇡ ⇥ (1/16) +O(1/N)

in a vector large N limit

�0

Re[�(!)]

�Q

�Q = e2/h, the quantum unit of conductance



S. Sachdev, Phys. Rev. B 57, 7157 (1998)                                                                    
W. Witczak-Krempa, P. Ghaemi, T. Senthil, and Yong Baek Kim,                              
Phys. Rev. B 86, 24102 (2012)
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Quasiparticle view of quantum criticality (Boltzmann equation):
Transport of O(N) current for a (weakly) interacting CFT3



1. Conformal field theories in 2+1 dimensions
Superfluid-insulator transition 

        A. Boltzmann dynamics

        B. Conformal / holographic dynamics

2.  Non-Fermi liquid in 2+1 dimensions
 Strange metal in the high temperature superconductors 
        A. Holographic model

        B. Field theories and memory functions

Outline



Traditional CMT

} Identify quasiparti-

cles and their dis-

persions

} Compute scattering

matrix elements of

quasiparticles

} Input parameters into

a quantum Boltzmann

equation

} Compute dissipative

properties at ! ⌧
quasiparticle-collision-

rate

Dynamics without quasiparticles

� Start with strongly inter-
acting CFT without quasi-
particles

� Using scaling dimensions
and operator product ex-
pansions (OPE) of the CFT,
compute conductivity
at �h! � kBT

� Relate OPE coe�cients to
couplings of an e↵ective grav-
itational theory on AdS

� Dynamics of a “horizon”
in gravitational theory yields
info at �h! � kBT .



Basic characteristics of CFTs
Primary operators of CFT, O

a

(x), obey ( at T = 0):

hO
a

(x)O
b

(0)i = �
ab

|x|2�a

where �
a

is their scaling dimension. Their “interactions” are determined by
the OPE (considering scalar operators only)

lim
x

0!x

hO
a

(x0)O
b

(x)O
c

(0)i = f
abc

|x|�a+�b+�c

The values of {�
a

, f
abc

} determine (in principle) all observable properties
of the CFT, as constrained by conformal Ward identities. For the Wilson-
Fisher CFT3, systematic methods exist to compute (in principle) all the
{�

a

, f
abc

}, and we will assume this data is known. This knowledge will be
taken as an input to the computation of the finite T dynamics

Oa

Ob

Ocfabc



Basic characteristics of CFT3s

E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841

The thermal average of the OPE of two O(2) current
operators yields for ! � T

�(!)

�Q
= �1 + b1

✓
T

!

◆3�1/⌫

+ b2

✓
T

!

◆3

+ . . .

where b1,2 are universal numbers dependent upon OPE
coe�cients.

• b1 depends on a relevant scalar operator with
dimension 3 � 1/⌫; for the O(2) Wilson-Fisher
CFT3, ⌫ ⇡ 0.6717(1).

• b2 depends on OPE with the energy-momentum
tensor.
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FIG. 1. QMC results (open circles) at K
c

= 0.3330671 with µ = 0 for the frequency dependent
conductivity �(i!

n

). All results have first been extrapolated to L ! 1 and subsequently to T ! 0
(L

⌧

! 1). The solid blue line shows a fit to the QMC data for n = 1, . . . , 6 of the form 2⇡�/�
Q

=
0.36038 + 0.053/n1.516 � 0.01/n3 with n = !

n

/(2⇡T ) the Matsubara index.

be applicable. Inserting appropriate powers of 2⇡, the fit in Fig. 1 can be converted to a fit to

Eq. (4) and we find fitted values of �1, ⌫, b1, and b2 as follows

2⇡�1 = 0.3603(3)

⌫ = 0.67(3)

b1 = 0.137(6)

b2 = �0.4(1) , (29)

where we only quote statistical errors arising from the fit. We comment on these values in turn:

• The value of 2⇡�1 is in excellent agreement with existing results [2, 7, 9]. Comparing with

the large N result in Eq. (8), the N = 1 value is 0.39, while the 1/N corrected expression

evaluated at N = 2 yields 0.25.

• Our fits reliably determine that ⌫ is slightly larger than 2/3, and is in good agreement with

previous numerical studies [29–31].

