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| i ) Ground state of entire system,

⇢ = | ih |

⇢A = TrB⇢ = density matrix of region A

Entanglement entropy SE = �Tr (⇢A ln ⇢A)
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| i ) Ground state of entire system,

⇢ = | ih |

Take | i = 1p
2
(|"iA |#iB � |#iA |"iB)

Then ⇢A = TrB⇢ = density matrix of region A
=

1
2 (|"iA h"|A + |#iA h#|A)

Entanglement entropy SE = �Tr (⇢A ln ⇢A)
= ln 2
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SE = aP � b exp(�cP )

where P is the surface area (perimeter)

of the boundary between A and B.

B

Entanglement entropy of a band insulator

A P



The Fermi liquid

L = f†
✓
@⌧ � r2

2m
� µ

◆
f

+ 4 Fermi terms
�� kF !

Occupied states

Empty states



Logarithmic violation of “area law”: SE =

1

12

(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor 1/12 is universal: it is independent of the shape of the

entangling region, and of the strength of the interactions.
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Entanglement entropy of the Fermi liquid

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)	


B. Swingle,  Physical Review Letters 105, 050502 (2010)
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• Entanglement entropy obeys SE = aP � �, where

� is a shape-dependent universal number associated

with the CFT3.

Entanglement at the quantum critical point
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M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009); H. Casini, 	


M. Huerta, and R. Myers, JHEP 1105:036, (2011); I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598
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Tensor network representation of entanglement	


  at quantum critical point d

G. Vidal, Phys. Rev. Lett. 99, 220405 (2007)
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Entanglement entropy = 	


Number of links on 

optimal surface 
intersecting minimal 

number of links.
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Tensor network representation of entanglement	


  at quantum critical point

Brian Swingle, arXiv:0905.1317
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String theory near 	


a D-brane
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Emergent direction	


of AdS4 Brian Swingle, arXiv:0905.1317
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S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

Associate entanglement entropy with an observer in the enclosed 
spacetime region, who cannot observe “outside” : i.e. the region is 
surrounded by an imaginary horizon.
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entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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• Computation of minimal surface area yields

SE = aP � �,
where � is a shape-dependent universal number.
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M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009); H. Casini, 	


M. Huerta, and R. Myers, JHEP 1105:036, (2011); I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598
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• Fermi wavevector obeys the Luttinger relation kdF ⇠ Q, the

fermion density

• Sharp particle and hole of excitations near the Fermi surface

with energy ! ⇠ |q|z, with dynamic exponent z = 1.

• The phase space density of fermions is e↵ectively one-dimensional,

so the entropy density S ⇠ T . It is useful to write this is as S ⇠
T (d�✓)/z

, with violation of hyperscaling exponent ✓ = d� 1.
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Pomeranchuk instability as a function of coupling �
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Quantum criticality of Ising-nematic ordering in a metal



Quantum criticality of Ising-nematic ordering in a metal
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• � fluctuation at wavevector ~q couples most e�ciently to fermions

near ±~k0.

• Expand fermion kinetic energy at wavevectors about ±~k0 and
boson (�) kinetic energy about ~q = 0.

Quantum criticality of Ising-nematic ordering in a metal
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M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)

Quantum criticality of Ising-nematic ordering in a metal



Simple scaling argument for z = 3/2.
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Under the rescaling x ! x/s, y ! y/s

1/2
, and ⌧ ! ⌧/s

z
, we

find invariance provided

� ! � s

 !  s

(2z+1)/4

g ! g s

(3�2z)/4

So the action is invariant provided z = 3/2.

Quantum criticality of Ising-nematic ordering in a metal
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• kdF ⇥ Q, the fermion density

• Sharp fermionic excitations

near Fermi surface with

⇥ ⇥ |q|z, and z = 1.

• Entropy density S ⇥ T (d��)/z

with violation of hyperscaling

exponent � = d� 1.

• Entanglement entropy

SE ⇥ kd�1
F P lnP .



