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1

Consider a CFT in D space-time dimensions with a scalar operator O(x) with
scaling dimension �. This is presumed to be equivalent to a dual gravity theory
on AdSD+1 with action Sbulk. The CFT and the bulk theory are related by the
GKPW ansatz

�
D� exp (�Sbulk)

⇤⇤⇤⇤
bdy

=

⌃
exp

⌅�
dDx�0(x)O(x)

⇧⌥

CFT

where the boundary condition is

lim
r!0

�(x, r) = rD���0(x).

We consider the simplest case of a single scalar field, where the bulk action is

Sbulk =
1

2

�
dD+1x

⇥
g
�
gab⇥a�⇥b�+m2�2

⇥

where gab is the AdSD+1 metric (we are working with a Euclidean signature, and
a, b extend over D + 1 dimensions) and g = det(gab). After Fourier transforming
space-time co-ordinates to momenta k, the saddle-point equation for �(k, r) is

�rD�1 d

dr

⌅
1

rD�1

d�

dr

⇧
+

⌅
k2 +

m2

r2

⇧
� = 0.
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the boundary condition �(k, r) ⇥ r� as r ⇤ 0 in solving the saddle-point equation.
The utility of this bulk-bulk Green’s function is that it now allows us to extend
our results to include interactions in Sbulk by the usual Feynman graph expansion.
We can account for the presence of the boundary source �0(k) in the CFT by
imagining there is a corresponding bulk source field J0(k, r) which is localized at
very small values of r. Then this bulk source field will generate a bulk �(k, r) via
the propagator Gbulk�bulk. We now note that

lim
r2!0

Gbulk�bulk(k, r1, r2) =
r�2

(2��D)
Gbulk�bdy(k, r1).

This is a key relation which shows us that functional derivatives of the full action
w.r.t. J0(k, r) (which yield bulk-bulk correlation functions) are the same as func-
tional derivatives w.r.t. �0(k) (which yield correlators of the CFT). This yields the
second statement of the equivalence between the bulk and boundary theories

⌅O(x1) . . . O(xn)⇧CFT = Zn lim
r!0

r��
1 . . . r��

n ⌅�(x1, r1) . . .�(xn, rn)⇧bulk

where the “wave function renormalization” factor Z = (2� � D). Note that this
relationship holds for arbitrary bulk actions, and permits full quantum fluctuations
in the bulk theory. Also, both correlators are evaluated in the absence of exter-
nal sources; for the bulk theory this means that we have the boundary condition
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with Z = D � 2. Working with only the Maxwell action these relations yield

⇥Jµ(k)J�(k)⇤CFT =
(D � 2)

g2M

�(2�D/2)

�(D/2)

�
k

2

⇥D�2 �
�µ� � kµk�

k2

⇥

This is precisely the expected form for the correlator of a conserved current in a
CFT in D space-time dimensions. For the case D = 3 it has the expected form

⇥Jµ(k)J�(k)⇤CFT = K k

�
�µ� � kµk�

k2

⇥

with

K =
1

g2M
.
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A similar analysis can be applied to operators of the CFT with non-zero Lorentz
spin. Of particular interest to are correlators of a conserved current, Jµ, associated
with a global ‘flavor’ symmetry, and the conserved stress energy tensor Tµ� .

We couple the conserved current to a source aµ and so are interested in evaluating

Z(aµ) =

⇤
exp

�⇧
dDx aµ(x)Jµ(x)

⇥⌅

CFT

.

The conservation law ⇥µJµ = 0 now implies that this partition function is invariant
under the gauge transformation aµ � aµ + ⇥µ�. So the bulk field dual to a (say)
U(1) conserved current Jµ is a U(1) gauge field, which we denote Aa(x, r). We
assume the gauge field has a Maxwell action

SM =
1

4g2M

⇧
dD+1x

⌅
gFabF

ab

plus other possible gauge couplings to the bulk fields. By an analysis very similar
to the scalar field, we can establish the following bulk-boundary correspondences

lim
r!0

⇥Aµ(x, r)⇤ = aµ(x) +
rD�2

Zg�2
M

⇥Jµ(x)⇤

lim
r!0

⇥Ar(x, r)⇤ = 0

⇥Jµ(x1) . . . J�(xn)⇤CFT = (Zg�2
M )n lim

r!0
r2�D
1 . . . r2�D

n ⇥Aµ(x1, r1) . . . A�(xn, rn)⇤bulk
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p
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hA
µ