• For b1, we can only compare with the N = 1 result obtained in Section II. From Eqs. (24),

(15) and (17), or equivalently from Eq. (C12), we obtain b1 = ⇥2/4 = 0.23.

12

E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841

Excellent agreement with OPE

Quantum Monte Carlo for lattice model of integer currents 
(Villain model) in Euclidean time



Quantum Monte Carlo for lattice model of integer currents 
(Villain model) in Euclidean time
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E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841

QMC fails for Minkowski frequencies ~! ⌧ kBT



Traditional CMT

} Identify quasiparti-

cles and their dis-

persions

} Compute scattering

matrix elements of

quasiparticles

} Input parameters into

a quantum Boltzmann

equation

} Compute dissipative

properties at ! ⌧
quasiparticle-collision-

rate

Dynamics without quasiparticles

� Start with strongly inter-
acting CFT without quasi-
particles

� Using scaling dimensions
and operator product ex-
pansions (OPE) of the CFT,
compute conductivity
at �h! � kBT

� Relate OPE coe�cients to
couplings of an e↵ective grav-
itational theory on AdS

� Dynamics of a “horizon”
in gravitational theory yields
info at �h! � kBT .
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AdS/CFT correspondence at zero temperature

R. C. Myers, S. Sachdev, and A. Singh, Physical Review D 83, 066017 (2011)

D. Chowdhury, S. Raju, S. Sachdev, A. Singh, and P. Strack, Physical Review B 87, 085138 (2013).

E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841

To fully match the OPE of the current operators, we need
an Einstein-Maxwell-Weyl-scalar theory

Sbulk =
1

g

2
M

Z
d

4
x

p
g


1

4
[1 + ↵'(x)]FabF

ab + �L

2
CabcdF

ab
F

cd

�

+

Z
d

4
x

p
g


� 1

22

✓
R+

6

L

2

◆
+ g

ab
@a'@b'+m

2
'

2

�
,

where Cabcd is the Weyl tensor. Stability constraints on
this action restrict |�| < 1/12, in agreement with results
from the CFT3. The scalar field ' is conjugate to the CFT
operator O with scaling dimension 3� 1/⌫, which fixes its
mass m. The coupling ↵ is determined by the OPE of the
currents with O.
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AdS/CFT correspondence at non-zero temperatures

AdS4-Schwarzschild black-brane

ds
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✓
L

r
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dr
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� f(r)dt2 + dx

2 + dy

2

�

with f(r) = 1� (r/R)3

r

Black-brane at 
Hawking 

temperature T

R
A CFT3

at a non-zero

temperature:

kBT =

3~
4⇡R

.



AdS4-Schwarzschild black-brane

AdS/CFT correspondence at non-zero temperatures

r
R

Friction of CFT3 = 
waves falling into  

black brane 

Black-brane at 
Hawking 

temperature T

A CFT3

at a non-zero

temperature:

kBT =

3~
4⇡R

.



Conductivity of Einstein-Maxwell theory
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Numerical solution of Einstein-Maxwell-Weyl-scalar 
theory + OPE info from QMC

E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841
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Numerical solution of Einstein-Maxwell-Weyl-scalar 
theory + OPE info from QMC

E. Katz, S. Sachdev, E. Sorensen, and W. Witczak-Krempa, arXiv:1409.3841
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No other theoretical 
predictions (yet): can only 

be compared with 
experiments !
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High temperature 
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evidence (explaining the rotational symmetry breaking) over a broad
temperature range in YBa2Cu3Oy (refs 14, 19–22). Therefore, instead
of being a defining property of the ordered state, the small amplitude of
the charge differentiation is more likely to be a consequence of stripe
order (the smectic phase of an electronic liquid crystal17) remaining
partly fluctuating (that is, nematic).
In stripe copper oxides, charge order at T5Tcharge is always accom-

panied by spin order at Tspin,Tcharge. Slowing down of the spin

fluctuations strongly enhances the spin–lattice (1/T1) and spin–spin
(1/T2) relaxation rates between Tcharge and Tspin for

