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Modern phases of quantum matter
Not adiabatically connected 

to independent electron states:
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Modern phases of quantum matter
Not adiabatically connected 

to independent electron states:
many-particle, long-range 
quantum entanglement

Thursday, May 17, 2012



Mott insulator: Triangular lattice antiferromagnet

H = J

�

�ij�

�Si · �Sj

Nearest-neighbor model has non-collinear Neel order 
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Spin liquid obtained in a generalized 
spin model with S=1/2 per unit cell 

=

P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
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ssc

non-collinear Néel state

Mott insulator: Triangular lattice antiferromagnet

Quantum “disordered” state with
exponentially decaying spin
correlations.

Z2 spin liquid
with long-range entanglement.
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ssc

non-collinear Néel state

Mott insulator: Triangular lattice antiferromagnet

N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991)
X.-G. Wen, Phys. Rev. B  44, 2664 (1991)

Quantum “disordered” state with
exponentially decaying spin
correlations.

Z2 spin liquid
with long-range entanglement.
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|Ψ� ⇒ Ground state of entire system,
ρ = |Ψ��Ψ|

ρA = TrBρ = density matrix of region A

Entanglement entropy SEE = −Tr (ρA ln ρA)

B

A

Topological order in the Z2 spin liquid ground state
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Entanglement entropy of a band insulator:
SEE = aP − exp(−bP )

where P is the surface area (perimeter)
of the boundary between A and B.

A

B

Topological order in the Z2 spin liquid ground state
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Entanglement entropy of a Z2 spin liquid:
SEE = aP − ln(2)

where P is the surface area (perimeter)
of the boundary between A and B.

The ln(2) is a universal characteristic of the Z2 spin liquid,
and implies long-range quantum entanglement.

A

B

M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006); A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006);
Y. Zhang, T. Grover, and A. Vishwanath, Phys. Rev. B  84, 075128 (2011).

Topological order in the Z2 spin liquid ground state
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Young Lee, 
APS meeting, March 2012

 Promising candidate: the kagome
           antiferromagnet

Numerical evidence for a gapped spin liquid:
Simeng Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).
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String theory
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Spinning electrons localized on a square lattice

H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

Examine ground state as a function of λ

S=1/2
spins
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H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

At large    ground state is a “quantum paramagnet” with 
spins locked in valence bond singlets

=
1√
2

����↑↓
�
−

��� ↓↑
��

λ

Spinning electrons localized on a square lattice
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H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

=
1√
2

����↑↓
�
−

��� ↓↑
��

Nearest-neighor spins are “entangled” with each other.
Can be separated into an Einstein-Podolsky-Rosen (EPR) pair.

Spinning electrons localized on a square lattice
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H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

For λ ≈ 1, the ground state has antiferromagnetic (“Néel”) order,
and the spins align in a checkerboard pattern

Spinning electrons localized on a square lattice
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H =
�

�ij�

Jij
�Si · �Sj

J

J/λ

For λ ≈ 1, the ground state has antiferromagnetic (“Néel”) order,
and the spins align in a checkerboard pattern

No EPR pairs

Spinning electrons localized on a square lattice
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Christian Ruegg, Bruce Normand, Masashige Matsumoto, Albert Furrer, 
Desmond McMorrow, Karl Kramer, Hans–Ulrich Gudel, Severian Gvasaliya, 

Hannu Mutka, and Martin Boehm, Phys. Rev. Lett. 100, 205701 (2008)

Excitations of TlCuCl3 with varying pressure
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S. Sachdev, 
arXiv:0901.4103

Higgs boson

First observation of the Higgs boson

at the theoretically predicted energy!
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λλc

A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett. 72, 2777 (1994).