• Fermi surface

with kdF ⇠ Q.

• Di↵use fermionic

excitations with z = 3/2
to three loops.

• S ⇠ T (d�✓)/z

with ✓ = d� 1.

• SE ⇠ kd�1
F P lnP .
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Logarithmic violation of “area law”: SE = CE kFP ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor CE is expected to be universal but 6= 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.
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Entanglement entropy of the non-Fermi liquid

B. Swingle,  Physical Review Letters 105, 050502 (2010)
Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)



Logarithmic violation of “area law”: SE = CE kFP ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor CE is expected to be universal but 6= 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

Entanglement entropy of the non-Fermi liquid

B. Swingle,  Physical Review Letters 105, 050502 (2010)
Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)

B

A P



Logarithmic violation of “area law”: SE = CE kFP ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

The prefactor CE is expected to be universal but 6= 1/12:
independent of the shape of the entangling region, and dependent

only on IR features of the theory.

B

A P

Entanglement entropy of the non-Fermi liquid

B. Swingle,  Physical Review Letters 105, 050502 (2010)
Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)



⇥| q
|�

�� kF !
⇥| q

|�

�� kF !

• kdF ⇥ Q, the fermion density

• Sharp fermionic excitations

near Fermi surface with

⇥ ⇥ |q|z, and z = 1.

• Entropy density S ⇥ T (d��)/z

with violation of hyperscaling

exponent � = d� 1.

• Entanglement entropy

SE ⇥ kd�1
F P lnP .

FL 	


Fermi 	


liquid

NFL	


Nematic	



QCP 

• Fermi surface

with kdF ⇠ Q.

• Di↵use fermionic

excitations with z = 3/2
to three loops.

• S ⇠ T (d�✓)/z

with ✓ = d� 1.

• SE ⇠ kd�1
F P lnP .



1. Entanglement, holography, and CFTs	



2. Field theory of a non-Fermi liquid	



3.  Generalized holography beyond CFTs	



4.  Holography of strange metals	





1. Entanglement, holography, and CFTs	



2. Field theory of a non-Fermi liquid	



3.  Generalized holography beyond CFTs	



4.  Holography of strange metals	





r

xi

Generalized holography



r

xi

Consider a metric which transforms under rescaling as

xi ! ⇣ xi, t ! ⇣

z
t, ds ! ⇣

✓/d
ds.

Recall: conformal matter has ✓ = 0, z = 1, and the metric is

anti-de Sitter

Generalized holography
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2d(z�1)/(d�✓)
+ r
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dr

2 + dx

2
i

◆

The most general such metric is

Generalized holography
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Generalized holography

This is the most general metric which is invariant under the

scale transformation

xi ! ⇣ xi

t ! ⇣

z
t

ds ! ⇣

✓/d
ds.

This identifies z as the dynamic critical exponent (z = 1 for

“relativistic” quantum critical points). We will see shortly

that ✓ is the violation of hyperscaling exponent.

We have used reparametrization invariance in r to define it so

that it scales as

r ! ⇣

(d�✓)/d
r .

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

At T > 0, there is a “black-brane” at r = rh.

The Beckenstein-Hawking entropy of the black-brane is the
thermal entropy of the quantum system r = 0.

The entropy density, S, is proportional to the
“area” of the horizon, and so S ⇠ r�d

h

r

Generalized holography
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L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

r

Under rescaling r ! ⇣(d�✓)/dr, and the

temperature T ⇠ t�1
, and so

S ⇠ T (d�✓)/z
= T deff/z

where ✓ = d�de↵ , the “dimension deficit”, is now identified

as the violation of hyperscaling exponent.

Generalized holography



L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1201, 125 (2012).
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Generalized holography

The null energy condition (stability condition for gravity)

yields a new inequality

z � 1 +

✓

d

The Fermi liquid has ✓ = d � 1 and z = 1: so the Fermi

liquid does not have such a gravity dual.