139La nuclei. For
themore strongly hyperfine-coupled 63Cu, the relaxation rates become
so large that the Cu signal is gradually ‘wiped out’ on cooling below
Tcharge (refs 18, 23, 24). In contrast, the 63Cu(2) signal here in
YBa2Cu3Oy does not experience any intensity loss and 1/T1 does not
show any peak or enhancement as a function of temperature (Fig. 3).
Moreover, the anisotropy of the linewidth (Supplementary
Information) indicates that the spins, although staggered, align mostly
along the field (that is, c axis) direction, and the typical width of the
central lines at base temperature sets an uppermagnitude for the static
spin polarization as small as gÆSzæ# 23 1023mB for both samples in
fields of,30T. These consistent observations rule out the presence of
magnetic order, in agreement with an earlier suggestion based on the
presence of free-electron-like Zeeman splitting6.
In stripe-ordered copper oxides, the strong increase of 1/T2 on

cooling below Tcharge is accompanied by a crossover of the time decay
of the spin-echo from the high-temperature Gaussian form
exp(2K(t/T2G)2) to an exponential form exp(2t/T2E)18,23. A similar
crossover occurs here, albeit in a less extreme manner because of the
absence ofmagnetic order: 1/T2 sharply increases belowTcharge and the
decay actually becomes a combination of exponential and Gaussian
decays (Fig. 3). In Supplementary Information we provide evidence
that the typical values of the 1/T2E below Tcharge imply that antiferro-
magnetic (or ‘spin-density-wave’) fluctuations are slow enough to
appear frozen on the timescale of a cyclotron orbit 1/vc< 10212 s.
In principle, such slow fluctuations could reconstruct the Fermi sur-
face, provided that spins are correlated over large enough distances25,26

(see also ref. 9). It is unclear whether this condition is fulfilled here. The
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Figure 4 | Phase diagram of underdoped YBa2Cu3Oy. The charge ordering
temperature Tcharge (defined as the onset of the Cu2F line splitting; blue open
circles) coincides with T0 (brown plus signs), the temperature at which the Hall
constant RH changes its sign. T0 is considered as the onset of the Fermi surface
reconstruction11–13. The continuous line represents the superconducting
transition temperature Tc. The dashed line indicates the speculative nature of
the extrapolation of the field-induced charge order. The magnetic transition
temperatures (Tspin) are frommuon-spin-rotation (mSR) data (green stars)27.T0
and Tspin vanish close to the same critical concentration p5 0.08. A scenario of
field-induced spin order has been predicted for p. 0.08 (ref. 8) by analogy with
La1.855Sr0.145CuO4, for which the non-magnetic ground state switches to
antiferromagnetic order in fields greater than a few teslas (ref. 7 and references
therein).Ourwork, however, shows that spin order does not occur up to,30T.
In contrast, the field-induced charge order reported here raises the question of
whether a similar field-dependent charge order actually underlies the field
dependence of the spin order in La22xSrxCuO4 and YBa2Cu3O6.45. Error bars
represent the uncertainty in defining the onset of theNMR line splitting (Fig. 1f
and Supplementary Figs 8–10).
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Figure 3 | Slow spin fluctuations instead of spin order. a, b, Temperature
dependence of the planar 63Cu spin-lattice relaxation rate 1/T1 for p5 0.108
(a) and p5 0.12 (b). The absence of any peak/enhancement on cooling rules
out the occurrence of a magnetic transition. c, d, Increase in the 63Cu spin–spin
relaxation rate 1/T2 on cooling below,Tcharge, obtained from a fit of the spin-
echo decay to a stretched form s(t) / exp(2(t/T2)