Quantum critical point with non-local 
entanglement in spin wavefunction

=
1√
2

����↑↓
�
−

��� ↓↑
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point

M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007)
G. Vidal, Phys. Rev. Lett. 99, 220405 (2007)

F.  Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Phys. Rev. Lett. 96, 220601 (2006)

d
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depth of
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D-dimensional
space

Entanglement entropy

A
d
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depth of
entanglement

D-dimensional
space

Entanglement entropy

A

Entanglement entropy = 
Number of links on 

optimal surface 
intersecting minimal 

number of links.

d

Brian Swingle, arXiv:0905.1317
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• Long-range entanglement: entanglement entropy obeys
SEE = aL − γ, where γ is a universal number asso-
ciated with the quantum critical point.

Long-range entanglement at the quantum critical point

B

A

M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Physical Review B 80, 115122 (2009).
H. Casini, M. Huerta, and R. Myers, JHEP 1105:036, (2011)

I. Klebanov, S. Pufu, and B. Safdi, arXiv:1105.4598
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• Long-range entanglement

• The low energy excitations are described by a theory
which has the same structure as Einstein’s theory
of special relativity, but with the spin-wave velocity
playing the role of the velocity of light.

• The theory of the critical point has an even larger
symmetry corresponding to conformal transforma-
tions of spacetime: we refer to such a theory as a
CFT3

Characteristics of 
  quantum critical point
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Quantum
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points of electrons

in crystals
String theory
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• Allows unification of the standard model of particle
physics with gravity.

• Low-lying string modes correspond to gauge fields,
gravitons, quarks . . .

String theory
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• A D-brane is a d-dimensional surface on which strings can end.

• The low-energy theory on a D-brane has no gravity, similar to
theories of entangled electrons of interest to us.

• In d = 2, we obtain strongly-interacting CFT3s. These are
“dual” to string theory on anti-de Sitter space: AdS4.
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String theory near 
a D-brane

depth of
entanglement

D-dimensional
space

Emergent direction
of AdS4

d
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depth of
entanglement

D-dimensional
space

Tensor network representation of entanglement
  at quantum critical point

Emergent direction
of AdS4 Brian Swingle, arXiv:0905.1317

d
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J. McGreevy, arXiv0909.0518

r

AdSd+2

CFTd+1

Rd,1

Minkowski

Emergent holographic direction

Quantum 
matter with
long-range 

entanglement
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Quantum 
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measures

entanglement
entropy

S. Ryu and T.  Takayanagi, Phys. Rev. Lett. 96, 18160 (2006).
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Metals, “strange metals”, and 
high temperature 
superconductors

Insights from gravitational 
“duals” 
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Ishida, Nakai, and Hosono
arXiv:0906.2045v1

Iron pnictides: 
a new class of high temperature superconductors
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∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 
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Short-range entanglement 
in state with Neel (AF) order

Thursday, May 17, 2012



TSDW 
Tc

 

T0 

2.0 

0 

!"

1.0 SDW 

Superconductivity 

BaFe2(As1-xPx)2 

AF

Resistivity
∼ ρ0 +ATα

S. Kasahara, T. Shibauchi, K. Hashimoto, K. Ikada, S. Tonegawa, R. Okazaki, H. Shishido, 
H. Ikeda, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, 

Physical Review B 81, 184519 (2010)

Superconductor
Bose condensate of pairs of electrons

Short-range entanglement
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Ordinary metal
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Sommerfeld-Bloch theory of ordinary metals

Momenta with
electron states

empty

Momenta with
electron states

occupied
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• Area enclosed by the Fermi surface A = Q,
the electron density

• Excitations near the Fermi surface are responsible for the famil-
iar properties of ordinary metals, such as resistivity ∼ T 2.

Key feature of the theory: 
the Fermi surface

A

Sommerfeld-Bloch theory of ordinary metals
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YBa2Cu3O6+x

High temperature 
superconductors
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Broken rotational symmetry 
in the pseudogap phase of a 
high-Tc superconductor
R. Daou, J. Chang, David LeBoeuf, Olivier Cyr-
Choiniere, Francis Laliberte, Nicolas Doiron-
Leyraud, B. J. Ramshaw, Ruixing Liang, 
D. A. Bonn, W. N. Hardy,  and Louis Taillefer
Nature, 463, 519 (2010).
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Strong anisotropy of 
electronic states between 

x and y directions:
Electronic 

“Ising-nematic” order

STM measurements of Z(r), the energy asymmetry

in density of states in Bi2Sr2CaCu2O8+δ.

