Quantum phase transitions of insulators, superconductors and metals in two dimensions

Talk online: sachdev.physics.harvard.edu

1. Phenomenology of the cuprate superconductors (and other compounds)

- 2. QPT of antiferromagnetic insulators (and bosons at rational filling)
- QPT of d-wave superconductors:
 Fermi points of massless Dirac fermions
- QPT of Fermi surfaces:
 A. Finite wavevector ordering (SDW/CDW): "Hot spots" on Fermi surfaces
 B. Zero wavevector ordering (Nematic): "Hot Fermi surfaces"

1. Phenomenology of the cuprate superconductors (and other compounds)

2. QPT of antiferromagnetic insulators (and bosons at rational filling)

QPT of d-wave superconductors:
 Fermi points of massless Dirac fermions

QPT of Fermi surfaces: A. Finite wavevector ordering (SDW/CDW): "Hot spots" on Fermi surfaces B. Zero wavevector ordering (Nematic): "Hot Fermi surfaces"

Yejin Huh, Harvard

<u>d-wave superconductivity in cuprates</u>

$$H_0 = -\sum_{i < j} t_{ij} c_{i\alpha}^{\dagger} c_{i\alpha} \equiv \sum_{\mathbf{k}} \varepsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha}$$

• Begin with free electrons.

d-wave superconductivity in cuprates

$$H = \sum_{\mathbf{k}} \left(\varepsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} + \Delta_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} + \text{c.c.} \right)$$

- Begin with free electrons.
- Add *d*-wave pairing interaction $\Delta_k \sim \cos k_x - \cos k_y$ which vanishes along diagonals

d-wave superconductivity in cuprates

- Begin with free electrons.
- Add *d*-wave pairing interaction Δ_k which vanishes along diagonals
- Obtain Bogoliubov quasiparticles with dispersion $\sqrt{\varepsilon_{\bf k}^2+\Delta_{\bf k}^2}$

d-wave superconductivity in cuprates

- Denote the electron annihilation operator with momenta in the vicinity of the nodes as (Q, Q), (-Q, Q), (-Q, -Q), and (Q, -Q) by f_{1a} , f_{2a} , f_a , and f_{4a} respectively; here $a = \uparrow, \downarrow$ is an electron spin index.
- Introduce the 4 2-component Nambu spinors

$$\Psi_{1a} = \begin{pmatrix} f_{1a} \\ \varepsilon_{ab} f_{3b}^{\dagger} \end{pmatrix} , \quad \Psi_{2a} = \begin{pmatrix} f_{2a} \\ \varepsilon_{ab} f_{4b}^{\dagger} \end{pmatrix}$$

where $\varepsilon_{ab} = -\varepsilon_{ba}$ and $\varepsilon_{ab} = 1$.

We will use Pauli matrices τ^i which act on the Nambu particle-hole space.

<u>d-wave superconductivity in cuprates</u>

4 two-component Dirac fermions

$$S_{\Psi} = \int \frac{d^2k}{(2\pi)^2} T \sum_{\omega_n} \Psi_{1a}^{\dagger} \left(-i\omega_n + v_F k_x \tau^z + v_\Delta k_y \tau^x \right) \Psi_{1a}$$
$$+ \int \frac{d^2k}{(2\pi)^2} T \sum_{\omega_n} \Psi_{2a}^{\dagger} \left(-i\omega_n + v_F k_y \tau^z + v_\Delta k_x \tau^x \right) \Psi_{2a}.$$

Theory of quantum criticality in the cuprates

4 two-component Dirac fermions

$$S_{\Psi} = \int \frac{d^2k}{(2\pi)^2} T \sum_{\omega_n} \Psi_{1a}^{\dagger} \left(-i\omega_n + v_F k_x \tau^z + v_\Delta k_y \tau^x \right) \Psi_{1a}$$
$$+ \int \frac{d^2k}{(2\pi)^2} T \sum_{\omega_n} \Psi_{2a}^{\dagger} \left(-i\omega_n + v_F k_y \tau^z + v_\Delta k_x \tau^x \right) \Psi_{2a}.$$