a), for p5 0.108 (c) and
p5 0.12 (d). e, f, Stretching exponent a for p5 0.108 (e) and p5 0.12 (f). The
deviation from a5 2 on cooling arises mostly from an intrinsic combination of
Gaussian and exponential decays, combined with some spatial distribution of
T2 values (Supplementary Information). The grey areas define the crossover
temperature Tslow below which slow spin fluctuations cause 1/T2 to increase
and to become field dependent; note that the change of shape of the spin-echo
decay occurs at a slightly higher (,115K) temperature than Tslow. Tslow is
slightly lower thanTcharge, which is consistentwith the slow fluctuations being a
consequence of charge-stripe order. The increase of a at the lowest
temperatures probably signifies that the condition cÆhz2æ1/2tc= 1, where tc is
the correlation time, is no longer fulfilled, so that the associated decay is no
longer a pure exponential. We note that the upturn of 1/T2 is already present at
15T, whereas no line splitting is detected at this field. The field therefore affects
the spin fluctuations quantitatively but not qualitatively. g, Plot of NMR signal
intensity (corrected for a temperature factor 1/T and for the T2 decay) against
temperature. Open circles, p5 0.108 (28.5T); filled circles, p5 0.12 (33.5T).
The absence of any intensity loss at low temperatures also rules out the presence
of magnetic order with any significant moment. Error bars represent the added
uncertainties in signal analysis, experimental conditions andT2measurements.
All measurements are with H | | c.
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the low-temperature orthorhombic phase, which causes a
weak kink in the !ab!T" data; the diagonal red band that
ends at x # 0:18 signifies this transition, whose position is
consistent with the data in the literature [22]. Apart from
this structural transition, one can see that the phase dia-
gram of LSCO depicted by RCM is very similar to that of
BSLCO in several respects: First, the T-linear resistivity
(vertical white band) is observed only near optimum dop-
ing (x ’ 0:16–0:18). Second, the vertical red region for
p * 0:19 demonstrates that the !ab!T" behavior becomes
positively curved in the overdoped regime. Third, Tpg

(marked by a dashed line) changes approximately linearly
with x for x $ 0:06 and is terminated near optimum dop-
ing; incidentally, it is intriguing to see that Tpg saturates in
the nonsuperconducting regime (x < 0:06) and that the
saturated value of Tpg is close to the Néel temperature
for x # 0 (%300 K) [22].

Figures 3(a) and 3(b) show the !a!T" data for YBCO,
and the RCM plot is shown in Fig. 3(c). One can easily see

that the phase diagram of YBCO depicted in Fig. 3(c) is
quite similar to those of BSLCO and LSCO in that (1) the
T-linear resistivity is observed only near optimum doping
(i.e., y ’ 6:95), and (2) Tpg changes approximately linearly
with y in the superconducting regime and tends to saturate
in the antiferromagnetic regime. In addition, one can see
that !a!T" becomes slightly positively curved in the over-
doped regime, which is recognized by the faint red color at
y # 7:00 for T > 150 K. However, Fig. 3(c) also shows a
departure from the universal phase diagram suggested by
BSLCO and LSCO in two aspects: (1) Tpg is terminated at
y ’ 6:8, which is near optimum doping but is in the under-
doped regime, and (2) the high-temperature behavior at
6:80 & y & 6:90 is complicated. [The red blob at the top of
the diagram for 6:85 & y & 6:90 is due to a slight curving
of the !a!T" data near 300 K at these dopings, which we
confirm to be very reproducible; this is due to the oxygen
motion in the Cu-O chains [23].] Phenomenologically, it
appears that these peculiarities are related to the fact that
the Tc vs y diagram of YBCO [see the green symbols in
Fig. 3(c)] shows two plateaus at %60 and %90 K, the
former called the 60 K phase, and its origin is still under
debate [9]; clearly, the phase diagram is more ordinary in
the 60 K phase and below (y & 6:80), but becomes peculiar
near the 90 K phase. One interesting possibility is that the

FIG. 3 (color). (a),(b) !a!T" data of YBCO for y # 6:30–7:00
at 0.05 intervals. (c) Electronic phase diagram depicted by RCM
for YBCO, where the solid green circles show Tc’s for the
measured compositions.