(x, r)i = a
µ
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rD�2

Zg�2
M

hJ
µ
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lim
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hA
r

(x, r)i = 0

hJ
µ
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with Z = D � 2. Working with only the Maxwell action these relations yield

hJ
µ

(k)J
⌫

(k)iCFT =
(D � 2)

g2
M

�(2�D/2)

�(D/2)

✓
k

2
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�
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with Z = D. Applying this prescription to the Einstein action, we obtain in D = 3

hT
µ⌫

(k)T
⇢�

(�k)iCFT = C
T

|k|3
✓
�
µ⇢

�
⌫�

+ �
⌫⇢

�
µ�

� �
µ⌫

�
⇢�

+ �
µ⌫

k
⇢

k
�

k2
+ �

⇢�

k
µ

k
⌫

k2

��
µ⇢

k
⌫

k
�

k2
� �

⌫⇢

k
µ

k
�

k2
� �

µ�

k
⌫

k
⇢

k2
� �

⌫�

k
µ

k
⇢

k2
+

k
µ

k
⌫

k
⇢

k
�

k4

◆

This is the most-general form expected for any CFT, and the “central charge” is
related to a dimensionless combination of the gravitational constant and the AdS
radius
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Figure 1. Illustration of the AdS-CFT correspondence in the context of quantum critical transport
at finite temperatures. The present paper is concerned with the upper blue arrow: we fix couplings by
matching correlators of the CFT to those of the gravity theory. The bottom blue arrow is addressed
in Refs. [4] and [7], which computed the relevant conductivities and quasi-normal modes of the gravity
dual for general values of the couplings in Eq. (1.7).

paper, we will pin down the values of the coupling constants in this holographic theory by a

matching procedure based upon the computation of 3-point correlators of the stress-energy

tensor and the conserved currents at zero temperature (T ) [6]. This allows us to relate CFTs

of interest in condensed matter to a specific holographic action. And it paves the way for

predictions on the non-zero T and non-equilibrium dynamics for condensed matter systems

from holographic methods as illustrated in Fig. 1.

We have written this paper for readers with a background in condensed matter theory, and

a knowledge of general relativity. Readers with no prior knowledge of gauge-gravity duality

are referred to a recent review article [8] for an overall perspective, and to Appendix B for a

description of the correspondence between correlators of the CFT and the theory on AdS
4
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Figure 2. Correlators (with helicity projections) that fix the numerical values of the couplings in the
holographic action specified by Eqs. (1.7) and (B.22). These correlators are evaluated in the present
paper in the boundary conformal field theory.

Our results for the values of � for the currents in (1.2), (1.3), and (1.4) are

�f =
1

12
+O(1/NF ),

�s = � 1

12
+O(1/NF ),

�t =
Ns � Nf

12(Ns + Nf )
+O(1/NF ). (1.8)

It is interesting that the free CFT results (�f and �s at NF = 1) saturate the bound on �

in the large NF limit. We recall that a similar feature was observed in earlier computations

of three-point correlators of the stress energy tensor, where the free field results also saturate

the bounds obtained from the holographic higher derivative theory [14, 15].

For Nf = 0 we have �s = ��t. This change in sign of � is consistent with the expectations

[4] of its transformation under particle-vortex duality, and the interpretation of Jti as the

matter current in the dual theory. Further discussion on the physical consequences of these

values of � appear in Section 7.

We note that 3-point correlators of CFTs have also played an important role in recent

investigations of theories with higher-spin conserved currents [16]. Our 3-point correlator is

similar, but our holographic considerations follow a di↵erent route.

The outline of the rest of the paper is as follows. In Section 2 we describe the setting,

in which we will perform our correlation function calculations. Section 3 will present the

computation of the 3-point correlator in the large NF limit of the CFT. In Section 4 we will

present the holographic computation of the 3-point correlator implied by the AdS
4

action of

Myers et al. at tree level. The two sets of results will be matched in Section 5. Section 6 will

present another derivation of our values of � for the free field theories, using the methods of

Ref. [6]. In Section 7, we explore some of the consequences of these results.

