Strange metals and gauge-gravity duality

Loughborough University, May 17, 2012

Subir Sachdev

Lecture at the 100th anniversary Solvay conference, Theory of the Quantum World, chair D.J. Gross. arXiv:1203.4565

sachdev.physics.harvard.edu

Liza Huijse

Max Metlitski

Brian Swingle

An even number of electrons per unit cell

An odd number of electrons per unit cell

Modern phases of quantum matter Not adiabatically connected to independent electron states:

Modern phases of quantum matter Not adiabatically connected to independent electron states: many-particle, long-range quantum entanglement Mott insulator: Triangular lattice antiferromagnet $H = J \sum \vec{S}_i \cdot \vec{S}_j$ $\langle ij \rangle$

Nearest-neighbor model has non-collinear Neel order

Thursday, May 17, 2012

Mott insulator: Triangular lattice antiferromagnet

non-collinear Néel state

Quantum "disordered" state with exponentially decaying spin correlations.

S

Mott insulator: Triangular lattice antiferromagnet

non-collinear Néel state

Quantum "disordered" state with exponentially decaying spin correlations.

 Z_2 spin liquid with <u>long-range</u> entanglement.

 S_{C}

N. Read and S. Sachdev, *Phys. Rev. Lett.* **66**, 1773 (1991) X.-G. Wen, *Phys. Rev. B* **44**, 2664 (1991)

S

 $\begin{array}{ll} |\Psi\rangle & \Rightarrow & \mbox{Ground state of entire system}, \\ & \rho = |\Psi\rangle\langle\Psi| \end{array}$

 $\rho_A = \text{Tr}_B \rho = \text{density matrix of region } A$

Entanglement entropy $S_{EE} = -\text{Tr}\left(\rho_A \ln \rho_A\right)$

Entanglement entropy of a band insulator: $S_{EE} = aP - \exp(-bP)$ where P is the surface area (perimeter)
of the boundary between A and B.

Promising candidate: the kagome antiferromagnet

Numerical evidence for a gapped spin liquid: Simeng Yan, D.A. Huse, and S. R. White, *Science* **332**, 1173 (2011).

Young Lee, APS meeting, March 2012

ZnCu₃(OH)₆Cl₂ (also called Herbertsmithite)

Quantum superposition and entanglement

String theory

Quantum critical points of electrons in crystals

Examine ground state as a function of λ

At large λ ground state is a "quantum paramagnet" with spins locked in valence bond singlets

Nearest-neighor spins are "entangled" with each other. Can be separated into an Einstein-Podolsky-Rosen (EPR) pair.

Thursday, May 17, 2012

For $\lambda \approx 1$, the ground state has antiferromagnetic ("Néel") order, and the spins align in a checkerboard pattern

For $\lambda \approx 1$, the ground state has antiferromagnetic ("Néel") order, and the spins align in a checkerboard pattern

No EPR pairs

Excitations of TICuCl₃ with varying pressure

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, *Phys. Rev. Lett.* **100**, 205701 (2008)

Thursday, May 17, 2012

Excitations of TICuCl₃ with varying pressure

Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, Hannu Mutka, and Martin Boehm, *Phys. Rev. Lett.* **100**, 205701 (2008)

Thursday, May 17, 2012

A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett. 72, 2777 (1994).

Thursday, May 17, 2012

Entanglement entropy

Long-range entanglement at the quantum critical point

• Long-range entanglement: entanglement entropy obeys $S_{EE} = aL - \gamma$, where γ is a universal number associated with the quantum critical point.

M.A. Metlitski, C.A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009). H. Casini, M. Huerta, and R. Myers, JHEP 1105:036, (2011) I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598

• Long-range entanglement

- Long-range entanglement
- The low energy excitations are described by a theory which has the same structure as Einstein's theory of special relativity, but with the spin-wave velocity playing the role of the velocity of light.