FIG. 2 (color). (a),(b) !ab!T" data of LSCO for x # 0:01–0:22
at 0.01 intervals. (c) Electronic phase diagram depicted by RCM
for LSCO; here !n

ab # !ab=!ab!400 K". The dashed line is a
guide to the eyes to emphasize Tpg, and the solid green circles
show Tc’s for the measured compositions.
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evidence (explaining the rotational symmetry breaking) over a broad
temperature range in YBa2Cu3Oy (refs 14, 19–22). Therefore, instead
of being a defining property of the ordered state, the small amplitude of
the charge differentiation is more likely to be a consequence of stripe
order (the smectic phase of an electronic liquid crystal17) remaining
partly fluctuating (that is, nematic).
In stripe copper oxides, charge order at T5Tcharge is always accom-

panied by spin order at Tspin,Tcharge. Slowing down of the spin

fluctuations strongly enhances the spin–lattice (1/T1) and spin–spin
(1/T2) relaxation rates between Tcharge and Tspin for

139La nuclei. For
themore strongly hyperfine-coupled 63Cu, the relaxation rates become
so large that the Cu signal is gradually ‘wiped out’ on cooling below
Tcharge (refs 18, 23, 24). In contrast, the 63Cu(2) signal here in
YBa2Cu3Oy does not experience any intensity loss and 1/T1 does not
show any peak or enhancement as a function of temperature (Fig. 3).
Moreover, the anisotropy of the linewidth (Supplementary
Information) indicates that the spins, although staggered, align mostly
along the field (that is, c axis) direction, and the typical width of the
central lines at base temperature sets an uppermagnitude for the static
spin polarization as small as gÆSzæ# 23 1023mB for both samples in
fields of,30T. These consistent observations rule out the presence of
magnetic order, in agreement with an earlier suggestion based on the
presence of free-electron-like Zeeman splitting6.
In stripe-ordered copper oxides, the strong increase of 1/T2 on

cooling below Tcharge is accompanied by a crossover of the time decay
of the spin-echo from the high-temperature Gaussian form
exp(2K(t/T2G)2) to an exponential form exp(2t/T2E)18,23. A similar
crossover occurs here, albeit in a less extreme manner because of the
absence ofmagnetic order: 1/T2 sharply increases belowTcharge and the
decay actually becomes a combination of exponential and Gaussian
decays (Fig. 3). In Supplementary Information we provide evidence
that the typical values of the 1/T2E below Tcharge imply that antiferro-
magnetic (or ‘spin-density-wave’) fluctuations are slow enough to
appear frozen on the timescale of a cyclotron orbit 1/vc< 10212 s.
In principle, such slow fluctuations could reconstruct the Fermi sur-
face, provided that spins are correlated over large enough distances25,26

(see also ref. 9). It is unclear whether this condition is fulfilled here. The
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Figure 4 | Phase diagram of underdoped YBa2Cu3Oy. The charge ordering
temperature Tcharge (defined as the onset of the Cu2F line splitting; blue open
circles) coincides with T0 (brown plus signs), the temperature at which the Hall
constant RH changes its sign. T0 is considered as the onset of the Fermi surface
reconstruction11–13. The continuous line represents the superconducting
transition temperature Tc. The dashed line indicates the speculative nature of
the extrapolation of the field-induced charge order. The magnetic transition
temperatures (Tspin) are frommuon-spin-rotation (mSR) data (green stars)27.T0
and Tspin vanish close to the same critical concentration p5 0.08. A scenario of
field-induced spin order has been predicted for p. 0.08 (ref. 8) by analogy with
La1.855Sr0.145CuO4, for which the non-magnetic ground state switches to
antiferromagnetic order in fields greater than a few teslas (ref. 7 and references
therein).Ourwork, however, shows that spin order does not occur up to,30T.
In contrast, the field-induced charge order reported here raises the question of
whether a similar field-dependent charge order actually underlies the field
dependence of the spin order in La22xSrxCuO4 and YBa2Cu3O6.45. Error bars
represent the uncertainty in defining the onset of theNMR line splitting (Fig. 1f
and Supplementary Figs 8–10).
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Figure 3 | Slow spin fluctuations instead of spin order. a, b, Temperature
dependence of the planar 63Cu spin-lattice relaxation rate 1/T1 for p5 0.108
(a) and p5 0.12 (b). The absence of any peak/enhancement on cooling rules
out the occurrence of a magnetic transition. c, d, Increase in the 63Cu spin–spin
relaxation rate 1/T2 on cooling below,Tcharge, obtained from a fit of the spin-
echo decay to a stretched form s(t) / exp(2(t/T2)