Landau-Ginzburg field theory for SDW order

$$S_{\vec{\varphi}} = \int d^2 x d\tau \Big[\frac{1}{2} (\partial_\tau \vec{\varphi})^2 + \frac{c^2}{2} (\nabla \vec{\varphi})^2 + \frac{r}{2} \vec{\varphi}^2 + \frac{u_0}{24} \vec{\varphi}^4 \Big];$$

• No coupling between SDW order, $\vec{\varphi}$, and Dirac fermions, $\Psi_{1,2}$, which is linear in $\vec{\varphi}$.

- No coupling between SDW order, $\vec{\varphi}$, and Dirac fermions, $\Psi_{1,2}$, which is linear in $\vec{\varphi}$.
- Universality class of SDW ordering transition is the same as that in the coupled-dimer antiferromagnet. Corrections to scaling arise from coupling of $|\vec{\varphi}|^2$ (and of nematic order) to the Dirac fermions.

Nematic order in YBCO

V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, and B. Keimer, *Science* **319**, 597 (2008)

Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor

R. Daou, J. Chang, David LeBoeuf, Olivier Cyr-Choiniere, Francis Laliberte, Nicolas Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and Louis Taillefer arXiv: 0909.4430

S.A. Kivelson, E. Fradkin, and V.J. Emery, *Nature* **393**, 550 (1998).

Transformation of Dirac fermions under square lattice space group and time-reversal

Transformation of Dirac fermions under square lattice space group and time-reversal

Nematic order parameter is $\phi \sim \Psi_{1a}^{\dagger} \tau^x \Psi_{1a} + \Psi_{2a}^{\dagger} \tau^x \Psi_{2a}$ which is odd under R and even under I. This order parameter is *s*-wave pairing $\sim \sum_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}$

Transformation of Dirac fermions under square lattice space group and time-reversal

Nematic order parameter is $\phi \sim \Psi_{1a}^{\dagger} \tau^x \Psi_{1a} + \Psi_{2a}^{\dagger} \tau^x \Psi_{2a}$ which is odd under R and even under I. This order parameter is *s*-wave pairing $\sim \sum_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}$

Time-reversal order parameter is $\phi \sim \Psi_{1a}^{\dagger} \tau^y \Psi_{1a} + \Psi_{2a}^{\dagger} \tau^y \Psi_{2a}$ which is odd under \mathcal{T} and even under all other operations. This order parameter is id_{xy} -wave pairing $\sim i \sum_{\mathbf{k}} \sin k_x \sin k_y c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}$

Now consider a discrete spontaneous symmetry breaking, with Ising symmetry, described by a real scalar field ϕ . Two cases of experimental interest are:

• Break 4-fold lattice rotation symmetry to 2-fold lattice rotations: leads to a superconductor with **nematic** order: equivalent to $d_{x^2-y^2} + s$ pairing.

$$H = H_{\phi} + \sum_{\mathbf{k}} \left(\varepsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} + \Delta_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} + \text{c.c.} \right)$$
$$H_{\phi} = \phi \sum_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} + \text{c.c.}$$

Now consider a discrete spontaneous symmetry breaking, with Ising symmetry, described by a real scalar field ϕ . Two cases of experimental interest are:

- Break 4-fold lattice rotation symmetry to 2-fold lattice rotations: leads to a superconductor with **nematic** order: equivalent to $d_{x^2-y^2} + s$ pairing.
- Time-reversal symmetry breaking: leads to a $d_{x^2-y^2} + id_{xy}$ superconductor, in which the Dirac fermions are massive

$$H = H_{\phi} + \sum_{\mathbf{k}} \left(\varepsilon_{\mathbf{k}} c_{\mathbf{k}\alpha}^{\dagger} c_{\mathbf{k}\alpha} + \Delta_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} + \text{c.c.} \right)$$
$$H_{\phi} = i\phi \sum_{\mathbf{k}} \sin k_x \sin k_y c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} + \text{c.c.}$$

 r_c

M. Vojta, Y. Zhang, and S. Sachdev, Phys. Rev. Lett. **85**, 4940 (2000) E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, Phys. Rev. B **77**, 184514 (2008).