- Long-range entanglement
- The low energy excitations are described by a theory which has the same structure as Einstein's theory of special relativity, but with the spin-wave velocity playing the role of the velocity of light.
- The theory of the critical point has an even larger symmetry corresponding to conformal transformations of spacetime: we refer to such a theory as a CFT3

- Long-range entanglement
- The low energy excitations are described by a theory which has the same structure as Einstein's theory of special relativity, but with the spin-wave velocity playing the role of the velocity of light.
- The theory of the critical point has an even larger symmetry corresponding to conformal transformations of spacetime: we refer to such a theory as a **CFT3**

String theory

Quantum critical points of electrons in crystals

Quantum critical points of electrons in crystals

- Allows unification of the standard model of particle physics with gravity.
- Low-lying string modes correspond to gauge fields, gravitons, quarks ...

• A *D*-brane is a *d*-dimensional surface on which strings can end.

- A *D*-brane is a *d*-dimensional surface on which strings can end.
- The low-energy theory on a *D*-brane has no gravity, similar to theories of entangled electrons of interest to us.

- A *D*-brane is a *d*-dimensional surface on which strings can end.
- The low-energy theory on a *D*-brane has no gravity, similar to theories of entangled electrons of interest to us.
- In d = 2, we obtain strongly-interacting **CFT3**s. These are "dual" to string theory on anti-de Sitter space: **AdS4**.

- A *D*-brane is a *d*-dimensional surface on which strings can end.
- The low-energy theory on a *D*-brane has no gravity, similar to theories of entangled electrons of interest to us.
- In d = 2, we obtain strongly-interacting **CFT3**s. These are "dual" to string theory on anti-de Sitter space: **AdS4**.

Thursday, May 17, 2012

Thursday, May 17, 2012

Entanglement entropy

Α

Entanglement entropy = Number of links on optimal surface intersecting minimal number of links.

d-dimensional

space

Emergent direction

of AdS4

J. McGreevy, arXiv0909.0518

S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).

String theory

Quantum critical points of electrons in crystals

Metals, "strange metals", and high temperature superconductors

Insights from gravitational "duals"

Iron pnictides:

a new class of high temperature superconductors

Thursday, May 17, 2012

Physical Review B **81**, 184519 (2010)

Sommerfeld-Bloch theory of ordinary metals

Sommerfeld-Bloch theory of ordinary metals

Key feature of the theory: the Fermi surface

- Area enclosed by the Fermi surface $\mathcal{A} = \mathcal{Q}$, the electron density
- Excitations near the Fermi surface are responsible for the familiar properties of ordinary metals, such as resistivity $\sim T^2$.

Thursday, May 17, 2012

Physical Review B 81, 184519 (2010)

Evolution of the (ARPES) Fermi surface on the cuprate phase diagram

Evolution of the (ARPES) Fermi surface on the cuprate phase diagram

Evolution of the (ARPES) Fermi surface on the cuprate phase diagram

Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor

R. Daou, J. Chang, David LeBoeuf, Olivier Cyr-Choiniere, Francis Laliberte, Nicolas Doiron-Leyraud, B. J. Ramshaw, Ruixing Liang, D. A. Bonn, W. N. Hardy, and Louis Taillefer *Nature*, **463**, 519 (2010).

STM measurements of Z(r), the energy asymmetry in density of states in Bi₂Sr₂CaCu₂O_{8+ δ}.

M. J. Lawler, K. Fujita, Jhinhwan Lee,
A. R. Schmidt,
Y. Kohsaka, Chung Koo Kim, H. Eisaki,
S. Uchida, J. C. Davis,
J. P. Sethna, and
Eun-Ah Kim, Nature
466, 347 (2010)

 $O_N = Z_A + Z_B - Z_C - Z_D$

Strong anisotropy of electronic states between x and y directions: Electronic "Ising-nematic" order

A. Field theory

B. Gauge-gravity duality

B. Gauge-gravity duality

Fermi surface with full square lattice symmetry

Spontaneous elongation along x direction:

Spontaneous elongation along y direction:

Ising-nematic order parameter

$$\phi \sim \int d^2 k \left(\cos k_x - \cos k_y\right) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma}$$

Measures spontaneous breaking of square lattice point-group symmetry of underlying Hamiltonian