a), for p5 0.108 (c) and
p5 0.12 (d). e, f, Stretching exponent a for p5 0.108 (e) and p5 0.12 (f). The
deviation from a5 2 on cooling arises mostly from an intrinsic combination of
Gaussian and exponential decays, combined with some spatial distribution of
T2 values (Supplementary Information). The grey areas define the crossover
temperature Tslow below which slow spin fluctuations cause 1/T2 to increase
and to become field dependent; note that the change of shape of the spin-echo
decay occurs at a slightly higher (,115K) temperature than Tslow. Tslow is
slightly lower thanTcharge, which is consistentwith the slow fluctuations being a
consequence of charge-stripe order. The increase of a at the lowest
temperatures probably signifies that the condition cÆhz2æ1/2tc= 1, where tc is
the correlation time, is no longer fulfilled, so that the associated decay is no
longer a pure exponential. We note that the upturn of 1/T2 is already present at
15T, whereas no line splitting is detected at this field. The field therefore affects
the spin fluctuations quantitatively but not qualitatively. g, Plot of NMR signal
intensity (corrected for a temperature factor 1/T and for the T2 decay) against
temperature. Open circles, p5 0.108 (28.5T); filled circles, p5 0.12 (33.5T).
The absence of any intensity loss at low temperatures also rules out the presence
of magnetic order with any significant moment. Error bars represent the added
uncertainties in signal analysis, experimental conditions andT2measurements.
All measurements are with H | | c.
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evidence (explaining the rotational symmetry breaking) over a broad
temperature range in YBa2Cu3Oy (refs 14, 19–22). Therefore, instead
of being a defining property of the ordered state, the small amplitude of
the charge differentiation is more likely to be a consequence of stripe
order (the smectic phase of an electronic liquid crystal17) remaining
partly fluctuating (that is, nematic).
In stripe copper oxides, charge order at T5Tcharge is always accom-

panied by spin order at Tspin,Tcharge. Slowing down of the spin

fluctuations strongly enhances the spin–lattice (1/T1) and spin–spin
(1/T2) relaxation rates between Tcharge and Tspin for

139La nuclei. For
themore strongly hyperfine-coupled 63Cu, the relaxation rates become
so large that the Cu signal is gradually ‘wiped out’ on cooling below
Tcharge (refs 18, 23, 24). In contrast, the 63Cu(2) signal here in
YBa2Cu3Oy does not experience any intensity loss and 1/T1 does not
show any peak or enhancement as a function of temperature (Fig. 3).
Moreover, the anisotropy of the linewidth (Supplementary
Information) indicates that the spins, although staggered, align mostly
along the field (that is, c axis) direction, and the typical width of the
central lines at base temperature sets an uppermagnitude for the static
spin polarization as small as gÆSzæ# 23 1023mB for both samples in
fields of,30T. These consistent observations rule out the presence of
magnetic order, in agreement with an earlier suggestion based on the
presence of free-electron-like Zeeman splitting6.
In stripe-ordered copper oxides, the strong increase of 1/T2 on

cooling below Tcharge is accompanied by a crossover of the time decay
of the spin-echo from the high-temperature Gaussian form
exp(2K(t/T2G)2) to an exponential form exp(2t/T2E)18,23. A similar
crossover occurs here, albeit in a less extreme manner because of the
absence ofmagnetic order: 1/T2 sharply increases belowTcharge and the
decay actually becomes a combination of exponential and Gaussian
decays (Fig. 3). In Supplementary Information we provide evidence
that the typical values of the 1/T2E below Tcharge imply that antiferro-
magnetic (or ‘spin-density-wave’) fluctuations are slow enough to
appear frozen on the timescale of a cyclotron orbit 1/vc< 10212 s.
In principle, such slow fluctuations could reconstruct the Fermi sur-
face, provided that spins are correlated over large enough distances25,26