– 5 –
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To fix this additional constant by the bulk theory, we have to go beyond the
Einstein-Maxwell action. This action is the simplest action with up to 2 derivatives
of the bulk fields. So, in the spirit of e↵ectively field theory, let us now include all
terms up to 4 derivatives. We want to work in linear response for the conserved
current, and so we exclude terms which have more than 2 powers of F

ab

. Then, up
to some field redefinitions, there turns out to be a unique 4 derivative term, and
the extend action of the bulk theory now becomes
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1
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M

Z
d4x

p
g
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abcd

is the Weyl tensor. Now we have a new dimensionless parameter, �;
stability constraints on this action restrict |�| < 1/12. The Weyl tensor vanishes on
the AdS metric, and consequently � does not modify the previous results on the 2-
point correlators of J

µ

and T
µ⌫

. However, � does change the structure of the 3-point
correlator. We computed � in a large-flavor-number expansion for a class of CFT3s
(D. Chowdhury, S. Raju, S. Sachdev, A Singh, and P. Strack, arXiv:1210.5247),
and found � = 1/12 for free fermions, � = �1/12 for free scalars, and � = 1/12 for
the topological current of the U(1) gauge field in the Abelian Higgs model.
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always take the large Nf limit with Ns/Nf fixed, and use the symbol NF to refer generically

to either Ns or Nf . These matter fields are coupled to each other and a U(1) gauge field ai

by a Lagrangian of the form

L =

N
f

X

↵=1

i ↵�
iDi ↵ +

N
s

X

a=1

✓

|Diza|2 + s|za|2 + u

2

�|za|2
�

2

◆

+ . . . , (1.1)

where Di = @i� iai is the gauge covariant derivative, the Dirac matrices obey Tr(�i�j) = 2⌘ij

where ⌘ij is the Minkowski metric, and the ellipses represent additional possible contact-

couplings between the fermions and bosons. The scalar “mass” term, s, has to be tuned to

reach the quantum critical point, which is described by a CFT at the renormalization group

(RG) fixed point; fermion mass terms can be removed by imposing discrete symmetries. So

the scalar mass is the only relevant perturbation at the CFT fixed point and only a single

parameter has to be tuned to access the fixed point. All other couplings, such as u and the

Yukawa coupling, reach values associated with the RG fixed point, and so their values are

immaterial for the universal properties of interest in the present paper.

This CFT has three globally conserved currents. There is the SU(Ns) scalar flavor current

J `
s,i = �iz⇤a T `

ab (Dizb) + i (Diza)
⇤ T `

ab zb, (1.2)

where T ` are the generators of SU(Ns) normalized by Tr(T `Tm) = �`m. Similarly there is

the fermion SU(Nf ) flavor current

J `
f,i =  ↵ T `

↵��i  � . (1.3)

Finally, there is the topological U(1) current

Jt,i =
1

2⇡
✏ijk@

jak. (1.4)

We will use the symbol Ji to generically refer to any one of these three currents. A basic

property of the CFT [12] is that the two-point correlator of a conserved current obeys

hJi(k)Jj(�k)i = �CJ |k|
✓

⌘ij � kikj
|k|2

◆

, (1.5)

where k is a spacetime momentum, ⌘ij = diag(�1, 1, 1) is the Minkowski metric, and CJ is

a dimensionless universal constant associated with the CFT and the current. Similarly, the

– 3 –
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3 CFT computation of 3-point correlators

In this section, we compute the three-point correlators of each of the conserved currents (1.2),

(1.3), and (1.4) for the CFT Lagrangian (1.1) with its stress-energy tensor:

Tij = Ts,ij + Tf,ij , (3.1)

which consists of a scalar, bosonic contribution

Ts,ij =
N

s

X

a=1

✓

(Diza)
⇤ (Djza) + (Djza)

⇤ (Diza)� 1

4

�

@i@j + ⌘ij@
2

� |za|2
◆

, (3.2)

and the fermionic contribution

Tf,ij =
i

4

N
f

X

↵=1

✓

 ↵�i (Dj ↵) +  ↵�j (Di ↵)�
�

D⇤
i  ↵

�

�j ↵ � �

D⇤
j ↵

�

�i ↵

◆

. (3.3)