Pomeranchuk instability as a function of coupling r

Effective action for Ising order parameter

$$\mathcal{S}_{\phi} = \int d^2 r d\tau \left[(\partial_{\tau} \phi)^2 + c^2 (\nabla \phi)^2 + (\lambda - \lambda_c) \phi^2 + u \phi^4 \right]$$

Effective action for Ising order parameter

$$\mathcal{S}_{\phi} = \int d^2 r d\tau \left[(\partial_{\tau} \phi)^2 + c^2 (\nabla \phi)^2 + (\lambda - \lambda_c) \phi^2 + u \phi^4 \right]$$

Effective action for electrons:

$$S_{c} = \int d\tau \sum_{\alpha=1}^{N_{f}} \left[\sum_{i} c_{i\alpha}^{\dagger} \partial_{\tau} c_{i\alpha} - \sum_{i < j} t_{ij} c_{i\alpha}^{\dagger} c_{i\alpha} \right]$$
$$\equiv \sum_{\alpha=1}^{N_{f}} \sum_{\mathbf{k}} \int d\tau c_{\mathbf{k}\alpha}^{\dagger} \left(\partial_{\tau} + \varepsilon_{\mathbf{k}} \right) c_{\mathbf{k}\alpha}$$

Coupling between Ising order and electrons

$$\mathcal{S}_{\phi c} = -\gamma \int d\tau \, \sum_{\alpha=1}^{N_f} \sum_{\mathbf{k}, \mathbf{q}} \phi_{\mathbf{q}} \, (\cos k_x - \cos k_y) c_{\mathbf{k}+\mathbf{q}/2, \alpha}^{\dagger} c_{\mathbf{k}-\mathbf{q}/2, \alpha}$$

for spatially dependent ϕ

$$\mathcal{S}_{\phi} = \int d^2 r d\tau \left[(\partial_{\tau} \phi)^2 + c^2 (\nabla \phi)^2 + (\lambda - \lambda_c) \phi^2 + u \phi^4 \right]$$

$$\begin{split} \mathcal{S}_{c} &= \sum_{\alpha=1}^{N_{f}} \sum_{\mathbf{k}} \int d\tau c_{\mathbf{k}\alpha}^{\dagger} \left(\partial_{\tau} + \varepsilon_{\mathbf{k}}\right) c_{\mathbf{k}\alpha} \\ \mathcal{S}_{\phi c} &= -\gamma \int d\tau \sum_{\alpha=1}^{N_{f}} \sum_{\mathbf{k},\mathbf{q}} \phi_{\mathbf{q}} \left(\cos k_{x} - \cos k_{y}\right) c_{\mathbf{k}+\mathbf{q}/2,\alpha}^{\dagger} c_{\mathbf{k}-\mathbf{q}/2,\alpha} \end{split}$$

• ϕ fluctuation at wavevector \vec{q} couples most efficiently to fermions near $\pm \vec{k}_0$.

- ϕ fluctuation at wavevector \vec{q} couples most efficiently to fermions near $\pm \vec{k}_0$.
- Expand fermion kinetic energy at wavevectors about $\pm \vec{k}_0$ and boson (ϕ) kinetic energy about $\vec{q} = 0$.

$$\mathcal{L}[\psi_{\pm},\phi] = \psi_{\pm}^{\dagger} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{\pm} + \psi_{\pm}^{\dagger} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{\pm} - \phi \left(\psi_{\pm}^{\dagger}\psi_{\pm} + \psi_{\pm}^{\dagger}\psi_{\pm}\right) + \frac{1}{2g^{2}}\left(\partial_{y}\phi\right)^{2}$$

• Model of a spin liquid ("Bose metal"): couple fermions to a dynamical gauge field A_{μ} .

$$\mathcal{L} = f_{\sigma}^{\dagger} \left(\partial_{\tau} - iA_{\tau} - \frac{(\nabla - i\mathbf{A})^2}{2m} - \mu \right) f_{\sigma}$$

$$\mathcal{L}[\psi_{\pm},\phi] = \psi_{\pm}^{\dagger} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{\pm} + \psi_{\pm}^{\dagger} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{\pm} - \phi \left(\psi_{\pm}^{\dagger}\psi_{\pm} + \psi_{\pm}^{\dagger}\psi_{\pm}\right) + \frac{1}{2g^{2}}\left(\partial_{y}\phi\right)^{2}$$