M. J. Lawler, K. Fujita,

Jhinhwan Lee,

A. R. Schmidt,

Y. Kohsaka, Chung Koo

Kim, H. Eisaki,

S. Uchida, J. C. Davis,

J. P. Sethna, and

Eun-Ah Kim, Nature

466, 347 (2010)
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A. Field theory

              
               B. Gauge-gravity duality
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Fermi surface with full square lattice symmetry

Quantum criticality of Ising-nematic ordering

x

y
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Spontaneous elongation along x direction:
Ising order parameter φ > 0.

x

y
Quantum criticality of Ising-nematic ordering
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x

y

Spontaneous elongation along y direction:
Ising order parameter φ < 0.

Quantum criticality of Ising-nematic ordering
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Ising-nematic order parameter

φ ∼
�

d2k (cos kx − cos ky) c†kσckσ

Measures spontaneous breaking of square lattice

point-group symmetry of underlying Hamiltonian
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rrc

Pomeranchuk instability as a function of coupling r

�φ� = 0�φ� �= 0

or

Quantum criticality of Ising-nematic ordering
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Phase diagram as a function of T and r
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Phase diagram as a function of T and r
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Phase diagram as a function of T and r
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�φ� = 0

Quantum
critical
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Quantum criticality of Ising-nematic ordering
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Effective action for Ising order parameter

Sφ =
�

d2rdτ
�
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

�

Quantum criticality of Ising-nematic ordering
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Effective action for Ising order parameter

Sφ =
�

d2rdτ
�
(∂τφ)2 + c2(∇φ)2 + (λ− λc)φ2 + uφ4

�

Effective action for electrons:

Sc =
�

dτ

Nf�

α=1




�

i

c†iα∂τ ciα −
�

i<j

tijc
†
iαciα





≡
Nf�

α=1

�

k

�
dτc†kα (∂τ + εk) ckα
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�φ� > 0 �φ� < 0

Coupling between Ising order and electrons

Sφc = − γ

�
dτ

Nf�

α=1

�

k,q

φq (cos kx− cos ky)c†k+q/2,αck−q/2,α

for spatially dependent φ

Quantum criticality of Ising-nematic ordering
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• φ fluctuation at wavevector �q couples most efficiently to fermions
near ±�k0.

• Expand fermion kinetic energy at wavevectors about ±�k0 and
boson (φ) kinetic energy about �q = 0.
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Thursday, May 17, 2012



• φ fluctuation at wavevector �q couples most efficiently to fermions
near ±�k0.

• Expand fermion kinetic energy at wavevectors about ±�k0 and
boson (φ) kinetic energy about �q = 0.

Quantum criticality of Ising-nematic ordering

Thursday, May 17, 2012



L[ψ±,φ] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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=

• Model of a spin liquid (“Bose metal”): couple fermions to a
dynamical gauge field Aµ.

L = f†
σ

�
∂τ − iAτ − (∇− iA)2

2m
− µ

�
fσ
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Field theory of U(1) spin liquid

L[ψ±, a] =

ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

−a
�
ψ†
+ψ+ − ψ†

−ψ−

�
+

1

2g2
(∂ya)

2

M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127 (2010)
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(a)

(b)
Landau-damping

L = ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

− φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

Quantum criticality of Ising-nematic ordering

One loop φ self-energy with Nf fermion flavors:

D(�q,ω) = Nf

�
d2k

4π2

dΩ

2π

1

[−i(Ω+ ω) + kx + qx + (ky + qy)2]
�
−iΩ− kx + k2y

�

=
Nf

4π

|ω|
|qy|

Thursday, May 17, 2012



(a)

(b)
Electron self-energy at order 1/Nf :