We evaluate the correlators by summing over all possible Wick contractions of the constituent

operators of hTJJi defined in (2.1) in the limit of large flavor number NF . As expected, we

will see that the leading contractions with the flavor currents are those of the free CFT. For

the topological currents the first non-vanishing contractions appear at O(1/NF ). All con-

tractions involve tensor-valued one-loop integrations in momentum space which we evaluate

using Davydychev recursion relations [19]. Finally, the full tensor-valued expressions are con-

tracted with the polarization or helicity operators defined in Sec. 2 to bring them to a form

that facilitates comparison with the corresponding helicity projections from the holographic

calculation (performed in Sec. 4).

We refer the readers to Appendix A for a review of the computations of the two-point

functions, hJJi and hTT i, leading to (1.5, 1.6) and the final results after contracting with

the corresponding polarization tensors.

3.1 hTJJi for SU(Ns) scalar flavor current

Evaluating Wick’s theorem for the scalar correlator yields two non-vanishing contractions

depicted diagrammatically in Fig. 3. The full expression for the two diagrams is:

Ki1j1i2i3
s (k1,k2,k3) =

Z

d3P

8⇡3
4

P 2(P + k1)2(P � k2)2
(2P � k2)

i2(2P + k1)
i3

⇥


1

2
(P � k2)

i1(P + k1)
j1 +

1

2
(P � k2)

j1(P + k1)
i1

+
1

8
(|k3|2⌘i1j1 + (k1 + k2)

i1(k1 + k2)
j1)

�

,

(3.4)
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which consists of a scalar, bosonic contribution

Ts,ij =
N

s

X

a=1

✓

(Diza)
⇤ (Djza) + (Djza)

⇤ (Diza)� 1

4

�

@i@j + ⌘ij@
2

� |za|2
◆

, (3.2)

and the fermionic contribution

Tf,ij =
i

4

N
f

X

↵=1

✓

 ↵�i (Dj ↵) +  ↵�j (Di ↵)�
�

D⇤
i  ↵

�

�j ↵ � �

D⇤
j ↵

�

�i ↵

◆

. (3.3)

We evaluate the correlators by summing over all possible Wick contractions of the constituent

operators of hTJJi defined in (2.1) in the limit of large flavor number NF . As expected, we

will see that the leading contractions with the flavor currents are those of the free CFT. For

the topological currents the first non-vanishing contractions appear at O(1/NF ). All con-

tractions involve tensor-valued one-loop integrations in momentum space which we evaluate

using Davydychev recursion relations [19]. Finally, the full tensor-valued expressions are con-

tracted with the polarization or helicity operators defined in Sec. 2 to bring them to a form

that facilitates comparison with the corresponding helicity projections from the holographic

calculation (performed in Sec. 4).

We refer the readers to Appendix A for a review of the computations of the two-point

functions, hJJi and hTT i, leading to (1.5, 1.6) and the final results after contracting with

the corresponding polarization tensors.

3.1 hTJJi for SU(Ns) scalar flavor current

Evaluating Wick’s theorem for the scalar correlator yields two non-vanishing contractions

depicted diagrammatically in Fig. 3. The full expression for the two diagrams is:

Ki1j1i2i3
s (k1,k2,k3) =

Z

d3P

8⇡3
4

P 2(P + k1)2(P � k2)2
(2P � k2)

i2(2P + k1)
i3

⇥


1

2
(P � k2)

i1(P + k1)
j1 +

1

2
(P � k2)

j1(P + k1)
i1

+
1

8
(|k3|2⌘i1j1 + (k1 + k2)

i1(k1 + k2)
j1)

�

,

(3.4)
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Figure 1. Illustration of the AdS-CFT correspondence in the context of quantum critical transport
at finite temperatures. The present paper is concerned with the upper blue arrow: we fix couplings by
matching correlators of the CFT to those of the gravity theory. The bottom blue arrow is addressed
in Refs. [4] and [7], which computed the relevant conductivities and quasi-normal modes of the gravity
dual for general values of the couplings in Eq. (1.7).

paper, we will pin down the values of the coupling constants in this holographic theory by a

matching procedure based upon the computation of 3-point correlators of the stress-energy

tensor and the conserved currents at zero temperature (T ) [6]. This allows us to relate CFTs

of interest in condensed matter to a specific holographic action. And it paves the way for

predictions on the non-zero T and non-equilibrium dynamics for condensed matter systems

from holographic methods as illustrated in Fig. 1.