Field theory of U(I) spin liquid

 $\begin{aligned} \mathcal{L}[\psi_{\pm}, a] &= \\ \psi_{+}^{\dagger} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{+} + \psi_{-}^{\dagger} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{-} \\ &- a \left(\psi_{+}^{\dagger}\psi_{+} - \psi_{-}^{\dagger}\psi_{-}\right) + \frac{1}{2g^{2}} \left(\partial_{y}a\right)^{2} \end{aligned}$

$$\mathcal{L}[\psi_{\pm},\phi] = \psi_{\pm}^{\dagger} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{\pm} + \psi_{\pm}^{\dagger} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{\pm} - \phi \left(\psi_{\pm}^{\dagger}\psi_{\pm} + \psi_{\pm}^{\dagger}\psi_{\pm}\right) + \frac{1}{2g^{2}}\left(\partial_{y}\phi\right)^{2}$$

$$\mathcal{L} = \psi^{\dagger}_{+} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{+} + \psi^{\dagger}_{-} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{-}$$
$$-\phi\left(\psi^{\dagger}_{+}\psi_{+} + \psi^{\dagger}_{-}\psi_{-}\right) + \frac{1}{2g^{2}}\left(\partial_{y}\phi\right)^{2}$$

One loop ϕ self-energy with N_f fermion flavors:

$$D(\vec{q},\omega) = N_f \int \frac{d^2k}{4\pi^2} \frac{d\Omega}{2\pi} \frac{1}{\left[-i(\Omega+\omega)+k_x+q_x+(k_y+q_y)^2\right] \left[-i\Omega-k_x+k_y^2\right]}}$$
$$= \frac{N_f}{4\pi} \frac{|\omega|}{|q_y|}$$
Landau-damping

$$\mathcal{L} = \psi^{\dagger}_{+} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2} \right) \psi_{+} + \psi^{\dagger}_{-} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2} \right) \psi_{-}$$
$$- \phi \left(\psi^{\dagger}_{+} \psi_{+} + \psi^{\dagger}_{-} \psi_{-} \right) + \frac{1}{2g^{2}} \left(\partial_{y} \phi \right)^{2}$$

Electron self-energy at order $1/N_f$:

$$\begin{split} \Sigma(\vec{k},\Omega) &= -\frac{1}{N_f} \int \frac{d^2 q}{4\pi^2} \frac{d\omega}{2\pi} \frac{1}{\left[-i(\omega+\Omega) + k_x + q_x + (k_y + q_y)^2\right] \left[\frac{q_y^2}{g^2} + \frac{|\omega|}{|q_y|}\right]} \\ &= -i \frac{2}{\sqrt{3}N_f} \left(\frac{g^2}{4\pi}\right)^{2/3} \operatorname{sgn}(\Omega) |\Omega|^{2/3} \end{split}$$

Thursday, May 17, 2012

$$\mathcal{L} = \psi^{\dagger}_{+} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{+} + \psi^{\dagger}_{-} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{-}$$
$$-\phi\left(\psi^{\dagger}_{+}\psi_{+} + \psi^{\dagger}_{-}\psi_{-}\right) + \frac{1}{2g^{2}}\left(\partial_{y}\phi\right)^{2}$$

Schematic form of ϕ and fermion Green's functions

$$D(\vec{q},\omega) = \frac{1/N_f}{q_y^2 + \frac{|\omega|}{|q_y|}} \quad , \quad G_f(\vec{q},\omega) = \frac{1}{q_x + q_y^2 - i\text{sgn}(\omega)|\omega|^{2/3}/N_f}$$

In both cases $q_x \sim q_y^2 \sim \omega^{1/z}$, with z = 3/2. Note that the bare term $\sim \omega$ in G_f^{-1} is irrelevant.