The non-Fermi liquid in d = 2 has ✓ = d�1, and this implies

z � 3/2. So the lower bound is precisely the value obtained

for the non-Fermi liquid!
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Application of the Ryu-Takayanagi minimal area formula to a dual

Einstein-Maxwell-dilaton theory yields

SE ⇠

8
<

:

P , for ✓ < d� 1

P lnP , for ✓ = d� 1

P ✓/(d�1) , for ✓ > d� 1

.

The non-Fermi liquid has log-violation of “area law”, and this ap-

pears precisely at the correct value ✓ = d� 1!

Moreover, the co-e�cient of P lnP computed holographically is in-

dependent of the shape of the entangling region just as expected for

a circular Fermi surface!!

Generalized holography
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The non-Fermi liquid has log-violation of “area law”, and this ap-

pears precisely at the correct value ✓ = d� 1!

Moreover, the co-e�cient of P lnP computed holographically is in-

dependent of the shape of the entangling region just as expected for

a circular Fermi surface!!

Generalized holography



1. Entanglement, holography, and CFTs	



2. Field theory of a non-Fermi liquid	



3.  Generalized holography beyond CFTs	



4.  Holography of strange metals	





1. Entanglement, holography, and CFTs	



2. Field theory of a non-Fermi liquid	



3.  Generalized holography beyond CFTs	



4.  Holography of strange metals	





Begin with a CFT



Holographic representation: AdS4

S =

Z
d

4
x

p
�g


1

22

✓
R+

6

L

2

◆�

A 2+1 
dimensional 

CFT
at T=0



Holographic representation: AdS4

A 2+1 
dimensional 

CFT
at T=0

ds

2 =

✓
L

r

◆2 
dr

2

f(r)
� f(r)dt2 + dx

2 + dy

2

�

with f(r) = 1



Apply a chemical potential



This is to be solved subject to the constraint

Aµ(r ! 0, x, y, t) = Aµ(x, y, t)

where Aµ is a source coupling to a conserved U(1) current Jµ

of the CFT3

S = SCFT + i

Z
dxdydtAµJµ

At non-zero chemical potential we simply require A⌧ = µ.

AdS4 theory of “nearly perfect fluids”
To leading order in a gradient expansion, charge transport in
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Computation of the entanglement entropy in the EMD

theory via the Ryu-Takayanagi formula for ✓ = d� 1

yields

SE = CEQ(d�1)/dP lnP

where CE is independent of UV details.

This is precisely as expected for a Fermi surface, when

combined with the Luttinger theorem!
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To relax momentum, add a ‘random-field’ coupling to the field operator O:

S ! S +

Z
ddrd⌧h(r)O(r, ⌧) with h(r) = 0 and h(r)h(r0) = h2
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Solution of Einstein-Maxwell equations for small h0 yields the resistivity

⇢(T ) ⇠ h2
0 T

(d�z+⌘)/z ,

where dim[O] = (d + z � 2 + ⌘)/2. This agrees with the memory function

computation of the bosonic contribution of the “standard model” field theory.

The crossover at higher energies to the Wilson-Fisher CFT (with z = 1,

⌘ ⇡ 0) yields ⇢(T ) ⇠ T .



Evidence for “nematic” order
(i.e. breaking of 90� rotation symmetry) in Ca1.88Na0.12CuO2Cl2.
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Visualization of the emergence of the pseudogap
state and the evolution to superconductivity in a
lightly hole-doped Mott insulator
Y. Kohsaka1*, T. Hanaguri2, M. Azuma3, M. Takano4, J. C. Davis5,6,7,8 and H. Takagi1,2,9

