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Graphene

Low energy theory has 4 two-component Dirac fermions, v,
o =1...4, interacting with a 1/r Coulomb interaction
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Dimensionless “fine-structure” constant o = e/(hvp).

RG flow of a:
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Behavior is similar to a conformal field theory (CFT)
in 2+1 dimensions with a ~ 1/In(scale)




Conductivity is finite
without impurities and
with particle-hole symmetry
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Density correlations in CFTs at T >0

Two-point density correlator, y(k,w)
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Kubo formula for conductivity o(w) = llirr(l) 7 x(k,w)
For all CFT3s, at hw > kT
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where K is a universal number characterizing the CFT3, and v is
the velocity of “light”.




Density correlations in CFTs at T >0

Two-point density correlator, y(k,w)

Kubo formula for conductivity o(w) = lim ik

A0 gz X(o)

However, for all CFT3s, at hw < kg1, we have “phase” random-
izing collisions and relaxation to local thermodynamic equilibrium.
This leads to the hydrodynamic behavior
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x(k,w) = 462Xc 0(w>:462DXc

where x. is the compressibility and D is the diffusion constant.

K. Damle and S. Sachdev, Phys. Rev. B 56, 8714 (1997).




Collisionless-hydrodynamic crossover in graphene
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|. Herbut, V. Juricic, and O. Vafek, Phys. Rev. Lett. 100, 046403 (2008).
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where «(T') is the T-dependent fine structure constant
which obeys

a(T) =

(8% T—0 4
1+ (a/4)In(A/T) — In(A/T)
L. Fritz, M. Mueller, J. Schmalian and S. Sachdev, arXiv:0802.4289
See also A. Kashuba, arXiv:0802.2216




Generalization

In the hydrodynamic regime, we include
* A bias voltage, leading to particle-hole
asymmetry

* Dilute concentration of impurities

* A weak magnetic field

Transport properties can be computed from
the equations of a relativistic fluid in an
electromagnetic field




The variables entering the hydrodynamic theory are

e the external magnetic field F'*Y,

0O 0 O
F* =10 0 B |,
0 —B 0
e T the stress energy tensor, e J¥ the current,
® P, the difference in denSity ®c, the local energy
from undoped graphene.
e P, the local pressure, e ut, the local velocity, and

e 0(, a universal conductivity, which is the single transport
co-efficient.

The dependence of €, P, g on T and v follows from simple scaling
arguments




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

OpJ" = 0 “« Conservation laws/equations of motion
8,uTw/ — F“VJV

S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

o, Jt = 0
0,T"" = FHI],
™ = (e + P)utu” + Pg"”

JE =yt \

Constitutive relations which follow from Lorentz
transformation to moving frame

S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

o, Jt = 0
0,T"" = FHI],
™ = (e + P)utu” + Pg"”

0T
put + og(g"” + utu") [(—&/u + Fau?) + pt—

] T
Single dissipative' term allowed by requirement of

positive entropy production. There is only one
Independent transport co-efficient
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S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

Momentum relaxation from impurities
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S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Lorentz invariance and positivity of entropy production lead to the
hydrodynamic equations of motion and constitutive relations:

o, J = 0
0,T"" = FMJ,+ . (08 + uHuy) T u~
imp
T = (e+ P)u'u’ + Pg"
p p BV | g V OuT
JE = put +og(g" +utu”) | (—0,p + Foau? )—I—MT

Solve initial value problem and relate
results to response functions (Kadanoff+Martin)

S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:
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S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




From these relations, we obtained results for the transport co-efficients,
expressed in terms of a “cyclotron” frequency and damping:
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S.A. Hartnoll, P.K. Kovtun, M. Miller, and S. Sachdev, Phys. Rev. B 76 144502 (2007)




Cyclotron resonance In graphene

Markus Mueller and S. Sachdev, arXiv:0801.2970.
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Cyclotron resonance In graphene

Markus Mueller and S. Sachdev, arXiv:0801.2970.

w==*x0"" iy -if

v=1.1x40%m/s
~c /300

Conditions to observe resonance

i o 2eB .
Negligible Landau quantization E, =hv |— <<k,T
hc

Hydrodynamic, I'=300k
collison-dominated regime o' <<k, T B=0.1T
11 -2
Negligible broadening -1 rel p=10"cm
Y,t <@ 13 -1
‘ - w, =10"s
Relativistic, quantum critical regime o= (kBT )2




Conclusions

e Universal quantum critical conductivity of pure graphene
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* Hydrodynamic theory for thermo-magneto-electric response

functions

e Room temperature hydrodynamic cyclotron resonance.