Strongly-coupled theory without quasiparticles.

$$\mathcal{L} = \psi^{\dagger}_{+} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{+} + \psi^{\dagger}_{-} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{-}$$
$$-\phi\left(\psi^{\dagger}_{+}\psi_{+} + \psi^{\dagger}_{-}\psi_{-}\right) + \frac{1}{2g^{2}}\left(\partial_{y}\phi\right)^{2}$$

Simple scaling argument for z = 3/2.

$$\mathcal{L}_{\text{scaling}} = \psi_{+}^{\dagger} \left(-i\partial_{x} - \partial_{y}^{2} \right) \psi_{+} + \psi_{-}^{\dagger} \left(+i\partial_{x} - \partial_{y}^{2} \right) \psi_{-} - g \phi \left(\psi_{+}^{\dagger} \psi_{+} - \psi_{-}^{\dagger} \psi_{-} \right) + \left(\partial_{y} \phi \right)^{2}$$

Simple scaling argument for z = 3/2.

$$\mathcal{L}_{\text{scaling}} = \psi_{+}^{\dagger} \left(-i\partial_{x} - \partial_{y}^{2} \right) \psi_{+} + \psi_{-}^{\dagger} \left(+i\partial_{x} - \partial_{y}^{2} \right) \psi_{-} - g \phi \left(\psi_{+}^{\dagger} \psi_{+} - \psi_{-}^{\dagger} \psi_{-} \right) + \left(\partial_{y} \phi \right)^{2}$$

Simple scaling argument for z = 3/2.

Under the rescaling $x \to x/s$, $y \to y/s^{1/2}$, and $\tau \to \tau/s^z$, we find invariance provided

$$a \rightarrow a s^{(2z+1)/4}$$

 $\psi \rightarrow \psi s^{(2z+1)/4}$
 $g \rightarrow g s^{(3-2z)/4}$

So the action is invariant provided z = 3/2.

$$\mathcal{L} = \psi^{\dagger}_{+} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{+} + \psi^{\dagger}_{-} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{-}$$
$$-\phi\left(\psi^{\dagger}_{+}\psi_{+} + \psi^{\dagger}_{-}\psi_{-}\right) + \frac{1}{2g^{2}}\left(\partial_{y}\phi\right)^{2}$$

Schematic form of ϕ and fermion Green's functions

$$D(\vec{q},\omega) = \frac{1/N_f}{q_y^2 + \frac{|\omega|}{|q_y|}} \quad , \quad G_f(\vec{q},\omega) = \frac{1}{q_x + q_y^2 - i\text{sgn}(\omega)|\omega|^{2/3}/N_f}$$

In both cases $q_x \sim q_y^2 \sim \omega^{1/z}$, with z = 3/2. Note that the bare term $\sim \omega$ in G_f^{-1} is irrelevant.

Strongly-coupled theory without quasiparticles.

$$\mathcal{L} = \psi^{\dagger}_{+} \left(\partial_{\tau} - i\partial_{x} - \partial_{y}^{2}\right)\psi_{+} + \psi^{\dagger}_{-} \left(\partial_{\tau} + i\partial_{x} - \partial_{y}^{2}\right)\psi_{-}$$
$$-\phi\left(\psi^{\dagger}_{+}\psi_{+} + \psi^{\dagger}_{-}\psi_{-}\right) + \frac{1}{2g^{2}}\left(\partial_{y}\phi\right)^{2}$$

The $1/N_f$ expansion is *not* determined by counting fermion loops, because of infrared singularities created by the Fermi surface. The $|\omega|^{2/3}/N_f$ fermion self-energy leads to additional powers of N_f , and a breakdown in the loop expansion.

Computations in the 1/N expansion

Graph mixing ψ_+ and $\psi_$ is $\mathcal{O}(N^{3/2})$ (instead of $\mathcal{O}(N)$), violating genus expansion

All planar graphs of ψ_+ alone are as important as the leading term

M. A. Metlitski and S. Sachdev, Phys. Rev. B **82**, 075127 (2010)

Sung-Sik Lee, *Physical Review* B **80**, 165102 (2009)

Properties of the strange metal at the Ising-nematic critical point

• There is a sharp Fermi surface defined by the fermion Green's function: $G_f^{-1}(|\mathbf{k}| = k_F, \omega = 0) = 0.$