Superconductivity emerges from the cuprate antiferromag-
netic Mott state with hole doping. The resulting electronic
structure1 is not understood, although changes in the state of
oxygen atoms seem paramount2–5. Hole doping first destroys
the Mott state, yielding a weak insulator6,7 where electrons
localize only at low temperatures without a full energy gap.
At higher doping levels, the ‘pseudogap’, a weakly conducting
state with an anisotropic energy gap and intra-unit-cell break-
ing of 90� rotational (C4v) symmetry, appears3,4,8–10. However,
a direct visualization of the emergence of these phenomena
with increasing hole density has never been achieved. Here we
report atomic-scale imaging of electronic structure evolution
from the weak insulator through the emergence of the pseu-
dogap to the superconducting state in Ca2� x

Na
x

CuO2Cl2. The
spectral signature of the pseudogap emerges at the lowest
doping level from aweakly insulating but C4v-symmetricmatrix
exhibiting a distinct spectral shape. At slightly higher hole
density, nanoscale regions exhibiting pseudogap spectra and
180� rotational (C2v) symmetry form unidirectional clusters
within the C4v-symmetric matrix. Thus, hole doping proceeds
by the appearance of nanoscale clusters of localized holes
within which the broken-symmetry pseudogap state is stabi-
lized. A fundamentally two-component electronic structure11
then exists in Ca2� x

Na
x

CuO2Cl2 until the C2v-symmetric clus-
ters touch at higher doping levels, and the long-range super-
conductivity appears.

To visualize at the atomic scale how the pseudogap and
superconducting states are formed sequentially from the weak
insulator state, we performed spectroscopic imaging scanning
tunnelling microscopy (SI-STM) studies on Ca2�x

Na
x

CuO2Cl2
(0.06  x  0.12; see also the Methods sections). The crystal
structure is simple tetragonal (I4/mmm) and thereby advantageous
because the CuO2 planes are unbuckled and free from orthorhom-
bic distortion. More importantly Ca2CuO2Cl2 can be doped from
the Mott insulator to the superconductor by introduction of Na
atoms. Figure 1c,d shows differential conductance images mea-
sured using SI-STM of bulk-insulating x = 0.06 and x = 0.08
samples taken in the field of views of the topographic images
in Fig. 1a,b. The wavy, bright, arcs in Fig. 1c,d have never been
observed in superconducting samples (x > 0.08) but appear only
in such quasi-insulating samples (x  0.08). They are created by

1Inorganic Complex Electron Systems Research Team, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, 2Magnetic Materials
Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan, 3Materials and Structures Lab., Tokyo Institute of Technology, Yokohama,
Kanagawa 226-8503, Japan, 4Institute for Integrated Cell-Material Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan, 5LASSP, Department of
Physics, Cornell University, Ithaca, New York 14853, USA, 6CMPMS Department, Brookhaven National Laboratory, Upton, New York 11973, USA, 7School
of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK, 8Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca,
New York 14853, USA, 9Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan. *e-mail: kohsaka@riken.jp.

spectral peaks in differential conductance spectra whose energy is
dependent on location (Fig. 1f). Consequently, the wavy arcs shrink
with increasing bias voltages and finally disappear. This behaviour,
due to tip-induced impurity charging12–14, is characteristic of poor
electronic screening in a weakly insulating state.

A wide variety of spectral shapes originating from electric
heterogeneity were found in these samples. A typical example of
the spectra is, as spectrum number 1 in Fig. 1e, the V-shaped
pseudogap (⇠0.2 eV) spectrum with a small dip (⇠20meV) near
the Fermi energy. This is indistinguishable from those found in
strongly underdoped cuprate superconductors3, and establishes
that the pseudogap state appears locally at the nanoscale within the
weak insulator. Besides the V-shaped pseudogap spectra in some
areas, we find a new class of spectra that is predominant elsewhere
in the insulating samples. As for example spectrum number 2 in
Fig. 1e, such spectra are extremely asymmetric about the Fermi
energy, U-shaped (concave in minus a few hundred millivolts) and
exhibit no clear pseudogap. The growing asymmetry is strongly
indicative of approaching the Mott insulating state15,16 whereas
the non-zero conductance in the unoccupied state is distinct
from the Mott insulating state17. The approach for spectroscopic
examination of the emergence of the pseudogap from the weak
insulator is therefore transformation from the U-shaped insulating
spectra to the V-shaped pseudogap spectra as a function of
location and doping.