(see also ref. 9). It is unclear whether this condition is fulfilled here. The
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Figure 4 | Phase diagram of underdoped YBa2Cu3Oy. The charge ordering
temperature Tcharge (defined as the onset of the Cu2F line splitting; blue open
circles) coincides with T0 (brown plus signs), the temperature at which the Hall
constant RH changes its sign. T0 is considered as the onset of the Fermi surface
reconstruction11–13. The continuous line represents the superconducting
transition temperature Tc. The dashed line indicates the speculative nature of
the extrapolation of the field-induced charge order. The magnetic transition
temperatures (Tspin) are frommuon-spin-rotation (mSR) data (green stars)27.T0
and Tspin vanish close to the same critical concentration p5 0.08. A scenario of
field-induced spin order has been predicted for p. 0.08 (ref. 8) by analogy with
La1.855Sr0.145CuO4, for which the non-magnetic ground state switches to
antiferromagnetic order in fields greater than a few teslas (ref. 7 and references
therein).Ourwork, however, shows that spin order does not occur up to,30T.
In contrast, the field-induced charge order reported here raises the question of
whether a similar field-dependent charge order actually underlies the field
dependence of the spin order in La22xSrxCuO4 and YBa2Cu3O6.45. Error bars
represent the uncertainty in defining the onset of theNMR line splitting (Fig. 1f
and Supplementary Figs 8–10).

0 20 40 60 80 100
0

4

8

100

10–1

10–2

 

1/
T 1

 (m
s–

1 )
1/
T 2

 (�
s–

1 )

33.5 T
28.5 T

15 T
15 T

T (K)

In
te

ns
ity

 (a
rb

. u
ni

ts
)

 

15 T

 

0

0.02

0.04

0.06

15 T

 

 

 

 

0 50 100 0 50 100
1.0

1.5

2.0

33.5 T

28.5 T

T (K)

 

 

T (K)

a

c

e

b

d

f

g

�

Figure 3 | Slow spin fluctuations instead of spin order. a, b, Temperature
dependence of the planar 63Cu spin-lattice relaxation rate 1/T1 for p5 0.108
(a) and p5 0.12 (b). The absence of any peak/enhancement on cooling rules
out the occurrence of a magnetic transition. c, d, Increase in the 63Cu spin–spin
relaxation rate 1/T2 on cooling below,Tcharge, obtained from a fit of the spin-
echo decay to a stretched form s(t) / exp(2(t/T2)

a), for p5 0.108 (c) and
p5 0.12 (d). e, f, Stretching exponent a for p5 0.108 (e) and p5 0.12 (f). The
deviation from a5 2 on cooling arises mostly from an intrinsic combination of
Gaussian and exponential decays, combined with some spatial distribution of
T2 values (Supplementary Information). The grey areas define the crossover
temperature Tslow below which slow spin fluctuations cause 1/T2 to increase
and to become field dependent; note that the change of shape of the spin-echo
decay occurs at a slightly higher (,115K) temperature than Tslow. Tslow is
slightly lower thanTcharge, which is consistentwith the slow fluctuations being a
consequence of charge-stripe order. The increase of a at the lowest
temperatures probably signifies that the condition cÆhz2æ1/2tc= 1, where tc is
the correlation time, is no longer fulfilled, so that the associated decay is no
longer a pure exponential. We note that the upturn of 1/T2 is already present at
15T, whereas no line splitting is detected at this field. The field therefore affects
the spin fluctuations quantitatively but not qualitatively. g, Plot of NMR signal
intensity (corrected for a temperature factor 1/T and for the T2 decay) against
temperature. Open circles, p5 0.108 (28.5T); filled circles, p5 0.12 (33.5T).
The absence of any intensity loss at low temperatures also rules out the presence
of magnetic order with any significant moment. Error bars represent the added
uncertainties in signal analysis, experimental conditions andT2measurements.
All measurements are with H | | c.
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Write the electron operator c↵ (↵ =", # are spin indices)

as

✓
c"
c#

◆
= R

✓
 +
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◆

where R is a SU(2) matrix which determines the orienta-

tion of the local antiferromagnetic order, and  ± are spin-

less fermions which carry the global electron U(1) charge.

This parameterization is invariant under a SU(2) gauge
transformation

✓
 +
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◆
! U

✓
 +
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◆
; R ! RU†

SU(2) gauge theory for underlying quantum critical point

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Phys. Rev. B 80, 155129 (2009)
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SU(2) gauge theory for underlying quantum critical point

• The quantum critical theory is the Higgs transi-
tion where the gauge “symmetry” breaks from
SU(2) down to U(1), in the presence of a Fermi
surface of fermions carrying fundamental SU(2)
charges.

