Quantum phase transitions of insulators, superconductors and metals in two dimensions

Talk online: sachdev.physics.harvard.edu

1. Phenomenology of the cuprate superconductors (and other compounds)

- 2. QPT of antiferromagnetic insulators (and bosons at rational filling)
- QPT of d-wave superconductors:
 Fermi points of massless Dirac fermions
- QPT of Fermi surfaces:
 A. Finite wavevector ordering (SDW/CDW):
 - "Hot spots" on Fermi surfaces
 - B. Zero wavevector ordering (Nematic): "Hot Fermi surfaces"

1. Phenomenology of the cuprate superconductors (and other compounds)

- 2. QPT of antiferromagnetic insulators (and bosons at rational filling)
- QPT of d-wave superconductors:
 Fermi points of massless Dirac fermions
- QPT of Fermi surfaces:
 A. Finite wavevector ordering (SDW/CDW): "Hot spots" on Fermi surfaces
 B. Zero wavevector ordering (Nematic): "Hot Fermi surfaces"

Max Metlitski

Write down local field theory for order parameter and fermions

2. Apply renormalization groupto field theory

Write down local field theory for order parameter and fermions

Apply renormalization group
 to field theory

Order parameter at a nonzero wavevector: "Hot spots" on the Fermi surface.

Theory of SDW quantum phase transition in metal

Theory of SDW quantum phase transition in metal

Hole-doped cuprates

Large Fermi surface breaks up into electron and hole pockets

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Friday, April 13, 2012

Hole-doped cuprates

$\vec{\varphi}$ fluctuations act on the large Fermi surface

S. Sachdev, A.V. Chubukov, and A. Sokol, *Phys. Rev. B* **51**, 14874 (1995). A.V. Chubukov and D. K. Morr, *Physics Reports* **288**, 355 (1997).

Friday, April 13, 2012

Start from the "spin-fermion" model

$$\begin{split} \mathcal{Z} &= \int \mathcal{D}c_{\alpha}\mathcal{D}\vec{\varphi}\exp\left(-\mathcal{S}\right) \\ \mathcal{S} &= \int d\tau \sum_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} \left(\frac{\partial}{\partial\tau} - \varepsilon_{\mathbf{k}}\right) c_{\mathbf{k}\alpha} \\ &- \lambda \int d\tau \sum_{i} c_{i\alpha}^{\dagger}\vec{\varphi}_{i} \cdot \vec{\sigma}_{\alpha\beta} c_{i\beta} e^{i\mathbf{K}\cdot\mathbf{r}_{i}} \\ &+ \int d\tau d^{2}r \left[\frac{1}{2} \left(\mathbf{\nabla}_{r}\vec{\varphi}\right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau}\vec{\varphi}\right)^{2} + \frac{s}{2}\vec{\varphi}^{2} + \frac{u}{4}\vec{\varphi}^{4}\right] \end{split}$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$
$$\mathbf{v}_{1}^{\ell=1} = (v_{x}, v_{y}), \ \mathbf{v}_{2}^{\ell=1} = (-v_{x}, v_{y})$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\nabla_r \vec{\varphi} \right)^2 + \frac{\zeta}{2} \left(\partial_\tau \vec{\varphi} \right)^2 + \frac{s}{2} \vec{\varphi}^2 + \frac{u}{4} \vec{\varphi}^4$$

 \sim

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_c = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\zeta}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_c = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$

Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain non-local corrections to \mathcal{L}_{φ}

$$\mathcal{L}_{\varphi} = \frac{1}{2}\vec{\varphi}^2 \left[\mathbf{q}^2 + \gamma|\omega|\right]/2 \qquad ; \qquad \gamma = \frac{2}{\pi v_x v_y}$$

Exponent z = 2 and mean-field criticality (upto logarithms)

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\zeta}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_c = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$

Hertz-Moriya-Millis (HMM) theory Integrate out fermions and obtain non-local corrections to \mathcal{L}_{φ}

$$\mathcal{L}_{\varphi} = \frac{1}{2} \vec{\varphi}^2 \left[\mathbf{q}^2 + \gamma |\omega| \right] / 2 \qquad ; \qquad \gamma = \frac{2}{\pi v_x v_y}$$

Exponent z = 2 and mean-field criticality (upto logarithms)

But, higher order terms contain an infinite number of marginal couplings

Ar. Abanov and A.V. Chubukov, Phys. Rev. Lett. 93, 255702 (2004).

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_r \vec{\varphi} \right)^2 + \frac{\zeta}{2} \left(\partial_\tau \vec{\varphi} \right)^2 + \frac{s}{2} \vec{\varphi}^2 + \frac{u}{4} \vec{\varphi}^4$$

"Yukawa" coupling: $\mathcal{L}_c = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$

Perform RG on both fermions and $\vec{\varphi}$, using a *local* field theory. Order parameter at zero wavevector: "Hot Fermi surface".

Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor

R. Daou, J. Chang, David LeBoeuf, Olivier Cyr-Choiniere, Francis Laliberte, Nicolas Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and Louis Taillefer arXiv: 0909.4430, Nature, in press

Friday, April 13, 2012

Fermi surface with full square lattice symmetry

Spontaneous elongation along x direction: Ising order parameter $\phi > 0$.

Spontaneous elongation along y direction: Ising order parameter $\phi < 0$.

Pomeranchuk instability as a function of coupling λ

Phase diagram as a function of T and λ

Phase diagram as a function of T and λ

Phase diagram as a function of T and λ

Effective action for Ising order parameter

$$\mathcal{S}_{\phi} = \int d^2 r d\tau \left[(\partial_{\tau} \phi)^2 + c^2 (\nabla \phi)^2 + (\lambda - \lambda_c) \phi^2 + u \phi^4 \right]$$

Effective action for Ising order parameter

$$\mathcal{S}_{\phi} = \int d^2 r d\tau \left[(\partial_{\tau} \phi)^2 + c^2 (\nabla \phi)^2 + (\lambda - \lambda_c) \phi^2 + u \phi^4 \right]$$

Effective action for electrons:

$$S_{c} = \int d\tau \sum_{\alpha=1}^{N_{f}} \left[\sum_{i} c_{i\alpha}^{\dagger} \partial_{\tau} c_{i\alpha} - \sum_{i < j} t_{ij} c_{i\alpha}^{\dagger} c_{i\alpha} \right]$$
$$\equiv \sum_{\alpha=1}^{N_{f}} \sum_{\mathbf{k}} \int d\tau c_{\mathbf{k}\alpha}^{\dagger} \left(\partial_{\tau} + \varepsilon_{\mathbf{k}} \right) c_{\mathbf{k}\alpha}$$

Coupling between Ising order and electrons

$$S_{\phi c} = -\gamma \int d\tau \,\phi \, \sum_{\alpha=1}^{N_f} \sum_{\mathbf{k}} (\cos k_x - \cos k_y) c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha}$$

for spatially independent ϕ

Coupling between Ising order and electrons

$$\mathcal{S}_{\phi c} = -\gamma \int d\tau \, \sum_{\alpha=1}^{N_f} \sum_{\mathbf{k}, \mathbf{q}} \phi_{\mathbf{q}} \, (\cos k_x - \cos k_y) c_{\mathbf{k}+\mathbf{q}/2, \alpha}^{\dagger} c_{\mathbf{k}-\mathbf{q}/2, \alpha}$$

for spatially dependent ϕ

$$\mathcal{S}_{\phi} = \int d^2 r d\tau \left[(\partial_{\tau} \phi)^2 + c^2 (\nabla \phi)^2 + (\lambda - \lambda_c) \phi^2 + u \phi^4 \right]$$

$$\begin{split} \mathcal{S}_{c} &= \sum_{\alpha=1}^{N_{f}} \sum_{\mathbf{k}} \int d\tau c_{\mathbf{k}\alpha}^{\dagger} \left(\partial_{\tau} + \varepsilon_{\mathbf{k}}\right) c_{\mathbf{k}\alpha} \\ \mathcal{S}_{\phi c} &= -\gamma \int d\tau \sum_{\alpha=1}^{N_{f}} \sum_{\mathbf{k},\mathbf{q}} \phi_{\mathbf{q}} \left(\cos k_{x} - \cos k_{y}\right) c_{\mathbf{k}+\mathbf{q}/2,\alpha}^{\dagger} c_{\mathbf{k}-\mathbf{q}/2,\alpha} \end{split}$$

A ϕ fluctuation at wavevector \vec{q} couples most efficiently to fermions near $\pm \vec{k}_0$.

Expand fermion kinetic energy at wavevectors about \vec{k}_0

$$\mathcal{L} = \psi_{+}^{\dagger} \left(\zeta \partial_{\tau} - i \partial_{x} - \partial_{y}^{2} \right) \psi_{+} + \psi_{-}^{\dagger} \left(\zeta \partial_{\tau} + i \partial_{x} - \partial_{y}^{2} \right) \psi_{-}$$
$$- \lambda \phi \left(\psi_{+}^{\dagger} \psi_{+} + \psi_{-}^{\dagger} \psi_{-} \right) + \frac{1}{2g} \left(\partial_{y} \phi \right)^{2} + \frac{r}{2} \phi^{2}$$