Figure 2a represents the transformation between these two types
of spectrum. The V-shaped pseudogap becomes larger and broader,
and eventually is smoothly connected to the U-shaped insulating
spectra. To quantify this variation, we focus on positive biases where
the edge of the pseudogap is clear. We fit the following function
to each spectrum18,

f (E)= c0Re


E+ i� (E)p
(E+ i� (E))2 ��2

�
+ c1E+ c2 (1)

where E is the energy, � is the broadening term, � is the energy
gap and c

i

(i = 0,1,2) are fitting constants. Use of equation (1)
is merely for accurate quantitative parameterization of the gap
maximum and does not imply any particular electronic state.
We use � (E) = ↵E as ref. 18 (↵ is a proportional constant) but
momentum-independent� for simplicity of fitting procedures (see
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Electronic nematicity above the structural and
superconducting transition in BaFe2(As12xPx)2
S. Kasahara1,2, H. J. Shi1, K. Hashimoto1{, S. Tonegawa1, Y. Mizukami1, T. Shibauchi1, K. Sugimoto3,4, T. Fukuda5,6,7, T. Terashima2,
Andriy H. Nevidomskyy8 & Y. Matsuda1

Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan. 2Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8501, Japan. 3Research and Utilization
Division, JASRI SPring-8, Sayo, Hyogo 679-5198, Japan. 4Structural Materials Science Laboratory, RIKEN SPring-8, Sayo, Hyogo 679-5148, Japan. 5Quantum Beam Science Directorate, JAEA SPring-8,
Sayo, Hyogo 679-5148, Japan. 6Materials Dynamics Laboratory, RIKEN SPring-8, Sayo, Hyogo 679-5148, Japan. 7JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075,
Japan. 8Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, Texas 77005, USA. {Present address: Institute for Materials Research, Tohoku University, Sendai 980-8577,
Japan.
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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Electronic nematicity above the structural and
superconducting transition in BaFe2(As12xPx)2
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Electronic nematicity, a unidirectional self-organized state that
breaks the rotational symmetry of the underlying lattice1,2, has
been observed in the iron pnictide3–7 and copper oxide8–11 high-
temperature superconductors. Whether nematicity plays an
equally important role in these two systems is highly controversial.
In iron pnictides, the nematicity has usually been associated with
the tetragonal-to-orthorhombic structural transition at temper-
ature Ts. Although recent experiments3–7 have provided hints of
nematicity, they were performed either in the low-temperature
orthorhombic phase3,5 or in the tetragonal phase under uniaxial
strain4,6,7, both of which break the 906 rotational C4 symmetry.
Therefore, the question remains open whether the nematicity can
exist above Ts without an external driving force. Here we report
magnetic torque measurements of the isovalent-doping system
BaFe2(As12xPx)2, showing that the nematicity develops well above
Ts and, moreover, persists to the non-magnetic superconducting
regime, resulting in a phase diagram similar to the pseudogap
phase diagram of the copper oxides8,12. By combining these results
with synchrotron X-ray measurements, we identify two distinct
temperatures—one at T*, signifying a true nematic transition,
and the other at Ts (,T*), which we show not to be a true phase
transition, but rather what we refer to as a ‘meta-nematic trans-
ition’, in analogy to the well-known meta-magnetic transition in
the theory of magnetism.