Σ(�k,Ω) = − 1

Nf

�
d2q

4π2

dω

2π

1

[−i(ω + Ω) + kx + qx + (ky + qy)2]

�
q2y
g2

+
|ω|
|qy|

�

= −i
2√
3Nf

�
g2

4π

�2/3

sgn(Ω)|Ω|2/3

Quantum criticality of Ising-nematic ordering
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Quantum criticality of Ising-nematic ordering

L = ψ†
+

�
∂τ − i∂x − ∂2

y

�
ψ+ + ψ†

−
�
∂τ + i∂x − ∂2

y

�
ψ−

− φ
�
ψ†
+ψ+ + ψ†

−ψ−

�
+

1

2g2
(∂yφ)

2

Schematic form of φ and fermion Green’s functions

D(�q,ω) =
1/Nf

q2y +
|ω|
|qy|

, Gf (�q,ω) =
1

qx + q2y − isgn(ω)|ω|2/3/Nf

In both cases qx ∼ q2y ∼ ω1/z, with z = 3/2. Note that the

bare term ∼ ω in G−1
f is irrelevant.

Strongly-coupled theory without quasiparticles.
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Simple scaling argument for z = 3/2.
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Simple scaling argument for z = 3/2.

Quantum criticality of Ising-nematic ordering
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−
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+i∂x − ∂2
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Simple scaling argument for z = 3/2.

Quantum criticality of Ising-nematic ordering

Lscaling = ψ†
+

�
−i∂x − ∂2

y

�
ψ+ + ψ†

−
�
+i∂x − ∂2

y

�
ψ−

− g φ
�
ψ†
+ψ+ − ψ†

−ψ−

�
+ (∂yφ)

2

Under the rescaling x → x/s, y → y/s1/2, and τ → τ/sz, we
find invariance provided

a → a s(2z+1)/4

ψ → ψ s(2z+1)/4

g → g s(3−2z)/4

So the action is invariant provided z = 3/2.
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The 1/Nf expansion is not determined
by counting fermion loops, because of in-
frared singularities created by the Fermi
surface. The |ω|2/3/Nf fermion self-energy
leads to additional powers of Nf , and a
breakdown in the loop expansion.
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Computations in the 1/N expansion

Sung-Sik Lee, Physical Review B 80, 165102 (2009)

All planar graphs of ψ+ alone
are as important as the leading

term

ψ+ ψ−

Graph mixing ψ+ and ψ−
isO

�
N3/2

�
(instead ofO (N)),

violating genus expansion

M. A. Metlitski and S. Sachdev,
Phys. Rev. B 82, 075127 (2010)
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D. F. Mross, J. McGreevy, H. Liu, and T. Senthil, Phys. Rev. B 82, 045121 (2010)

• There is a sharp Fermi surface defined by the fermion Green’s
function: G−1

f (|k| = kF ,ω = 0) = 0.

• Area enclosed by the Fermi surface A = Q, the fermion density

• Critical continuum of excitations near the Fermi surface with
energy ω ∼ |q|z, where q = |k| − kF is the distance from the
Fermi surface and z is the dynamic critical exponent.

Properties of the strange 
metal at the Ising-nematic 

critical point
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Properties of the strange 
metal at the Ising-nematic 

critical point
→| q |←

• Fermion Green’s functionG−1
f = q1−ηF (ω/qz). Three-

loop computation shows η �= 0 and z = 3/2.

• The phase space density of fermions is effectively one-
dimensional, so the entropy density S ∼ T deff/z with
deff = 1.
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B

A

Entanglement entropy

Measure strength of quantum
entanglement of region A with region B.

ρA = TrBρ = density matrix of region A
Entanglement entropy SEE = −Tr (ρA ln ρA)
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Logarithmic violation of “area law”: SEE =
1

12
(kFP ) ln(kFP )

for a circular Fermi surface with Fermi momentum kF ,
where P is the perimeter of region A with an arbitrary smooth shape.

Non-Fermi liquids have, at most, the “1/12” prefactor modified.