Field theory for transition with Ising order described by a real scalar field ϕ :

$$\mathcal{S} = \mathcal{S}_{\Psi} + \mathcal{S}_{\phi} + \mathcal{S}_{\Psi\phi}$$

Field theory for transition with Ising order described by a real scalar field ϕ :

$$\mathcal{S} = \mathcal{S}_{\Psi} + \mathcal{S}_{\phi} + \mathcal{S}_{\Psi\phi}$$

Ising order and Dirac fermions couple via a "Yukawa" term.

$$S_{\Psi\phi} = \int d^2x d\tau \Big[\lambda_0 \phi \left(\Psi_{1a}^{\dagger} \tau^x \Psi_{1a} + \Psi_{2a}^{\dagger} \tau^x \Psi_{2a} \right) \Big],$$

Nematic ordering

$$S_{\Psi\phi} = \int d^2x d\tau \left[\lambda_0 \phi \left(\Psi_{1a}^{\dagger} \tau^y \Psi_{1a} + \Psi_{2a}^{\dagger} \tau^y \Psi_{2a} \right) \right]$$

Time reversal symmetry breakin

M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000)

g

Ising order and Dirac fermions couple via a "Yukawa" term.

$$S_{\Psi\phi} = \int d^2x d\tau \Big[\lambda_0 \phi \left(\Psi_{1a}^{\dagger} \tau^x \Psi_{1a} + \Psi_{2a}^{\dagger} \tau^x \Psi_{2a} \right) \Big],$$

Nematic ordering

$$S_{\Psi\phi} = \int d^2x d\tau \left[\lambda_0 \phi \left(\Psi_{1a}^{\dagger} \tau^y \Psi_{1a} + \Psi_{2a}^{\dagger} \tau^y \Psi_{2a} \right) \right]$$

Time reversal symmetry breaking

For the latter case only, with $v_F = v_{\Delta} = c$, theory reduces to relativistic Gross-Neveu model

M. Vojta, Y. Zhang, and S. Sachdev, Physical Review Letters 85, 4940 (2000)

DQ

Integrating out the fermions yields an effective action for the scalar order parameter

$$S_{\phi} = \frac{N_f}{v_{\Delta}v_F} \Gamma \left[\lambda_0 \phi(x,\tau); \frac{v_{\Delta}}{v_F} \right] + \frac{N_f}{2} \int d^2x d\tau \left(r \phi^2(x,\tau) \right)$$

+ irrelevant terms

where Γ is a non-local and non-analytic functional of ϕ .

The theory has only 2 couplings constants: r and v_{Δ}/v_F .

Y. Huh and S. Sachdev, Physical Review B 78, 064512 (2008).

Integrating out the fermions yields an effective action for the nematic order parameter

$$S_{\phi} = \frac{N_f}{2} \int_{k,\omega} |\phi(k,\omega)|^2 \left[r + \frac{\lambda_0^2}{8v_F v_\Delta} \left(\frac{\omega^2 + v_F^2 k_x^2}{\sqrt{\omega^2 + v_F^2 k_x^2 + v_\Delta^2 k_y^2}} + (x \leftrightarrow y) \right) \right]$$

+higher order terms which cannot be neglected

E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, Phys. Rev. B 77, 184514 (2008).

Integrating out the fermions yields an effective action for the T-breaking order parameter

$$S_{\phi} = \frac{N_f}{2} \int_{k,\omega} |\phi(k,\omega)|^2 \left[r + \frac{\lambda_0^2}{8v_F v_\Delta} \left(\sqrt{\omega^2 + v_F^2 k_x^2 + v_\Delta^2 k_y^2} + (x \leftrightarrow y) \right) \right]$$

+higher order terms which cannot be neglected

E.-A. Kim, M. J. Lawler, P. Oreto, S. Sachdev, E. Fradkin, S.A. Kivelson, Phys. Rev. B 77, 184514 (2008).