Magnetic torque measurements provide a stringent test of nematicity
for systems with tetragonal symmetry13. The torque t 5 m0VM 3 H is a
thermodynamic quantity, a differential of the free energy with respect to
angular displacement. Here m0 is the permeability of vacuum, V is the
sample volume, and M is the magnetization induced in the magnetic
field H. When H is rotated within the tetragonal a–b plane (Fig. 1a, b), t
is a periodic function of 2w, where w is the azimuthal angle measured
from the a axis:

t2w~
1
2

m0H2V xaa{xbbð Þ sin 2w{2xab cos 2w½ $ ð1Þ

where the susceptibility tensor xij is defined by Mi 5SjxijHj. In a system
maintaining tetragonal symmetry, t2w should be zero, because xaa 5 xbb
and xab 5 0. Finite values of t2w appear if a new electronic or magnetic
state emerges that breaks the C4 tetragonal symmetry. In such a case,
rotational symmetry breaking is revealed by xaa ? xbb and/or xab ? 0,
depending on the direction of the nematicity.

BaFe2(As1–xPx)2 is a prototypical family of iron pnictides14–18, whose
phase diagram is displayed in Fig. 1c. The temperature evolution of the
torque t(w) for the optimally doped compound (x 5 0.33) is depicted in
the upper panels of Fig. 1d. The two- and four-fold oscillations, t2w and
t4w, obtained from the Fourier analysis are shown respectively in the
middle and lower panels of Fig. 1d. The distinct two-fold oscillations
appear at low temperatures, whereas they are absent at high temperatures
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Figure 1 | Torque magnetometry and the doping–temperature phase
diagram of BaFe2(As12xPx)2. a, b, Schematic representations of the
experimental configuration for torque measurements under in-plane field
rotation. In a nematic state, domain formation with different preferred
directions in the a–b plane (‘twinning’) will occur. We used very small single
crystals with typical size ,70mm 3 70mm3 30mm, in which a significant
difference in volume between the two types of domains enables the observation
of uncompensated t2w signals. The equation given in the figure for t assumes
unit volume; see text for details. A single-crystalline sample (brown block) is
mounted on the piezo-resistive lever which is attached to the base (blue block)
and forms an electrical bridge circuit (orange lines) with the neighbouring
reference lever. A magnetic field H can be rotated relative to the sample, as
illustrated by a blue arrow on a sphere. In this experiment, the field is precisely
applied in the a–b plane. c, Phase diagram of BaFe2(As1–xPx)2. This system is
clean and homogeneous14,16,17, as demonstrated by the quantum oscillations
observed over a wide x range16. The antiferromagnetic transition at TN (filled
circles)15 coincides or is preceded by the structural transition at Ts (open
triangles)18. The superconducting dome extends over a doping range
0.2 , x , 0.7 (open squares), with maximum Tc 5 31 K. Crosses indicate the
nematic transition temperature T* determined by the torque and synchrotron
X-ray diffraction measurements. The insets illustrate the tetragonal FeAs/P
layer. xab 5 0 above T* yielding an isotropic torque signal (green-shaded
circle), whereas xab ? 0 below T*, indicating the appearance of the nematicity
along the [110]T (Fe–Fe bond) direction, illustrated with the green-shaded
ellipse. d, The upper panels depict the temperature evolution of the raw torque
t(w) at m0H 5 4 T for BaFe2(As0.67P0.33)2 (Tc 5 30 K). All torque curves are
reversible with respect to the field rotation. t(w) can be decomposed as t
(w) 5 t2w 1 t4w 1 t6w 1 ???, where t2nw 5 A2nw sin 2n(w 2 w0) has 2n-fold
symmetry with integer n. The middle and lower panels display the two- and
four-fold components obtained from Fourier analysis. The four-fold
oscillations t4w (and higher-order terms) arise primarily from the nonlinear
susceptibilities13. a.u., arbitrary units.
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 Strongly-coupled quantum criticality leads to a novel 
regime of quantum dynamics without quasiparticles.	


!

 The simplest examples are conformal field theories 
in 2+1 dimensions, realized by ultracold atoms in 
optical lattices.	


!

 Holographic theories provide an excellent 
quantitative description of quantum Monte Carlo 
studies of quantum-critical boson models	


!

 Exciting recent progress on the description of 
transport in metallic states without quasiparticles, via 
field theory and holography