We have written this paper for readers with a background in condensed matter theory, and

a knowledge of general relativity. Readers with no prior knowledge of gauge-gravity duality

are referred to a recent review article [8] for an overall perspective, and to Appendix B for a

description of the correspondence between correlators of the CFT and the theory on AdS
4

.

While our results are quite general, it is useful to express them in the context of a

particular CFT which has numerous condensed matter applications [9, 10, 11]. The matter

sector has Dirac fermions  ↵, ↵ = 1 . . . Nf , and complex scalars, za, a = 1 . . . Ns. We will

– 2 –

Figure1.IllustrationoftheAdS-CFTcorrespondenceinthecontextofquantumcriticaltransport
atfinitetemperatures.Thepresentpaperisconcernedwiththeupperbluearrow:wefixcouplingsby
matchingcorrelatorsoftheCFTtothoseofthegravitytheory.Thebottombluearrowisaddressed
inRefs.[4]and[7],whichcomputedtherelevantconductivitiesandquasi-normalmodesofthegravity
dualforgeneralvaluesofthecouplingsinEq.(1.7).

paper,wewillpindownthevaluesofthecouplingconstantsinthisholographictheorybya

matchingprocedurebaseduponthecomputationof3-pointcorrelatorsofthestress-energy

tensorandtheconservedcurrentsatzerotemperature(T)[6].ThisallowsustorelateCFTs

ofinterestincondensedmattertoaspecificholographicaction.Anditpavesthewayfor

predictionsonthenon-zeroTandnon-equilibriumdynamicsforcondensedmattersystems

fromholographicmethodsasillustratedinFig.1.

Wehavewrittenthispaperforreaderswithabackgroundincondensedmattertheory,and

aknowledgeofgeneralrelativity.Readerswithnopriorknowledgeofgauge-gravityduality

arereferredtoarecentreviewarticle[8]foranoverallperspective,andtoAppendixBfora

descriptionofthecorrespondencebetweencorrelatorsoftheCFTandthetheoryonAdS4.

Whileourresultsarequitegeneral,itisusefultoexpresstheminthecontextofa

particularCFTwhichhasnumerouscondensedmatterapplications[9,10,11].Thematter

sectorhasDiracfermions ↵,↵=1...Nf,andcomplexscalars,za,a=1...Ns.Wewill

–2–

Figure1.IllustrationoftheAdS-CFTcorrespondenceinthecontextofquantumcriticaltransport
atfinitetemperatures.Thepresentpaperisconcernedwiththeupperbluearrow:wefixcouplingsby
matchingcorrelatorsoftheCFTtothoseofthegravitytheory.Thebottombluearrowisaddressed
inRefs.[4]and[7],whichcomputedtherelevantconductivitiesandquasi-normalmodesofthegravity
dualforgeneralvaluesofthecouplingsinEq.(1.7).

paper,wewillpindownthevaluesofthecouplingconstantsinthisholographictheorybya

matchingprocedurebaseduponthecomputationof3-pointcorrelatorsofthestress-energy

tensorandtheconservedcurrentsatzerotemperature(T)[6].ThisallowsustorelateCFTs

ofinterestincondensedmattertoaspecificholographicaction.Anditpavesthewayfor

predictionsonthenon-zeroTandnon-equilibriumdynamicsforcondensedmattersystems

fromholographicmethodsasillustratedinFig.1.

Wehavewrittenthispaperforreaderswithabackgroundincondensedmattertheory,and

aknowledgeofgeneralrelativity.Readerswithnopriorknowledgeofgauge-gravityduality

arereferredtoarecentreviewarticle[8]foranoverallperspective,andtoAppendixBfora

descriptionofthecorrespondencebetweencorrelatorsoftheCFTandthetheoryonAdS
4

.