Integrating out the fermions yields an effective action for the nematic order parameter

$$S_{\phi} = \frac{N_f}{v_{\Delta}v_F} \Gamma \left[\lambda_0 \phi(x,\tau); \frac{v_{\Delta}}{v_F} \right] + \frac{N_f}{2} \int d^2x d\tau \left(r \phi^2(x,\tau) \right)$$

+ irrelevant terms

where Γ is a non-local and non-analytic functional of ϕ .

The theory has only 2 couplings constants: r and v_{Δ}/v_F .

Y. Huh and S. Sachdev, Physical Review B 78, 064512 (2008).

Integrating out the fermions yields an effective action for the nematic order parameter

$$S_{\phi} = \frac{N_f}{v_{\Delta}v_F} \Gamma \left[\lambda_0 \phi(x,\tau); \frac{v_{\Delta}}{v_F} \right] + \frac{N_f}{2} \int d^2x d\tau \left(r\phi^2(x,\tau) \right)$$

+ irrelevant terms

where Γ is a non-local and non-analytic functional of ϕ .

There is a systematic expansion in powers of $1/N_f$ for renormalization group equations and all critical properties.

Y. Huh and S. Sachdev, Physical Review B 78, 064512 (2008).

Integrating out the fermions yields an effective action for the nematic order parameter

Because the order parameter couples to a fermion current, a constant ϕ can be gauged away, and the effective potential is *unrenormalized*

$$V(\phi) = \frac{r}{2}\phi^2 + \frac{u}{4}\phi^4 + \dots$$
 (1)

The order parameter critical exponent $\gamma = 1$.

Y. Huh and S. Sachdev, Physical Review B 78, 064512 (2008).

Renormalization group analysis Couplings are local in the fermion action, so perform RG on fermion self energy

- The fermion self energy determines the wavefunction renormalization of the the fermions (η_f) and the renormalization of the velocities v_F and v_{Δ} .
- The wavefunction renormalization of ϕ (η_b) is set by the requirement that the Yukawa coupling $\phi \Psi^{\dagger} \tau^x \Psi$ have unit magnitude.
- The non-renormalization of the effective potential yields the correlation length exponent $\nu = 1/(2-\eta_f)$.

Y. Huh and S. Sachdev, Physical Review B 78, 064512 (2008).

Renormalization group analysisCouplings are local in the fermion action,
so perform RG on fermion self energyThe $1/N_f$ expansion has only one coupling constant
at criticality: v_{Δ}/v_F .

The RG has the structure:

dynamic critical exponent : $z = 1 + \frac{1}{N_f} F_1(v_\Delta/v_F)$ fermion anomalous dimension : $\eta_f = \frac{1}{N_f} F_2(v_\Delta/v_F)$ RG flow equation : $\frac{d(v_\Delta/v_F)}{d\ell} = \frac{1}{N_f} F_3(v_\Delta/v_F)$

where we have computed the functions $F_{1,2,3}(v_{\Delta}/v_F)$.

The RG flow is to $v_{\Delta}/v_F \to 0$ with

$$\frac{d(v_{\Delta}/v_F)}{d\ell} = -\frac{8}{\pi^2 N_f} (v_{\Delta}/v_F)^2 \ln\left(\frac{0.4699}{(v_{\Delta}/v_F)}\right)$$

This implies that as we approach the critical point, $r \to 0$, $T \to 0$,

$$\frac{v_{\Delta}}{v_F} = \frac{\pi^2 N_f}{8} \frac{1}{\ln\left(\frac{\Lambda}{\operatorname{Max}(|r|,T)}\right) \ln\left[\frac{0.3809}{N_f} \ln\left(\frac{\Lambda}{\operatorname{Max}(|r|,T)}\right)\right]}$$

So v_{Δ}/v_F has a minimum as a function of r at the quantum critical point. More precise results are obtained by a numerical integration of the RG equation.

Fermion spectral functions

 ϕ fluctuations broaden the fermion spectral functions except in a wedge near the nodal points