Emergent "Galilean invariance" at low energy $(s = \pm)$:

$$\phi(x,y) \to \phi(x,y+\theta x), \quad \psi_s(x,y) \to e^{-is(\frac{\theta}{2}y+\frac{\theta^2}{4}x)}\psi_s(x,y+\theta x)$$

which implies for the fermion Green's function

$$G(q_x, q_y) = G(sq_x + q_y^2).$$

Emergent "Galilean invariance" at low energy $(s = \pm)$:

$$\phi(x,y) \to \phi(x,y+\theta x), \quad \psi_s(x,y) \to e^{-is(\frac{\theta}{2}y+\frac{\theta^2}{4}x)}\psi_s(x,y+\theta x)$$

which implies for the fermion Green's function

$$G(q_x, q_y) = G(sq_x + q_y^2).$$

Every point on the Fermi surface $sq_x + q_y^2 = 0$ has the same singularity: "Hot Fermi surface".

Friday, April 13, 2012

Hertz-Moriya-Millis (HMM) theory

Integrate out fermions and obtain effective action for ϕ

$$\mathcal{L}_{\phi} = \frac{1}{2}\phi^2 \left[\frac{q_y^2}{g} + \frac{|\omega|}{4\pi|q_y|}\right]$$

Exponent z = 3 and mean-field criticality ?

Write down local field theory for order parameter and fermions

2. Apply renormalization groupto field theory

Write down local field theory for order parameter and fermions

2. Apply renormalization groupto field theory

Order parameter at a nonzero wavevector: "Hot spots" on the Fermi surface.

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_{c} = -\lambda \vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$

Under the rescaling $x' = xe^{-\ell}$, $\tau' = \tau e^{-z\ell}$, the spatial gradients are fixed if the fields transform as

$$\vec{\varphi}' = e^{(d+z-2)\ell/2} \vec{\varphi} \quad ; " \psi' = e^{(d+z-1)\ell/2} \psi.$$

Then the Yukawa coupling transforms as

$$\lambda' = e^{(4-d-z)\ell/2}\lambda$$

For d = 2, with z = 2 the Yukawa coupling is invariant, and the bare time-derivative terms ζ , $\tilde{\zeta}$ are irrelevant.

Friday, April 13, 2012

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\widetilde{\zeta}}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:
$$\mathcal{L}_{c} = -\vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell} \right)$$

Set $\vec{\varphi}$ wavefunction renormalization by
keeping co-efficient of $(\boldsymbol{\nabla}_{r} \vec{\varphi})^{2}$ fixed (as usual).

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\zeta}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling:

$$\mathcal{L}_{c} = -\vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell}\right)$$

Set fermion wavefunction renormalization by keeping Yukawa coupling fixed.

Y. Huh and S. Sachdev, Phys. Rev. B 78, 064512 (2008).

$$\mathcal{L}_{f} = \psi_{1\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{1}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{1\alpha}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \left(\zeta \partial_{\tau} - i \mathbf{v}_{2}^{\ell} \cdot \boldsymbol{\nabla}_{r} \right) \psi_{2\alpha}^{\ell}$$

Order parameter:
$$\mathcal{L}_{\varphi} = \frac{1}{2} \left(\boldsymbol{\nabla}_{r} \vec{\varphi} \right)^{2} + \frac{\zeta}{2} \left(\partial_{\tau} \vec{\varphi} \right)^{2} + \frac{s}{2} \vec{\varphi}^{2} + \frac{u}{4} \vec{\varphi}^{4}$$

"Yukawa" coupling: $\mathcal{L}_c = -\vec{\varphi} \cdot \left(\psi_{1\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{2\beta}^{\ell} + \psi_{2\alpha}^{\ell\dagger} \vec{\sigma}_{\alpha\beta} \psi_{1\beta}^{\ell}\right)$

We find consistent two-loop RG factors, as $\zeta \to 0$, for the velocities v_x , v_y , and the wavefunction renormalizations.

Consistency check: the expression for the boson damping constant, $\gamma = \frac{2}{\pi v_x v_y}$, is preserved under RG.

RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling $\alpha = v_y/v_x$ whose flow obeys

$$\frac{d\alpha}{d\ell} = -\frac{3}{\pi N} \frac{\alpha^2}{1+\alpha^2}$$

RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling $\alpha = v_y/v_x$ whose flow obeys

$$\frac{d\alpha}{d\ell} = -\frac{3}{\pi N} \frac{\alpha^2}{1+\alpha^2}$$

The velocities flow as

$$\frac{1}{v_x}\frac{dv_x}{d\ell} = \frac{\mathcal{A}(\alpha) + \mathcal{B}(\alpha)}{2} ; \frac{1}{v_y}\frac{dv_y}{d\ell} = \frac{-\mathcal{A}(\alpha) + \mathcal{B}(\alpha)}{2}$$
$$\mathcal{A}(\alpha) \equiv \frac{3}{\pi N}\frac{\alpha}{1 + \alpha^2}$$
$$\mathcal{B}(\alpha) \equiv \frac{1}{2\pi N}\left(\frac{1}{\alpha} - \alpha\right)\left(1 + \left(\frac{1}{\alpha} - \alpha\right)\tan^{-1}\frac{1}{\alpha}\right)$$