Whileourresultsarequitegeneral,itisusefultoexpresstheminthecontextofa

particularCFTwhichhasnumerouscondensedmatterapplications[9,10,11].Thematter

sectorhasDiracfermions ↵,↵=1...Nf,andcomplexscalars,za,a=1...Ns.Wewill

–2–

Tij(k1)

Ji2(k2)
Ji3(k3)

Tij(k1)

Ji3(k3)

Ji2(k2)

Figure 3. One-loop triangle diagrams for the scalar contribution to hTJJi. The top corner of the
respective triangles are (momentum-dependent) stress-tensor vertices while the bottom two corners
represent current vertices.

P P + k1

Tij(k)
2PiPj

Ji(k)

P P + k1

Pi

Figure 4. Momentum structure of the stress tensor (top) and current vertex (bottom) after contract-
ing with transverse and traceless polarization tensors.

with k1 + k2 + k3 = 0. The momentum dependence in the numerator of (3.4) comes from

derivative operators of the fields at each vertex. We are only interested in certain polarization

projections of this expression and we now explain how this simplifies the momentum structure

considerably.

Quite generally, a current insertion with momentum k at a vertex where one line brings

in P (Fig. 4) and the other line carries away P + k leads to an e↵ective vertex: (2Pi + ki).

However, since this correlator will finally be dotted with a transverse polarization vector,

one can drop the ki term on the right hand side in the computations below. Also, here and

below we have dropped the SU(Ns) generator T ` because it only yields factors of unity after

tracing over SU(Ns) indices. Similarly, a stress-tensor insertion carrying momentum k at a

vertex where one line brings in the loop-momentum P (Fig. 4) and the other line carries

away P +k results in a vertex that we are finally going to contract with a polarization tensor

that is transverse and traceless. Since this tensor will satisfy eij⌘ij = 0 = eijki, we can drop
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So, to recapitulate, we have equated the correlators of the CFT3 to a bulk theory
on AdS4 with the Einstein-Hilbert action

S =
1

4g2M

⇧
d4x

⇧
gFabF

ab +

⇧
d4x

⇧
g

⇤
� 1

2�2

�
R+

6

L2

⇥⌅
.

This action is characterized by two dimensionless parameters: gM and L2/�2. These
parameters determine, respectively, the two-point correlators of a conserved U(1)
current Jµ and the stress-energy tensor Tµ� .

However, this action is non-linear, and it also implies non-zero multipoint cor-
relators of these operators, even at tree-level in the bulk theory. For the simplest
3-point correlator, a lengthy computation from the bulk theory yields

⇤Jµ(k1)J�(k2)T⇥⇤(�k1 � k2)⌅ ⇥
k1k2

(k1 + k2)5
k1µk1�k1⇥k1⇤ + 175 terms

with co-e�cients determined by gM and L2/�2.
We can now compare this 3-point correlator with that obtained by direct compu-

tation on a CFT3. A general analysis of the constraints from conformal invariance
(Osborn and Petkou, 1993) shows that this 3-point correlator is fully determined by
the values K, CT , and one additional dimensionless constant which is characteristic
of the CFT3.

AdS/CFT correspondence at zero temperature Suvrat Raju

Wednesday, October 31, 12

+ 185 terms 

where the terms proportional to Ks and Kf , respectively, originate from the top diagram

in Fig. 5. The other terms proportional to products of the metric originate from the loops

involving only two internal propagators; these terms are analytic in two of the momenta and

give rise to contact terms when Fourier transformed back to position space. A discussion of

the nature of these terms appears in Section 5. These contact terms drop out of the final

polarization contractions that are compared to the results from holography.

4 Holographic computation of 3-point correlators

In this section we will compute the three-point correlators discussed above, from the bulk

theory, using AdS/CFT.

We will work with the Poincare patch of AdS:

ds2 =
dz2 + ⌘ijdxidxj

z2
, (4.1)

where i, j run over the three boundary directions and we have set the AdS radius to 1. So,

all dimensionful quantities that follow are measured in these units.

The computation of the correlator requires us to evaluate the bulk action to non-linear

order, in the presence of certain solutions to the linearized equations of motion. This cor-

responds to evaluating the “Witten diagram” in Fig. 6 which requires a three-point bulk

interaction between the gauge fields and the fluctuations of the metric.