S.-S. Lee, Phys. Rev. B **80**, 165102 (2009) M. A. Metlitski and S. Sachdev, Phys. Rev. B **82**, 075127 (2010) D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B **82**, 045121 (2010)
- There is a sharp Fermi surface defined by the fermion Green's
- function: $G_f^{-1}(|\mathbf{k}| = k_F, \omega = 0) = 0.$
- Area enclosed by the Fermi surface $\mathcal{A} = \mathcal{Q}$, the fermion density

- There is a sharp Fermi surface defined by the fermion Green's function: $G_f^{-1}(|\mathbf{k}| = k_F, \omega = 0) = 0.$
- Area enclosed by the Fermi surface $\mathcal{A} = \mathcal{Q}$, the fermion density
- Critical continuum of excitations near the Fermi surface with energy $\omega \sim |q|^z$, where $q = |\mathbf{k}| - k_F$ is the distance from the Fermi surface and z is the dynamic critical exponent.

• Fermion Green's function $G_f^{-1} = q^{1-\eta}F(\omega/q^z)$. Three-loop computation shows $\eta \neq 0$ and z = 3/2.

- Fermion Green's function $G_f^{-1} = q^{1-\eta}F(\omega/q^z)$. Three-loop computation shows $\eta \neq 0$ and z = 3/2.
- The phase space density of fermions is effectively onedimensional, so the entropy density $S \sim T^{d_{\rm eff}/z}$ with $d_{\rm eff} = 1$.

Measure strength of quantum entanglement of region A with region B.

 $\rho_A = \text{Tr}_B \rho = \text{density matrix of region } A$ Entanglement entropy $S_{EE} = -\text{Tr} \left(\rho_A \ln \rho_A\right)$

Entanglement entropy of Fermi surfaces

Logarithmic violation of "area law": $S_{EE} = \frac{1}{12} (k_F P) \ln(k_F P)$

for a circular Fermi surface with Fermi momentum k_F , where P is the perimeter of region A with an arbitrary smooth shape.

> D. Gioev and I. Klich, *Physical Review Letters* **96**, 100503 (2006) B. Swingle, *Physical Review Letters* **105**, 050502 (2010)

Entanglement entropy of Fermi surfaces

Logarithmic violation of "area law": $S_{EE} = \frac{1}{12} (k_F P) \ln(k_F P)$

for a circular Fermi surface with Fermi momentum k_F , where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the "1/12" prefactor modified.

Y. Zhang, T. Grover, and A. Vishwanath, *Physical Review Letters* **107**, 067202 (2011)

A. Field theory

B. Gauge-gravity duality

A. Field theory

B. Gauge-gravity duality

J. McGreevy, arXiv0909.0518

Emergent holographic direction

Abandon conformal invariance, and only require scale invariance at long lengths and times.....

Most general metric has 2 independent exponents z and θ , where z is the dynamic critical exponent:

$$ds^{2} = \frac{1}{r^{2}} \left(-\frac{dt^{2}}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)}dr^{2} + dx_{i}^{2} \right)$$

Most general metric has 2 independent exponents z and θ , where z is the dynamic critical exponent:

$$ds^{2} = \frac{1}{r^{2}} \left(-\frac{dt^{2}}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)}dr^{2} + dx_{i}^{2} \right)$$

Such a theory has:

- Thermal entropy $S \sim T^{(d-\theta)/z}$.
- Entanglement entropy

$$S_E \sim \begin{cases} P & , & \text{for } \theta < d - 1 \\ P \ln P & , & \text{for } \theta = d - 1 \\ P^{\theta/(d-1)} & , & \text{for } \theta > d - 1 \end{cases}$$

• The null energy condition implies $z \ge 1 + \frac{\theta}{d}$.

$$ds^{2} = \frac{1}{r^{2}} \left(-\frac{dt^{2}}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)}dr^{2} + dx_{i}^{2} \right) \\ \theta = d - 1$$

• The value of θ is fixed by requiring that the thermal entropy density $S \sim T^{1/z}$ for general d. Conjecture: this metric then describes a compressible state with a *hidden* Fermi surface of *quarks* coupled to gauge fields

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

$$ds^{2} = \frac{1}{r^{2}} \left(-\frac{dt^{2}}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)}dr^{2} + dx_{i}^{2} \right) \\ \theta = d - 1$$

- The value of θ is fixed by requiring that the thermal entropy density $S \sim T^{1/z}$ for general d. Conjecture: this metric then describes a compressible state with a *hidden* Fermi surface of *quarks* coupled to gauge fields
- The null energy condition yields the inequality $z \ge 1 + \theta/d$. For d = 2 and $\theta = 1$ this yields $z \ge 3/2$. The field theory analysis gave z = 3/2 to three loops !