RG flow can be computed a 1/N expansion (with N fermion species) in terms of a single dimensionless coupling $\alpha = v_y/v_x$ whose flow obeys

$$\frac{d\alpha}{d\ell} = -\frac{3}{\pi N} \frac{\alpha^2}{1+\alpha^2}$$

The anomalous dimensions of $\vec{\varphi}$ and ψ are

$$\eta_{\varphi} = \frac{1}{2\pi N} \left(\frac{1}{\alpha} - \alpha + \left(\frac{1}{\alpha^2} + \alpha^2 \right) \tan^{-1} \frac{1}{\alpha} \right)$$
$$\eta_{\psi} = -\frac{1}{4\pi N} \left(\frac{1}{\alpha} - \alpha \right) \left(1 + \left(\frac{1}{\alpha} - \alpha \right) \tan^{-1} \frac{1}{\alpha} \right)$$

x

Bare Fermi surface

RG-improved Migdal-Eliashberg theory $\alpha = v_y/v_x \rightarrow 0$ logarithmically in the infrared.Dynamical Nesting

y

x

Dressed Fermi surface

x

Bare Fermi surface

 $\alpha = v_y/v_x \rightarrow 0$ logarithmically in the infrared. Dynamical Nesting

Dressed Fermi surface

 $\alpha = v_y/v_x \rightarrow 0$ logarithmically in the infrared.

In $\vec{\varphi}$ SDW fluctuations, characteristic q and ω scale as

$$q \sim \omega^{1/2} \exp\left(-\frac{3}{64\pi^2} \left(\frac{\ln(1/\omega)}{N}\right)^3\right).$$

However, 1/N expansion cannot be trusted in the asymptotic regime.

 $\vec{\varphi}$ propagator

 $\frac{1}{N} \frac{1}{(q^2 + \gamma |\omega|)}$

fermion propagator

$$\overline{\mathbf{v}\cdot\mathbf{q}+i\zeta\omega+i\frac{1}{N\sqrt{\gamma}v}\sqrt{\omega}F\left(\frac{v^2q^2}{\omega}\right)}$$

1

 $\vec{\varphi}$ propagator

 $\frac{1}{N} \frac{1}{(q^2 + \gamma |\omega|)}$

fermion propagator

$$\mathbf{v} \cdot \mathbf{q} + i\zeta\omega + i\frac{1}{N\sqrt{\gamma}v}\sqrt{\omega}F\left(\frac{v^2q^2}{\omega}\right)$$

Ignoring fermion self energy: $\sim \frac{1}{N^2} \times \frac{1}{\zeta^2} \times \frac{1}{\omega}$

Ignoring fermion self energy: $\sim \frac{1}{N^2} \times \frac{1}{\zeta^2} \times \frac{1}{\omega}$ Actual order $\sim \frac{1}{N^0}$

Double line representation

- A way to compute the order of a diagram.
- Extra powers of N come from the Fermi-surface

$$G(\omega, \vec{k}) = \frac{1}{-\Sigma_1(\omega, \vec{k}) - \vec{v} \cdot \vec{k}} \qquad \Sigma_1 \sim \frac{1}{N}$$

- What are the conditions for all propagators to be on the Fermi surface?
- Concentrate on diagrams involving a single pair of hot-spots
- Any bosonic momentum may be (uniquely) written as

$$\vec{q} = \vec{k}_1 - \vec{k}_2$$
 $\vec{k}_1 \in FS \text{ of } \psi_1$ $\vec{k}_2 \in FS \text{ of } \psi_2$

R. Shankar, Rev. Mod. Phys.
66, 129 (1994).
S. W.Tsai, A. H. Castro
Neto, R. Shankar, and
D. K. Campbell, Phys. Rev. B
72, 054531 (2005).

Singularities as $\zeta \to 0$ appear when fermions in closed blue and red line loops are exactly on the Fermi surface Actual order $\sim \frac{1}{N^0}$

Graph is **planar** after turning fermion propagators also into double lines by drawing additional dotted single line loops for each fermion loop Sung-Sik Lee, arXiv:0905.4532

A consistent analysis requires resummation of all planar graphs

Theory for the onset of spin density wave order in metals is <u>strongly</u> coupled in two dimensions