• The Higgs condensation does not give the fermions
a “mass”; instead it reconstructs the Fermi sur-
face from large to small.

• The quantum phase transition has no gauge-
invariant “order parameter”, and it does not
break any global symmetries.

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Phys. Rev. B 80, 155129 (2009)

D. Chowdhury and S. Sachdev, arXiv:1412.1086
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1. Conformal field theories in 2+1 dimensions
Superfluid-insulator transition 

        A. Boltzmann dynamics

        B. Conformal / holographic dynamics

2.  Non-Fermi liquid in 2+1 dimensions
 Strange metal in the high temperature superconductors 
        A. Lessons from holography

        B. Field theories and memory functions
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This is the metric of anti-de Sitter space AdSd+2.



Apply a chemical potential



Electric flux

Er = hQi

Er = hQi

r

Holography of a non-Fermi liquid: a charged black hole

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Physical Review B 76, 144502 (2007)

� Computation of resistivity in gravitational theory
yields zero resistance at all temperatures,
⇢(T ) = 0 !

� This can be understood by

– Conservation of total momentum, �P ,

– Non-zero value of �JP = � �P ; �J� when �Q� ≠ 0
( �J is the O(2) current).

i.e. Momentum drags current.

Holography of a non-Fermi liquid: a charged black hole
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Holography of a non-Fermi liquid

To relax momentum, add a random perturbation coupling to the

operator O:

S ! S+
Z

ddrd⌧h(r)O(r, ⌧) with h(r) = 0 and h(r)h(r0) = h2
0�

d
(r � r0)

Solution of gravitational equations for small h0 yields the resistivity

⇢(T ) ⇠ h2
0 T

2(1+��z)/z ,

where � is the dimension of O. This agrees precisely with the

memory function computation on a field theory with the operator

O, and with �JP 6= 0 !

S. A. Hartnoll, P. K. Kovtun, M. Müller, and S. Sachdev, Phys. Rev. B 76, 144502 (2007)
A.Lucas, S. Sachdev, and K. Schalm, Phys. Rev. D 89, 066018 (2014)
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Boltzmann view of electrical transport:

Higgs critical point in a strange metal

• Identify charge carriers: electrons near the Fermi surface. Com-
pute the scattering rate of these charged excitations o↵ the bosonic
� fluctuations.

• Analogous to electron-phonon scattering in metals, where we have
“Bloch’s law”: a resistivity ⇢(T ) ⇠ T 5.

• “Bloch’s law” for the SU(2) gauge theory of a metal yields
⇢(T ) ⇠ T 4/3.

• Holography teaches us that Peierls is correct for the strongly-
coupled Higgs critical point in a metal.
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Higgs critical point in a strange metal

The resistivity of this strange metal is not

determined by the scattering rate of charged

excitations near the Fermi surface, but by the

dominant rate of momentum loss by any

excitation, whether neutral or charged, or

fermionic or bosonic.

There is a dominant contribution ⇢(T ) ⇠ T by

the coupling of long-wavelength disorder to the

gauge-invariant operator O ⇠ H2
, which can be

computed by applying memory functions to the

quantum field theory

S. A. Hartnoll, R. Mahajan, M. Punk and S. Sachdev, Phys. Rev. B 89, 155130 (2014)
A. Patel and S. Sachdev, arXiv:1408.6549
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metals, who followed Bloch rather than Peierls 
over the last 2 decades 
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 Quantitative predictions for transport in 2+1 
dimensional CFTs obtained by combining the 
operator product expansion, quantum Monte Carlo, 
and the dynamics of black branes.

 Lessons from Holography: transport in non-Fermi 
liquids is dominated by momentum relaxation of low 
energy, neutral, bosonic modes, and not by charged 
fermionic excitations near the Fermi surface.

 Proposed theory of linear-T resistivity in strange 
metals involving a Higgs transition in a SU(2) gauge 
theory of Fermi surface reconstruction.
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