B

A

Entanglement entropy of Fermi surfaces

D. Gioev and I. Klich, Physical Review Letters 96, 100503 (2006)
B. Swingle,  Physical Review Letters 105, 050502 (2010)
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where P is the perimeter of region A with an arbitrary smooth shape.
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B

A

Y.  Zhang, T. Grover,  and A. Vishwanath, Physical Review Letters 107, 067202 (2011)

Entanglement entropy of Fermi surfaces
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A. Field theory

              
               B. Gauge-gravity duality
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J. McGreevy, arXiv0909.0518

r

AdSd+2

CFTd+1

Rd,1

Minkowski

Emergent holographic direction

Quantum 
matter with
long-range 

entanglement
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r

AdSd+2 Rd,1

Minkowski

Emergent holographic direction

Quantum 
matter with
long-range 

entanglement

Abandon conformal invariance, and only require scale 
invariance at long lengths and times.....
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Most general metric has 2 independent exponents z and θ,
where z is the dynamic critical exponent:

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�
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Most general metric has 2 independent exponents z and θ,
where z is the dynamic critical exponent:

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

Such a theory has:

• Thermal entropy S ∼ T (d−θ)/z.

• Entanglement entropy

SE ∼






P , for θ < d− 1
P lnP , for θ = d− 1
P θ/(d−1) , for θ > d− 1

• The null energy condition implies z ≥ 1 +
θ

d
.
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• The value of θ is fixed by requiring that the thermal
entropy density S ∼ T 1/z for general d.
Conjecture: this metric then describes a compressible
state with a hidden Fermi surface of quarks coupled to
gauge fields

• The null energy condition yields the inequality z ≥
1 + θ/d. For d = 2 and θ = 1 this yields z ≥ 3/2. The
field theory analysis gave z = 3/2 to three loops !

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�
Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

θ = d− 1
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• The entanglement entropy exhibits logarithmic viola-
tion of the area law only for this value of θ !!

• The logarithmic violation is of the form P lnP , where
P is the perimeter of the entangling region. This form
is independent of the shape of the entangling region,
just as is expected for a (hidden) Fermi surface !!!

ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�
Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)
N. Ogawa, T. Takayanagi, and T. Ugajin, JHEP 1202, 137 (2012).

θ = d− 1
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ds2 =
1

r2

�
− dt2

r2d(z−1)/(d−θ)
+ r2θ/(d−θ)dr2 + dx2

i

�

θ = d− 1

Holography of non-Fermi liquids

L. Huijse, S. Sachdev, B. Swingle, Physical Review B 85, 035121 (2012)

• This metric can be realized as the solution Einstein-Maxwell-
dilaton holographic theory, corresponding to a boundary theory
with charge Q. The entanglement entropy then has the form

SE = ΞQ(d−1)/dP ln

�
Q(d−1)/dP

�
.

where P is surface area (‘perimeter’) of the entangling region,
and Ξ is a dimensionless constant which is independent of all
UV details, of Q, and of any property of the entangling region.
Note Q(d−1)/d ∼ kd−1

F via the Luttinger relation, and then SE is
just as expected for a Fermi surface !!!!
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Conclusions

Compressible quantum matter

 Field theory of Ising-nematic ordering in a Fermi liquid 
(“Pomeranchuk’’ transition) is strongly coupled in two spatial 
dimensions
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Conclusions

Compressible quantum matter

 Evidence for hidden Fermi surfaces in compressible states 
obtained for a class of holographic Einstein-Maxwell-dilaton 
theories. These theories describe a non-Fermi liquid (NFL) state 
of gauge theories at non-zero density.
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After fixing θ = d−1 to obtain thermal entropy density S ∼ T 1/z, we found

• Log violation of the area law in entanglement entropy, SE .

• Leading-log SE independent of shape of entangling region.

• The d = 2 bound z ≥ 3/2, compared to z = 3/2 in three-loop field
theory.

• Evidence for Luttinger theorem in prefactor of SE .
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