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

$$ds^{2} = \frac{1}{r^{2}} \left(-\frac{dt^{2}}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)}dr^{2} + dx_{i}^{2} \right) \\ \theta = d - 1$$

• The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ !!

N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP **1202**, 137 (2012). L. Huijse, S. Sachdev, B. Swingle, Physical Review B **85**, 035121 (2012)

Thursday, May 17, 2012

$$ds^{2} = \frac{1}{r^{2}} \left(-\frac{dt^{2}}{r^{2d(z-1)/(d-\theta)}} + r^{2\theta/(d-\theta)}dr^{2} + dx_{i}^{2} \right)$$

$$\theta = d - 1$$

- The entanglement entropy exhibits logarithmic violation of the area law only for this value of θ !!
- The logarithmic violation is of the form $P \ln P$, where P is the perimeter of the entangling region. This form is *independent* of the shape of the entangling region, just as is expected for a (hidden) Fermi surface !!!

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

$$ds^2 = rac{1}{r^2} \left(-rac{dt^2}{r^{2d(z-1)/(d- heta)}} + r^{2 heta/(d- heta)} dr^2 + dx_i^2
ight) + heta = d-1$$

• This metric can be realized as the solution Einstein-Maxwelldilaton holographic theory, corresponding to a boundary theory with charge Q. The entanglement entropy then has the form

$$S_E = \Xi \mathcal{Q}^{(d-1)/d} P \ln\left(\mathcal{Q}^{(d-1)/d} P\right).$$

where P is surface area ('perimeter') of the entangling region, and Ξ is a dimensionless constant which is independent of all UV details, of Q, and of any property of the entangling region. Note $Q^{(d-1)/d} \sim k_F^{d-1}$ via the Luttinger relation, and then S_E is just as expected for a Fermi surface !!!!

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

Thursday, May 17, 2012

Compressible quantum matter

Field theory of Ising-nematic ordering in a Fermi liquid ("Pomeranchuk" transition) is strongly coupled in two spatial dimensions

Compressible quantum matter

Solution For <u>hidden Fermi surfaces</u> in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a <u>non-Fermi liquid</u> (NFL) state of gauge theories at non-zero density.

Compressible quantum matter

Solution Evidence for <u>hidden Fermi surfaces</u> in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a <u>non-Fermi liquid</u> (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

• Log violation of the area law in entanglement entropy, S_E .

Compressible quantum matter

Solution For <u>hidden Fermi surfaces</u> in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a <u>non-Fermi liquid</u> (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E .
- Leading-log S_E independent of shape of entangling region.

Compressible quantum matter

Solution Evidence for <u>hidden Fermi surfaces</u> in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a <u>non-Fermi liquid</u> (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E .
- Leading-log S_E independent of shape of entangling region.
- The d = 2 bound $z \ge 3/2$, compared to z = 3/2 in three-loop field theory.

Compressible quantum matter

Solution Evidence for <u>hidden Fermi surfaces</u> in compressible states obtained for a class of holographic Einstein-Maxwell-dilaton theories. These theories describe a <u>non-Fermi liquid</u> (NFL) state of gauge theories at non-zero density.

After fixing $\theta = d - 1$ to obtain thermal entropy density $S \sim T^{1/z}$, we found

- Log violation of the area law in entanglement entropy, S_E .
- Leading-log S_E independent of shape of entangling region.
- The d = 2 bound $z \ge 3/2$, compared to z = 3/2 in three-loop field theory.
- Evidence for Luttinger theorem in prefactor of S_E .