Figure 6. Witten diagram illustrating the holographic computation. The disk represent AdS4, and
the CFT is on its boundary. The holographic co-ordinate, z, is the radial direction. The wavy line is
a bulk graviton hµ⌫ , and the dashed line is the gauge field Aµ.
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▪  Expand metric:  
▪  Derive non-linear graviton-gauge field vertex 
▪  Evaluate tree-level Witten diagram 
▪  Helicity contractions 

4.1 Evaluation of the Bulk Action

The first step in our computation is to write down the non-linear three-point interaction

terms in the action. We can simplify our calculation by realizing that we are only interested

in evaluating this action “on-shell,” (when the gauge field and metric perturbation satisfy

linearized equations of motion) and so there are various terms that we can drop, as we will

do below.

The relevant part of the action is:

S =
1

g2
4

Z

d4x
p�g



�1

4
Fµ⌫F⇢�gµ⇢g⌫� + �Cµ⌫⇢�F↵�F��g

µ↵g⌫�g⇢�g��
�

. (4.2)

First, we need to expand the Weyl tensor term in terms of the metric perturbation. We

will use the conformal transformation properties of the Weyl tensor to write:

C↵���

⇣⌘µ⌫
z2

+ hµ⌫

⌘

=
1

z2
C↵���

�

⌘µ⌫ + z2hµ⌫

�

. (4.3)

For convenience, we define
ehµ⌫ = z2hµ⌫ . (4.4)

In what follows below, we will use the notation that:

C↵��� ⌘ C↵���

⇣⌘µ⌫
z2

+ hµ⌫

⌘

,

eC↵��� ⌘ C↵���

⇣

⌘µ⌫ + ehµ⌫

⌘

,
(4.5)

with similar conventions for other quantities like the Riemann and Ricci tensors. (A tilde

comes on top of quantities evaluated in the flat space background metric, with the perturba-

tion eh.)

We can choose a gauge — both in flat space, and in AdS — where the metric fluctuation

obeys:
ehzµ = 0. (4.6)

It is easy to check that solutions to the equations of motion must be transverse and traceless:

ehµ⌫⌘
µ⌫ = 0 = @⇢hµ⌫⌘

µ⇢. (4.7)

If we know that we will only have to evaluate the interaction vertex on wave-functions

that obey (4.6) and (4.7), we can simplify the expressions for the Riemann tensor, the Ricci
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▪  1 Stress-tensor vertex, 2 current vertices 
▪  Tensor-valued momentum integrals 

▪  Helicity contractions 

▪  Fermions: ▪  Scalars: 

Figure 2. Correlators (with helicity projections) that fix the numerical values of the couplings in the
holographic action specified by Eqs. (1.7) and (B.22). These correlators are evaluated in the present
paper in the boundary conformal field theory.

Our results for the values of � for the currents in (1.2), (1.3), and (1.4) are

�f =
1

12
+O(1/NF ),

�s = � 1

12
+O(1/NF ),

�t =
Ns � Nf

12(Ns + Nf )
+O(1/NF ). (1.8)

It is interesting that the free CFT results (�f and �s at NF = 1) saturate the bound on �

in the large NF limit. We recall that a similar feature was observed in earlier computations

of three-point correlators of the stress energy tensor, where the free field results also saturate

the bounds obtained from the holographic higher derivative theory [14, 15].

For Nf = 0 we have �s = ��t. This change in sign of � is consistent with the expectations

[4] of its transformation under particle-vortex duality, and the interpretation of Jti as the

matter current in the dual theory. Further discussion on the physical consequences of these

values of � appear in Section 7.

We note that 3-point correlators of CFTs have also played an important role in recent

investigations of theories with higher-spin conserved currents [16]. Our 3-point correlator is

similar, but our holographic considerations follow a di↵erent route.

The outline of the rest of the paper is as follows. In Section 2 we describe the setting,

in which we will perform our correlation function calculations. Section 3 will present the

computation of the 3-point correlator in the large NF limit of the CFT. In Section 4 we will

present the holographic computation of the 3-point correlator implied by the AdS
4

action of

Myers et al. at tree level. The two sets of results will be matched in Section 5. Section 6 will

present another derivation of our values of � for the free field theories, using the methods of

Ref. [6]. In Section 7, we explore some of the consequences of these results.
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Consequence of self-duality of Maxwell theory in 3+1 dimensions
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Traditional CMT Planckian dissipation and gravity
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